tkz-euclide

The **tkz-euclide** is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. It handles the most classic situations in Euclidean Geometry. **tkz-euclide** is built on top of PGF and its associated front-end Ti\textsc{K}Z and is a (La)\TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. It uses a Cartesian coordinate system orthogonal provided by the **tkz-base** package as well as tools to define the unique coordinates of points and to manipulate them. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible. Now the package needs the version 3.0 of Ti\textsc{K}Z. English is not my native language so there might be some errors.

☞ Firstly, I would like to thank **Till Tantau** for the beautiful \TeX{} package, namely Ti\textsc{K}Z.

☞ I would also like to thank Eric Weisstein, creator of MathWorld: **MathWorld**.

☞ You can find some examples on my site: altermundus.fr under construction!

Please report typos or any other comments to this documentation to: **Alain Matthes**.
This file can be redistributed and/or modified under the terms of the \TeX{} Project Public License Distributed from CTAN archives.
Contents

1. **Presentation and Overview**
 1.1 Why \texttt{tkz-euclide}?
 1.2 \texttt{tkz-euclide} vs Ti\textit{k}Z
 1.3 How it works
 1.3.1 Example Part I: gold triangle
 1.3.2 Example Part II: two others methods gold and euclide triangle
 1.3.3 Complete but minimal example
 1.4 The Elements of tkz code
 1.5 Notations and conventions
 1.6 How to use the \texttt{tkz-euclide} package?
 1.6.1 Let's look at a classic example
 1.6.2 \texttt{Set, Calculate, Draw, Mark, Label}

2. **Installation**
 2.1 List of folder files \texttt{tkzbase} and \texttt{tkzeuclide}

3. **News and compatibility**

4. **Definition of a point**
 4.1 Defining a named point \texttt{\tkzDefPoint}
 4.1.1 Cartesian coordinates
 4.1.2 Calculations with \texttt{xfp}
 4.1.3 Polar coordinates
 4.1.4 Calculations and coordinates
 4.1.5 Relative points
 4.2 Point relative to another: \texttt{\tkzDefShiftPoint}
 4.2.1 Isosceles triangle with \texttt{\tkzDefShiftPoint}
 4.2.2 Equilateral triangle
 4.2.3 Parallelogram
 4.3 Definition of multiple points: \texttt{\tkzDefPoints}
 4.4 Create a triangle
 4.5 Create a square

5. **Special points**
 5.1 Middle of a segment: \texttt{\tkzDefMidPoint}
 5.2 Barycentric coordinates
 5.2.1 Using \texttt{\tkzDefBarycentricPoint} with two points
 5.2.2 Using \texttt{\tkzDefBarycentricPoint} with three points
 5.3 Internal Similitude Center

6. **Special points relating to a triangle**
 6.1 Triangle center: \texttt{\tkzDefTriangleCenter}
 6.1.1 Option \texttt{ortho} or \texttt{orthic}
 6.1.2 Option \texttt{centroid}
 6.1.3 Option \texttt{circum}
 6.1.4 Option \texttt{in}
 6.1.5 Option \texttt{ex}
 6.1.6 Option \texttt{euler}
 6.1.7 Option \texttt{symmedian}
 6.1.8 Option \texttt{nagel}
 6.1.9 Option \texttt{mittenpunkt}

7. **Draw a point**
 7.0.1 Drawing points \texttt{\tkzDrawPoint}
Contents

12.1.5 A parabola .. 57
12.2 Specific lines: Tangent to a circle 57
12.2.1 Example of a tangent passing through a point on the circle 58
12.2.2 Example of tangents passing through an external point 59
12.2.3 Example of Andrew Mertz 59
12.2.4 Drawing a tangent option from with R and at 59
12.2.5 Drawing a tangent option from 60

13 Drawing, naming the lines .. 60
13.1 Draw a straight line .. 60
13.1.1 Examples with add .. 61
13.1.2 Example with \texttt{\textbackslash{}tkzDrawLines} 61
13.1.3 Example with the option add 61
13.1.4 Medians in a triangle 62
13.1.5 Altitudes in a triangle 62
13.1.6 Bisectors in a triangle 62
13.2 Add labels on a straight line \texttt{\textbackslash{}tkzLabelLine} 62
13.2.1 Example with \texttt{\textbackslash{}tkzLabelLine} 63

14 Draw, Mark segments .. 63
14.1 Draw a segment \texttt{\textbackslash{}tkzDrawSegment} 63
14.1.1 Example with point references 63
14.1.2 Example of extending an segment with option add 64
14.1.3 Example of adding dimensions with option dim 64
14.2 Drawing segments \texttt{\textbackslash{}tkzDrawSegments} 65
14.2.1 Place an arrow on segment 65
14.3 Mark a segment \texttt{\textbackslash{}tkzMarkSegment} 65
14.3.1 Several marks .. 66
14.3.2 Use of \texttt{\textbackslash{}mark} 66
14.4 Marking segments \texttt{\textbackslash{}tkzMarkSegments} 66
14.4.1 Marks for an isosceles triangle 66
14.5 Another marking ... 67
14.5.1 Multiple labels ... 67
14.5.2 Labels and right-angled triangle 68
14.5.3 Labels for an isosceles triangle 68

15 Triangles .. 69
15.1 Definition of triangles \texttt{\textbackslash{}tkzDefTriangle} 69
15.1.1 Option \texttt{golden} .. 69
15.1.2 Option \texttt{equilateral} 70
15.1.3 Option \texttt{gold} or \texttt{euclide} 70
15.2 Drawing of triangles .. 71
15.2.1 Option \texttt{pythagore} 71
15.2.2 Option \texttt{school} ... 71
15.2.3 Option \texttt{golden} .. 71
15.2.4 Option \texttt{gold} .. 72
15.2.5 Option \texttt{euclide} ... 72

16 Specific triangles with \texttt{\textbackslash{}tkzDefSpcTriangle} 72
16.1 Option \texttt{medial} or \texttt{centroid} 72
16.2 Option \texttt{in} or \texttt{incentral} 73
16.3 Option \texttt{ex} or \texttt{excentral} 73
16.4 Option \texttt{intouch} ... 74
16.5 Option \texttt{extouch} ... 74
16.6 Option \texttt{feuerbach} ... 75
16.7 Option \texttt{tangential} ... 76
17 Definition of polygons
17.1 Defining the points of a square
17.1.1 Using \tkzDefSquare with two points
17.1.2 Use of \tkzDefSquare to obtain an isosceles right-angled triangle
17.1.3 Pythagorean Theorem and \tkzDefSquare
17.2 Definition of parallelogram
17.3 Defining the points of a parallelogram
17.3.1 Example of a parallelogram definition
17.3.2 Simple example
17.3.3 Construction of the golden rectangle
17.4 Drawing a square
17.4.1 The idea is to inscribe two squares in a semi-circle
17.5 The golden rectangle
17.5.1 Golden Rectangles
17.6 Drawing a polygon
17.6.1 \tkzDrawPolygon
17.7 Drawing a polygonal chain
17.7.1 Polygonal chain
17.7.2 Polygonal chain: index notation
17.8 Clip a polygon
17.8.1 \tkzClipPolygon
17.8.2 Example: use of "Clip" for Sangaku in a square
17.9 Color a polygon
17.9.1 \tkzFillPolygon
17.10 Regular polygon
17.10.1 Option center
17.10.2 Option side
18 The Circles
18.1 Characteristics of a circle: \tkzDefCircle
18.1.1 Example with a random point and option through
18.1.2 Example with option diameter
18.1.3 Circles inscribed and circumscribed for a given triangle
18.1.4 Example with option ex
18.1.5 Euler's circle for a given triangle with option euler
18.1.6 Apollonius circles for a given segment option apollonius
18.1.7 Circles exinscribed to a given triangle option ex
18.1.8 Spieker circle with option spieker
18.1.9 Orthogonal circle passing through two given points, option orthogonal through
18.1.10 Orthogonal circle of given center
19 Draw, Label the Circles
19.1 Draw a circle
19.1.1 Circles and styles, draw a circle and color the disc
19.2 Drawing circles
19.2.1 Circles defined by a triangle
19.2.2 Concentric circles
19.2.3 Exinscribed circles
19.2.4 Cardioid
19.3 Draw a semicircle
19.3.1 Use of \tkzDrawSemiCircle
19.4 Colouring a disc
19.4.1 Example from a sangaku
19.5 Clipping a disc .. 94
 19.5.1 Example .. 94
19.6 Giving a label to a circle ... 95
 19.6.1 Example .. 95

20 Intersections ... 96
 20.1 Intersection of two straight lines 96
 20.1.1 Example of intersection between two straight lines 96
 20.2 Intersection of a straight line and a circle 96
 20.2.1 Simple example of a line-circle intersection 96
 20.2.2 More complex example of a line-circle intersection 97
 20.2.3 Circle defined by a center and a measure, and special cases 97
 20.2.4 More complex example 98
 20.2.5 Calculation of radius example 1 98
 20.2.6 Calculation of radius example 2 98
 20.2.7 Calculation of radius example 3 99
 20.2.8 Squares in half a disc 99
 20.2.9 Option "with nodes" 100
 20.3 Intersection of two circles 100
 20.3.1 Construction of an equilateral triangle 100
 20.3.2 Example a mediator 101
 20.3.3 An isosceles triangle 101
 20.3.4 Segment trisection 101
 20.3.5 With the option \texttt{with nodes} 102

21 The angles ... 103
 21.1 Colour an angle: fill ... 103
 21.1.1 Example with \texttt{size} 103
 21.1.2 Changing the order of items 103
 21.1.3 Multiples angles .. 104
 21.2 Mark an angle mark .. 104
 21.2.1 Example with \texttt{mark = x} 107
 21.2.2 Example with \texttt{mark = } 107
 21.3 Label at an angle ... 107
 21.3.1 Example with \texttt{pos} 108
 21.4 Marking a right angle .. 108
 21.4.1 Example of marking a right angle 109
 21.4.2 Example of marking a right angle, german style 109
 21.4.3 Mix of styles .. 109
 21.4.4 Full example ... 110
 21.5 \texttt{tkzMarkRightAngles} 110

22 Angles tools ... 110
 22.1 Recovering an angle \texttt{\tkzGetAngle} 110
 22.2 Example of the use of \texttt{\tkzGetAngle} 110
 22.3 Angle formed by three points 111
 22.3.1 Verification of angle measurement 112
 22.4 Example of the use of \texttt{\tkzFindAngle} 112
 22.4.1 Determination of the three angles of a triangle 113
 22.5 Determining a slope .. 113
 22.6 Angle formed by a straight line with the horizontal axis \texttt{\tkzFindSlopeAngle} 114
 22.6.1 Folding .. 115
 22.6.2 Example of the use of \texttt{\tkzFindSlopeAngle} 115
29 Protractor
 29.1 The circular protractor .. 136
 29.2 The circular protractor, transparent and returned 136

30 Some examples
 30.1 Some interesting examples ... 137
 30.1.1 Similar isosceles triangles 137
 30.1.2 Revised version of "Tangente" 138
 30.1.3 "Le Monde" version .. 139
 30.1.4 Triangle altitudes .. 139
 30.1.5 Altitudes - other construction 140
 30.2 Different authors ... 141
 30.2.1 Square root of the integers 141
 30.2.2 About right triangle .. 141
 30.2.3 Archimedes .. 141
 30.2.4 Example: Dimitris Kapeta .. 142
 30.2.5 Example 1: John Kitzmiller 143
 30.2.6 Example 2: John Kitzmiller 144
 30.2.7 Example 3: John Kitzmiller 145
 30.2.8 Example 4: author John Kitzmiller 146
 30.2.9 Example 1: from Indonesia 147
 30.2.10 Example 2: from Indonesia 148
 30.2.11 Three circles ... 150
 30.2.12 "The" Circle of APOLLONIUS 152

31 Customization
 31.1 Use of \tkzSetUpLine .. 154
 31.1.1 Example 1: change line width 154
 31.1.2 Example 2: change style of line 155
 31.1.3 Example 3: extend lines .. 155
 31.2 Points style .. 155
 31.2.1 Use of \tkzSetUpPoint ... 156
 31.2.2 Use of \tkzSetUpPoint inside a group 156
 31.3 Use of \tkzSetUpCompass ... 156
 31.3.1 Use of \tkzSetUpCompass with bisector 157
 31.3.2 Another example of \tkzSetUpCompass 157
 31.4 Own style ... 157

32 Summary of \tkz-base ... 158
 32.1 Utility of \tkz-base ... 158
 32.2 \tkzInit and \tkzShowBB ... 158
 32.3 \tkzClip ... 158
 32.4 \tkzClip and the option space 159

33 FAQ
 33.1 Most common errors ... 160

Index .. 161
1 Presentation and Overview

1.1 Why \texttt{tkz-euclide}?

My initial goal was to provide other mathematics teachers and myself with a tool to quickly create Euclidean geometry figures without investing too much effort in learning a new programming language. Of course, \texttt{tkz-euclide} is for math teachers who use \LaTeX and makes it possible to easily create correct drawings by means of \LaTeX.

It appeared that the simplest method was to reproduce the one used to obtain construction by hand. To describe a construction, you must, of course, define the objects but also the actions that you perform. It seemed to me that syntax close to the language of mathematicians and their students would be more easily understandable; moreover, it also seemed to me that this syntax should be close to that of \LaTeX. The objects, of course, are points, segments, lines, triangles, polygons and circles. As for actions, I considered five to be sufficient, namely: define, create, draw, mark and label.

The syntax is perhaps too verbose but it is, I believe, easily accessible. As a result, the students like teachers were able to easily access this tool.

1.2 \texttt{tkz-euclide} vs TikZ

I love programming with TikZ, and without TikZ I would never have had the idea to create \texttt{tkz-euclide} but never forget that behind it there is TikZ and that it is always possible to insert code from TikZ. \texttt{tkz-euclide} doesn't prevent you from using TikZ. That said, I don't think mixing syntax is a good thing.

There is no need to compare TikZ and \texttt{tkz-euclide}. The latter is not addressed to the same audience as TikZ. The first one allows you to do a lot of things, the second one only does geometry drawings. The first one can do everything the second one does, but the second one will more easily do what you want.
1.3 How it works

1.3.1 Example Part I: gold triangle

Let's analyze the figure

1. CBD and DBE are isosceles triangles;
2. BC = BE and (BD) is a bisector of the angle CBE;
3. From this we deduce that the CBD and DBE angles are equal and have the same measure α
 \[\widehat{BAC} + \widehat{ABC} + \widehat{BCA} = 180^\circ\] in the triangle BAC
 \[3\alpha + \widehat{BCA} = 180^\circ\] in the triangle CBD
 then
 \[\alpha + 2\widehat{BCA} = 180^\circ\]
 or
 \[\widehat{BCA} = 90^\circ - \alpha/2\]
4. Finally
 \[\widehat{CBD} = \alpha = 36^\circ\]
 the triangle CBD is a "gold" triangle.

How construct a gold triangle or an angle of 36°?

1. We place the fixed points C and D. \tkzDefPoint(0,0){C} and \tkzDefPoint(4,0){D};
2. We construct a square CDef and we construct the midpoint m of [Cf];
 We can do all of this with a compass and a rule;
3. Then we trace an arc with center m through e. This arc cross the line (Cf) at n;
4. Now the two arcs with center C and D and radius Cn define the point B.
After building the golden triangle BCD, we build the point A by noticing that $BD = DA$. Then we get the point E and finally the point F. This is done with already intersections of defined objects (line and circle).
1.3.2 Example Part II: two others methods gold and euclide triangle

`tkz-euclide` knows how to define a "gold" or "euclidean" triangle. We can define BCD and BCA like gold triangles.

```latex
\begin{tikzpicture}
\tkzDefPoint(0,0){C}
\tkzDefPoint(4,0){D}
\tkzDefTriangle[euclide](C,D)
\tkzGetPoint{B}
\tkzDefTriangle[euclide](B,C)
\tkzGetPoint{A}
\tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E}
\tkzInterLL(B,D)(C,E) \tkzGetPoint{F}
\tkzDrawPoints(C,D,B)
\tkzDrawPolygon(B,...,D)
\tkzDrawPolygon(B,C,D)
\tkzDrawSegments(D,A A,B C,E)
\tkzDrawArc[delta=10](B,C)(E)
\tkzDrawPoints(A,...,F)
\tkzMarkRightAngle[fill=blue!20](B,F,C)
\tkzFillAngles[fill=blue!10](C,B,D E,A,D){$\alpha$}
\tkzLabelPoints[below](A,C,D,E)
\tkzLabelPoints[above right](B,F)
\end{tikzpicture}
```

Here is a final method that uses rotations:

```latex
\begin{tikzpicture}
\tkzDefPoint(0,0){C}
% possible
% \tkzDefPoint[label=below:$C$](0,0){C}
% but don't do this
\tkzDefPoint(2,6){B}
% We get D and E with a rotation
\tkzDefPointBy[rotation= center B angle 36](C) \tkzGetPoint{D}
\tkzDefPointBy[rotation= center B angle 72](C) \tkzGetPoint{E}
% To get A we use an intersection of lines
\tkzInterLL(B,E)(C,D) \tkzGetPoint{A}
\tkzInterLL(C,E)(B,D) \tkzGetPoint{H}
% drawing
\end{tikzpicture}
```
\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(1,0){I}
 \tkzDefPoint(10,0){B}
 \tkzDefPoint(0,10){C}
 \tkzDefPoint(-a/2,-b/2){M}
 \tkzDefPoint(10,10){\(M\)}
 \tkzDrawPoints(A,...,E)
 \tkzDrawPolygon(C,B,D)
 \tkzDrawSegments(D,A B,A C,E)
 \tkzDrawArc[\delta=10](B,C)(E)
 \tkzMarkAngles(C,B,D E,A,D){\(\alpha\)}
 \tkzMarkRightAngle(B,H,C)
 \tkzLabelPoints[below left](C,A)
 \tkzLabelPoints[below right](D)
 \tkzLabelPoints[above](B,E)
\end{tikzpicture}

1.3.3 Complete but minimal example

A unit of length being chosen, the example shows how to obtain a segment of length \(\sqrt{a}\) from a segment of length \(a\), using a ruler and a compass.

\(IB = a\), \(AI = 1\)

\[\sqrt{a^2} = a \quad (a > 0) \]

Comments

- The Preamble

Let us first look at the preamble. If you need it, you have to load \texttt{xcolor} before \texttt{tkz-euclide}, that is, before \texttt{TiKZ}. \texttt{TiKZ} may cause problems with the active characters, but... provides a library in its latest version that's supposed to solve these problems \texttt{babel}.

\begin{verbatim}
\documentclass{standalone} % or another class
% \usepackage{xcolor} % before tikz or tkz-euclide if necessary
\usepackage{tkz-euclide} % no need to load TikZ
% \usetikzlibrary{babel} if there are problems with the active characters
\end{verbatim}

The following code consists of several parts:

- Definition of fixed points: the first part includes the definitions of the points necessary for the construction, these are the fixed points. The macros \texttt{tkzInit} and \texttt{tkzClip} in most cases are not necessary.
The second part is dedicated to the creation of new points from the fixed points; a B point is placed at 10 cm from A. The middle of $|AB|$ is defined by M and then the orthogonal line to the (AB) line is searched for at the I point. Then we look for the intersection of this line with the semi-circle of center M passing through A.

\begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}]
% fixed points
\tkzDefPoint(0,0){A}
\tkzDefPoint(1,0){I}
% calculation
\tkzDefPointBy[homothety=center A ratio 10](I) \tkzGetPoint{B}
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H}
\tkzInterLC(I,H)(M,A) \tkzGetSecondPoint{C}
\tkzDrawSegment[style=orange](I,C)
\tkzDrawArc(M,B)(A)
\tkzDrawSegment[dim={1,-16pt,}](A,I)
\tkzDrawSegment[dim={$a/2$,-10pt,}](I,M)
\tkzDrawSegment[dim={$a/2$,-16pt,}](M,B)
\tkzMarkRightAngle[ra](A,I,C)
\tkzDrawPoints(I,A,B,C,M)
\tkzLabelPoint[left](A){$A(0,0)$}
\tkzLabelPoints[above right](I,M)
\tkzLabelPoints[above left](C)
\tkzLabelPoint[right](B){$B(10,0)$}
\tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$}
\end{tikzpicture}

– The third one includes the different drawings;

\begin{tikzpicture}
\tkzDrawSegment[style=orange](I,H)
\tkzDrawPoints(O,I,A,B,M)
\tkzDrawArc(M,A)(O)
\tkzDrawSegment[dim={1,-16pt,}](O,I)
\tkzDrawSegment[dim={$a/2$,-10pt,}](I,M)
\tkzDrawSegment[dim={$a/2$,-16pt,}](M,A)
\end{tikzpicture}

– Marking: the fourth is devoted to marking;

\begin{tikzpicture}
\tkzMarkRightAngle(A,I,B)
\end{tikzpicture}

– Labelling: the latter only deals with the placement of labels.

\begin{tikzpicture}
\tkzLabelPoint[below left](O){$O(0,0)$}
\tkzLabelPoint[right](A){$A(0,0)$}
\tkzLabelPoints[above right](I,M)
\tkzLabelPoints[above left](C)
\tkzLabelPoint[right](B){$B(10,0)$}
\tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$}
\end{tikzpicture}

– The full code:

\begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}]
% fixed points
\tkzDefPoint(0,0){A}
\tkzDefPoint(1,0){I}
% calculation
\tkzDefPointBy[homothety=center A ratio 10](I) \tkzGetPoint{B}
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H}
\tkzInterLC(I,H)(M,A) \tkzGetSecondPoint{C}
\tkzDrawSegment[style=orange](I,C)
\tkzDrawArc(M,A)(O)
\tkzDrawSegment[dim={1,-16pt,}](A,I)
\tkzDrawSegment[dim={$a/2$,-10pt,}](I,M)
\tkzDrawSegment[dim={$a/2$,-16pt,}](M,B)
\tkzMarkRightAngle[ra](A,I,C)
\tkzDrawPoints(I,A,B,C,M)
\tkzLabelPoint[left](A){$A(0,0)$}
\tkzLabelPoints[above right](I,M)
\tkzLabelPoints[above left](C)
\tkzLabelPoint[right](B){$B(10,0)$}
\tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$}
\end{tikzpicture}
1.4 The Elements of tkz code

In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with *tkz-euclide*. The primitive objects are points. You can refer to a point at any time using the name given when defining it. (it is possible to assign a different name later on).

In general, *tkz-euclide* macros have a name beginning with tkz. There are four main categories starting with: \tkzDef... \tkzDraw... \tkzMark... and \tkzLabel...

Among the first category, \tkzDefPoint allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro \tkzDefTriangle.

This macro makes it possible to associate to a pair of points a third point in order to define a certain triangle \tkzDefTriangle(A,B). The obtained point is referenced \tkzPointResult and it is possible to choose another reference with \tkzGetPoint{C} for example. Parentheses are used to pass arguments. In \((A,B) \) \(A \) and \(B \) are the points with which a third will be defined.

However, in \{C\} we use braces to retrieve the new point. In order to choose a certain type of triangle among the following choices: equilateral, half, pythagoras, school, golden or sublime, euclide, gold, cheops... and two angles you just have to choose between hooks, for example:

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,8/0/B}
\foreach \tr in {equilateral,half,pythagore,school,golden,euclide,gold,cheops}
{\tkzDefTriangle[\tr](A,B) \tkzGetPoint{C}
\tkzDrawPoint(C)
\tkzLabelPoint[right]{\tr}(C)
\tkzDrawSegments(A,C,C,B)}
\tkzDrawPoints(A,B)
\tkzDrawSegments(A,B)
\end{tikzpicture}

1.5 Notations and conventions

I deliberately chose to use the geometric French and personal conventions to describe the geometric objects represented. The objects defined and represented by *tkz-euclide* are points, lines and circles located in a plane. They are the primary objects of Euclidean geometry from which we will construct figures.

According to Euclidian these figures will only illustrate pure ideas produced by our brain. Thus a point has no dimension and therefore no real existence. In the same way the line has no width and therefore no existence in the real world. The objects that we are going to consider are only representations of ideal mathematical objects.
tkz-euclide will follow the steps of the ancient Greeks to obtain geometrical constructions using the ruler and the compass.

Here are the notations that will be used:

- The points are represented geometrically either by a small disc or by the intersection of two lines (two straight lines, a straight line and a circle or two circles). In this case, the point is represented by a cross.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B}
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}

- The existence of a point being established, we can give it a label which will be a capital letter (with some exceptions) of the Latin alphabet such as A, B or C. For example:
 - O is a center for a circle, a rotation, etc.;
 - M defined a midpoint;
 - H defined the foot of an altitude;
 - P' is the image of P by a transformation.

It is important to note that the reference name of a point in the code may be different from the label to designate it in the text. So we can define a point A and give it as label P. In particular the style will be different, point A will be labeled A.

\begin{tikzpicture}
\tkzDefPoints{0/0/A}
\tkzDrawPoints(A)
\tkzLabelPoint(A){P}
\end{tikzpicture}

Exceptions: some points such as the middle of the sides of a triangle share a characteristic, so it is normal that their names also share a common character. We will designate these points by M_A, M_B and M_C.

In the code, these points will be referred to as: M_A, M_B and M_C.

Another exception relates to intermediate construction points which will not be labelled. They will often be designated by a lowercase letter in the code.

- The line segments are designated by two points representing their ends in square brackets: $[AB]$.
- The straight lines are in Euclidean geometry defined by two points so A and B define the straight line (AB). We can also designate this straight line using the Greek alphabet and name it (δ) or (Δ). It is also possible to designate the straight line with lowercase letters such as d and d'.
- The semi-straight line is designated as follows $[AB]$.
- Relation between the straight lines. Two perpendicular (AB) and (CD) lines will be written $(AB) \perp (CD)$ and if they are parallel we will write $(AB) \parallel (CD)$.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B}
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}
The lengths of the sides of triangle ABC are \(AB, AC \) and \(BC \). The numbers are also designated by a lowercase letter so we will write: \(AB = c, AC = b \) and \(BC = a \). The letter \(a \) is also used to represent an angle, and \(r \) is frequently used to represent a radius, \(d \) a diameter, \(l \) a length, \(d \) a distance.

