SI Units of Measurement

<table>
<thead>
<tr>
<th>Name</th>
<th>Measurement</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ampere</td>
<td>electric current</td>
<td>A</td>
</tr>
<tr>
<td>ampere per square metre</td>
<td>density</td>
<td>$A \ m^{-2}$</td>
</tr>
<tr>
<td>candela</td>
<td>luminous intensity</td>
<td>cd</td>
</tr>
<tr>
<td>candela per square metre</td>
<td>luminance</td>
<td>$cd \ m^{-2}$</td>
</tr>
<tr>
<td>cubic metre</td>
<td>volume</td>
<td>m^3</td>
</tr>
<tr>
<td>cubic metre per kilogram</td>
<td>specific volume</td>
<td>$m^3 \ kg^{-1}$</td>
</tr>
<tr>
<td>kelvin</td>
<td>thermodynamic temperature</td>
<td>K</td>
</tr>
<tr>
<td>kilogram</td>
<td>mass</td>
<td>kg</td>
</tr>
<tr>
<td>metre</td>
<td>length</td>
<td>m</td>
</tr>
<tr>
<td>metre per second</td>
<td>velocity</td>
<td>$m \ s^{-1}$</td>
</tr>
<tr>
<td>metre per second squared</td>
<td>acceleration</td>
<td>$m \ s^{-2}$</td>
</tr>
<tr>
<td>mole</td>
<td>amount of substance</td>
<td>mol</td>
</tr>
<tr>
<td>mole per cubic metre</td>
<td>concentration</td>
<td>$mol \ m^{-3}$</td>
</tr>
<tr>
<td>per metre</td>
<td>wave number</td>
<td>m^{-1}</td>
</tr>
<tr>
<td>second</td>
<td>time</td>
<td>s</td>
</tr>
<tr>
<td>square metre</td>
<td>area</td>
<td>m^2</td>
</tr>
</tbody>
</table>
Units of Measurement (by SI unit)

m^3 (cubic metre) volume
m^2 (square metre) area

A (ampere) electric current
$A \, m^2$ (ampere per square metre) density

cd (candela) luminous intensity
cd m^2 (candela per square metre) luminance

K (kelvin) thermodynamic temperature
kg (kilogram) mass

m (metre) length
$m \, s^2$ (metre per second squared) acceleration
$m \, s$ (metre per second) velocity
m^{-1} (per metre) wave number
$m^3 \, kg^{-1}$ (cubic metre per kilogram) specific volume
mol (mole) amount of substance
mol m^{-3} (mole per cubic metre) concentration

s (second) time