Polygons are designated afterwards by their vertices so \(ABC \) is a triangle, \(EFGH \) a quadrilateral.

Angles are generally measured in degrees (ex \(60^\circ \)) and in an equilateral \(ABC \) triangle we will write \(\angle ABC = 60^\circ \).

The arcs are designated by their extremities. For example if \(A \) and \(B \) are two points of the same circle then \(AB \).

Circles are noted either \(\mathcal{C} \) if there is no possible confusion or \(\mathcal{C}(O; A) \) for a circle with center \(O \) and passing through the point \(A \) or \(\mathcal{C}(O; 1) \) for a circle with center \(O \) and radius 1 cm.

Name of the particular lines of a triangle: I used the terms bisector, bisector out, mediator (sometimes called perpendicular bisectors), altitude, median and symmedian.

\((x_1,y_1)\) coordinates of the point \(A_1 \), \((x_A,y_A)\) coordinates of the point \(A \).

1.6 How to use the \texttt{tkz-euclide} package?

1.6.1 Let’s look at a classic example

In order to show the right way, we will see how to build an equilateral triangle. Several possibilities are open to us, we are going to follow the steps of Euclid.

- First of all you have to use a document class. The best choice to test your code is to create a single figure with the class \texttt{standalone}.

\begin{verbatim}
\documentclass{standalone}
\end{verbatim}

- Then load the \texttt{tkz-euclide} package:

\begin{verbatim}
\usepackage{tkz-euclide}
\end{verbatim}

You don’t need to load TiKZ because the \texttt{tkz-euclide} package works on top of TiKZ and loads it.

- With the new version 3.03 you don’t need this line anymore. All objects are now loaded.

- Start the document and open a TiKZ picture environment:

\begin{verbatim}
\begin{document}
\begin{tikzpicture}
\end{verbatim}

- Now we define two fixed points:

\begin{verbatim}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,2){B}
\end{verbatim}

- Two points define two circles, let’s use these circles:

\begin{verbatim}
circle with center \(A \) through \(B \) and circle with center \(B \) through \(A \). These two circles have two points in common.
\tkzInterCC(A,B)(B,A)
\tkzGetPoints{C}{D}
\end{verbatim}

- All the necessary points are obtained, we can move on to the final steps including the plots.

\begin{verbatim}
\tkzDrawCircles[gray,dashed](A,B B,A)
\tkzDrawPolygon(A,B,C)% The triangle
\tkzDrawPoints(A,...,D)
\end{verbatim}
1.6.2 Set, Calculate, Draw, Mark, Label

The title could have been: Separation of Calculus and Drawings

When a document is prepared using the \LaTeX system, the source code of the document can be divided into two parts: the document body and the preamble. Under this methodology, publications can be structured, styled and typeset with minimal effort. I propose a similar methodology for creating figures with \texttt{tkz-euclide}.

The first part defines the fixed points, the second part allows the creation of new points. These are the two main parts. All that is left to do is to draw, mark and label.
2 Installation

tkz-euclide and *tkz-base* are now on the server of the CTAN\(^1\). If you want to test a beta version, just put the following files in a texmf folder that your system can find. You will have to check several points:

- The *tkz-base* and *tkz-euclide* folders must be located on a path recognized by \texttt{latex}.
- The \texttt{xfp}, \texttt{numprint} and \texttt{tikz 3.00} must be installed as they are mandatory, for the proper functioning of \texttt{tkz-euclide}.
- This documentation and all examples were obtained with \texttt{lualatex-dev} but \texttt{pdflatex} should be suitable.

2.1 List of folder files tkzbase and tkzeuclide

In the folder \texttt{base}:

- \texttt{tkz-base.cfg}
- \texttt{tkz-base.sty}
- \texttt{tkz-lib-marks.tex}
- \texttt{tkz-obj-axes.tex}
- \texttt{tkz-obj-grids.tex}
- \texttt{tkz-obj-marks.tex}
- \texttt{tkz-obj-points.tex}
- \texttt{tkz-obj-rep.tex}
- \texttt{tkz-tools-arith.tex}
- \texttt{tkz-tools-base.tex}
- \texttt{tkz-tools-BB.tex}
- \texttt{tkz-tools-misc.tex}
- \texttt{tkz-tools-modules.tex}
- \texttt{tkz-tools-print.tex}
- \texttt{tkz-tools-text.tex}
- \texttt{tkz-tools-utilities.tex}

In the folder \texttt{euclide}:

- \texttt{tkz-euclide.sty}
- \texttt{tkz-obj-eu-angles.tex}
- \texttt{tkz-obj-eu-arcs.tex}
- \texttt{tkz-obj-eu-circles.tex}
- \texttt{tkz-obj-eu-compass.tex}
- \texttt{tkz-obj-eu-draw-circles.tex}
- \texttt{tkz-obj-eu-draw-lines.tex}
- \texttt{tkz-obj-eu-draw-polygons.tex}
- \texttt{tkz-obj-eu-draw-triangles.tex}

1 *tkz-base* and *tkz-euclide* are part of TeXLive and \texttt{tlmgr} allows you to install them. These packages are also part of MiKTeX under Windows.

2 \texttt{xfp} replaces \texttt{fp}.
Now **tkz-euclide** loads all the files.
Some changes have been made to make the syntax more homogeneous and especially to distinguish the definition and search for coordinates from the rest, i.e. drawing, marking and labelling. In the future, the definition macros being isolated, it will be easier to introduce a phase of coordinate calculations using Lua.

An important novelty is the recent replacement of the \texttt{fp} package by \texttt{xfp}. This is to improve the calculations a little bit more and to make it easier to use.

Here are some of the changes.

- Improved code and bug fixes;
- With \texttt{tkz-euclide} loads all objects, so there's no need to place \texttt{\usetkzobj{all}};
- The bounding box is now controlled in each macro (hopefully) to avoid the use of \texttt{\tkzInit} followed by \texttt{\tkzClip};
- Added macros for the bounding box: \texttt{\tkzSaveBB} \texttt{\tkzClipBB} and so on;
- Logically most macros accept Ti\textsc{k}Z options. So I removed the "duplicate" options when possible thus the "label options" option is removed;
- Random points are now in \texttt{tkz-euclide} and the macro \texttt{\tkzGetRandPointOn} is replaced by \texttt{\tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \texttt{\tkzGetPoint};
- The options \texttt{end} and \texttt{start} which allowed to give a label to a straight line are removed. You now have to use the macro \texttt{\tkzLabelLine};
- Introduction of the libraries \texttt{quotes} and \texttt{angles}; it allows to give a label to a point, even if I am not in favour of this practice;
- The notion of vector disappears, to draw a vector just pass "->" as an option to \texttt{\tkzDrawSegment};
- Many macros still exist, but are obsolete and will disappear:
 - \texttt{\tkzDrawMedians} trace and create midpoints on the sides of a triangle. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with \texttt{\tkzSpcTriangle[median]} and then to choose the ones you are going to draw with \texttt{\tkzDrawSegments} or \texttt{\tkzDrawLines};
 - \texttt{\tkzDrawMedians(A,B)(C)} is now spelled \texttt{\tkzDrawMedians(A,C,B)}. This defines the median from C;
 - Another example \texttt{\tkzDrawTriangle[equilateral]} was handy but it is better to get the third point with \texttt{\tkzDefTriangle[equilateral]} and then draw with \texttt{\tkzDrawPolygon};
 - \texttt{\tkzDefRandPointOn} is replaced by \texttt{\tkzGetRandPointOn};
 - now \texttt{\tkzTangent} is replaced by \texttt{\tkzDefTangent};
 - You can use \texttt{global path name} if you want find intersection but it's very slow like in Ti\textsc{k}Z.
- Appearance of the macro \texttt{\usetkztool} which allows to load new "tools".
Points can be specified in any of the following ways:

- Cartesian coordinates;
- Polar coordinates;
- Named points;
- Relative points.

Even if it's possible, I think it's a bad idea to work directly with coordinates. Preferable is to use named points. A point is defined if it has a name linked to a unique pair of decimal numbers. Let \((x, y)\) or \((a : d)\) i.e. \((x\ \text{abscissa}, y\ \text{ordinate})\) or \((a\ \text{angle}; d\ \text{distance})\). This is possible because the plan has been provided with an orthonormed Cartesian coordinate system. The working axes are supposed to be (ortho)normed with unity equal to 1 cm or something equivalent like 0.39370 in. Now by default if you use a grid or axes, the rectangle used is defined by the coordinate points: \((0, 0)\) and \((10, 10)\). It's the macro `\texttt{\textbackslash tkzInit}` of the package `tkz-base` that creates this rectangle. Look at the following two codes and the result of their compilation:
The Cartesian coordinate \((a, b)\) refers to the point \(a\) centimeters in the \(x\)-direction and \(b\) centimeters in the \(y\)-direction.

A point in polar coordinates requires an angle \(\alpha\), in degrees, and a distance \(d\) from the origin with a dimensional unit by default it's the cm.

Cartesian coordinates

\[
\begin{tikzpicture}[scale=1]
\tkzInit[xmax=5,ymax=5]
\tkzDefPoints{0/0/O,1/0/I,0/1/J}
\tkzDefPoint(3,4){A}
\tkzDrawXY[noticks,>=latex]
\tkzDefPoint(3,4){A}
\tkzDrawPoints(O,A)
\tkzLabelPoint(A){$A_1 (x_1,y_1)$}
\tkzShowPointCoord[xlabel=x_1, ylabel=y_1](A)
\tkzLabelPoints(O,I)
\tkzLabelPoints[left](J)
\tkzDrawPoints[shape=cross](I,J)
\end{tikzpicture}
\]

Polar coordinates

\[
\begin{tikzpicture}[scale=1]
\tkzInit[xmax=5,ymax=5]
\tkzDefPoints{0/0/O,1/0/I,0/1/J}
\tkzDefPoint(40:4){P}
\tkzDrawXY[noticks,>=triangle 45]
\tkzDrawSegment[dim={d, 16pt,above=6pt}](O,P)
\tkzDrawPoints(O,P)
\tkzMarkAngle[mark=none,->](I,O,P)
\tkzFillAngle[fill=blue!20, opacity=.5](I,O,P)
\tkzLabelAngle[pos=1.25](I,O,P){α}
\tkzLabelPoint(P){$P (\alpha : d)$}
\tkzLabelPoints(O,I)
\tkzLabelPoints[left](J)
\end{tikzpicture}
\]

The \texttt{\tkzDefPoint} macro is used to define a point by assigning coordinates to it. This macro is based on the \texttt{coordinate}, a macro of \texttt{TikZ}. It can use \texttt{TikZ}-specific options such as \texttt{shift}. If calculations are required then the \texttt{xfp} package is chosen. We can use Cartesian or polar coordinates.

4.1 Defining a named point \texttt{\tkzDefPoint}

\[
\begin{tikzpicture}[local options] \tkzDefPoint((x,y)){(name)} or ((\alpha:d)){(name)} \end{tikzpicture}
\]

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x,y))</td>
<td>no default</td>
<td>(x) and (y) are two dimensions, by default in cm.</td>
</tr>
<tr>
<td>((\alpha:d))</td>
<td>no default</td>
<td>(\alpha) is an angle in degrees, (d) is a dimension</td>
</tr>
<tr>
<td>{name}</td>
<td>no default</td>
<td>Name assigned to the point: (A, T_0, P_1) etc ...</td>
</tr>
</tbody>
</table>

The obligatory arguments of this macro are two dimensions expressed with decimals, in the first case they are two measures of length, in the second case they are a measure of length and the measure of an angle in degrees.
4.1.1 Cartesian coordinates

\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(0,3){C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}

4.1.2 Calculations with xfp

\begin{tikzpicture}[scale=1]
\tkzInit[xmax=4,ymax=4]
\tkzGrid
\tkzDefPoint(-1+2,sqrt(4)){O}
\tkzDefPoint({3*ln(exp(1))},{exp(1)}){A}
\tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B}
\tkzDrawPoints[color=blue](O,B,A)
\end{tikzpicture}

4.1.3 Polar coordinates

\begin{tikzpicture}
\foreach \an [count=i] in {0,60,...,300}
{ \tkzDefPoint(\an:3){A_{\i}}}
\tkzDrawPolygon(A_1,A_...,A_6)
\tkzDrawPoints(A_1,A_...,A_6)
\end{tikzpicture}

4.1.4 Calculations and coordinates

You must follow the syntax of \texttt{xfp} here. It is always possible to go through \texttt{pgfmath} but in this case, the coordinates must be calculated before using the macro \texttt{\tkzDefPoint}.

\begin{tabular}{|l|l|l|}
\hline
options & default & definition \\
\hline
label & no default & allows you to place a label at a predefined distance \\
shift & no default & adds \((x,y)\) or \((\alpha:d)\) to all coordinates \\
\hline
\end{tabular}
4.1.5 Relative points

First, we can use the `scope` environment from Ti\k Z. In the following example, we have a way to define an equilateral triangle.

4.2 Point relative to another: `\tkzDefShiftPoint`

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y)</td>
<td>no default</td>
<td>(x) and (y) are two dimensions, by default in cm.</td>
</tr>
<tr>
<td>((\alpha:d))</td>
<td>no default</td>
<td>(\alpha) is an angle in degrees, (d) is a dimension</td>
</tr>
</tbody>
</table>

4.2.1 Isosceles triangle with `\tkzDefShiftPoint`

This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex \(A\) and angle at vertex of \(30^\circ\).
4 Definition of a point

4.2.2 Equilateral triangle

Let’s see how to get an equilateral triangle (there is much simpler)

4.2.3 Parallelogram

There’s a simpler way

4.3 Definition of multiple points: `\tkzDefPoints`

\begin{tikzpicture}
\tkzDefPoints{0/0/O,2/2/A}
\end{tikzpicture}
4.4 Create a triangle

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,4/0/B,4/3/C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}

4.5 Create a square

Note here the syntax for drawing the polygon.

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D}
\tkzDrawPolygon(A,...,D)
\tkzDrawPoints(A,B,C,D)
\end{tikzpicture}

5 Special points

The introduction of the dots was done in \texttt{tkz-base}, the most important macro being \texttt{\tkzDefPoint}. Here are some special points.

5.1 Middle of a segment \texttt{\tkzDefMidPoint}

It is a question of determining the middle of a segment.

\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefPoint(4,0){B}
\tkzDefMidPoint(A,B) \tkzGetPoint{C}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[right](A,B,C)
\end{tikzpicture}

\texttt{\tkzDefMidPoint((pt1,pt2))}

The result is in \texttt{tkzPointResult}. We can access it with \texttt{\tkzGetPoint}.

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>no default</td>
<td>pt1 and pt2 are two points</td>
</tr>
</tbody>
</table>

5.1.1 Use of \texttt{\tkzDefMidPoint}

Review the use of \texttt{\tkzDefPoint} in \texttt{tkz-base}.

\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefPoint(4,0){B}
\tkzDefMidPoint(A,B) \tkzGetPoint(C)
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[right](A,B,C)
\end{tikzpicture}
5.2 Barycentric coordinates

pt_1, pt_2, \ldots, pt_n being n points, they define n vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ with the origin of the referential as the common endpoint. $\alpha_1, \alpha_2, \ldots, \alpha_n$ are n numbers, the vector obtained by:

$$\frac{\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \cdots + \alpha_n \vec{v}_n}{\alpha_1 + \alpha_2 + \cdots + \alpha_n}$$

defines a single point.

\begin{verbatim}
\tkzDefBarycentricPoint{(pt1=\alpha_1, pt2=\alpha_2, \ldots)}
arguments default definition
\end{verbatim}

Each point has a assigned weight

You need at least two points.

5.2.1 Using $\texttt{tkzDefBarycentricPoint}$ with two points

In the following example, we obtain the barycentre of points A and B with coefficients 1 and 2, in other words:

$$\overrightarrow{AI} = \frac{2}{3} \overrightarrow{AB}$$

\begin{verbatim}
\begin{tikzpicture}
\tkzDefPoint(2,3){A}
\tkzDefShiftPointCoord[2,3](30:4){B}
\tkzDefBarycentricPoint(A=1,B=2)
\tkzGetPoint{I}
\tkzDrawPoints(A,B,I)
\tkzDrawLine(A,B)
\tkzLabelPoints(A,B,I)
\end{tikzpicture}
\end{verbatim}

5.2.2 Using $\texttt{tkzDefBarycentricPoint}$ with three points

This time M is simply the centre of gravity of the triangle. For reasons of simplification and homogeneity, there is also $\texttt{tkzCentroid}$.

\begin{verbatim}
\begin{tikzpicture}[scale=.8]
\tkzDefPoint(2,1){A}
\tkzDefPoint(5,3){B}
\tkzDefPoint(0,6){C}
\tkzDefBarycentricPoint(A=1,B=1,C=1)
\tkzGetPoint{M}
\tkzDefMidPoint(A,B) \tkzGetPoint{C'}
\tkzDefMidPoint(A,C) \tkzGetPoint{B'}
\tkzDefMidPoint(C,B) \tkzGetPoint{A'}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A',B',C')
\tkzDrawPoints(A,B,C,M)
\tkzDrawLines[add=0 and 1](A,M B,M C,M)
\tkzLabelPoint(M){M}
\tkzAutoLabelPoints[center=M](A,B,C)
\tkzAutoLabelPoints[center=M,above right](A',B',C')
\end{tikzpicture}
\end{verbatim}
5 Special points

5.3 Internal Similitude Center

The centres of the two homotheties in which two circles correspond are called external and internal centres of similitude.

\begin{tikzpicture}[scale=.75,rotate=-30]
\tkzDefPoint(0,0){O}
\tkzDefPoint(4,-5){A}
\tkzDefIntSimilitudeCenter(O,3)(A,1)
\tkzGetPoint{I}
\tkzExtSimilitudeCenter(O,3)(A,1)
\tkzGetPoint{J}
\tkzDefTangent[from with R= I](O,3 cm)
\tkzGetPoints{D}{E}
\tkzDefTangent[from with R= I](A,1 cm)
\tkzGetPoints{D'}{E'}
\tkzDefTangent[from with R= J](O,3 cm)
\tkzGetPoints{F}{G}
\tkzDefTangent[from with R= J](A,1 cm)
\tkzGetPoints{F'}{G'}
\tkzDrawCircle[R,fill=red!50,opacity=.3](O,3 cm)
\tkzDrawCircle[R,fill=blue!50,opacity=.3](A,1 cm)
\tkzDrawSegments[add = .5 and .5,color=red](D,D' E,E')
\tkzDrawSegments[add= 0 and 0.25,color=blue](J,F J,G)
\tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G')
\end{tikzpicture}
6 Special points relating to a triangle

6.1 Triangle center: \tkzDefTriangleCenter

This macro allows you to define the center of a triangle.

\begin{verbatim}
\tkzDefTriangleCenter[⟨local options⟩](⟨A,B,C⟩)
\end{verbatim}

Be careful, the arguments are lists of three points. This macro is used in conjunction with \tkzGetPoint to get the center you are looking for. You can use \tkzPointResult if it is not necessary to keep the results.

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2,pt3)</td>
<td>no default</td>
<td>three points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ortho</td>
<td>circum</td>
<td>intersection of the altitudes of a triangle</td>
</tr>
<tr>
<td>centroid</td>
<td>circum</td>
<td>centre of gravity. Intersection of the medians</td>
</tr>
<tr>
<td>circum</td>
<td>circum</td>
<td>circle center circumscribed</td>
</tr>
<tr>
<td>in</td>
<td>circum</td>
<td>center of the circle inscribed in a triangle</td>
</tr>
<tr>
<td>ex</td>
<td>circum</td>
<td>center of a circle exscribed to a triangle</td>
</tr>
<tr>
<td>euler</td>
<td>circum</td>
<td>center of Euler’s circle</td>
</tr>
<tr>
<td>symmedian</td>
<td>circum</td>
<td>Lemoine’s point or symmedian centre or Grebe’s point</td>
</tr>
<tr>
<td>spieker</td>
<td>circum</td>
<td>Spieker Circle Center</td>
</tr>
<tr>
<td>nagel</td>
<td>circum</td>
<td>Nagel Center</td>
</tr>
<tr>
<td>mittenpunkt</td>
<td>circum</td>
<td>also called the middlepoint</td>
</tr>
<tr>
<td>feuerbach</td>
<td>circum</td>
<td>Feuerbach Point</td>
</tr>
</tbody>
</table>

6.1.1 Option ortho or orthic

The intersection H of the three altitudes of a triangle is called the orthocenter.

\begin{verbatim}
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,1){B}
\tkzDefPoint(1,4){C}
\tkzClipPolygon(A,B,C)
\tkzDefTriangleCenter[ortho](B,C,A)
\tkzGetPoint{H}
\tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawPoints(A,B,C,H)
\tkzDrawLines[add=0 and 1](A,Ha B,Hb C,Hc)
\tkzLabelPoint{H}{\$H\$}
\tkzAutoLabelPoints[center=H](A,B,C)
\tkzMarkRightAngles(A,Ha B Bb C Hc)
\end{tikzpicture}
\end{verbatim}
6 Special points relating to a triangle

6.1.2 Option centroid

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{-1/1/A,5/1/B}
\tkzDefEquilateral(A,B)
\tkzGetPoint{C}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDrawPolygon[color=brown](A,B,C)
\tkzDrawPoints(A,B,C,G)
\tkzDrawLines[add = 0 and 2/3](A,G B,G C,G)
\end{tikzpicture}

6.1.3 Option circum

\begin{tikzpicture}
\tkzDefPoints{0/1/A,3/2/B,1/4/C}
\tkzDefTriangleCenter[circum](A,B,C)
\tkzGetPoint{G}
\tkzDrawPolygon[color=brown](A,B,C)
\tkzDrawCircle(G,A)
\tkzDrawPoints(A,B,C,G)
\end{tikzpicture}

6.1.4 Option in

In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle’s incenter. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex A, or the excenter of A. Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system. (https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle)

We get the centre of the inscribed circle of the triangle. The result is of course in \tkzPointResult. We can retrieve it with \tkzGetPoint.

\begin{tikzpicture}
\tkzDefPoints{0/1/A,3/2/B,1/4/C}
\tkzDefTriangleCenter[in](A,B,C) \tkzGetPoint{I}
\tkzDefPointBy[projection=onto A--C](I)
\tkzGetPoint{Ib}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawPoints(A,B,C,I)
\tkzDrawLines[add = 0 and 2/3](A,I B,I C,I)
\tkzDrawCircle(I,Ib)
\end{tikzpicture}

6.1.5 Option ex

An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the

We get the centre of an inscribed circle of the triangle. The result is of course in \texttt{tkzPointResult}. We can retrieve it with \texttt{tkzGetPoint}.

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/1/A,3/2/B,1/4/C}
\tkzDefTriangleCenter[ex](B,C,A)
\tkzGetPoint{J_c}
\tkzDefPointBy[projection=onto A--B](J_c)
\tkzGetPoint{Tc}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawPoints(A,B,C,J_c)
\tkzDrawCircle[red](J_c,Tc)
\tkzDrawLines[add=1.5 and 0](A,C B,C)
\tkzLabelPoints(J_c)
\end{tikzpicture}

6.1.6 Option euler

This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet \(H_A, H_B,\) and \(H_C\) dropped from the vertices of any reference triangle \(ABC\) on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints \(M_A, M_B, M_C\) of the sides of \(ABC\). By Feuerbach's theorem, the nine-point circle also passes through the midpoints \(E_A, E_B,\) and \(E_C\) of the segments that join the vertices and the orthocenter \(H\). These points are commonly referred to as the Euler points. (http://mathworld.wolfram.com/Nine-PointCircle.html)

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[medial, name=M](A,B,C){_A,_B,_C}
\tkzDefTriangleCenter[euler](A,B,C)
\tkzGetPoint{N}
\tkzDefTriangleCenter[ortho](A,B,C)
\tkzGetPoint{H}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
\tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
\tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
\tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawCircle(N,E_A)
\tkzDrawSegment{blue}(A,H_A B,H_B C,H_C)
\tkzDrawPoints(A,B,C,H)
\tkzDrawPoints[red](M_A,M_B,M_C)
\tkzDrawPoints[blue](H_A,H_B,H_C)
\tkzDrawPoints[green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N, font={\scriptsize}(A,B,C,\% M_A,M_B,M_C,\%
H_A,H_B,H_C,\%
E_A,E_B,E_C,\%}
\tkzLabelPoints[/font={\scriptsize}(H,N)
\tkzMarkSegments[mark=s, size=3pt, color=blue, line width=1pt](B,E_B E_B,H)
\end{tikzpicture}
6 Special points relating to a triangle

6.1.7 Option symmedian

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(5,0){B}
 \tkzDefPoint(1,4){C}
 \tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K}
 \tkzDefTriangleCenter[median](A,B,C)\tkzGetPoint{G}
 \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I}
 \tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c}
 \tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c}
 \tkzDrawPolygon[color=blue](A,B,C)
 \tkzDrawLines[add = 0 and 2/3,blue](A,K B,K C,K)
 \tkzDrawSegments[red,dashed](A,Ma B,Mb C,Mc)
 \tkzDrawSegments[orange,dashed](A,Ia B,Ib C,Ic)
 \tkzDrawLine[add=2 and 2](G,I)
 \tkzDrawPoints(A,B,C,K,G,I)
\end{tikzpicture}

6.1.8 Option nagel

Let T_a be the point at which the excircle with center J_a meets the side BC of a triangle ABC, and define T_b and T_c similarly. Then the lines $A T_a$, $B T_b$, and $C T_c$ concur in the Nagel point N_a. Weisstein, Eric W. "Nagel point." From MathWorld–A Wolfram Web Resource.

\begin{tikzpicture}[scale=.5]
 \tkzDefPoints{0/0/A,6/0/B,4/6/C}
 \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
 \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
 \tkzDefTriangleCenter[nagel](A,B,C) \tkzGetPoint{Na}
 \tkzDrawPolygon[blue](A,B,C)
 \tkzDrawPoints[blue](B,C,A)
 \tkzDrawPoints[red](Na)
 \tkzLabelPoints(Ja,Jb,Jc)
 \tkzLabelPoints[red](Na)
 \tkzDrawPoints[red]({A,Ta,B,Tb,C,Tc})
 \tkzLabelPoints[blue](B,C,A)
 \tkzLabelPoints[red]({Na})
 \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc)
 \tkzShowBB\tkzClipBB
 \tkzDrawLines[add=1 and 1,dashed](A,B,B,C,C,A)
 \tkzDrawCircles[ex,gray](A,B,C,A,B,C,A)
 \tkzDrawSegments[red](Ja,Ta Jb,Tb Jc,Tc)
 \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C Jb,Ta,C Jc,Ta,C)
\end{tikzpicture}
6.1.9 Option mittenpunkt

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/A,6/0/B,4/6/C}
\tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc}
\tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc}
\tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc}
\tkzDefTriangleCenter[mittenpunkt](A,B,C)
\tkzGetPoint{Mi}
\tkzDrawPoints(Ma,Mb,Mc,Ja,Jb,Jc)
\tkzClipBB
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawLines[add=0 and 1](Ja,Ma Jb,Mb Jc,Mc)
\tkzDrawLines[add=1 and 1](A,B A,C B,C)
\tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc)
\tkzDrawPoints[blue](B,C,A)
\tkzDrawPoints[red](Mi)
\tkzLabelPoints[red](Mi)
\tkzLabelPoints[left](Mb)
\tkzLabelPoints(Ma,Mc,Jb,Jc)
\tkzShowBB
\end{tikzpicture}

7 Draw a point

7.0.1 Drawing points \tkzDrawPoint

\begin{tkzDrawPoint}[(local options)](name)\end{tkzDrawPoint}

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>name of point</td>
<td>no default</td>
<td>Only one point name is accepted</td>
</tr>
</tbody>
</table>

The argument is required. The disc takes the color of the circle, but lighter. It is possible to change everything. The point is a node and therefore it is invariant if the drawing is modified by scaling.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td>circle</td>
<td>Possible cross or cross out</td>
</tr>
<tr>
<td>size</td>
<td>6</td>
<td>6×\pgflinewidth</td>
</tr>
<tr>
<td>color</td>
<td>black</td>
<td>the default color can be changed</td>
</tr>
</tbody>
</table>

We can create other forms such as cross

7.0.2 Example of point drawings

Note that scale does not affect the shape of the dots. Which is normal. Most of the time, we are satisfied with a single point shape that we can define from the beginning, either with a macro or by modifying a configuration file.
It is possible to draw several points at once but this macro is a little slower than the previous one. Moreover, we have to make do with the same options for all the points.

Beware of the final "s", an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro.

7.0.3 First example

```latex
\begin{tikzpicture}
  \tkzDefPoint(1,3){A}
  \tkzDefPoint(4,1){B}
  \tkzDefPoint(0,0){C}
  \tkzDrawPoints[size=6,color=red,fill=red!50](A,B,C)
\end{tikzpicture}
```

7.0.4 Second example

```latex
\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(2,3){A} \tkzDefPoint(5,-1){B}
  \tkzDefPoint[label=below:$\mathcal{C}$,shift={(2,3)}](-30:5.5){E}
  \begin{scope}[shift=(A)]
    \tkzDefPoint(30:5){C}
  \end{scope}
  \tkzCalcLength[cm](A,B)\tkzGetLength{rAB}
  \tkzDrawCircle[R](A,rAB cm)
  \tkzDrawSegment(A,B)
  \tkzDrawPoints(A,B,C)
  \tkzLabelPoints(B,C)
  \tkzLabelPoints[above](A)
\end{tikzpicture}
```
8 Point on line or circle

8.1 Point on a line

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawLine[red](A,B)
\tkzDefPointOnLine[pos=1.2](A,B)
\tkzGetPoint{P}
\tkzDefPointOnLine[pos=-0.2](A,B)
\tkzGetPoint{R}
\tkzDefPointOnLine[pos=0.5](A,B)
\tkzGetPoint{S}
\tkzDrawPoints(A,B,P,R,S)
\end{tikzpicture}

8.1.1 Use of option pos

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawLine[red](A,B)
\tkzDefPointOnLine[pos=1.2](A,B)
\tkzGetPoint{P}
\tkzDefPointOnLine[pos=-0.2](A,B)
\tkzGetPoint{R}
\tkzDefPointOnLine[pos=0.5](A,B)
\tkzGetPoint{S}
\tkzDrawPoints(A,B,P,R,S)
\end{tikzpicture}

8.2 Point on a circle

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawLine[red](A,B)
\tkzDefPointOnLine[pos=1.2](A,B)
\tkzGetPoint{P}
\tkzDefPointOnLine[pos=-0.2](A,B)
\tkzGetPoint{R}
\tkzDefPointOnLine[pos=0.5](A,B)
\tkzGetPoint{S}
\tkzDrawPoints(A,B,P,R,S)
\end{tikzpicture}
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B,0.8/3/C}
\tkzDefPointOnCircle[angle=90,center=B,radius=1 cm]
\tkzGetPoint{I}
\tkzDefCircle[circum](A,B,C)
\tkzGetPoint{G} \tkzGetLength{rG}
\tkzDefPointOnCircle[angle=30,center=G,radius=rG pt]
\tkzGetPoint{J}
\tkzDrawCircle[R,teal](B,1cm)
\tkzDrawPoint[teal](I)
\tkzDrawPoints(A,B,C)
\tkzDrawCircle(G,J)
\tkzDrawPoints(G,J)
\tkzDrawPoint[red](J)
\tkzLabelPoints(G,J)
\end{tikzpicture}
These transformations are:

- translation;
- homothety;
- orthogonal reflection or symmetry;
- central symmetry;
- orthogonal projection;
- rotation (degrees or radians);
- inversion with respect to a circle.

The choice of transformations is made through the options. There are two macros, one for the transformation of a single point \texttt{\tkzDefPointBy} and the other for the transformation of a list of points \texttt{\tkzDefPointsBy}. By default the image of A is A'. For example, we'll write:

\texttt{\tkzDefPointBy[translation= from A to A'](B)}

The result is in \texttt{tkzPointResult}

\begin{tabular}{|l|l|}
\hline
\texttt{\tkzDefPointBy[(local options)]((pt))} & \\
\hline
arguments & definition & examples \\
\hline
pt & existing point name & (A) \\
\hline
options & examples & \\
\hline
translation & = from #1 to #2 & \texttt{[translation=from A to B](E)} \\
homothety & = center #1 ratio #2 & \texttt{[homothety=center A \ ratio \ .5](E)} \\
reflection & = over #1--#2 & \texttt{[reflection=over A--B](E)} \\
symmetry & = center #1 & \texttt{[symmetry=center A](E)} \\
projection & = onto #1--#2 & \texttt{[projection=onto A--B](E)} \\
rotation & = center #1 angle #2 & \texttt{[rotation=center 0 \ angle \ 30](E)} \\
rotation in rad & = center #1 angle #2 & \texttt{[rotation in rad=center 0 \ angle \ pi/3](E)} \\
inversion & = center #1 through #2 & \texttt{[inversion =center 0 \ through \ A](E)} \\
\hline
\end{tabular}

The image is only defined and not drawn.
9 Definition of points by transformation; \texttt{tkzDefPointBy}

9.1 Examples of transformations

9.1.1 Example of translation

9.2 Example of translation

\begin{tikzpicture}[>=latex]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B} \tkzDefPoint(3,0){C}
\tkzDefPointBy[translation= from B to A](C) \tkzGetPoint{D}
\tkzDrawPoints[teal](A,B,C,D) \tkzLabelPoints[teal](A,B,C,D)
\tkzDrawSegments[orange,-](A,B,D,C)
\end{tikzpicture}

9.2.1 Example of reflection (orthogonal symmetry)
9 Definition of points by transformation; \texttt{tkzDefPointBy}

\begin{tikzpicture}[scale=1]
\tkzDefPoints{1.5/-1.5/C,-4.5/2/D}
\tkzDefPoint(-4,-2){O}
\tkzDefPoint(-2,-2){A}
\foreach \i in {0,1,...,4}{%
\pgfmathparse{0+\i * 72}
\tkzDefPointBy[rotation=center O angle \pgfmathresult](A)
\tkzDefPointBy[reflection = over C--D](A\i)
\tkzGetPoint{A\i}
\tkzDefPointBy[reflection = over C--D](A\i)
\tkzDrawPolygon(A0, A2, A4, A1, A3)
\tkzDrawPolygon(A0', A2', A4', A1', A3')
\tkzDrawLine[add= .5 and .5](C,D)
\end{tikzpicture}

9.2.2 Example of homothety and projection

\begin{tikzpicture}[scale=1.2]
\tkzDefPoint(0,1){A} \tkzDefPoint(5,3){B} \tkzDefPoint(3,4){C}
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDrawLine[add=0 and 0,color=magenta!50](A,a)
\tkzDefPointBy[homothety=center A ratio .5](a) \tkzGetPoint{a'}
\tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k'}
\tkzDefPointBy[projection = onto A--B](a) \tkzGetPoint{k}
\tkzDrawLines[add= 0 and .3](A,k A,C)
\tkzDrawSegments[blue](a',k' a,k)
\tkzDrawPoints(a,a',k,k',A)
\tkzDrawCircles(a',k' a,k)
\tkzLabelPoints(a,a',k,A)
\end{tikzpicture}
9.2.3 Example of projection

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(0,4){B}
\tkzDefTriangle[pythagore](B,A) \tkzGetPoint{C}
\tkzDefLine[bisector](B,C,A) \tkzGetPoint{c}
\tkzInterLL(C,c)(A,B) \tkzGetPoint{D}
\tkzDefPointBy[projection=onto B--C](D) \tkzGetPoint{G}
\tkzInterLC(C,D)(D,A) \tkzGetPoints{E}{F}
\tkzDrawPolygon[teal](A,B,C)
\tkzDrawSegment(C,D)
\tkzDrawCircle(D,A)
\tkzDrawSegment[orange](D,G)
\tkzMarkRightAngle[fill=orange!20](D,G,B)
\tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F)
\tkzDrawPoints(B,D,E,G) \tkzLabelPoints[above right](B,D,E,G)
\end{tikzpicture}

9.2.4 Example of symmetry

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(0,4){B}
\tkzDefPoint(-4,0){A}
\tkzDefPoint(4,0){B'}
\tkzMarkAngle[fill=blue!20](A,O,B)
\tkzLabelAngle[pos=0.5](A,O,B){60°}
\tkzDrawPoints(A,B,O)
\end{tikzpicture}
9 Definition of points by transformation; \texttt{tkzDefPointBy}

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,-1){A}
\tkzDefPoint(2,2){B}
\tkzDefPointsBy\[symmetry=center O\](B,A){}
\tkzDrawLine(A,A')
\tkzDrawLine(B,B')
\tkzMarkAngle[mark=s,arc=lll, size=2cm, mkcolor=red](A,O,B)
\tkzLabelAngle[pos=1,circle,draw, fill=blue!10](A,O,B){60°}
\tkzDrawPoints(A,B,O,A',B')
\end{tikzpicture}

9.2.5 Example of rotation

\begin{tikzpicture}[scale=0.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDrawSegment(A,B)
\tkzDefPointBy\[rotation=center A\ angle 60\](B)
\tkzGetPoint{C}
\tkzDefPointBy\[symmetry=center C\](A)
\tkzGetPoint{D}
\tkzDrawSegment(A,tkzPointResult)
\tkzDrawLine(B,D)
\tkzDrawArc[orange,delta=10](A,B)(C)
\tkzDrawArc[orange,delta=10](B,C)(A)
\tkzDrawArc[orange,delta=10](C,D)(D)
\tkzMarkRightAngle(D,B,A)
\end{tikzpicture}

9.2.6 Example of rotation in radian

\begin{tikzpicture}
\tkzDefPoint["A" left](1,5){A}
\tkzDefPoint["B" right](5,2){B}
\tkzDefPointBy[rotation in rad= center A\ angle pi/3\](B)
\tkzGetPoint{C}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,C)
\tkzCompass[color=red](A,C)
\tkzCompass[color=red](B,C)
\tkzLabelPoints(C)
\end{tikzpicture}
9.2.7 Inversion of points

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(1,0){A}
\tkzDefPoint(-1.5,-1.5){z1}
\tkzDefPoint(0.35,0){z2}
\tkzDefPointBy[inversion = center O through A](z1)
\tkzGetPoint{Z1}
\tkzDefPointBy[inversion = center O through A](z2)
\tkzGetPoint{Z2}
\tkzDrawCircle(O,A)
\tkzDrawPoints[fill=red,size=4](Z1,Z2)
\tkzDrawSegments(z1,Z1 z2,Z2)
\tkzDrawPoints[fill=red,size=4](O,z1,z2)
\tkzLabelPoints(O,A,z1,z2,Z1,Z2)
\end{tikzpicture}

9.2.8 Point Inversion: Orthogonal Circles

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(1,0){A}
\tkzDrawCircle(O,A)
\tkzDefPoint(0.5,-0.25){z1}
\tkzDefPoint(-0.5,-0.5){z2}
\tkzDefPointBy[inversion = center O through A](z1)
\tkzGetPoint{Z1}
\tkzCircumCenter(z1,z2,Z1)
\tkzGetPoint{c}
\tkzDrawCircle(c,Z1)
\tkzDrawPoints[fill=red,size=4](O,z1,z2,Z1,O,A)
\end{tikzpicture}

9.3 Transformation of multiple points; \tkzDefPointsBy

Variant of the previous macro for defining multiple images. You must give the names of the images as arguments, or indicate that the names of the images are formed from the names of the antecedents, leaving the argument empty.

\tkzDefPointsBy[translation= from A to A'](B,C)\

The images are \(B'\) and \(C'\).

\tkzDefPointsBy[translation= from A to A'](B,C)(D,E)

The images are \(D\) and \(E\).
\texttt{\textbackslash tkzDefPointsBy[\texttt{\{local options\}\{\texttt{\{list of points\}\{\texttt{\{list of points\}\}}\}}]}\{\{\texttt{\{list of points\}\{\texttt{\{list of pts\}}\}}\}}\texttt{\{\texttt{\{\}}}\}}\{\{\{\}}\} (A, B){E,F} E \text{ is the image of } A \text{ and } F \text{ is the image of } B.

If the list of images is empty then the name of the image is the name of the antecedent to which "'" is added.

\begin{tabular}{ll}
\textbf{options} & \textbf{examples} \\
\hline
\texttt{translation} = \texttt{from #1 to #2} & \texttt{[translation=from A to B]\{E\}{F}} \\
\texttt{homothety} = \texttt{center #1 ratio #2} & \texttt{[homothety=center A ratio .5]\{E\}{F}} \\
\texttt{reflection} = \texttt{over #1--#2} & \texttt{[reflection=over A--B]\{E\}{F}} \\
\texttt{symmetry} = \texttt{center #1} & \texttt{[symmetry=center A]\{E\}{F}} \\
\texttt{projection} = \texttt{onto #1--#2} & \texttt{[projection=onto A--B]\{E\}{F}} \\
\texttt{rotation} = \texttt{center #1 angle #2} & \texttt{[rotation=center angle 30]\{E\}{F}} \\
\texttt{rotation in rad} = \texttt{center #1 angle #2} & \texttt{for instance angle pi/3} \\
\end{tabular}

The points are only defined and not drawn.

\subsection*{9.3.1 Example of translation}

\begin{tikzpicture}[\geq\textbackslash latex]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){A'}
\tkzDefPoint(3,0){B} \tkzDefPoint(1,2){C}
\tkzDefPointsBy[\texttt{\{\texttt{\{\texttt{\{\\}}}\}}}\{\\}\{\\}\{\\}\{\\}\{\\}\}]\{\{\}\}\{\{\}\}\{\{\}\} (A, B){E,F}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawPolygon[color=red](A',B',C')
\tkzDrawPoints[color=blue](A,B,C)
\tkzDrawPoints[color=red](A',B',C')
\tkzLabelPoints(A,B,A',B')
\tkzLabelPoints[above](C,C')
\tkzDrawSegments[color = gray,\rightarrow,\style=dashed](A,A' B,B' C,C')
\end{tikzpicture}
10 Defining points using a vector

10.1 \texttt{tkzDefPointWith}

There are several possibilities to create points that meet certain vector conditions. This can be done with \texttt{tkzDefPointWith}. The general principle is as follows, two points are passed as arguments, i.e. a vector. The different options allow to obtain a new point forming with the first point (with some exceptions) a collinear vector or a vector orthogonal to the first vector. Then the length is either proportional to that of the first one, or proportional to the unit. Since this point is only used temporarily, it does not have to be named immediately. The result is in \texttt{tkzPointResult}. The macro \texttt{tkzGetPoint} allows you to retrieve the point and name it differently.

There are options to define the distance between the given point and the obtained point. In the general case this distance is the distance between the 2 points given as arguments if the option is of the "normed" type then the distance between the given point and the obtained point is 1 cm. Then the \texttt{K} option allows to obtain multiples.

\begin{verbatim}
\texttt{\texttt{\texttt{tkzDefPointWith(\langle pt1,pt2\rangle)}}}
\end{verbatim}

It is in fact the definition of a point meeting vectorial conditions.

<table>
<thead>
<tr>
<th>arguments</th>
<th>definition</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>point couple</td>
<td>the result is a point in \texttt{tkzPointResult}</td>
</tr>
</tbody>
</table>

In what follows, it is assumed that the point is recovered by \texttt{tkzGetPoint{C}}

<table>
<thead>
<tr>
<th>options</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>orthogonal</td>
<td>orthogonal</td>
<td>(AC = AB) and (\overrightarrow{AC} \perp \overrightarrow{AB})</td>
</tr>
<tr>
<td>orthogonal normed</td>
<td>orthogonal normed</td>
<td>(AC = 1) and (\overrightarrow{AC} \perp \overrightarrow{AB})</td>
</tr>
<tr>
<td>linear</td>
<td>linear</td>
<td>(\overrightarrow{AC} = K \times \overrightarrow{AB})</td>
</tr>
<tr>
<td>linear normed</td>
<td>linear normed</td>
<td>(AC = K) and (\overrightarrow{AC} = k \times \overrightarrow{AB})</td>
</tr>
<tr>
<td>colinear= at #1</td>
<td>colinear= at C</td>
<td>(\overrightarrow{CD} = \overrightarrow{AB})</td>
</tr>
<tr>
<td>colinear normed= at #1</td>
<td>colinear normed= at C</td>
<td>(\overrightarrow{CD} = \overrightarrow{AB})</td>
</tr>
<tr>
<td>K</td>
<td>linear,K=2</td>
<td>(\overrightarrow{AC} = 2 \times \overrightarrow{AB})</td>
</tr>
</tbody>
</table>

10.1.1 Option \texttt{colinear at} \(\overrightarrow{AB} = \overrightarrow{CD}\)

\begin{verbatim}
\begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}]
\tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B}
\tkzDefPoint(0,1){C}
\tkzDefPointWith[colinear=at C](A,B)
\tkzGetPoint{D}
\tkzDrawPoints[color=red](A,B,C,D)
\tkzLabelPoints[above right=3pt](A,B,C,D)
\tkzDrawSegments(vect)(A,B,C,D)
\end{tikzpicture}
\end{verbatim}
10 Defining points using a vector

10.1.2 Option colinear at with K

```
\begin{tikzpicture}[vect/.style={->, shorten >=3pt,>=latex'}]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(5,0){B}
  \tkzDefPoint(1,2){C}
  \tkzDefPointWith[colinear=at C](A,B)
  \tkzGetPoint{G}
  \tkzDefPointWith[colinear=at C,K=0.5](A,B)
  \tkzGetPoint{H}
  \tkzLabelPoints(A,B,C,G,H)
  \tkzDrawPoints(A,B,C,G,H)
  \tkzDrawSegments[vect](A,B C,H)
\end{tikzpicture}
```

10.1.3 Option colinear at with $K = \frac{\sqrt{2}}{2}$

```
\begin{tikzpicture}[vect/.style={->, shorten >=3pt,>=latex'}]
  \tkzDefPoint(1,1){A}
  \tkzDefPoint(4,2){B}
  \tkzDefPoint(2,2){C}
  \tkzDefPointWith[colinear=at C,K=sqrt(2)/2](A,B)
  \tkzGetPoint{D}
  \tkzDrawPoints[color=red](A,B,C,D)
  \tkzDrawSegments[vect](A,B C,D)
\end{tikzpicture}
```

10.1.4 Option orthogonal

$AB=AC$ since $K = 1$.

```
\begin{tikzpicture}[scale=1.2, vect/.style={->, shorten >=3pt,>=latex'}]
  \tkzDefPoint(2,3){A}
  \tkzDefPoint(4,2){B}
  \tkzDefPointWith[orthogonal,K=1](A,B)
  \tkzGetPoint{C}
  \tkzDrawPoints[color=red](A,B,C)
  \tkzLabelPoints[right=3pt](B,C)
  \tkzLabelPoints[below=3pt](A)
  \tkzDrawSegments[vect](A,B A,C)
  \tkzMarkRightAngle(B,A,C)
\end{tikzpicture}
```

10.1.5 Option orthogonal with $K = -1$

$OK=OI$ since $|K| = 1$ then $OI=OJ=OK$.

```
\begin{tikzpicture}
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(5,0){B}
  \tkzDefPoint(1,2){C}
  \tkzDefPointWith[colinear=at C](A,B)
  \tkzGetPoint{G}
  \tkzDefPointWith[colinear=at C,K=0.5](A,B)
  \tkzGetPoint{H}
  \tkzLabelPoints(A,B,C,G,H)
  \tkzDrawPoints(A,B,C,G,H)
  \tkzDrawSegments[vect](A,B C,H)
\end{tikzpicture}
```

```
10.1.6 Option orthogonal more complicated example

10.1.7 Options colinear and orthogonal

10.1.8 Option orthogonal normed, $K = 1$

$AC = 1.$
10.1.9 Option orthogonal normed and $K = 2$

$K = 2$ therefore $AC = 2$.

10.1.10 Option linear

Here $K = 0.5$.

This amounts to applying a homothety or a multiplication of a vector by a real. Here is the middle of $[AB]$.

10.1.11 Option linear normed

In the following example $AC = 1$ and $C$ belongs to $(AB)$.
10.2 \tkzGetVectxy

Retrieving the coordinates of a vector.

\begin{tabular}{|l|l|}
\hline
arguments & example & explication \\
\hline
(point)\{name of macro\} & \tkzGetVectxy(A,B)\{V\} & Vx,Vy: coordinates of \( \vec{AB} \) \\
\hline
\end{tabular}

10.2.1 Coordinate transfer with \tkzGetVectxy

\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(1,1){A}
\tkzDefPoint(4,2){B}
\tkzGetVectxy(A,B){v}
\tkzDefPoint(\vx,\vy){V}
\tkzDrawSegment[->,color=red](O,V)
\tkzDrawSegment[->,color=blue](A,B)
\tkzDrawPoints(A,B,O)
\tkzLabelPoints(A,B,O,V)
\end{tikzpicture}

\begin{Verbatim}
\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(1,1){A}
\tkzDefPoint(4,2){B}
\tkzGetVectxy(A,B){v}
\tkzDefPoint(\vx,\vy){V}
\tkzDrawSegment[->,color=red](O,V)
\tkzDrawSegment[->,color=blue](A,B)
\tkzDrawPoints(A,B,O)
\tkzLabelPoints(A,B,O,V)
\end{tikzpicture}
\end{Verbatim}
11 Random point definition

At the moment there are four possibilities:
1. point in a rectangle;
2. on a segment;
3. on a straight line;
4. on a circle.

11.1 Obtaining random points

This is the new version that replaces \texttt{tkzGetRandPointOn}.

\begin{verbatim}
\tkzDefRandPointOn\[\langle local options \rangle\]
\end{verbatim}

The result is a point with a random position that can be named with the macro \texttt{tkzGetPoint}. It is possible to use \texttt{tkzPointResult} if it is not necessary to retain the results.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangle=pt1 and pt2</td>
<td>[rectangle=A and B]</td>
<td></td>
</tr>
<tr>
<td>segment=pt1--pt2</td>
<td>[segment=A--B]</td>
<td></td>
</tr>
<tr>
<td>line=pt1--pt2</td>
<td>[line=A--B]</td>
<td></td>
</tr>
<tr>
<td>circle =center pt1 radius dim</td>
<td>[circle = center A radius 2 cm]</td>
<td></td>
</tr>
<tr>
<td>circle through=center pt1 through pt2</td>
<td>[circle through= center A through B]</td>
<td></td>
</tr>
<tr>
<td>disk through=center pt1 through pt2</td>
<td>[disk through=center A through B]</td>
<td></td>
</tr>
</tbody>
</table>

11.2 Random point in a rectangle

\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5]\tkzGrid
\tkzDefPoints{0/0/A,2/2/B,5/5/C}
\tkzDefRandPointOn[rectangle = A and B]
\tkzGetPoint{a}
\tkzDefRandPointOn[rectangle = B and C]
\tkzGetPoint{d}
\tkzDrawLine(a,d)
\tkzDrawPoints(A,B,C,a,d)
\tkzLabelPoints(A,B,C,a,d)
\end{tikzpicture}
11 Random point definition

11.3 Random point on a segment

\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5] \tkzGrid \\
\tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} \\
\tkzDefRandPointOn[segment = A--B]\tkzGetPoint{a} \\
\tkzDefRandPointOn[segment = C--D]\tkzGetPoint{d} \\
\tkzDrawPoints(A,B,C,D,a,d) \\
\tkzLabelPoints(A,B,C,D,a,d) \\
\end{tikzpicture}

11.4 Random point on a straight line

\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5] \tkzGrid \\
\tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} \\
\tkzDefRandPointOn[line = A--B]\tkzGetPoint{E} \\
\tkzDefRandPointOn[line = C--D]\tkzGetPoint{F} \\
\tkzDrawPoints(A,...,F) \\
\tkzLabelPoints(A,...,F) \\
\end{tikzpicture}

11.4.1 Example of random points

\begin{tikzpicture}
\tkzDefPoints{0/0/A,2/2/B,-1/-1/C} \\
\tkzDefCircle[through=](A,C) \tkzGetLength{rAC} \\
\tkzDrawCircle(A,C) \tkzDrawCircle(A,B) \\
\tkzDefRandPointOn[rectangle=A and B]\tkzGetPoint{a} \\
\tkzDefRandPointOn[segment=A--B]\tkzGetPoint{b} \\
\tkzDefRandPointOn[circle=center A radius \rAC pt]\tkzGetPoint{d} \\
\tkzDefRandPointOn[circle through= center A through B]\tkzGetPoint{c} \\
\tkzDefRandPointOn[disk through= center A through B]\tkzGetPoint{e} \\
\tkzLabelPoints[above right=3pt](A,B,C,a,b,...,e) \\
\tkzDrawPoints[](A,B,C,a,b,...,e) \\
\tkzDrawRectangle(A,B) \\
\tkzDefRandPointOn[segment=AB]\tkzGetPoint{d} \\
\tkzDefRandPointOn[segment=AC]\tkzGetPoint{e} \\
\tkzDefRandPointOn[segment=BC]\tkzGetPoint{f} \\
\tkzLabelPoints[above right=3pt](A,B,C,a,b,c,d,e,f) \\
\tkzDrawPoints[](A,B,C,a,b,c,d,e,f) \\
\tkzDrawRectangle(A,B) \\
\end{tikzpicture}
11.5 Random point on a circle

\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5] \tkzGrid
\tkzDefPoints{3/2/A,1/1/B}
\tkzCalcLength[cm](A,B) \tkzGetLength{rAB}
\tkzDrawCircle[R](A,rAB cm)
\tkzDefRandPointOn[circle = center A radius rAB cm]\tkzGetPoint{a}
\tkzDrawSegment(A,a)
\tkzDrawPoints(A,B,a)
\tkzLabelPoints(A,B,a)
\end{tikzpicture}

11.5.1 Random example and circle of Apollonius

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,3/0/B}
\def\coeffK{2}
\tkzApolloniusCenter[K=\coeffK](A,B)
\tkzGetPoint{P}
\tkzDefApolloniusPoint[K=\coeffK](A,B)
\tkzGetPoint{M}
\tkzDefApolloniusRadius[K=\coeffK](A,B)
\tkzDrawCircle[R,color = blue!50!black, fill=blue!20, opacity=.4](tkzPointResult,tkzLengthResult pt)
\tkzDefRandPointOn[circle through= center P through M]\tkzGetPoint{N}
\tkzDrawPoints(A,B,P,M,N)
\tkzDrawSegments[red](N,A N,B)
\tkzLabelPoints(A,B,P,M,N)
\tkzDrawPoints(A,B)
\tkzLabelCircle[R,draw,fill=green!10,\% text width=3cm,\% text centered](P,tkzLengthResult pt-20pt)(-120)\% \{ $MA/MB=\coeffK$\}$NA/NB=\coeffK$
\end{tikzpicture}

11.6 Middle of a compass segment

To conclude this section, here is a more complex example. It involves determining the middle of a segment, using only a compass.
\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefRandPointOn[center=A radius 4cm]{B}
\tkzDrawPoints(A,B)
\tkzDefPointBy[rotation=center A angle 180]{B}{C}
\tkzInterCC[R](A,4 cm)(B,4 cm)
\tkzGetPoints{I}{I'}
\tkzInterCC[R](A,4 cm)(I,4 cm)
\tkzGetPoints{J}{B}
\tkzInterCC(B,A)(C,B)
\tkzGetPoints{D}{E}
\tkzInterCC(D,B)(E,B)
\tkzGetPoints{M}{M'}
\tkzset{arc/.style={color=brown,style=dashed,delta=10}}
\tkzDrawArc[arc](C,D)(E)
\tkzDrawArc[arc](B,E)(D)
\tkzDrawCircle[color=brown, line width=.2pt](A,B)
\tkzDrawArc[arc](D,B)(M)
\tkzDrawArc[arc](E,M)(B)
\tkzCompass[style=solid](B,I I,J J,C)
\tkzDrawPoints(B,C,D,E,M)
\tkzLabelPoints(A,B,M)
\end{tikzpicture}
12 The straight lines

It is of course essential to draw straight lines, but before this can be done, it is necessary to be able to define certain particular lines such as mediators, bisectors, parallels or even perpendiculars. The principle is to determine two points on the straight line.

12.1 Definition of straight lines

\texttt{\textbackslash tkzDefLine[\{local options\}](\texttt{pt1,pt2}) or (\texttt{pt1,pt2,pt3})}

The argument is a list of two or three points. Depending on the case, the macro defines one or two points necessary to obtain the line sought. Either the macro \texttt{\textbackslash tkzGetPoint} or the macro \texttt{\textbackslash tkzGetPoints} must be used.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\texttt{pt1,pt2}) (\texttt{pt1,pt2,pt3})</td>
<td>(\texttt{{A,B}}) (\texttt{{A,B,C}})</td>
<td><a href="A,B">mediator</a> <a href="B,A,C">bisector</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mediator</td>
<td></td>
<td>two points are defined</td>
</tr>
<tr>
<td>perpendicular=through...</td>
<td>mediator</td>
<td>perpendicular to a straight line passing through a point</td>
</tr>
<tr>
<td>orthogonal=through...</td>
<td>mediator</td>
<td>see above</td>
</tr>
<tr>
<td>parallel=through...</td>
<td>mediator</td>
<td>parallel to a straight line passing through a point</td>
</tr>
<tr>
<td>bisector</td>
<td>mediator</td>
<td>bisector of an angle defined by three points</td>
</tr>
<tr>
<td>bisector out</td>
<td>mediator</td>
<td>Exterior Angle Bisector</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>coefficient for the perpendicular line</td>
</tr>
<tr>
<td>normed</td>
<td>false</td>
<td>normalizes the created segment</td>
</tr>
</tbody>
</table>

12.1.1 Example with mediator

\begin{tikzpicture}[rotate=25]
\tkzDefPoints{-2/0/A,1/2/B}
\tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D}
\tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D}
\tkzDefMidPoint(A,B) \tkzGetPoint{I}
\tkzFillPolygon[color=orange!30](A,C,B,D) \tkzGetPoint{I}
\tkzDrawSegments(A,B C,D) \tkzDrawSegments(A,B C,D)
\tkzMarkRightAngle(B,I,C) \tkzDrawSegments(D,B D,A) \tkzDrawSegments(C,B C,A)
\end{tikzpicture}
12.1.2 Example with bisector and normed

\begin{tikzpicture}[rotate=25,scale=.75]
\tkzDefPoints{0/0/C, 2/-3/A, 4/0/B}
\tkzDefLine[bisector,normed](B,A,C) \tkzGetPoint{a}
\tkzDrawLines[add= 0 and .5](A,B A,C)
\tkzShowLine[bisector,gap=4,size=2,color=red](B,A,C)
\tkzDrawLines[blue!50,dashed,add= 0 and 3](A,a)
\end{tikzpicture}

12.1.3 Example with orthogonal and parallel

\begin{tikzpicture}
\tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C}
\tkzDrawLine(A,B)
\tkzLabelLine[pos=1.25,below left](A,B){$(d_1)$}
\tkzDrawPoints(A,B,C)
\tkzDefLine[orthogonal=through C](B,A) \tkzGetPoint{c}
\tkzDrawLine(C,c)
\tkzLabelLine[pos=1.25,left](C,c){$(\delta)$}
\tkzInterLL(A,B)(C,c) \tkzGetPoint{I}
\tkzMarkRightAngle(C,I,B)
\tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c'}
\tkzDrawLine(C,c')
\tkzLabelLine[pos=1.25,below left](C,c'){$(d_2)$}
\tkzMarkRightAngle(I,C,c')
\end{tikzpicture}

12.1.4 An envelope

Based on a figure from O. Reboux with pst-eucl by D Rodriguez.
12.1.5 A parabola

Based on a figure from O. Reboux with pst-eucl by D Rodriguez. It is not necessary to name the two points that define the mediator.

\begin{tikzpicture}[scale=.75]
\tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6] % necessary
\tkzClip
\tkzDefPoint(0,0){O}
\tkzDefPoint(132:4){A}
\tkzDefPoint(5,0){B}
\foreach \ang in {5,10,...,360}\
\tkzDefPoint(\ang:4){M}
\tkzDefLine[mediator](A,M)
\tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)}
\end{tikzpicture}

12.2 Specific lines: Tangent to a circle

Two constructions are proposed. The first one is the construction of a tangent to a circle at a given point of this circle and the second one is the construction of a tangent to a circle passing through a given point outside a disc.

\begin{tikzpicture}[scale=.75]
\tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6]
\tkzClip
\tkzDefPoint(0,0){O}
\tkzDefPoint(132:5){A}
\tkzDefPoint(4,0){B}
\foreach \ang in {5,10,...,360}\
\tkzDefPoint(\ang:4){M}
\tkzDefLine[mediator](A,M)
\tkzDrawLine[color=magenta,add= 3 and 3](tkzFirstPointResult,tkzSecondPointResult)}
\end{tikzpicture}
The parameter in brackets is the center of the circle or the center of the circle and a point on the circle or the center and the radius. This macro replaces the old one: \texttt{\tkzTangent}.

\begin{tabular}{|l|l|l|}
\hline
arguments & example & explication \\
\hline
\((\texttt{pt1,pt2})\ or\ \((\texttt{pt1,\texttt{dim}}))\) & \((\texttt{A,B})\ or\ \((\texttt{A,2cm})\) & |\texttt{AB}|\ is\ radius\ \texttt{A}\ is\ the\ center \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline
options & default & definition \\
\hline
\texttt{at}=&\texttt{pt} & tangent\ to\ a\ point\ on\ the\ circle \\
\texttt{from}=&\texttt{pt} & tangent\ to\ a\ circle\ passing\ through\ a\ point \\
\texttt{from\ with\ R=}=&\texttt{pt} & idem,\ but\ the\ circle\ is\ defined\ by\ center=radius \\
\hline
\end{tabular}

The tangent is not drawn. A second point of the tangent is given by \texttt{\tkzPointResult}.

12.2.1 Example of a tangent passing through a point on the circle

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){O}
\tkzDefPoint(6,6){E}
\tkzDefRandPointOn[circle=center O radius 3cm](O)
\tkzGetPoint{A}
\tkzDrawSegment(O,A)
\tkzDrawCircle(O,A)
\tkzDefTangent[at=A](O)
\tkzGetPoint{h}
\tkzDrawLine[add = 4 and 3](A,h)
\tkzMarkRightAngle[fill=red!30](O,A,h)
\end{tikzpicture}

12.2.2 Example of tangents passing through an external point

\begin{tikzpicture}[scale=.8]
\tkzDefPoint(3,3){c}
\tkzDefPoint(6,3){a0}
\tkzRadius=1 cm
\tkzDrawCircle[R](c,\tkzRadius)
\foreach \an in {0,10,...,350}{
  \tkzDefPointBy[rotation=center c angle \an](a0)
  \tkzGetPoint{a}
  \tkzDefTangent[from with R = a](c,\tkzRadius)
  \tkzGetPoints{e}{f}
  \tkzDrawLines[color=magenta](a,f a,e)
  \tkzDrawSegments(c,e c,f)
}
\end{tikzpicture}
12.2.3 Example of Andrew Mertz

\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(100:8){A} \tkzDefPoint(50:8){B}
  \tkzDefPoint(0,0){C} \tkzDefPoint(0,4){R}
  \tkzDrawCircle(C,R)
  \tkzDefTangent[from = A](C,R) \tkzGetPoints{D}{E}
  \tkzDefTangent[from = B](C,R) \tkzGetPoints{F}{G}
  \tkzDefPointBy[projection= onto B--A](tkzFirstPointResult)
  \tkzInterCC(A,D)(B,F) \tkzGetSecondPoint{I}
  \tkzDrawPoint[fill=black,color=black](I)
\end{tikzpicture}

http://www.texample.net/tikz/examples/

12.2.4 Drawing a tangent option from with R and at

\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(0,0){O}
  \tkzDefRandPointOn[circle=center O radius 4cm](O)
  \tkzGetPoint{A}
  \tkzGetPoints{h}{A}
  \tkzDrawSegments(O,A)
  \tkzDrawCircle(O,A)
  \tkzDrawLine(add = 1 and 1)(A,h)
  \tkzMarkRightAngle[fill=red!30](O,A,h)
\end{tikzpicture}

12.2.5 Drawing a tangent option from

\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(0,0){B}
  \tkzDefPoint(0,8){A}
  \tkzDefSquare(A,B)
  \tkzGetPoints{C}{D}
  \tkzDrawSquare(A,B)
  \tkzClipPolygon(A,B,C,D)
  \tkzDefPoint(4,8){F}
  \tkzDefPoint(4,0){E}
  \tkzDefPoint(4,4){Q}
  \tkzFillPolygon[fill = green](A,B,C,D)
  \tkzDrawCircle[fill = orange](B,A)
  \tkzDrawCircle[fill = purple](E,B)
  \tkzDefTangent[from=B](A,F)
  \tkzInterLL(F,tkzFirstPointResult)(C,D)
  \tkzInterLL(A,tkzPointResult)(F,E)
  \tkzFillPolygon[fill = yellow](tkzPointResult,Q)
  \tkzDefPointBy[projection= onto B--A](tkzPointResult)
  \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A)
\end{tikzpicture}
13 Drawing, naming the lines

The following macros are simply used to draw, name lines.

13.1 Draw a straight line

To draw a normal straight line, just give a couple of points. You can use the add option to extend the line (This option is due to Mark Wibrow, see the code below).

\begin{tikzpicture}
\tkzInit[xmin=-2,xmax=3,ymin=-2.25,ymax=2.25]
\tkzClip[space=.25]
\tkzDefPoint(0,0){A} \tkzDefPoint(2,0.5){B}
\tkzDefPoint(0,-1){C}\tkzDefPoint(2,-0.5){D}
\tkzDefPoint(0,1){E} \tkzDefPoint(2,1.5){F}
\tkzDefPoint(0,-2){G} \tkzDefPoint(2,-1.5){H}
\tkzDrawLine(A,B) \tkzDrawLine[add = 0 and .5](C,D)
\tkzDrawLine[add = 1 and 0](E,F)
\tkzDrawLine[add = 0 and 0](G,H)
\tkzDrawPoints(A,B,C,D,E,F,G,H)
\end{tikzpicture}

It is possible to draw several lines, but with the same options.
\texttt{\textbackslash tkzDrawLines[\{local \ option\ s\}](\{pt1,pt2 pt3,pt4 \ldots\})}

Arguments are a list of pairs of points separated by spaces. The styles of TikZ are available for the draws.

13.1.2 Example with \texttt{\textbackslash tkzDrawLines}

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,0){B}
\tkzDefPoint(1,2){C}
\tkzDefPoint(3,2){D}
\tkzDrawLines(A,B C,D A,C B,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}

13.1.3 Example with the option add

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(3,1){I}
\tkzDefPoint(1,4){J}
\tkzDefLine[\{bisector\}](I,O,J)
\tkzGetPoint{i}
\tkzDefLine[\{bisector out\}](I,O,J)
\tkzGetPoint{j}
\tkzDrawLines[\{add = 1 and .5, color=red\}](O,I O,J)
\tkzDrawLines[\{add = 1 and .5, color=blue\}](O,i O,j)
\end{tikzpicture}

13.1.4 Medians in a triangle

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C)
\tkzSetUpLine[\{color=blue\}]
\tkzDrawLine[\{median\}](B,C,A)
\tkzDrawLine[\{median\}](C,A,B)
\tkzDrawLine[\{median\}](A,B,C)
\end{tikzpicture}
13 Drawing, naming the lines

13.1.5 Altitudes in a triangle

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C)
\tkzSetUpLine[color=magenta]
\tkzDrawLine[altitude](B,C,A)
\tkzDrawLine[altitude](C,A,B)
\tkzDrawLine[altitude](A,B,C)
\end{tikzpicture}

13.1.6 Bisectors in a triangle

You have to give the angles in a straight line.

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C)
\tkzSetUpLine[color=purple]
\tkzDrawLine[bisector](B,C,A)
\tkzDrawLine[bisector](C,A,B)
\tkzDrawLine[bisector](A,B,C)
\end{tikzpicture}

13.2 Add labels on a straight line \tkzLabelLine

\tkzLabelLine[/local options]({pt1,pt2}){(label)}

<table>
<thead>
<tr>
<th>label</th>
<th>\tkzLabelLine(A,B){$\Delta$}</th>
</tr>
</thead>
<tbody>
<tr>
<td>options</td>
<td>default</td>
</tr>
<tr>
<td>pos</td>
<td>.5</td>
</tr>
</tbody>
</table>

As an option, and in addition to the pos, you can use all styles of TikZ, especially the placement with above, right, …

13.2.1 Example with \tkzLabelLine

An important option is pos, it’s the one that allows you to place the label along the right. The value of pos can be greater than 1 or negative.
14 Draw, Mark segments

There is, of course, a macro to simply draw a segment (it would be possible, as for a half line, to create a style with \add).

14.1 Draw a segment $\texttt{tkzDrawSegment}$

The arguments are a list of two points. The styles of TiKZ are available for the drawings.

<table>
<thead>
<tr>
<th>argument</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>(A,B)</td>
<td>draw the segment $[A,B]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TikZ options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>add</td>
<td>0 and 0</td>
<td>all TikZ options are valid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>add = $k_1$ and $k_r$, ...</td>
</tr>
<tr>
<td>dim</td>
<td>no default</td>
<td>allows the segment to be extended to the left and right.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dim = {label,dim,option}, ...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allows you to add dimensions to a figure.</td>
</tr>
</tbody>
</table>

This is of course equivalent to $\texttt{draw (A)--(B)}$;

14.1.1 Example with point references

\begin{tikzpicture}[scale=1.5]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(2,1){B}
  \tkzDrawSegment[color=red,thin](A,B)
  \tkzDrawPoints(A,B)
\end{tikzpicture}
14.1.2 Example of extending an segment with option `add`

\begin{tikzpicture}
  \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
  \tkzDefTriangleCenter[euler](A,B,C)
  \tkzGetPoint{E}
  \tkzDrawCircle[euler,red](A,B,C)
  \tkzDrawLines[add=.5 and .5](A,B A,C B,C)
  \tkzDrawPoints(A,B,C,E)
  \tkzLabelPoints(A,B,C,E)
\end{tikzpicture}

14.1.3 Example of adding dimensions with option `dim`

\begin{tikzpicture}[scale=4]
  \pgfkeys{/pgf/number format/.cd,fixed,precision=2}
  % Define the first two points
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(3,0){B}
  \tkzDefPoint(1,1){C}
  % Draw the triangle and the points
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,B,C)
  % Label the sides
  \tkzCalcLength[cm](A,B)\tkzGetLength{ABl}
  \tkzCalcLength[cm](B,C)\tkzGetLength{BCl}
  \tkzCalcLength[cm](A,C)\tkzGetLength{ACl}
  % add dim
  \tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,transform shape}](C,B)
  \tkzDrawSegment[dim={\pgfmathprintnumber\ACl,-6pt,transform shape}](A,C)
  \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,6pt,transform shape}](A,B)
\end{tikzpicture}
14.2 Drawing segments \texttt{\textbackslash{}tkzDrawSegments}

If the options are the same we can plot several segments with the same macro.

\begin{verbatim}
\texttt{\textbackslash{}tkzDrawSegments([local options])(pt1,pt2 pt3,pt4 ...)}
\end{verbatim}

The arguments are a two-point couple list. The styles of TikZ are available for the plots.

\begin{verbatim}
\begin{tikzpicture}
\tkzInit[xmin=-1,xmax=3,ymin=-1,ymax=2]
\tkzClip[space=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,1){B}
\tkzDefPoint(3,0){C}
\tkzDrawSegments(A,B B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C)
\tkzLabelPoints[above](B)
\end{tikzpicture}
\end{verbatim}

14.2.1 Place an arrow on segment

\begin{verbatim}
\begin{tikzpicture}
\tikzset{
arr/.style={postaction=decorate,
    decoration={markings,
    mark=at position .5 with {\arrow[thick]{#1}}}\\}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,-4){B}
\tkzDrawSegments[arr=stealth](A,B)
\tkzDrawPoints(A,B)
\end{tikzpicture}
\end{verbatim}

14.3 Mark a segment \texttt{\textbackslash{}tkzMarkSegment}

\begin{verbatim}
\texttt{\textbackslash{}tkzMarkSegment([local options])(pt1,pt2)}
\end{verbatim}

The macro allows you to place a mark on a segment.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>.5</td>
<td>position of the mark</td>
</tr>
<tr>
<td>color</td>
<td>black</td>
<td>color of the mark</td>
</tr>
<tr>
<td>mark</td>
<td>none</td>
<td>choice of the mark</td>
</tr>
<tr>
<td>size</td>
<td>4pt</td>
<td>size of the mark</td>
</tr>
</tbody>
</table>

Possible marks are those provided by TikZ, but other marks have been created based on an idea by Yves Combe.
14.3.1 Several marks

\begin{tikzpicture}
  \tkzDefPoint(2,1){A}
  \tkzDefPoint(6,4){B}
  \tkzDrawSegment(A,B)
  \tkzMarkSegment[color=brown,size=2pt,pos=0.4, mark=z](A,B)
  \tkzMarkSegment[color=blue,pos=0.2, mark=oo](A,B)
  \tkzMarkSegment[pos=0.8,mark=s,color=red](A,B)
\end{tikzpicture}

14.3.2 Use of mark

\begin{tikzpicture}
  \tkzDefPoint(2,1){A}
  \tkzDefPoint(6,4){B}
  \tkzDrawSegment(A,B)
  \tkzMarkSegment[color=gray,pos=0.2,mark=s\|](A,B)
  \tkzMarkSegment[color=gray,pos=0.4,mark=s||](A,B)
  \tkzMarkSegment[color=brown,pos=0.6,mark=||](A,B)
  \tkzMarkSegment[color=red,pos=0.8,mark=|||](A,B)
\end{tikzpicture}

14.4 Marking segments \tkzMarkSegments

\tkzMarkSegments{⟨local options⟩}{⟨pt1,pt2 pt3,pt4 ...⟩}

Arguments are a list of pairs of points separated by spaces. The styles of TikZ are available for plots.

14.4.1 Marks for an isosceles triangle

\begin{tikzpicture}[scale=1]
  \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C}
  \tkzDrawSegments(O,A A,B)
  \tkzDrawPoints(O,A,B)
  \tkzDrawLine(O,B)
  \tkzMarkSegments[mark=||,size=6pt](O,A A,B)
\end{tikzpicture}
14.5 Another marking

\begin{tikzpicture}[scale=1]
  \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B}
  \tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P}
  \tkzDrawPolygon(A,B,C)
  \tkzDefEquilateral(A,P) \tkzGetPoint{P'}
  \tkzDefPointsBy[rotation=center A angle 60](P,B){P',C'}
  \tkzDrawPolygon(A,P,P')
  \tkzDrawPolySeg(P',C',A,P,B)
  \tkzDrawPointsBy[rotation=center A angle 60](P,B){P',C'}
  \tkzDrawPoints(A,B,C,C',P,P')
  \tkzMarkSegments[mark=s|,size=6pt, color=blue](A,P P,P' P',A)
  \tkzMarkSegments[mark=||,color=orange](B,P P',C')
  \tkzLabelPoints(A,C) \tkzLabelPoints[below](P)
  \tkzLabelPoints[above right](P',C',B)
\end{tikzpicture}

\begin{tikzpicture}
  \tkzInit
  \tkzDefPoint(0,0){A}\tkzDefPoint(6,0){B}
  \tkzDrawSegment(A,B)
  \tkzLabelSegment[above,pos=.8](A,B){$a$}
  \tkzLabelSegment[below,pos=.2](A,B){$4$}
\end{tikzpicture}

\begin{tikzpicture}
  \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B}
  \tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P}
  \tkzDrawPolygon(A,B,C)
  \tkzDefEquilateral(A,P) \tkzGetPoint{P'}
  \tkzDefPointsBy[rotation=center A angle 60](P,B){P',C'}
  \tkzDrawPolygon(A,P,P')
  \tkzDrawPolySeg(P',C',A,P,B)
  \tkzDrawPointsBy[rotation=center A angle 60](P,B){P',C'}
  \tkzDrawPoints(A,B,C,C',P,P')
  \tkzMarkSegments[mark=s|,size=6pt, color=blue](A,P P,P' P',A)
  \tkzMarkSegments[mark=||,color=orange](B,P P',C')
  \tkzLabelPoints(A,C) \tkzLabelPoints[below](P)
  \tkzLabelPoints[above right](P',C',B)
\end{tikzpicture}

\texttt{\textbackslash tkzLabelSegment[(local options)]((pt1,pt2))\{(label)\}}

This macro allows you to place a label along a segment or a line. The options are those of Ti\textit{k}Z for example \texttt{pos}.

<table>
<thead>
<tr>
<th>argument</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>\texttt{tkzLabelSegment(A,B){5}}</td>
<td>label text label along $[AB]$</td>
</tr>
<tr>
<td>(pt1,pt2)</td>
<td>(A,B)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>.5</td>
<td>label’s position</td>
</tr>
</tbody>
</table>

14.5.1 Multiple labels

\begin{tikzpicture}
  \tkzInit
  \tkzDefPoint(0,0){A}\tkzDefPoint(6,0){B}
  \tkzDrawSegment(A,B)
  \tkzLabelSegment[above,pos=.8](A,B){$a$}
  \tkzLabelSegment[below,pos=.2](A,B){$4$}
\end{tikzpicture}
14.5.2 Labels and right-angled triangle

\begin{tikzpicture}[rotate=-60]
\tikzset{label seg style/.append style = {%
  color = red,
}}
\tkzDefPoint(0,1){A}
\tkzDefPoint(2,4){C}
\tkzDefPointWith[orthogonal normed,K=7](C,A)
\tkzGetPoint(B)
\tkzDrawPolygon[green!60!black](A,B,C)
\tkzDrawLine[altitude,dashed,color=magenta](B,C,A)
\tkzGetPoint(P)
\tkzLabelPoint[left](A){$A$}
\tkzLabelPoint[right](B){$B$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[below](P){$P$}
\tkzLabelSegment[left](B,A){$c$}
\tkzLabelSegment[swap](B,C){$a$}
\tkzLabelSegment[swap](C,A){$b$}
\tkzMarkAngles[size=1cm,color=cyan,mark=\|](C,B,A A,C,P)
\tkzMarkAngle[size=0.75cm,color=orange,mark=\||](P,C,B)
\tkzMarkAngle[size=0.75cm,color=orange,mark=\||](B,A,C)
\tkzMarkRightAngles[german](A,C,B B,P,C)
\end{tikzpicture}

\texttt{\textbf{\tkzLabelSegments[\{local options\}](\{pt1,pt2 pt3,pt4 ...\})}}

The arguments are a two-point couple list. The styles of TikZ are available for plotting.

14.5.3 Labels for an isosceles triangle

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C}
\tkzDrawSegments(O,A A,B)
\tkzDrawPoints(O,A,B)
\tkzDrawLine(O,B)
\tkzLabelSegments[color=red,above=4pt](O,A A,B){$a$}
\end{tikzpicture}
15 Triangles

15.1 Definition of triangles \texttt{\texttt{tkzDefTriangle}}

The following macros will allow you to define or construct a triangle from at least two points. At the moment, it is possible to define the following triangles:

- \textbf{two angles} determines a triangle with two angles;
- \textbf{equilateral} determines an equilateral triangle;
- \textbf{half} determines a right-angled triangle such that the ratio of the measurements of the two adjacent sides to the right angle is equal to 2;
- \textbf{pythagore} determines a right-angled triangle whose side measurements are proportional to 3, 4 and 5;
- \textbf{school} determines a right-angled triangle whose angles are 30, 60 and 90 degrees;
- \textbf{golden} determines a right-angled triangle such that the ratio of the measurements on the two adjacent sides to the right angle is equal to $\Phi = 1.618034$, I chose "golden triangle" as the denomination because it comes from the golden rectangle and I kept the denomination "gold triangle" or "Euclid's triangle" for the isosceles triangle whose angles at the base are 72 degrees;
- \textbf{euclide} or \textbf{gold} for the gold triangle;
- \textbf{cheops} determines a third point such that the triangle is isosceles with side measurements proportional to 2, $\Phi$ and $\Phi$.

\texttt{\texttt{tkzDefTriangle}}[\texttt{\texttt{\langle local options\rangle}}](\texttt{\langle A,B\rangle})

The points are ordered because the triangle is constructed following the direct direction of the trigonometric circle. This macro is either used in partnership with \texttt{tkzGetPoint} or by using \texttt{tkzPointResult} if it is not necessary to keep the name.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>two angles= #1 and #2</td>
<td>no defaut</td>
<td>triangle knowing two angles</td>
</tr>
<tr>
<td>equilateral</td>
<td>no defaut</td>
<td>equilateral triangle</td>
</tr>
<tr>
<td>pythagore</td>
<td>no defaut</td>
<td>proportional to the pythagorean triangle 3-4-5</td>
</tr>
<tr>
<td>school</td>
<td>no defaut</td>
<td>angles of 30, 60 and 90 degrees</td>
</tr>
<tr>
<td>golden</td>
<td>no defaut</td>
<td>angles of 72, 72 and 36 degrees, $A$ is the apex</td>
</tr>
<tr>
<td>euclide</td>
<td>no defaut</td>
<td>same as above but $[AB]$ is the base</td>
</tr>
<tr>
<td>golden</td>
<td>no defaut</td>
<td>B rectangle and $AB/AC = \Phi$</td>
</tr>
<tr>
<td>cheops</td>
<td>no defaut</td>
<td>$AC=BC$, $AC$ and $BC$ are proportional to 2 and $\Phi$.</td>
</tr>
</tbody>
</table>

\texttt{tkzGetPoint} allows you to store the point otherwise \texttt{tkzPointResult} allows for immediate use.

15.1.1 Option golden

\begin{tikzpicture}[scale=.8]
\tkzInit[xmax=5,ymax=3] \tkzClip[space=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[\texttt{\texttt{golden}}](A,B) \tkzGetPoint(C)
\tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B) \tkzDrawBisector(A,C,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}
15.1.2 Option equilateral

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefTriangle[equilateral](A,B)
\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDefTriangle[equilateral](B,A)
\tkzGetPoint{D}
\tkzDrawPolygon(B,A,D)
\tkzDrawPoints(A,B,C,D)
\end{tikzpicture}

15.1.3 Option gold or euclidean

\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[euclide](A,B) \tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\tkzDrawBisector(A,C,B)
\end{tikzpicture}
15.2 Drawing of triangles

\texttt{\textbackslash tkzDrawTriangle[(local options)](⟨A,B⟩)}

Macro similar to the previous macro but the sides are drawn.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>two angles= #1 and #2</td>
<td>equilateral</td>
<td>triangle knowing two angles</td>
</tr>
<tr>
<td>equilateral</td>
<td>equilateral</td>
<td>equilateral triangle</td>
</tr>
<tr>
<td>pythagore</td>
<td>equilateral</td>
<td>proportional to the pythagorean triangle 3-4-5</td>
</tr>
<tr>
<td>school</td>
<td>equilateral</td>
<td>the angles are 30, 60 and 90 degrees</td>
</tr>
<tr>
<td>gold</td>
<td>equilateral</td>
<td>the angles are 72, 72 and 36 degrees, A is the vertex</td>
</tr>
<tr>
<td>euclidean</td>
<td>equilateral</td>
<td>identical to the previous one but</td>
</tr>
<tr>
<td>golden</td>
<td>equilateral</td>
<td>B rectangle and A</td>
</tr>
<tr>
<td>cheops</td>
<td>equilateral</td>
<td>identical to the previous one but</td>
</tr>
</tbody>
</table>

In all its definitions, the dimensions of the triangle depend on the two starting points.

15.2.1 Option pythagore

This triangle has sides whose lengths are proportional to 3, 4 and 5.

\begin{tikzpicture}
    \tkzDefPoint(0,0){A}
    \tkzDefPoint(4,0){B}
    \tkzDrawTriangle[pythagore,fill=blue!30](A,B)
    \tkzMarkRightAngles(A,B,tkzPointResult)
\end{tikzpicture}

15.2.2 Option school

The angles are 30, 60 and 90 degrees.

\begin{tikzpicture}
    \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
    \tkzDrawTriangle[school,fill=red!30](A,B)
    \tkzMarkRightAngles(tkzPointResult,B,A)
\end{tikzpicture}

15.2.3 Option golden

\begin{tikzpicture}[scale=1]
    \tkzDefPoint(0,-10){M}
    \tkzDefPoint(3,-10){N}
    \tkzDrawTriangle[golden,color=brown](M,N)
\end{tikzpicture}
16 Specific triangles with \texttt{tkzDefSpcTriangle}

15.2.4 Option gold

\begin{tikzpicture}[scale=1]
\tkzDefPoint(5,-5){I}
\tkzDefPoint(8,-5){J}
\tkzDrawTriangle[gold,color=blue!50](I,J)
\end{tikzpicture}

15.2.5 Option euclide

\begin{tikzpicture}[scale=1]
\tkzDefPoint(10,-5){K}
\tkzDefPoint(13,-5){L}
\tkzDrawTriangle[euclide,color=blue,fill=blue!10](K,L)
\end{tikzpicture}

16 Specific triangles with \texttt{tkzDefSpcTriangle}

The centers of some triangles have been defined in the "points" section, here it is a question of determining the three vertices of specific triangles.

\begin{verbatim}
\texttt{tkzDefSpcTriangle[(local options)](A,B,C)}
\end{verbatim}

The order of the points is important!

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>in or incentral</td>
<td>centroid</td>
<td>two-angled triangle</td>
</tr>
<tr>
<td>ex or excentral</td>
<td>centroid</td>
<td>equilateral triangle</td>
</tr>
<tr>
<td>extouch</td>
<td>centroid</td>
<td>proportional to the pythagorean triangle 3-4-5</td>
</tr>
<tr>
<td>intouch or contact</td>
<td>centroid</td>
<td>30, 60 and 90 degree angles</td>
</tr>
<tr>
<td>centroid or medial</td>
<td>centroid</td>
<td>angles of 72, 72 and 36 degrees, $A$ is the vertex</td>
</tr>
<tr>
<td>orthic</td>
<td>centroid</td>
<td>same as above but $</td>
</tr>
<tr>
<td>feuerbach</td>
<td>centroid</td>
<td>$B$ rectangle and $AB/AC = \Phi$</td>
</tr>
<tr>
<td>euler</td>
<td>centroid</td>
<td>$AC=BC$, $AC$ and $BC$ are proportional to 2 and $\Phi$.</td>
</tr>
<tr>
<td>tangential</td>
<td>centroid</td>
<td>$AC=BC$, $AC$ and $BC$ are proportional to 2 and $\Phi$.</td>
</tr>
<tr>
<td>name</td>
<td>no default</td>
<td>$AC=BC$, $AC$ and $BC$ are proportional to 2 and $\Phi$.</td>
</tr>
</tbody>
</table>

\texttt{tkzGetPoint} allows you to store the point otherwise \texttt{tkzPointResult} allows for immediate use.

16.0.1 Option medial or centroid

The geometric centroid of the polygon vertices of a triangle is the point $G$ (sometimes also denoted $M$) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median
Specific triangles with \tkzDefSpcTriangle point. The centroid is always in the interior of the triangle. 


In the following example, we obtain the Euler circle which passes through the previously defined points.

\begin{tikzpicture}[rotate=90,scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{M}
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawSegments[dashed,red](A,M_A B,M_B C,M_C)
\tkzDrawPolygon[color=red](M_A,M_B,M_C)
\tkzDrawPoints(A,B,C,M)
\tkzDrawPoints[red](M_A,M_B,M_C)
\tkzAutoLabelPoints[center=M,font=\scriptsize](A,B,C,M_A,M_B,M_C)
\tkzLabelPoints[font=\scriptsize](M)
\end{tikzpicture}

16.0.2 Option in or incentral

The incentral triangle is the triangle whose vertices are determined by the intersections of the reference triangle's angle bisectors with the respective opposite sides. 

Weisstein, Eric W. "Incentral triangle" From MathWorld--A Wolfram Web Resource.

\begin{tikzpicture}[scale=1]
\tkzDefPoints{ 0/0/A,5/0/B,1/3/C}
\tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c}
\tkzInCenter(A,B,C)\tkzGetPoint{I}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](_a,_b,_c)
\tkzDrawPoints(A,B,C,I,I_a,I_b,I_c)
\tkzDrawCircle[in](A,B,C)
\tkzDrawSegments[dashed](_a_I_b, _b_I_a, _c_I_c)
\tkzAutoLabelPoints[center=I, blue,font=\scriptsize](_a,I_b,I_c)
\tkzAutoLabelPoints[center=I,red, font=\scriptsize](A,B,C,I_a,I_b,I_c)
\end{tikzpicture}

16.0.3 Option ex or excentral

The excentral triangle of a triangle $ABC$ is the triangle $I_aI_bI_c$ with vertices corresponding to the excenters of $ABC$. 

\begin{tikzpicture}[scale=1]
\tkzDefPoints{ 0/0/A,5/0/B,1/3/C}
\tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c}
\tkzInCenter(A,B,C)\tkzGetPoint{I}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](_a,_b,_c)
\tkzDrawPoints(A,B,C,I,I_a,I_b,I_c)
\tkzDrawCircle[in](A,B,C)
\tkzDrawSegments[dashed](_a_I_b, _b_I_a, _c_I_c)
\tkzAutoLabelPoints[center=I, blue,font=\scriptsize](_a,I_b,I_c)
\tkzAutoLabelPoints[center=I,red, font=\scriptsize](A,B,C,I_a,I_b,I_c)
\end{tikzpicture}
Specific triangles with \texttt{tkzDefSpcTriangle}

\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c}
\tkzDrawPolygon[blue](A,B,C)
\tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c}
\tkzDrawPolygon[red](J_a,J_b,J_c)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[red](J_a,J_b,J_c)
\tkzLabelPoints(A,B,C)
\tkzLabelPoints[red](J_b,J_c)
\tkzLabelPoints[red,above](J_a)
\tkzClipBB \tkzShowBB
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\end{tikzpicture}

16.0.4 Option intouch

The contact triangle of a triangle $ABC$, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of $ABC$ with $ABC$.

\textit{Weisstein, Eric W. }"Contact triangle" From MathWorld–A Wolfram Web Resource.

We obtain the intersections of the bisectors with the sides.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[intouch,name=X](A,B,C){_a,_b,_c}
\tkzInCenter(A,B,C) \tkzGetPoint{I}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](X_a,X_b,X_c)
\tkzDrawPoints[blue](X_a,X_b,X_c)
\tkzDrawCircle[in](A,B,C)
\tkzAutoLabelPoints[center=I,blue,font=\scriptsize]%(X_a,X_b,X_c)
\tkzAutoLabelPoints[center=I,red,font=\scriptsize]%(A,B,C)
\end{tikzpicture}

16.0.5 Option extouch

The extouch triangle $T_aT_bT_c$ is the triangle formed by the points of tangency of a triangle $ABC$ with its excircles $J_a$, $J_b$, and $J_c$. The points $T_a$, $T_b$, and $T_c$ can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at $A$, $B$, and $C$.


We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centres of the exinscribed circles.
16 Specific triangles with \texttt{tkzDefSpcTriangle}

\begin{tikzpicture}[scale=.7]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral, name=J](A,B,C){a, b, c}
\tkzDefSpcTriangle[extouch, name=T](A,B,C){a, b, c}
\tkzDefTriangleCenter[nagel](A,B,C)
\tkzGetPoint{Na}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDrawPoints[blue](J_a,J_b,J_c)
\tkzClipBB \tkzShowBB
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawLines[add=1 and 1](A,B B,C C,A)
\tkzDrawSegments[gray](A,T_a B,T_b C,T_c)
\tkzDrawPoints[blue](J_a,J_b,J_c)
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawPolygon[red](T_a,T_b,T_c)
\tkzDrawPoints(A,B,C,Na)
\tkzLabelPoints(G)
\tkzAutoLabelPoints[center=Na,blue](A,B,C)
\tkzAutoLabelPoints[center=G,red, dist=.4](T_a,T_b,T_c)
\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B J_b,T_b,C J_c,T_c,A)
\end{tikzpicture}

16.0.6 Option \texttt{feuerbach}

The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.


The points of tangency define the Feuerbach triangle.

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPoint(0.5,2.5){C}
\tkzDefCircle[euler](A,B,C) \tkzGetPoint{N}
\tkzDefSpcTriangle[feuerbach, name=F](A,B,C){a, b, c}
\tkzDefSpcTriangle[excentral, name=J](A,B,C){a, b, c}
\tkzDefSpcTriangle[extouch, name=T](A,B,C){a, b, c}
\tkzDrawPoints[blue](J_a,J_b,J_c,F_a,F_b,F_c,A,B,C)
\tkzClipBB \tkzShowBB
\tkzDrawCircle[purple](N,F_a)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[blue](F_a,F_b,F_c)
\tkzDrawCircles[gray](J_a,F_a J_b,F_b J_c,F_c)
\tkzAutoLabelPoints[center=N, dist=.3, font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c)
\end{tikzpicture}
16.0.7 Option tangential

The tangential triangle is the triangle $T_aT_bT_c$ formed by the lines tangent to the circumcircle of a given triangle $ABC$ at its vertices. It is therefore antipedal triangle of $ABC$ with respect to the circumcenter $O$.


\begin{tikzpicture}[scale=.5,rotate=80]
\tkzDefPoints{0/0/A,6/0/B,1.8/4/C}
\tkzDefSpcTriangle[tangential, name=T](A,B,C){_a,_b,_c}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](T_a,T_b,T_c)
\tkzDrawPoints[red](A,B,C)
\tkzDrawPoints[blue](T_a,T_b,T_c)
\tkzDefCircle[circum](A,B,C)
\tkzGetPoint{O}
\tkzDrawCircle(O,A)
\tkzLabelPoints[red](A,B,C)
\tkzLabelPoints[blue](T_a,T_b,T_c)
\end{tikzpicture}

16.0.8 Option euler

The Euler triangle of a triangle $ABC$ is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter $H$ with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle.

\begin{tikzpicture}[rotate=90,scale=1.25]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[medial, name=M](A,B,C){_A,_B,_C}
\tkzDefTriangleCenter[euler](A,B,C)
\tkzGetPoint{N}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
\tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
\tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
\tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawCircle(N,E_A)
\tkzDrawSegments[blue](A,H_A B,H_B C,H_C)
\tkzDrawPoints(A,B,C,N,H)
\tkzDrawPoints[red](M_A,M_B,M_C)
\tkzDrawPoints[blue](H_A,H_B,H_C)
\tkzDrawPoints[green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N,font=\scriptsize](A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
\tkzLabelPoints[font=\scriptsize](H,N)
\tkzMarkSegments[mark=s, size=3pt, color=blue, line width=1pt](E,B E_B E_C)
\tkzDrawPolygon[color=red](M_A,M_B,M_C)
\end{tikzpicture}
17 Definition of polygons

17.1 Defining the points of a square

We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons.

\begin{verbatim}
\tkzDefSquare(⟨pt1,pt2⟩)
\end{verbatim}

The square is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a square. The square is defined in the forward direction. The results are in \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult}. We can rename them with \texttt{tkzGetPoints}.

<table>
<thead>
<tr>
<th>Arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨pt1,pt2⟩</td>
<td>\tkzDefSquare((A,B))</td>
<td>The square is defined in the direct direction.</td>
</tr>
</tbody>
</table>

17.1.1 Using \texttt{tkzDefSquare} with two points

Note the inversion of the first two points and the result.

\begin{verbatim}
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B}
\tkzDefSquare(A,B)
\tkzDrawPolygon[color=red](A,B,tkzFirstPointResult,tkzSecondPointResult)
\tkzDefSquare(B,A)
\tkzDrawPolygon[color=blue](B,A,tkzFirstPointResult,tkzSecondPointResult)
\end{tikzpicture}
\end{verbatim}

We may only need one point to draw an isosceles right-angled triangle so we use \texttt{tkzGetFirstPoint} or \texttt{tkzGetSecondPoint}.

17.1.2 Use of \texttt{tkzDefSquare} to obtain an isosceles right-angled triangle

\begin{verbatim}
\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B}
\tkzDefSquare(A,B) \tkzGetPoint{C}
\tkzDrawPolygon[color=blue,fill=blue!30](A,B,C)
\end{tikzpicture}
\end{verbatim}
17.1.3 Pythagorean Theorem and \texttt{\textbackslash tkzDefSquare}

\begin{tikzpicture}[scale=.5]
\tkzInit
\tkzDefPoint(0,0){C}
\tkzDefPoint(4,0){A}
\tkzDefPoint(0,3){B}
\tkzDefSquare(B,A)\tkzGetPoints{E}{F}
\tkzDefSquare(A,C)\tkzGetPoints{G}{H}
\tkzDefSquare(C,B)\tkzGetPoints{I}{J}
\tkzFillPolygon\fill = red!50\tkzGetPoints{(A,C,G,H)}
\tkzFillPolygon\fill = blue!50\tkzGetPoints{(C,B,I,J)}
\tkzFillPolygon\fill = purple!50\tkzGetPoints{(B,A,E,F)}
\tkzFillPolygon\fill = orange,opacity=.5\tkzGetPoints{(A,B,C)}
\tkzDrawPolygon[line width = 1pt](A,B,C)
\tkzDrawPolygon[line width = 1pt](A,C,G,H)
\tkzDrawPolygon[line width = 1pt](C,B,I,J)
\tkzDrawPolygon[line width = 1pt](B,A,E,F)
\tkzLabelSegment\label = (A,C){$a$}
\tkzLabelSegment\label = (C,B){$b$}
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

17.2 Definition of parallelogram

17.3 Defining the points of a parallelogram

It is a matter of completing three points in order to obtain a parallelogram.

\begin{verbatim}
\tkzDefParallelogram((pt1,pt2,pt3))
\end{verbatim}

From three points, another point is obtained such that the four taken in order form a parallelogram. The result is in \texttt{\textbackslash tkzPointResult}.

We can rename it with the name \texttt{\textbackslash tkzGetPoint…}

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2,pt3)</td>
<td>no</td>
<td>default Three points are necessary</td>
</tr>
</tbody>
</table>

17.3.1 Example of a parallelogram definition

\begin{verbatim}
\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefParallelogram(A,B,C)
\tkzGetPoint{D}
\tkzDrawPolygon(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints(above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
\end{verbatim}

17.3.2 Simple example

Explanation of the definition of a parallelogram
17 Definition of polygons

```latex
\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefPointWith[colinear= at C](B,A)
\tkzGetPoint{D}
\tkzDrawPolygon(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
```

17.3.3 Construction of the golden rectangle

```latex
\begin{tikzpicture}[scale=.5]
\tkzInit[xmax=14,ymax=10]
\tkzClip[space=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
\tkzDefMidPoint(A,B)\tkzGetPoint{I}
\tkzDefSquare(A,B)\tkzGetPoints{C}{D}
\tkzDrawSquare(A,B)
\tkzInterLC(A,B)(I,C)\tkzGetPoints{G}{E}
\tkzDrawArc[style=dashed,color=gray](I,E)(D)
\tkzDefPointWith[colinear= at C](E,B)
\tkzGetPoint{F}
\tkzDrawPoints(C,D,E,F)
\tkzLabelPoints(A,B,C,D,E,F)
\tkzDrawSegments[style=dashed,color=gray]%(E,F C,F B,E)
\end{tikzpicture}
```

17.4 Drawing a square

\begin{verbatim}
\tkzDrawSquare[⟨local options⟩](⟨pt1,pt2⟩)
\end{verbatim}

The macro draws a square but not the vertices. It is possible to color the inside. The order of the points is that of the direct direction of the trigonometric circle.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td><code>\tkzDrawSquare((A,B))</code></td>
<td><code>\tkzGetPoints{C}{D}</code></td>
</tr>
<tr>
<td>options</td>
<td>example</td>
<td>explication</td>
</tr>
<tr>
<td>Options TikZ red, line width=1pt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17.4.1 The idea is to inscribe two squares in a semi-circle.

\begin{tikzpicture}[scale=.75]
\tkzInit[ymax=8,xmax=8]
\tkzClip[space=.25]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B} \tkzDefPoints(4,0){I}
\tkzDefSquare(A,B) \tkzGetPoints(C,D)
\tkzInterLC(I,C)(I,B) \tkzGetPoints(E,E')
\tkzInterLC(I,D)(I,B) \tkzGetPoints(F,F')
\tkzDefPointsBy[projection=onto A--B](E,F){H,G}
\tkzDefPointsBy[symmetry = center H](I){J}
\tkzDefSquare(H,J) \tkzGetPoints(K,L)
\tkzDrawSector[fill=yellow](I,B)(A)
\tkzFillPolygon[color=red!40](H,E,F,G)
\tkzFillPolygon[color=blue!40](H,J,K,L)
\tkzDrawPolySeg[color=red](H,E,F,G)
\tkzDrawPolySeg[color=red](J,K,L)
\tkzDrawPoints(E,G,H,F,J,K,L)
\end{tikzpicture}

17.5 The golden rectangle

The macro determines a rectangle whose size ratio is the number Φ. The created points are in \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult}. They can be obtained with the macro \texttt{tkzGetPoints}. The following macro is used to draw the rectangle.

\begin{code}
\texttt{\tkzDefGoldRectangle((point,point))}
\end{code}

\begin{tabular}{|l|l|l|}
\hline
arguments & example & explication \\
\hline
(pt1,pt2) & (A,B) & If C and D are created then AB/BC = Φ. \\
\hline
\end{tabular}

\begin{code}
\texttt{\tkzDrawGoldRectangle[(local options)]((point,point))}
\end{code}

\begin{tabular}{|l|l|l|}
\hline
arguments & example & explication \\
\hline
(pt1,pt2) & (A,B) & Draws the golden rectangle based on the segment [AB] \\
\hline
options & example & explication \\
\hline
TikZ & red,line width=1pt & \\
\hline
\end{tabular}

17.5.1 Golden Rectangles

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
\tkzDefGoldRectangle(A,B) \tkzGetPoints(C,D)
\tkzDefGoldRectangle(B,C) \tkzGetPoints(E,F)
\tkzFillPolygon[color=blue,fill=blue!20](B,C,E,F)
\tkzDrawPolygon[color=red,fill=red!20](A,B,C,D)
\end{tikzpicture}
17.6 Drawing a polygon

\[\texttt{\textbackslash tkzDrawPolygon[(local options)](points list)}\]

Just give a list of points and the macro plots the polygon using the TikZ options present. You can replace \((A,B,C,D,E)\) by \((A,...,E)\) and \((P_1,P_2,P_3,P_4,P_5)\) by \((P_1,P_...,P_5)\)

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>((pt1,pt2,pt3,...))</td>
<td>\texttt{\textbackslash tkzDrawPolygon<a href="A,B,C">gray,dashed</a>}</td>
<td>Drawing a triangle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options TikZ (...)</td>
<td>\texttt{\textbackslash tkzDrawPolygon<a href="A,B,C">red,line width=2pt</a>}</td>
<td></td>
</tr>
</tbody>
</table>

17.6.1 \texttt{tkzDrawPolygon}

\begin{tikzpicture} [rotate=18,scale=1.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(2.25,0.2){B}
\tkzDefPoint(2.5,2.75){C}
\tkzDefPoint(-0.75,2){D}
\tkzDrawPolygon[fill=black!50!blue!20!](A,B,C,D)
\tkzDrawSegments[style=dashed](A,C B,D)
\end{tikzpicture}

17.7 Drawing a polygonal chain

\[\texttt{\textbackslash tkzDrawPolySeg[(local options)](points list)}\]

Just give a list of points and the macro plots the polygonal chain using the TikZ options present.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>((pt1,pt2,pt3,...))</td>
<td>\texttt{\textbackslash tkzDrawPolySeg<a href="A,B,C">gray,dashed</a>}</td>
<td>Drawing a triangle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options TikZ (...)</td>
<td>\texttt{\textbackslash tkzDrawPolySeg<a href="A,B,C">red,line width=2pt</a>}</td>
<td></td>
</tr>
</tbody>
</table>
17.7.1 Polygonal chain

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,3/4/C,2/2/D}
\tkzDrawPolySeg(A,...,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

17.7.2 Polygonal chain: index notation

\begin{tikzpicture}
\foreach \pt in {1,2,...,8} {
\tkzDefPoint(\pt*20:3){P_\pt}}
\tkzDrawPolySeg(P_1,P_...,P_8)
\tkzDrawPoints(P_1,P_...,P_8)
\end{tikzpicture}

17.8 Clip a polygon

\textbf{\tkzClipPolygon\[\text{local options}\](\text{points list})}

This macro makes it possible to contain the different plots in the designated polygon.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>(A,B)</td>
<td></td>
</tr>
</tbody>
</table>

17.8.1 \texttt{\tkzClipPolygon}

\begin{tikzpicture}[scale=1.25]
\tkzInit[xmin=0,xmax=4,ymin=0,ymax=3]
\tkzClip[space=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C)
\tkzDefPoint(0,2){D} \tkzDefPoint(2,0){E}
\tkzDrawPoints(D,E) \tkzLabelPoints(D,E)
\tkzClipPolygon(A,B,C)
\tkzDrawLine[color=red](D,E)
\end{tikzpicture}
17.8.2 Example: use of "Clip" for Sangaku in a square

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDrawPolygon(B,C,D,A)
\tkzClipPolygon(B,C,D,A)
\tkzDefPoint(4,8){F}
\tkzDefTriangle[equilateral](C,D)
\tkzGetPoint{I}
\tkzDrawPoint(I)
\tkzDefPointBy[projection=onto B--C](I)
\tkzGetPoint{J}
\tkzInterLL(D,B)(I,J) \tkzGetPoint{K}
\tkzDefPointBy[symmetry=center K](B)
\tkzGetPoint{M}
\tkzDrawCircle(M,I)
\tkzCalcLength(M,I) \tkzGetLength{dMI}
\tkzFillPolygon[color = orange](A,B,C,D)
\tkzFillCircle[R,color = yellow](M,dMI pt)
\tkzFillCircle[R,color = blue!50!black](F,4 cm)
\end{tikzpicture}

17.9 Color a polygon

\begin{verbatim}
\tkzFillPolygon{(local options)}{(points list)}
\end{verbatim}

You can color by drawing the polygon, but in this case you color the inside of the polygon without drawing it.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2,..)</td>
<td>(A,B,..)</td>
<td></td>
</tr>
</tbody>
</table>

17.9.1 \tkzFillPolygon

\begin{tikzpicture}[scale=0.7]
\tkzInit[xmin=-3,xmax=6,ymin=-1,ymax=6]
\tkzDrawX[noticks]
\tkzDrawY[noticks]
\tkzDefPoint(0,0){O} \tkzDefPoint(4,2){A}
\tkzDefPoint(-2,6){B}
\tkzDrawSegments[->](O,A O,B)
\tkzLabelSegment[above=3pt](O,A){$\vec{u}$}
\tkzLabelSegment[above=3pt](O,B){$\vec{v}$}
\tkzMarkAngle[fill= yellow,size=1.8cm,\]
\tkzFillPolygon[red!30,opacity=0.25](A,B,0)
\tkzLabelAngle[pos = 1.5](A,B,0){\alpha}
\end{tikzpicture}
17.10 Regular polygon

\(\texttt{\textbackslash tkzDefRegPolygon[(local\_options)](pt1,pt2)}\)

From the number of sides, depending on the options, this macro determines a regular polygon according to its center or one side.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>(O,A)</td>
<td>with option &quot;center&quot;, (O) is the center of the polygon.</td>
</tr>
<tr>
<td>(pt1,pt2)</td>
<td>(A,B)</td>
<td>with option &quot;side&quot;, ([AB]) is a side.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>P</td>
<td>The vertices are named (P1,P2,\ldots)</td>
</tr>
<tr>
<td>sides</td>
<td>5</td>
<td>number of sides.</td>
</tr>
<tr>
<td>center</td>
<td>center</td>
<td>The first point is the center.</td>
</tr>
<tr>
<td>side</td>
<td>center</td>
<td>The two points are vertices.</td>
</tr>
<tr>
<td>Options</td>
<td>TikZ</td>
<td>...</td>
</tr>
</tbody>
</table>

17.10.1 Option center

\begin{tikzpicture}
\tkzDefPoints{0/0/P0,0/0/Q0,2/0/P1}
\tkzDefMidPoint(P0,P1) \tkzGetPoint{Q1}
\tkzDefRegPolygon[center,sides=7](P0,P1)
\tkzDefMidPoint(P1,P2) \tkzGetPoint{Q1}
\tkzDefRegPolygon[center,sides=7,name=Q](P0,Q1)
\tkzDrawPolygon(P1,P...,P7)
\tkzFillPolygon[gray!20](Q0,Q1,P2,Q2)
\foreach \j in {1,...,7} \tkzDrawSegment[black](P0,Q\j)}
\end{tikzpicture}

17.10.2 Option side

\begin{tikzpicture}[scale=1]
\tkzDefPoints{-4/0/A, -1/0/B}
\tkzDefRegPolygon[side,sides=5,name=P](A,B)
\tkzDrawPolygon[thick](P1,P...,P5)
\end{tikzpicture}
18 The Circles

Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given center passing through a given point. This will be the default method, otherwise you will have to use the \texttt{R} option. There are a large number of special circles, for example the circle circumscribed by a triangle.

- I have created a first macro \texttt{\tkzDefCircle} which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \texttt{\tkzGetPoint} and \texttt{\tkzGetLength};
- then a macro \texttt{\tkzDrawCircle};
- then a macro that allows you to color in a disc, but without drawing the circle \texttt{\tkzFillCircle};
- sometimes, it is necessary for a drawing to be contained in a disk, this is the role assigned to \texttt{\tkzClipCircle};
- it finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \texttt{\tkzLabelCircle}.

18.1 Characteristics of a circle: \texttt{\tkzDefCircle}

This macro allows you to retrieve the characteristics (center and radius) of certain circles.

\[
\texttt{\tkzDefCircle[(local options)]((A,B)) or ((A,B,C))}
\]

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2) or (pt1,pt2,pt3)</td>
<td>((A,B))</td>
<td>$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>through</td>
<td>through</td>
<td>circle characterized by two points defining a radius</td>
</tr>
<tr>
<td>diameter</td>
<td>through</td>
<td>circle characterized by two points defining a diameter</td>
</tr>
<tr>
<td>circum</td>
<td>through</td>
<td>circle circumscribed of a triangle</td>
</tr>
<tr>
<td>in</td>
<td>through</td>
<td>incircle a triangle</td>
</tr>
<tr>
<td>ex</td>
<td>through</td>
<td>excircle of a triangle</td>
</tr>
<tr>
<td>euler or nine</td>
<td>through</td>
<td>Euler's Circle</td>
</tr>
<tr>
<td>spieker</td>
<td>through</td>
<td>Spieker Circle</td>
</tr>
<tr>
<td>apollonius</td>
<td>through</td>
<td>circle of Apollonius</td>
</tr>
<tr>
<td>orthogonal</td>
<td>through</td>
<td>circle of given centre orthogonal to another circle</td>
</tr>
<tr>
<td>orthogonal through</td>
<td>through</td>
<td>circle orthogonal circle passing through 2 points</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>coefficient used for a circle of Apollonius</td>
</tr>
</tbody>
</table>

In the following examples, I draw the circles with a macro not yet presented, but this is not necessary. In some cases you may only need the center or the radius.
18.1.1 Example with a random point and option through

The radius measurement is: 65.11271pt i.e. 2.28845cm

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,4){A}
\tkzDefPoint(2,2){B}
\tkzDefMidPoint(A,B) \tkzGetPoint{I}
\tkzDefRandPointOn[segment = I--B] \tkzGetPoint{C}
\tkzDefCircle[through](A,C)
\tkzGetLength{rACpt}
\tkzpttocm(\rACpt cm)
\tkzDrawCircle(A,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\tkzLabelCircle[draw,fill=orange, text width=3cm, text centered, font=\scriptsize](A,C)(-90)
\end{tikzpicture}

18.1.2 Example with option diameter

It is simpler here to search directly for the middle of [AB].

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,2){B}
\tkzDefCircle[diameter](A,B)
\tkzGetPoint{O}
\tkzDrawCircle[blue,fill=blue!20](O,B)
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,O)
\tkzLabelPoints(A,B,O)
\end{tikzpicture}

18.1.3 Circles inscribed and circumscribed for a given triangle

You can also obtain the center of the inscribed circle and its projection on one side of the triangle with \tkzGetFirstPointI and \tkzGetSecondPointIb.

\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,-2){B}
\tkzDefPoint(1,-2){C}
\tkzDefCircle[in](A,B,C)
\tkzGetPoint{I} \tkzGetLength{rIN}
\tkzDefCircle[circum](A,B,C)
\tkzGetPoint{K} \tkzGetLength{rCI}
\tkzDrawPoints(A,B,C,I,K)
\tkzDrawCircle[R,blue](I,rIN pt)
\tkzDrawCircle[R,red](K,rCI pt)
\tkzLabelPoints{below}(B,C)
\tkzLabelPoints[above left](A,I,K)
\tkzDrawPolygon(A,B,C)
\end{tikzpicture}
18 The Circles

18.1.4 Example with option ex

We want to define an excircle of a triangle relatively to point $C$.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,4/0/B,0.8/4/C}
\tkzDefCircle[ex](B,C,A) \tkzGetPoint{J_c} \tkzGetLength{rc}
\tkzDefPointBy[projection=onto A--C ](J_c) \tkzGetPoint{X_c}
\tkzDefPointBy[projection=onto A--B ](J_c) \tkzGetPoint{Y_c}
\tkzGetPoint{I}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawCircle[R,color=lightgray](J_c,rc pt)
\tkzDrawCircle[in,color=red](A,B,C) \tkzGetPoint{I}
\tkzDefPointBy[projection=onto A--C ](I) \tkzGetPoint{F}
\tkzDefPointBy[projection=onto A--B ](I) \tkzGetPoint{D}
\tkzDrawLines[add=0 and 2.2,dashed](C,A C,B)
\tkzDrawPolygon[medial](A,B,C){M_a,M_b,M_c}
\tkzDrawPolygon(A,B,C)
\tkzLabelPoints{B,C,A,I,D,F,X_c,J_c,Y_c}
\tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A J_c,Y_c,B)
\tkzDefPoints{B,C,A,I,D,F,X_c,J_c,Y_c}
\tkzLabelPoints{B,A,J_c,I,D,X_c,Y_c}
\end{tikzpicture}

18.1.5 Euler's circle for a given triangle with option euler

We verify that this circle passes through the middle of each side.

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(5,3.5){A}
\tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C}
\tkzDefCircle[euler](A,B,C) \tkzGetPoint{E} \tkzGetLength{rEuler}
\tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c}
\tkzDrawPoints(A,B,C,E,M_a,M_b,M_c)
\tkzDrawCircle[R,blue](E,rEuler pt)
\tkzDrawPolygon(A,B,C)
\tkzLabelPoints{B,C,A,E}
\end{tikzpicture}
18.1.6 Apollonius circles for a given segment option apollonius

\begin{tikzpicture}[scale=0.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefCircle[apollonius,K=2](A,B)
\tkzGetPoint{K1}
\tkzGetLength{rAp}
\tkzDrawCircle[R,color = blue!50!black, fill=blue!20,opacity=.4](K1,rAp pt)
\tkzDefCircle[apollonius,K=3](A,B)
\tkzGetPoint{K2}
\tkzGetLength{rAp}
\tkzDrawCircle[R,color=red!50!black, fill=red!20,opacity=.4](K2,rAp pt)
\tkzLabelPoints[below](A,B,K1,K2)
\tkzDrawPoints(A,B,K1,K2)
\tkzDrawLine[add=.2 and 1](A,B)
\end{tikzpicture}

18.1.7 Circles exinscribed to a given triangle option ex

You can also get the center and the projection of it on one side of the triangle. with \texttt{\tkzGetFirstPoint{Jb}} and \texttt{\tkzGetSecondPoint{Tb}}.

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPoint(1,2.5){C}
\tkzDefCircle[ex](A,B,C) \tkzGetPoint{I}
\tkzGetLength{rI}
\tkzDefCircle[ex](C,A,B) \tkzGetPoint{J}
\tkzGetLength{rJ}
\tkzDefCircle[ex](B,C,A) \tkzGetPoint{K}
\tkzGetLength{rK}
\tkzDefCircle[in](B,C,A) \tkzGetPoint{O}
\tkzGetLength{rO}
\tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C)
\tkzDrawPoints(I,J,K)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[dashed](I,J,K)
\tkzDrawCircle[R,blue!50!black](O,rO)
\tkzDrawSegments[dashed](A,K B,J C,I)
\tkzDrawPoints(A,B,C)
\tkzDrawCircles[R](J,{rJ} I,{rI} K,{rK})
\tkzLabelPoints(A,B,C,I,J,K)
\end{tikzpicture}

18.1.8 Spieker circle with option spieker

The incircle of the medial triangle $M_0M_aM_c$ is the Spieker circle:
19 Draw, Label the Circles

18.1.9 Orthogonal circle passing through two given points, option orthogonal through

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){O}
\tkzDefPoint(1,0){A}
\tkzDrawCircle(O,A)
\tkzDefPoint(-1.5,-1.5){z1}
\tkzDefPoint(1.5,-1.25){z2}
\tkzDefCircle[orthogonal through=z1 and z2](O,A)
\tkzGetPoint{c}
\tkzDrawCircle[thick,color=red](tkzPointResult,z1)
\tkzDrawPoints[fill=red,color=black,size=4](O,A,z1,z2,c)
\tkzLabelPoints(O,A,z1,z2,c)
\end{tikzpicture}

18.1.10 Orthogonal circle of given center

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,1/0/A}
\tkzDefPoints{1.5/1.25/B,-2/-3/C}
\tkzDefCircle[orthogonal from=B](O,A)
\tkzGetPoints{z1}{z2}
\tkzDefCircle[orthogonal from=C](O,A)
\tkzGetPoints{t1}{t2}
\tkzDrawCircle(O,A)
\tkzDrawCircle[thick,color=red](B,z1)
\tkzDrawCircle[thick,color=red](C,t1)
\tkzDrawPoints(t1,t2,C)
\tkzDrawPoints(z1,z2,0,A,B)
\tkzLabelPoints(O,A,B,C)
\end{tikzpicture}

19 Draw, Label the Circles

– I created a first macro \tkzDrawCircle,
– then a macro that allows you to color a disc, but without drawing the circle. \texttt{tkzFillCircle},
– sometimes, it is necessary for a drawing to be contained in a disc, this is the role assigned to \texttt{tkzClipCircle},
– It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \texttt{tkzLabelCircle}.

19.1 Draw a circle

\begin{verbatim}
\begin{tikzpicture}
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(3,0){A}
  % circle with centre \(O\) and passing through \(A\)
  \tkzDrawCircle[color=blue](O,A)
  % diameter circle \([OA]\)
  \tkzDrawCircle[diameter,color=red,
                  line width=2pt,fill=red!40,\%
                  opacity=.5](O,A)
  % circle with centre \(O\) and \(\text{radius} = \exp(1)\) cm
  \edef\rayon{\fpeval{0.25*exp(1)}}
  \tkzDrawCircle[R,color=orange](O,\rayon cm)
\end{tikzpicture}
\end{verbatim}

19.2 Drawing circles

\begin{verbatim}
\begin{tikzpicture}
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(3,0){A}
  % circle with centre \(O\) and passing through \(A\)
  \tkzDrawCircle[color=blue](O,A)
  % diameter circle \([OA]\)
  \tkzDrawCircle[diameter,color=red,
                  line width=2pt,fill=red!40,\%
                  opacity=.5](O,A)
  % circle with centre \(O\) and \(\text{radius} = \exp(1)\) cm
  \edef\rayon{\fpeval{0.25*exp(1)}}
  \tkzDrawCircle[R,color=orange](O,\rayon cm)
\end{tikzpicture}
\end{verbatim}

\begin{verbatim}
\begin{tikzpicture}
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(3,0){A}
  % circle with centre \(O\) and passing through \(A\)
  \tkzDrawCircle[color=blue](O,A)
  % diameter circle \([OA]\)
  \tkzDrawCircle[diameter,color=red,
                  line width=2pt,fill=red!40,\%
                  opacity=.5](O,A)
  % circle with centre \(O\) and \(\text{radius} = \exp(1)\) cm
  \edef\rayon{\fpeval{0.25*exp(1)}}
  \tkzDrawCircle[R,color=orange](0,\rayon cm)
\end{tikzpicture}
\end{verbatim}
19.2.1 Circles defined by a triangle.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,0){B}
\tkzDefPoint(3,2){C}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(A,B B,C C,A)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}

19.2.2 Concentric circles.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDrawCircles[R](A,1cm A,2cm A,3cm)
\tkzDrawPoint(A)
\tkzLabelPoints(A)
\end{tikzpicture}
19.2.3 Exinscribed circles.

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,4/0/B,1/2.5/C}
\tkzDrawPolygon(A,B,C)
\tkzDefCircle[ex](B,C,A)
\tkzGetPoint{J_c} \tkzGetSecondPoint{T_c}
\tkzGetLength{rJc}
\tkzDrawCircle[R](J_c,\rJc pt)
\tkzDrawLines[add=0 and 1](C,A C,B)
\tkzDrawSegment(J_c,T_c)
\tkzMarkRightAngle(J_c,T_c,B)
\tkzDrawPoints(A,B,C,J_c,T_c)
\end{tikzpicture}

19.2.4 Cardioid

Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. Its name comes from the Greek \textit{kardia (heart)}, in reference to its shape, and was given to it by Johan Castillon (Wikipedia).

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,0){A}
\foreach \ang in {5,10,...,360}{%\tkzDefPoint(\ang:2){M}
\tkzDrawCircle(M,A)
}
\end{tikzpicture}

19.3 Draw a semicircle

\begin{tabular}{|c|c|}
\hline
arguments & example & explication \\
\hline
\langle pt1,pt2\rangle & \langle (0,A) or (A,B) \rangle & radius or diameter \\
\hline
\end{tabular}
### 19.3.1 Use of \tkzDrawSemiCircle

\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(6,0){B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDrawPolygon(B,C,D,A)
\tkzDefPoint(3,6){F}
\tkzDefTriangle[equilateral](C,D) \tkzGetPoint{I}
\tkzDefPointBy[projection=onto B--C](I) \tkzGetPoint{J}
\tkzInterLL(D,B)(I,J) \tkzGetPoint{K}
\tkzDefPointBy[symmetry=center K](B) \tkzGetPoint{M}
\tkzDrawCircle(M,I)
\tkzCalcLength(M,I) \tkzGetLength{dMI}
\tkzFillPolygon[color = red!50](A,B,C,D)
\tkzFillCircle[R,color = yellow](M,dMI pt)
\tkzDrawSemiCircle[fill = blue!50!black](F,D)%
\end{tikzpicture}

### 19.4 Colouring a disc

This was possible with the previous macro, but disk tracing was mandatory, this is no longer the case.

\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(6,0){B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDrawPolygon(B,C,D,A)
\tkzDefPoint(3,6){F}
\tkzDefTriangle[equilateral](C,D) \tkzGetPoint{I}
\tkzDefPointBy[projection=onto B--C](I) \tkzGetPoint{J}
\tkzInterLL(D,B)(I,J) \tkzGetPoint{K}
\tkzDefPointBy[symmetry=center K](B) \tkzGetPoint{M}
\tkzDrawCircle(M,I)
\tkzCalcLength(M,I) \tkzGetLength{dMI}
\tkzFillPolygon[color = red!50](A,B,C,D)
\tkzFillCircle[R,color = yellow](M,dMI pt)
\tkzDrawSemiCircle[fill = blue!50!black](F,D)%
\end{tikzpicture}

You don't need to put \texttt{radius} because that's the default option. Of course, you have to add all the styles of Ti\kZ for the plots.
19.4.1 Example from a sangaku

\begin{tikzpicture}
\tkzInit[xmin=0,xmax = 6,ymin=0,ymax=6]
\tkzDefPoint(0,0){B} \tkzDefPoint(6,0){C} \tkzDefSquare(B,C) \tkzGetPoints{D}{A}
\tkzClipPolygon(B,C,D,A)
\tkzDefMidPoint(A,D) \tkzGetPoint{F}
\tkzDefMidPoint(B,C) \tkzGetPoint{E}
\tkzDefMidPoint(B,D) \tkzGetPoint{Q}
\tkzDefTangent[from = B](F,A) \tkzGetPoints{G}{H}
\tkzInterLL(F,G)(C,D) \tkzGetPoint{J}
\tkzInterLL(A,J)(F,E) \tkzGetPoint{K}
\tkzDefPointBy[projection=onto B--A](K)
\tkzGetPoint{M}
\tkzFillPolygon[color = green](A,B,C,D)
\tkzFillCircle[color = orange](B,A)
\tkzFillCircle[color = blue!50!black](M,A)
\tkzFillCircle[color = purple](E,B)
\tkzFillCircle[color = yellow](K,Q)
\end{tikzpicture}

19.5 Clipping a disc

\texttt{\tkzClipCircle[\textit{local options}](\langle A,B \rangle) or (\langle A,r \rangle)}

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle A,B \rangle) or (\langle A,r \rangle)</td>
<td>(\langle A,B \rangle) or (\langle A,2\text{cm} \rangle)</td>
<td>AB radius or diameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius</td>
<td>radius</td>
<td>circle characterized by two points defining a radius</td>
</tr>
<tr>
<td>R</td>
<td>radius</td>
<td>circle characterized by a point and the measurement of a radius</td>
</tr>
</tbody>
</table>

It is not necessary to put \texttt{radius} because that is the default option.

19.5.1 Example

\begin{tikzpicture}
\tkzInit[xmax=6,ymax=5]
\tkzGrid \tkzClip
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,2){O}
\tkzDefPoint(4,4){B}
\tkzDefPoint(6,6){C}
\tkzDrawPoints(O,A,B,C)
\tkzLabelPoints(O,A,B,C)
\tkzDrawCircle[fill=red!20,opacity=.5](C,0)
\tkzClipCircle(0,A)
\tkzDrawCircle(O,A)
\tkzDrawLine(A,C)
\tkzDrawCircle[fill=blue!20,opacity=.5](B,2)
\end{tikzpicture}
19.6 Giving a label to a circle

\begin{tabular}{ll}
\texttt{\tkzLabelCircle[(local options)]((A,B))(angle)(label)} & \textbf{options} \quad \textbf{default} \quad \textbf{definition} \\
\hline
\texttt{radius} & \texttt{radius} & \text{circle characterized by two points defining a radius} \\
\texttt{R} & \texttt{radius} & \text{circle characterized by a point and the measurement of a radius} \\
\end{tabular}

You don't need to put \texttt{radius} because that's the default option. We can use the styles from Ti\textit{k}Z. The label is created and therefore "passed" between braces.

19.6.1 Example

\begin{tikzpicture}
\tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N}
\tkzDefPointBy[rotation=center O angle 50](N) \tkzGetPoint{M}
\tkzDefPointBy[rotation=center O angle -20](N) \tkzGetPoint{P}
\tkzDefPointBy[rotation=center O angle 125](N) \tkzGetPoint{P'}
\tkzLabelCircle[above=4pt](O,N)(120){$\mathcal{C}$}
\tkzDrawCircle(O,M)
\tkzFillCircle[color=blue!20,opacity=.4](O,M)
\tkzDefPointBy[rotation=center O angle 125](P)
\tkzGetPoint{P''}
\tkzLabelCircle[draw,fill=orange,text width=2cm,text centered](O,3 cm)(-60)
{The circle $\mathcal{C}$}
\tkzDrawPoints(M,P) \tkzLabelPoints[right](M,P)
\end{tikzpicture}
20 Intersections

It is possible to determine the coordinates of the points of intersection between two straight lines, a straight line and a circle, and two circles.

The associated commands have no optional arguments and the user must determine the existence of the intersection points himself.

20.1 Intersection of two straight lines

\texttt{\texttt{tkzInterLL((A, B))(C, D))}}

Defines the intersection point \texttt{tkzPointResult} of the two lines \((AB)\) and \((CD)\). The known points are given in pairs (two per line) in brackets, and the resulting point can be retrieved with the macro \texttt{tkzDefPoint}.

20.1.1 Example of intersection between two straight lines

\begin{tikzpicture}[rotate=-45,scale=.75]
\tkzDefPoint(2,1){A}
\tkzDefPoint(6,5){B}
\tkzDefPoint(3,6){C}
\tkzDefPoint(5,2){D}
\tkzDrawLines(A,B C,D)
\tkzInterLL(A,B)(C,D)
\tkzGetPoint{I}
\tkzDrawPoints[color=blue](A,B,C,D)
\tkzDrawPoints[color=red](I)
\end{tikzpicture}

20.2 Intersection of a straight line and a circle

As before, the line is defined by a couple of points. The circle is also defined by a couple:

- \((O,C)\) which is a pair of points, the first is the centre and the second is any point on the circle.
- \((O,r)\) The \(r\) measure is the radius measure. The unit can be the \textit{cm} or \textit{pt}.

\texttt{\texttt{tkzInterLC[(options)]((A, B))(O, C) or (O, r) or (O, C, D)}}

So the arguments are two couples.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>((0, C)) determines the circle</td>
</tr>
<tr>
<td>R</td>
<td>N</td>
<td>((0, 1 \text{ cm})) or ((0, 120 \text{ pt}))</td>
</tr>
<tr>
<td>with nodes</td>
<td>N</td>
<td>((0, C, D)) (CD) is a radius</td>
</tr>
</tbody>
</table>

The macro defines the intersection points \(I\) and \(J\) of the line \((AB)\) and the center circle \(O\) with radius \(r\) if they exist; otherwise, an error will be reported in the \texttt{.log} file.
20.2.1 Simple example of a line-circle intersection

In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points:

\begin{tikzpicture}[scale=.75]
\tkzInit[xmax=5,ymax=4]
\tkzDefPoint(1,1){O}
\tkzDefPoint(0,4){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(3,3){C}
\tkzInterLC(A,B)(O,C) \tkzGetPoints{D}{E}
\tkzDrawCircle(O,C)
\tkzDrawPoints[color=blue](O,A,B,C)
\tkzDrawPoints[color=red](D,E)
\tkzDrawLine(A,B)
\tkzLabelPoints[above right](O,A,B,C,D,E)
\end{tikzpicture}

20.2.2 More complex example of a line-circle intersection

Figure from http://gogeometry.com/problem/p190_tangent_circle

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{O}
\tkzDrawCircle(O,B)
\tkzDefMidPoint(O,B)
\tkzGetPoint{O'}
\tkzDrawCircle(O',B)
\tkzDefTangent[from=A](O',B)
\tkzGetSecondPoint{E}
\tkzInterLC(A,E)(O,B)
\tkzGetSecondPoint{D}
\tkzDefPointBy[projection=onto A--B](D)
\tkzGetPoint{F}
\tkzMarkRightAngle(D,F,B)
\tkzDrawSegments(A,D A,B D,F)
\tkzDrawSegments[color=red,line width=1pt, opacity=.4](A,0,F,B)
\tkzDrawPoints(A,B,0',E,D)
\tkzLabelPoints(A,B,0',E,D)
\end{tikzpicture}

20.2.3 Circle defined by a center and a measure, and special cases

Let's look at some special cases like straight lines tangent to the circle.
20.2.4 More complex example

Be careful with the syntax. First of all, calculations for the points can be done during the passage of the arguments, but the syntax of \texttt{xfp} must be respected. You can see that I use the term $\pi$ because \texttt{xfp} can work with radians. You can also work with degrees but in this case, you need to use specific commands like $\texttt{sind}$ or $\texttt{cosd}$. Furthermore, when calculations require the use of parentheses, they must be inserted in a group... $\texttt{TEX{ ...}}$.

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,1){J}
\tkzDefPoint(0,0){O}
\tkzDrawArc[R, line width=1pt, color=red](J, 2.5 cm)(180, 0)
\foreach \i in {0, -5, -10, ..., -85, -90}{
  \tkzDefPoint({2.5*cosd(\i)}, {1+2.5*sind(\i)}){P}
  \tkzDrawSegment[color=orange](J, P)
  \tkzInterLC[R](P, J)(O, 1 cm)
  \tkzGetPoints{M}{N}
  \tkzDrawPoints[red](N)
}
\foreach \i in {-90, -95, ..., -175, -180}{
  \tkzDefPoint({2.5*cosd(\i)}, {1+2.5*sind(\i)}){P}
  \tkzDrawSegment[color=orange](J, P)
  \tkzInterLC[R](P, J)(0, 1 cm)
  \tkzGetPoints{M}{N}
  \tkzDrawPoints[red](M)
}
\end{tikzpicture}

20.2.5 Calculation of radius example 1

With \texttt{pgfmath} and \texttt{\pgfmathsetmacro}

The radius measurement may be the result of a calculation that is not done within the intersection macro, but before. A length can be calculated in several ways. It is possible of course, to use the module \texttt{pgfmath} and the macro \texttt{\pgfmathsetmacro}. In some cases, the results obtained are not precise enough, so the following calculation $0.0002 ÷ 0.0001$ gives 1.98 with pgfmath while xfp will give 2.

20.2.6 Calculation of radius example 2

With \texttt{xfp} and \texttt{\fpeval}:
20.2.7 Calculation of radius example 3

With \texttt{\LaTeX} and \texttt{tkzLength}. This dimension was created with \texttt{newdimen}. 2 cm has been transformed into points. It is of course possible to use \texttt{\LaTeX} to calculate.

\begin{tikzpicture}
thicklines
\tkzDefPoints{2/2/A, 5/4/B, 4/4/O}
\tkzLength=2cm
\tkzDrawCircle[R](O,\tkzLength)
\tkzInterLC[R](A,B)(O,\tkzLength)
\tkzGetPoints{I}{J}
\tkzDrawPoints[color=blue](A,B)
\tkzDrawPoints[color=red](I,J)
\tkzDrawLine(I,J)
\end{tikzpicture}

20.2.8 Squares in half a disc

A Sangaku look! It is a question of proving that one can inscribe in a half-disc, two squares, and to determine the length of their respective sides according to the radius.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A, 8/0/B, 4/0/I}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzInterLC(I,C)(I,B) \tkzGetPoints{E'}{E}
\tkzInterLC(I,D)(I,B) \tkzGetPoints{F'}{F}
\tkzDefPointsBy[projection = onto A--B](E,F){H,G}
\tkzDefPointsBy[symmetry = center H](I){J}
\tkzDefSquare(H,J)\tkzGetPoints{K}{L}
\tkzDrawSector[fill=brown!30](I,B)(A)
\tkzFillPolygon[color=red!40](H,E,F,G)
\tkzFillPolygon[color=blue!40](H,J,K,L)
\tkzDrawPolySeg[color=red](H,E,F,G)
\tkzDrawPolySeg[color=red](J,K,L)
\tkzDrawPoints(E,G,H,F,J,K,L)
\end{tikzpicture}
20.2.9 Option "with nodes"

\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E}
  \tkzDefTriangle[equilateral](A,B)
  \tkzGetPoint{C}
  \tkzDrawCircle(C,A)
  \tkzInterLC[with nodes](D,E)(C,A,B)
  \tkzGetPoints{F}{G}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,...,G)
  \tkzDrawLine(F,G)
\end{tikzpicture}

20.3 Intersection of two circles

The most frequent case is that of two circles defined by their center and a point, but as before the option \texttt{R} allows to use the radius measurements.

\begin{verbatim}
\tkzInterCC[options]((O,A)(O',A') \texttt{or} ((O,r)(O',r') \texttt{or} ((O,A,B)(O',C,D))
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N N</td>
<td></td>
<td>(OA) and (O'A') are radii, (O) and (O') are the centres</td>
</tr>
<tr>
<td>R N</td>
<td></td>
<td>(r) and (r') are dimensions and measure the radii</td>
</tr>
<tr>
<td>with nodes N</td>
<td></td>
<td>in ((A,A,C)(C,B,F)) (AC) and (BF) give the radii.</td>
</tr>
</tbody>
</table>

This macro defines the intersection point(s) \(I\) and \(J\) of the two center circles \(O\) and \(O'\). If the two circles do not have a common point then the macro ends with an error that is not handled. It is also possible to use directly \texttt{tkzInterCCN} and \texttt{tkzInterCCR}.

20.3.1 Construction of an equilateral triangle

\begin{verbatim}
\begin{tikzpicture}[trim left=-1cm,scale=.5]
  \tkzDefPoint(1,1){A}
  \tkzDefPoint(5,1){B}
  \tkzInterCC(A,B)(B,A)\tkzGetPoints{C}{D}
  \tkzDrawPoint[color=black](C)
  \tkzDrawCircle[dashed](A,B)
  \tkzDrawCircle[dashed](B,A)
  \tkzCompass[color=red](A,C)
  \tkzCompass[color=red](B,C)
  \tkzDrawPolygon(A,B,C)
  \tkzMarkSegments[mark=s|](A,C B,C)
  \tkzLabelPoints(A,B)
  \tkzLabelPoint[above](C){$C$}
\end{tikzpicture}
\end{verbatim}
20.3.2 Example a mediator

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,2){B}
\tkzDrawCircle[color=blue](B,A)
\tkzDrawCircle[color=blue](A,B)
\tkzInterCC(B,A)(A,B)\tkzGetPoints{M}{N}
\tkzDrawLine(A,B)
\tkzDrawPoints(M,N)
\tkzDrawLine[color=red](M,N)
\end{tikzpicture}

20.3.3 An isosceles triangle.

\begin{tikzpicture}[rotate=120,scale=.75]
\tkzDefPoint(1,2){A}
\tkzDefPoint(4,0){B}
\tkzInterCC[R](A,4cm)(B,4cm)
\tkzGetPoints{C}{D}
\tkzDrawCircle[R,dashed](A,4 cm)
\tkzDrawCircle[R,dashed](B,4 cm)
\tkzCompass[color=red](A,C)
\tkzCompass[color=red](B,C)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints[color=blue](A,B,C)
\tkzMarkSegments[mark=s|](A,C B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoint[above](C){\textcolor{red}{$C$}}
\end{tikzpicture}

20.3.4 Segment trisection

The idea here is to divide a segment with a ruler and a compass into three segments of equal length.
\begin{tikzpicture}[scale=.8]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,2){B}
\tkzInterCC(A,B)(B,A)
\tkzGetPoints{C}{D}
\tkzInterCC(D,B)(B,A)
\tkzGetPoints{A}{E}
\tkzInterCC(D,B)(A,B)
\tkzGetPoints{F}{B}
\tkzInterLC(E,F)(F,A)
\tkzGetPoints{D}{G}
\tkzInterLL(A,G)(B,E)
\tkzGetPoint{O}
\tkzInterLL(O,D)(A,B)
\tkzGetPoint{J}
\tkzInterLL(O,F)(A,B)
\tkzGetPoint{I}
\tkzDrawCircle(D,A)
\tkzDrawCircle(A,B)
\tkzDrawCircle(F,A)
\tkzDrawSegments[color=red](O,G O,B O,D O,F)
\tkzDrawPoints(A,B,D,E,F,G,I,J)
\tkzLabelPoints(A,B,D,E,F,G,I,J)
\tkzDrawSegments[blue](A,B B,D A,D A,F F,G E,G B,E)
\tkzMarkSegments[mark=s|](A,I I,J J,B)
\end{tikzpicture}

20.3.5 With the option with nodes

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/a,0/5/B,5/0/C}
\tkzDefPoint(54:5){F}
\tkzDrawCircle[color=gray](A,C)
\tkzInterCC[with nodes](A,A,C)(C,B,F)
\tkzGetPoints{a}{e}
\tkzInterCC(A,C)(a,e) \tkzGetFirstPoint{b}
\tkzInterCC(A,C)(b,a) \tkzGetFirstPoint{c}
\tkzInterCC(A,C)(c,b) \tkzGetFirstPoint{d}
\tkzDrawPoints(a,b,c,d,e)
\tkzDrawPolygon[color=red](a,b,c,d,e)
\foreach \vertex in {a/36,b/108,c/180,d/252,e/324}{{%
\tkzDrawPoint(\vertex)
\tkzLabelPoint[label=\num:$\vertex$](\vertex){}
\tkzDrawSegment[color=gray,style=dashed](A,\vertex)
}%
\end{tikzpicture}
21 The angles

21.1 Colour an angle: fill

The simplest operation

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B}
\tkzFillAngle[size=2cm, fill=gray!10](A,O,B)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

\textbf{Example with size}

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B}
\tkzFillAngle[size=2cm, fill=gray!10](B,O,A)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

\textbf{Changing the order of items}

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B}
\tkzFillAngle[size=2cm, fill=gray!10](B,O,A)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}
21 The angles

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,5/0/A,3/4/B}
% Don't forget {} to get, () to use
\tkzFillAngle[size=4cm,left color=white, right color=red!50](A,O,B)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

\tkzFillAngles[(local options)](⟨A,O,B⟩)(⟨A',O',B'⟩)etc.
With common options, there is a macro for multiple angles.

21.1.3 Multiples angles

\begin{tikzpicture}[scale=0.75]
\tkzDefPoint(0,0){B}
\tkzDefPoint(8,0){C}
\tkzDefPoint(0,8){A}
\tkzDefPoint(8,8){D}
\tkzDrawPolygon(B,C,D,A)
\tkzDefTriangle[equilateral](B,C)
\tkzGetPoint{M}
\tkzInterLL(D,M)(A,B) \tkzGetPoint{N}
\tkzDefPointBy[rotation=center N angle -60](D)
\tkzGetPoint{L}
\tkzInterLL(N,L)(M,B) \tkzGetPoint{P}
\tkzInterLL(M,C)(D,L) \tkzGetPoint{Q}
\tkzDrawSegments(D,N N,L L,D B,M M,C)
\tkzDrawPoints(L,N,P,Q,M,A,D)
\tkzLabelPoints[left](N,P,Q)
\tkzLabelPoints[above](M,A,D)
\tkzLabelPoints(L,B,C)
\tkzMarkAngles(C,B,M B,M,C M,C,B% 
D,L,N,L,N,D N,D,L)
\tkzFillAngles[fill=red!20,opacity=.2](C,B,M% 
B,M,C M,C,B D,L,N,L,N,D N,D,L)
\end{tikzpicture}

21.2 Mark an angle mark

More delicate operation because there are many options. The symbols used for marking in addition to those of TikZ are defined in the file tkz-lib-marks.tex and designated by the following characters:

|, ||, |||, z, s, x, o, oo

Their definitions are as follows
\pgfdeclareplotmark{||}
{\pgfpathmoveto{\pgfqpoint{2\pgflinewidth}{\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{2\pgflinewidth}{-\pgfplotmarksize}}\pgfpathmoveto{\pgfqpoint{-2\pgflinewidth}{\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{-2\pgflinewidth}{-\pgfplotmarksize}}\pgfusepathqstroke}

\pgfdeclareplotmark{|||}
{% \pgfpathmoveto{\pgfqpoint{0 pt}{\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{0 pt}{-\pgfplotmarksize}}\pgfpathmoveto{\pgfqpoint{-3\pgflinewidth}{\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{-3\pgflinewidth}{-\pgfplotmarksize}}\pgfpathmoveto{\pgfqpoint{3\pgflinewidth}{\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{3\pgflinewidth}{-\pgfplotmarksize}}\pgfusepathqstroke}

% An bar slant
\pgfdeclareplotmark{s|}
{% \pgfpathmoveto{\pgfqpoint{-0.70710678\pgfplotmarksize}{-0.70710678\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{0.70710678\pgfplotmarksize}{0.70710678\pgfplotmarksize}}\pgfusepathqstroke}

% An double bar slant
\pgfdeclareplotmark{s||}
{% \pgfpathmoveto{\pgfqpoint{-0.75\pgfplotmarksize}{-\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{0.25\pgfplotmarksize}{\pgfplotmarksize}}\pgfpathmoveto{\pgfqpoint{0\pgfplotmarksize}{-\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{1\pgfplotmarksize}{\pgfplotmarksize}}\pgfusepathqstroke}

% z
\pgfdeclareplotmark{z}
{% \pgfpathmoveto{\pgfqpoint{0.75\pgfplotmarksize}{-\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{-0.75\pgfplotmarksize}{-\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{-0.75\pgfplotmarksize}{\pgfplotmarksize}}\pgfpathlineto{\pgfqpoint{0.75\pgfplotmarksize}{\pgfplotmarksize}}\pgfusepathqstroke}
21 The angles

% s
\pgfdeclareplotmark{s}
{% 
    \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
    \pgfpathcurveto
        {\pgfqpoint{0pt}{0pt}}
        {\pgfqpoint{0pt}{\pgfplotmarksize}}
        {\pgfqpoint{\pgfplotmarksize}{\pgfplotmarksize}}
    \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
    \pgfpathcurveto
        {\pgfqpoint{0pt}{0pt}}
        {\pgfqpoint{0pt}{-\pgfplotmarksize}}
        {\pgfqpoint{-\pgfplotmarksize}{-\pgfplotmarksize}}
\pgfusepathqstroke
%
% infinity
\pgfdeclareplotmark{oo}
{% 
    \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
    \pgfpathcurveto
        {\pgfqpoint{0pt}{0pt}}
        {\pgfqpoint{0pt}{.5\pgfplotmarksize}}
        {\pgfqpoint{\pgfplotmarksize}{0pt}}
    \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
    \pgfpathcurveto
        {\pgfqpoint{0pt}{0pt}}
        {\pgfqpoint{-.5\pgfplotmarksize}{1\pgfplotmarksize}}
        {\pgfqpoint{-\pgfplotmarksize}{0pt}}
    \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
    \pgfpathcurveto
        {\pgfqpoint{0pt}{0pt}}
        {\pgfqpoint{.5\pgfplotmarksize}{-1\pgfplotmarksize}}
        {\pgfqpoint{\pgfplotmarksize}{0pt}}
\pgfusepathqstroke
%
\tkzMarkAngle[(local options)]{(A,O,B)}

O is the vertex. Attention the arguments vary according to the options. Several markings are possible. You can simply draw an arc or add a mark on this arc. The style of the arc is chosen with the option \texttt{arc}, the radius of the arc is given by \texttt{mksize}, the arc can, of course, be colored.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc</td>
<td>1</td>
<td>choice of 1, 1l and 1ll (single, double or triple).</td>
</tr>
<tr>
<td>size</td>
<td>1 cm</td>
<td>arc radius.</td>
</tr>
<tr>
<td>mark</td>
<td>none</td>
<td>choice of mark.</td>
</tr>
<tr>
<td>mksize</td>
<td>4 pt</td>
<td>symbol size (mark).</td>
</tr>
<tr>
<td>mkcolor</td>
<td>black</td>
<td>symbol color (mark).</td>
</tr>
<tr>
<td>mkpos</td>
<td>0.5</td>
<td>position of the symbol on the arc.</td>
</tr>
</tbody>
</table>

\textit{tkz-euclide} AlterMundus
21.2.1 Example with mark = x

\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{0/0/O,5/0/A,3/4/B}
  \tkzMarkAngle[size = 4cm,mark = x, arc=ll,mkcolor = red](A,O,B)
  \tkzDrawLines(O,A O,B)
  \tkzDrawPoints(O,A,B)
\end{tikzpicture}

21.2.2 Example with mark = ||

\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{0/0/O,5/0/A,3/4/B}
  \tkzMarkAngle[size = 4cm,mark = ||, arc=ll,mkcolor = red](A,O,B)
  \tkzDrawLines(O,A O,B)
  \tkzDrawPoints(O,A,B)
\end{tikzpicture}

\tkzMarkAngles[⟨local options⟩](⟨A,O,B⟩)(⟨A',O',B'⟩)etc.

With common options, there is a macro for multiple angles.

21.3 Label at an angle

\tkzLabelAngle[⟨local options⟩](⟨A,O,B⟩)

There is only one option, dist (with or without unit), which can be replaced by the TikZ's pos option (without unit for the latter). By default, the value is in centimeters.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>1</td>
<td>or dist, controls the distance from the top to the label.</td>
</tr>
</tbody>
</table>

It is possible to move the label with all TikZ options: rotate, shift, below, etc.
21.3.1 Example with pos

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,5/0/A,3/4/B}
\tkzMarkAngle[size = 4cm,mark = ||,arc=ll,color = red](A,O,B)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\tkzLabelAngle[pos=2,draw,circle,fill=blue!10](A,O,B){$\alpha$}
\end{tikzpicture}

\begin{tikzpicture}[rotate=30]
\tkzDefPoint(2,1){S}
\tkzDefPoint(7,3){T}
\tkzDefPointBy[rotation=center S angle 60](T)
\tkzGetPoint{P}
\tkzDefLine[bisector,normed](T,S,P)
\tkzGetPoint{s}
\tkzDrawPoints(S,T,P)
\tkzDrawPolygon[color=blue](S,T,P)
\tkzDrawLine[dashed,color=blue,add=0 and 3](S,s)
\tkzLabelPoint[above right](P){$P$}
\tkzLabelPoints(S,T)
\tkzMarkAngle[size = 1.8cm,mark = |,arc=ll,color = blue](T,S,P)
\tkzMarkAngle[size = 2.1cm,mark = |,arc=l,color = blue](T,S,s)
\tkzMarkAngle[size = 2.3cm,mark = |,arc=l,color = blue](s,S,P)
\tkzLabelAngle[pos = 1.5](T,S,P){$60^\circ$}
\tkzLabelAngles[pos = 2.7](T,S,s,S,P){$30^\circ$}
\end{tikzpicture}

\texttt{\tkzLabelAngles\[\texttt{(local options)}\]($(A,0,B)$(A',0',B'))etc.}

With common options, there is a macro for multiple angles.

21.4 Marking a right angle

\texttt{\tkzMarksRightAngle\[\texttt{(local options)}\]($(A,0,B)$)}

The \texttt{german} option allows you to change the style of the drawing. The option \texttt{size} allows to change the size of the drawing.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>german</td>
<td>normal</td>
<td>german arc with inner point.</td>
</tr>
<tr>
<td>size</td>
<td>0.2</td>
<td>side size.</td>
</tr>
</tbody>
</table>

\texttt{tkz-euclide AlterMundus}
21.4.1 Example of marking a right angle

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P}
\tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H}
\tkzDrawLines[add=.5 and .5](P,H)
\tkzMarkRightAngle[fill=blue!20,size=.5,draw](A,H,P)
\tkzDrawLines[add=.5 and .5](A,B)
\tkzMarkRightAngle[fill=red!20,size=.8](B,H,P)
\tkzDrawPoints[](A,B,P,H)
\end{tikzpicture}

21.4.2 Example of marking a right angle, german style

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P}
\tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H}
\tkzDrawLines[add=.5 and .5](P,H)
\tkzMarkRightAngle[german,size=.5,draw](A,H,P)
\tkzDrawPoints[](A,B,P,H)
\tkzDrawLines[add=.5 and .5,fill=blue!20](A,B)
\tkzMarkRightAngle[german,size=.8](P,H,B)
\end{tikzpicture}

21.4.3 Mix of styles

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,1){B}
\tkzDefPoint(2,5){C}
\tkzDefPointBy[projection=onto B--A](C)
\tkzGetPoint{H}
\tkzDrawLine(A,B)
\tkzDrawLine[add = .5 and .2,color=red](C,H)
\tkzMarkRightAngle[size=1,color=red](C,H,A)
\tkzMarkRightAngle[german,size=.8,color=blue](B,H,C)
\tkzFillAngle[opacity=.2,fill=blue!20,size=.8](B,H,C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}
21.4.4 Full example

\begin{tikzpicture}[rotate=-90]
\tkzDefPoint(0,1){A}
\tkzDefPoint(2,4){C}
\tkzDefPointWith[orthogonal normed,K=7](C,A)
\tkzGetPoint{B}
\tkzDrawSegment[green!60!black](A,C)
\tkzDrawSegment[green!60!black](C,B)
\tkzDrawSegment[green!60!black](B,A)
\tkzDrawLine[altitude,dashed,color=magenta](B,C,A)
\tkzGetPoint{P}
\tkzLabelPoint[left](A){$A$}
\tkzLabelPoint[right](B){$B$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[left](P){$P$}
\tkzLabelSegment[auto](B,A){$c$}
\tkzLabelSegment[auto,swap](B,C){$a$}
\tkzLabelSegment[auto,swap](C,A){$b$}
\tkzMarkAngle[size=1cm,color=cyan,mark=|](C,B,A)
\tkzMarkAngle[size=1cm,color=cyan,mark=|](A,C,P)
\tkzMarkAngle[size=0.75cm,color=orange,mark=||](P,C,B)
\tkzMarkAngle[size=0.75cm,color=orange,mark=||](B,A,C)
\tkzMarkRightAngle[german](A,C,B)
\tkzMarkRightAngle[german](B,P,C)
\end{tikzpicture}

21.5 \texttt{tkzMarkRightAngles}

\texttt{\textbackslash tkzMarkRightAngles\{\textbackslash local\textwh{\textbackslash options}\}\{\langle A,O,B\rangle\}\{\langle A',O',B'\rangle\}etc.}

With common options, there is a macro for multiple angles.

22 Angles tools

22.1 Recovering an angle \texttt{tkzGetAngle}

\texttt{\textbackslash tkzGetAngle\{name of macro\}}

Assigns the value in degree of an angle to a macro. This macro retrieves \texttt{tkzAngleResult} and stores the result in a new macro.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>name of macro</td>
<td>\texttt{tkzGetAngle{ang}}</td>
<td>\texttt{ang} contains the value of the angle.</td>
</tr>
</tbody>
</table>

22.2 Example of the use of \texttt{tkzGetAngle}

The point here is that (AB) is the bisector of \overrightarrow{CAD}, such that the AD slope is zero. We recover the slope of (AB) and then rotate twice.
\begin{tikzpicture}
\tkzInit
\tkzDefPoint(1,5){A} \tkzDefPoint(5,2){B}
\tkzDrawSegment(A,B)
\tkzFindSlopeAngle(A,B) \tkzGetAngle{tkzang}
\tkzDefPointBy[rotation= center A angle \tkzang ](B)
\tkzGetPoint{C}
\tkzDefPointBy[rotation= center A angle -\tkzang ](B)
\tkzGetPoint{D}
\tkzCompass[length=1,dashed,color=red](A,C)
\tkzCompass[delta=10,brown](B,C)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(B,C,D)
\tkzLabelPoints[above left](A)
\tkzDrawSegments[style=dashed,color=orange!30](A,C A,D)
\end{tikzpicture}

22.3 Angle formed by three points

\begin{tkzFindAngle}((pt1,pt2,pt3))\end{tkzFindAngle}

The result is stored in a macro \tkzAngleResult.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2,pt3) \tkzFindAngle(A,B,C) \tkzAngleResult gives the angle ( \overrightarrow{BA}, \overrightarrow{BC} )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The result is between -180 degrees and +180 degrees. pt2 is the vertex and \tkzGetAngle can retrieve the angle.
22.3.1 Verification of angle measurement

\begin{tikzpicture}[scale=.75]
  \tkzDefPoint(-1,1){A}
  \tkzDefPoint(5,2){B}
  \tkzDefEquilateral(A,B)
  \tkzGetPoint{C}
  \tkzDrawPolygon(A,B,C)
  \tkzFindAngle(B,A,C)
  \tkzGetAngle{angleBAC}
  \edef\angleBAC{\fpeval{round(\angleBAC)}}
  \tkzDrawPoints(A,B,C)
  \tkzLabelPoints(A,B)
  \tkzLabelPoint[right](C){$C$}
  \tkzLabelAngle(B,A,C){\angleBAC$^\circ$}
  \tkzMarkAngle[size=1.5cm](B,A,C)
\end{tikzpicture}

22.4 Example of the use of \texttt{\textbackslash tkzFindAngle}

\begin{tikzpicture}
  \tkzDefPoint(-1,1){A}
  \tkzDefPoint(5,2){B}
  \tkzDefPoint(1,4){M}
  \tkzDefPoint(-3,4){O}
  \tkzDefPoint(3,4){D}
  \tkzDrawPolygon(A,O,B,D)
  \tkzFindAngle(A,O,B)
  \tkzFindAngle(A,M,B)
  \tkzFindAngle(M,B,D)
  \tkzFindAngle(O,A,D)
  \tkzFindAngle(O,A,C)
  \tkzFindAngle(A,M,C)
  \tkzFindAngle(O,A,M)
  \tkzFindAngle(A,M,D)
  \tkzFindAngle(O,A,D)
  \tkzFindAngle(O,A,M)
\end{tikzpicture}
22.4.1 Determination of the three angles of a triangle

\begin{tikzpicture}
\tkzInit[xmin=-1,ymin=-1,xmax=7,ymax=7]
\tkzClip
\tkzDefPoint (0,0){O} \tkzDefPoint (6,0){A}
\tkzDefPoint (5,5){B} \tkzDefPoint (3,4){M}
\tkzFindAngle (A,O,M) \tkzGetAngle{an}
\tkzDefPointBy[rotation=center O angle an](A)
\tkzGetPoint{C}
\tkzDrawSector[fill = blue!50,opacity=.5](O,A)(C)
\tkzFindAngle(M,B,A) \tkzGetAngle{am}
\tkzDefPointBy[rotation = center O angle am](A)
\tkzGetPoint{D}
\tkzDrawSector[fill = red!50,opacity = .5](O,A)(D)
\tkzDrawPoints(O,A,B,M,C,D)
\edef\an{\fpeval{round(\an,2)}}\edef\am{\fpeval{round(\am,2)}}
\tkzDrawSegments(M,B B,A)
\tkzText(4,2){\widehat{AOC} = \widehat{AOM} = \an^\circ}
\tkzText(1,4){\widehat{AOD} = \widehat{MBA} = \am^\circ}
\end{tikzpicture}

22.5 Determining a slope

It is a question of determining whether it exists, the slope of a straight line defined by two points. No verification of the existence is made.

\begin{tikzpicture}[scale=1.25,rotate=30]
\tkzDefPoints{0.5/1.5/A, 3.5/4/B, 6/2.5/C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[below](A,C)
\tkzLabelPoints[above](B)
\tkzMarkAngle[size=1cm](B,C,A)
\tkzFindAngle(B,C,A)
\tkzGetAngle{angleBCA}
\edef\angleBCA{\fpeval{round(\angleBCA,2)}}
\tkzLabelAngle[pos = 1](B,C,A){\angleBCA^\circ}
\tkzMarkAngle[size=1cm](C,A,B)
\tkzFindAngle(C,A,B)
\tkzGetAngle{angleBAC}
\edef\angleBAC{\fpeval{round(\angleBAC,2)}}
\tkzLabelAngle[pos = 1.8](C,A,B){\angleBAC^\circ}
\tkzMarkAngle[size=1cm](A,B,C)
\tkzFindAngle(A,B,C)
\tkzGetAngle{angleABC}
\edef\angleABC{\fpeval{round(\angleABC,2)}}
\tkzLabelAngle[pos = 1](A,B,C){\angleABC^\circ}
\end{tikzpicture}
22 Angles tools

Careful not to have $x_B = x_A$.

The slope of (AB) is $1$.
The slope of (AC) is $0$.
The slope of (AD) is $-0.5$.

\begin{tikzpicture}
\tkzInit[xmax=4,ymax=5]\tkzGrid[sub]
\tkzDefPoint(1,2){A} \tkzDefPoint(3,4){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(3,1){D}
\tkzDrawSegments(A,B A,C A,D)
\tkzDrawPoints[color=red](A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\tkzFindSlope(A,B){SAB} \tkzFindSlope(A,C){SAC}
\tkzFindSlope(A,D){SAD}
\pgfkeys{/pgf/number format/.cd,fixed,precision=2}
\tkzText[fill=Gold!50,draw=brown](1,4)\{The slope of (AB) is : $\pgfmathprintnumber{\SAB}$\}
\tkzText[fill=Gold!50,draw=brown](1,3.5)\{The slope of (AC) is : $\pgfmathprintnumber{\SAC}$\}
\tkzText[fill=Gold!50,draw=brown](1,3)\{The slope of (AD) is : $\pgfmathprintnumber{\SAD}$\}
\end{tikzpicture}

\subsection*{22.6 Angle formed by a straight line with the horizontal axis \texttt{\tkzFindSlopeAngle}}

Much more interesting than the last one. The result is between -180 degrees and +180 degrees.

\begin{tikzpicture}
\tkzFindSlopeAngle(A,B)
\end{tikzpicture}

\texttt{\tkzFindSlopeAngle(A,B)}

Determines the slope of the straight line (AB). The result is stored in a macro \texttt{\tkzAngleResult}.

\begin{tabular}{lll}
\texttt{(pt1,pt2)} & \texttt{\tkzFindSlopeAngle(A,B)} & explication \\
\end{tabular}

\texttt{\tkzGetAngle} can retrieve the result. If retrieval is not necessary, you can use \texttt{\tkzAngleResult}.
22.6.1 Folding

22.6.2 Example of the use of \tkzFindSlopeAngle

Here is another version of the construction of a mediator

\begin{tikzpicture}
\tkzInit
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,2){B}
\tkzDefLine[mediator](A,B)
\tkzGetPoints{I}{J}
\tkzCalcLength[cm](A,B)
\tkzGetLength{dAB}
\tkzFindSlopeAngle(A,B)
\tkzGetAngle{tkzangle}
\begin{scope}[rotate=\tkzangle]
\tikzset{arc/.style={color=gray,delta=10}}
\tkzDrawArc[orange,R,arc](B,3/4*dAB)(120,240)
\tkzDrawArc[orange,R,arc](A,3/4*dAB)(-45,60)
\tkzDrawLine(I,J)
\end{scope}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,I,J)
\tkzLabelPoints{A,B,I,J}
\end{tikzpicture}
23 Sectors

23.1 \tkzDrawSector

Attention the arguments vary according to the options.

\begin{tabular}{|c|c|p{5cm}|}
\hline
options & default & definition \\
\hline
towards & towards & \(O\) is the center and the arc from \(A\) to \((OB)\) \\
rotate & towards & the arc starts from \(A\) and the angle determines its length \\
R & towards & We give the radius and two angles \\
R with nodes & towards & We give the radius and two points \\
\hline
\end{tabular}

You have to add, of course, all the styles of Ti\LaTeX\ for tracings...

\begin{tabular}{|c|c|p{5cm}|}
\hline
options & arguments & example \\
\hline
towards & ((pt,pt))(pt)) & \tkzDrawSector(O,A)(B) \\
rotate & ((pt,pt))(an) & \tkzDrawSector[rotate, color=red](O,A)(90) \\
R & ((pt,r))(an,an) & \tkzDrawSector[R, color=blue](0, 2 cm)(30, 90) \\
R with nodes & ((pt, r))(pt, pt)) & \tkzDrawSector[R with nodes](O, 2 cm)(A, B) \\
\hline
\end{tabular}

Here are a few examples:

23.1.1 \tkzDrawSector and towards

There’s no need to put \texttt{towards}. You can use \texttt{fill} as an option.

\begin{tikzpicture}[scale=1]
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(-30:3){A}
  \tkzDefPointBy[rotation = center O angle -60](A)
  \tkzDrawSector[fill=red!50](O,A)(tkzPointResult)
  \begin{scope}[shift={(-60:1cm)}]
    \tkzDefPoint(0,0){O}
    \tkzDefPoint(-30:3){A}
    \tkzDefPointBy[rotation = center O angle -60](A)
    \tkzDrawSector[fill=blue!50](0,tkzPointResult)(A)
  \end{scope}
\end{tikzpicture}
23.1.2 \texttt{tkzDrawSector} and \texttt{rotate}

\begin{tikzpicture}[scale=2]
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(2,2){A}
  \tkzDrawSector[rotate,draw=red!50!black, fill=red!20](O,A)(30)
  \tkzDrawSector[rotate,draw=blue!50!black, fill=blue!20](O,A)(-30)
\end{tikzpicture}

23.1.3 \texttt{tkzDrawSector} and \texttt{R}

\begin{tikzpicture}[scale=1.25]
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(2,-1){A}
  \tkzDrawSector[R,draw=white, fill=red!50](O,2cm)(30,90)
  \tkzDrawSector[R,draw=white, fill=red!60](O,2cm)(90,180)
  \tkzDrawSector[R,draw=white, fill=red!70](O,2cm)(180,270)
  \tkzDrawSector[R,draw=white, fill=red!90](O,2cm)(270,360)
\end{tikzpicture}

23.1.4 \texttt{tkzDrawSector} and \texttt{R}

\begin{tikzpicture}[scale=1.25]
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(4,-2){A}
  \tkzDefPoint(4,1){B}
  \tkzDefPoint(3,3){C}
  \tkzDrawSector[R with nodes, fill=blue!20](O,1 cm)(B,C)
  \tkzDrawSector[R with nodes, fill=red!20](O,1.25 cm)(A,B)
  \tkzDrawSegments(O,A O,B O,C)
  \tkzDrawPoints(O,A,B,C)
  \tkzLabelPoints(A,B,C)
  \tkzLabelPoints[above](O)
\end{tikzpicture}
23 Sectors

23.1.5 `\tkzDrawSector` and `R with nodes` 

\begin{tikzpicture} [scale=.5]
\tkzDefPoint(-1,-2){A}
\tkzDefPoint(1,3){B}
\tkzDefRegPolygon[side,sides=6](A,B)
\tkzGetPoint{O}
\tkzDrawPolygon[fill=black!10, draw=blue](P1,P...,P6)
\tkzLabelRegPolygon[sep=1.05](O){A,...,F}
\tkzDrawCircle[dashed](O,A)
\tkzLabelAngle[pos=1.5](A,S,B){$\alpha$}
\end{tikzpicture}

23.2 `\tkzFillSector`

Attention the arguments vary according to the options.

```
\tkzFillSector<(local options)>((O,\ldots))(\ldots)
```

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards</td>
<td>towards</td>
<td>$O$ is the center and the arc from $A$ to $(OB)$</td>
</tr>
<tr>
<td>rotate</td>
<td>towards</td>
<td>the arc starts from $A$ and the angle determines its length</td>
</tr>
<tr>
<td>$R$</td>
<td>towards</td>
<td>We give the radius and two angles</td>
</tr>
<tr>
<td>$R$ with nodes</td>
<td>towards</td>
<td>We give the radius and two points</td>
</tr>
</tbody>
</table>

Of course, you have to add all the styles of TikZ for the tracings...

```
<table>
<thead>
<tr>
<th>options</th>
<th>arguments</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards</td>
<td>$(pt,pt),(pt)$</td>
<td><code>\tkzFillSector(O,A)(B)</code></td>
</tr>
<tr>
<td>rotate</td>
<td>$(pt,pt),(an)$</td>
<td><code>\tkzFillSector[rotate,color=red](O,A)(90)</code></td>
</tr>
<tr>
<td>R</td>
<td>$(pt,r),(an,an)$</td>
<td><code>\tkzFillSector[R,color=blue](O,2 cm)(30,90)</code></td>
</tr>
<tr>
<td>R with nodes</td>
<td>$(pt,r),(pt,pt)$</td>
<td><code>\tkzFillSector[R with nodes](O,2 cm)(A,B)</code></td>
</tr>
</tbody>
</table>
```

23.2.1 `\tkzFillSector` and `towards`

It is useless to put `towards` and you will notice that the contours are not drawn, only the surface is colored.
\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A}
\tkzClipSector(O,A)(30)
\tkzClipSector(O,A)(-30)
\end{tikzpicture}

\begin{tikzpicture}
\begin{scope}
\tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A}
\tkzClipSector(O,A)(30)
\tkzClipSector(O,A)(-30)
\end{scope}
\end{tikzpicture}

\begin{tabular}{|c|c|l|}
\hline
\textbf{options} & \textbf{default} & \textbf{definition} \\
\hline
\textbf{towards} & \textbf{towards} & \(O\) is the centre and the sector starts from \(A\) to \((OB)\) \\
\textbf{rotate} & \textbf{towards} & The sector starts from \(A\) and the angle determines its amplitude. \\
\textbf{R} & \textbf{towards} & We give the radius and two angles \\
\hline
\end{tabular}

Attention the arguments vary according to the options.

\(\texttt{\textbackslash{}tkzClipSector[\{local\_options\}]\{\langle 0,..\rangle\}\langle ..\rangle}\)

You have to add, of course, all the styles of \textit{TikZ} for tracings...

\begin{tabular}{|c|c|l|}
\hline
\textbf{options} & \textbf{arguments} & \textbf{example} \\
\hline
towards & ((pt,pt)((pt)) & \texttt{\textbackslash{}tkzClipSector}(0,A)(B) \\
rotate & ((pt,pt)((angle)) & \texttt{\textbackslash{}tkzClipSector}[rotate](0,A)(90) \\
R & ((pt,r)((angle 1,angle 2)) & \texttt{\textbackslash{}tkzClipSector}[R](0,2 cm)(30,90) \\
\hline
\end{tabular}
23.3.1 \texttt{\tkzClipSector}

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,-1){A}
\tkzDefPoint(1,1){B}
\tkzDrawSector[color=blue,dashed](O,A)(B)
\tkzDrawSector[color=blue](O,B)(A)
\tkzClipBB
\begin{scope}
\tkzClipSector(O,B)(A)
\draw[fill=gray!20] (-1,0) rectangle (3,3);
\end{scope}
\tkzDrawPoints(A,B,O)
\end{tikzpicture}
24 The arcs

\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,-1){A}
\tkzDefPointBy[rotation= center O angle 90](A)
\tkzGetPoint{B}
\tkzDrawArc[color=blue,<->](O,A)(B)
\tkzDrawArc(O,B)(A)
\tkzDrawLines[add = 0 and .5](O,A O,B)
\tkzDrawPoints(O,A,B)
\tkzLabelPoints[below](O,A,B)
\end{tikzpicture}

24.1 Option towards

It's useless to put towards. In this first example the arc starts from A and goes to B. The arc going from B to A is different. The salient is obtained by going in the direct direction of the trigonometric circle.

24.2 Option towards

In this one, the arc starts from A but stops on the right (OB).
24.3 Option rotate

\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,-2){A}
\tkzDefPoint(60:2){B}
\tkzDrawLines[add = 0 and .5](O,A O,B)
\tkzDrawArc[rotate, color=red](O,A)(180)
\tkzDrawPoints(O,A,B)
\tkzLabelPoints[below](O,A,B)
\end{tikzpicture}

24.4 Option R

\begin{tikzpicture}
\tkzDefPoints{0/0/O}
\tikzset{compass style/.append style={->[}}
\tkzDrawArc[R, color=orange, double](O,3cm)(270,360)
\tkzDrawArc[R, color=blue, double](O,2cm)(0,270)
\tkzDrawPoint(O)
\tkzLabelPoint[below](O){$O$}
\end{tikzpicture}
24.5 Option R with nodes

\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,-1){A}
\tkzDefPoint(1,1){B}
\tkzCalcLength(B,A)\tkzGetLength{radius}
\tkzDrawArc[R with nodes](B,\radius pt)(A,O)
\end{tikzpicture}

24.6 Option delta

This option allows a bit like \texttt{tkzCompass} to place an arc and overflow on either side. delta is a measure in degrees.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefPointBy[rotation= center A angle 60](B)
\tkzGetPoint{C}
\tkzSetUpLine[color=gray]
\tkzDefPointBy[symmetry= center C](A)
\tkzGetPoint{D}
\tkzDrawSegments(A,B A,D)
\tkzDrawLine(B,D)
\tkzSetUpCompass[color=orange]
\tkzDrawArc[orange,delta=10](A,B)(C)
\tkzDrawArc[orange,delta=10](B,C)(A)
\tkzDrawArc[orange,delta=10](C,D)(D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\tkzMarkRightAngle(D,B,A)
\end{tikzpicture}
24.7 Option angles: example 1

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(2.5,0){O}
\tkzDefPointBy[rotation=center O angle 60](B)
\tkzGetPoint{D}
\tkzDefPointBy[symmetry=center D](O)
\tkzGetPoint{E}
\tkzSetUpLine[color=Maroon]
\tkzDrawArc[angles](O,B)(0,180)
\tkzDrawArc[angles, color=gray, style=dashed](B,O)(100,180)
\tkzCompass[delta=20](D,E)
\tkzDrawLines(A,B O,E B,E)
\tkzDrawPoints(A,B,O,D,E)
\tkzLabelPoints(A,B,O,D,E)
\tkzMarkRightAngle(O,B,E)
\end{tikzpicture}

24.8 Option angles: example 2

\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(5,0){I}
\tkzDefPoint(0,5){J}
\tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C}
\tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A}
\tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K}
\tkzDrawArc[angles](O,I)(0,90)
\tkzDrawArc[angles,color=gray,style=dashed](I,O)(90,180)
\tkzDrawArc[angles,color=gray,style=dashed](J,O)(-90,0)
\tkzDrawPoints(A,B,K)
\foreach \point in {I,A,B,J,K}\tkzDrawSegment(O,\point)
\end{tikzpicture}
25 Miscellaneous tools

25.1 Duplicate a segment

This involves constructing a segment on a given half-line of the same length as a given segment.

\begin{verbatim}
\tkzDuplicateSegment((pt1,pt2),(pt3,pt4)){pt5}
\end{verbatim}

This involves creating a segment on a given half-line of the same length as a given segment. It is in fact the definition of a point. \texttt{\tkzDuplicateSegment} is the new name of \texttt{\tkzDuplicateLen}.

The macro \texttt{\tkzDuplicateLength} is identical to this one.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,-3){B}
\tkzDefPoint(2,5){C}
\tkzDrawSegments[red](A,B A,C)
\tkzDuplicateSegment(A,B)(A,C)
\tkzGetPoint{D}
\tkzDrawSegment[green](A,D)
\tkzDrawPoints[fill=red](A,B,C,D)
\tkzLabelPoints[above right=3pt](A,B,C,D)
\end{tikzpicture}
25.1.1 Proportion of gold with \texttt{\tkzDuplicateSegment}

\begin{tikzpicture}[rotate=-90,scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(10,0){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{I}
\tkzDefPointWith[orthogonal,K=-.75](B,A)
\tkzGetPoint{C}
\tkzInterLC(B,C)(B,I) \tkzGetSecondPoint{D}
\tkzDuplicateSegment(B,D)(D,A) \tkzGetPoint{E}
\tkzInterLC(A,B)(A,E) \tkzGetPoints{M}{N}
\tkzDrawArc[orange,delta=10](D,E)(B)
\tkzDrawArc[orange,delta=10](A,M)(E)
\tkzDrawLines(A,B B,C A,D)
\tkzDrawPoints(A,B,D,C,M,I,N)
\tkzLabelPoints(A,B,D,C,M,I,N)
\end{tikzpicture}

25.2 Segment length \texttt{\tkzCalcLength}

There's an option in Ti\texttt{kZ} named \texttt{veclen}. This option is used to calculate AB if A and B are two points. The only problem for me is that the version of Ti\texttt{kZ} is not accurate enough in some cases. My version uses the \texttt{xfp} package and is slower, but more accurate.

\begin{verbatim}
\tkzCalcLength[(local options)]((pt1,pt2)){(name of macro)}
\end{verbatim}

The result is stored in a macro.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2){name of macro}</td>
<td>\tkzCalcLength(A,B){dAB} \ dAB</td>
<td>gives $AB$ in pt</td>
</tr>
</tbody>
</table>

Only one option

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>false</td>
<td>\tkzCalcLength<a href="A,B">cm</a>{dAB} \ dAB</td>
</tr>
</tbody>
</table>
25.2.1 Compass square construction

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDrawLine[add = .6 and .2](A,B)
\tkzCalcLength[cm](A,B) \tkzGetLength{dAB}
\tkzDefLine[perpendicular=through A](A,B)
\tkzDrawLine(A,tkzPointResult) \tkzGetPoint{D}
\tkzShowLine[orthogonal=through A,gap=2](A,B)
\tkzMarkRightAngle(B,A,D)
\tkzVecKOrth[-1](B,A) \tkzGetPoint{C}
\tkzCompasss(A,D D,C)
\tkzDrawArc[R](B,dAB)(80,110)
\tkzDrawPoints(A,B,C,D)
\tkzDrawSegments[color=gray,style=dashed](B,C C,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}

25.3 Transformation from pt to cm

Not sure if this is necessary and it is only a division by 28.45274 and a multiplication by the same number. The macros are:

\begin{tabular}{|l|c|l|}
\hline
\textbf{\texttt{tkzpttocm}} & \textbf{\texttt{(nombre)}} & \textbf{\texttt{(name of macro)}} \\
\hline
arguments & example & explication \\
\hline
(number)name of macro & \texttt{tkzpttocm(120){len}} & \texttt{len} gives a number of cm \\
\hline
\end{tabular}

You’ll have to use \texttt{len} along with \texttt{cm}. The result is stored in a macro.

25.4 Transformation from cm to pt

\begin{tabular}{|l|c|l|}
\hline
\textbf{\texttt{tkzcmtopt}} & \textbf{\texttt{(nombre)}} & \textbf{\texttt{(name of macro)}} \\
\hline
arguments & example & explication \\
\hline
(nombre)name of macro & \texttt{tkzcmtopt(5){len}} & \texttt{len} length in pt \\
\hline
\end{tabular}

The result is stored in a macro. The result can be used with \texttt{len pt}.
25.4.1 Example

The macro \texttt{tkzDefCircle[radius]} \texttt{(A,B)} defines the radius that we retrieve with \texttt{tkzGetLength}, but this result is in \texttt{pt}.

\begin{tikzpicture}[scale=.5]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(3,-4){B}
  \tkzDefCircle[through](A,B)
  \tkzGetLength{rABpt}
  \tkzpttocm(rABpt){rABcm}
  \tkzDrawCircle(A,B)
  \tkzDrawPoints(A,B)
  \tkzLabelPoints(A,B)
  \tkzDrawSegment[dashed](A,B)
  \tkzLabelSegment(A,B){$\pgfmathprintnumber{rABcm}$}
\end{tikzpicture}

25.5 Get point coordinates

\begin{tabular}{|c|c|c|}
\hline
\texttt{\tkzGetPointCoord(⟨point⟩){⟨name of macro⟩}} & arguments & example & explication \\
\hline
(point){name of macro} & \tkzGetPointCoord(A){A} & Ax and Ay give coordinates for A & \\
\hline
\end{tabular}

Stores in two macros the coordinates of a point. If the name of the macro is \texttt{p}, then \texttt{px} and \texttt{py} give the coordinates of the chosen point with the \texttt{cm} as unit.

25.5.1 Coordinate transfer with \texttt{tkzGetPointCoord}

\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=3]
  \tkzGrid[sub,orange]
  \tkzAxeXY
  \tkzDefPoint(1,0){A}
  \tkzDefPoint(4,2){B}
  \tkzGetPointCoord(A){a}
  \tkzGetPointCoord(B){b}
  \tkzDefPoint(ax,ay){C}
  \tkzDefPoint(bx,by){D}
  \tkzDrawPoints[color=red](C,D)
\end{tikzpicture}
25.5.2 Sum of vectors with \texttt{tkzGetPointCoord}

\begin{tikzpicture}[>=latex]
\tkzDefPoint(1,4){a}
\tkzDefPoint(3,2){b}
\tkzDefPoint(1,1){c}
\tkzDrawSegment[->,red](a,b)
\tkzGetPointCoord(c){c}
\draw[color=blue,->](a) -- ([shift=(b)]\cx,\cy) ;
\draw[color=purple,->](b) -- ([shift=(b)]\cx,\cy) ;
\tkzDrawSegment[->,blue](a,c)
\tkzDrawSegment[->,purple](b,c)
\end{tikzpicture}
26 Using the compass

26.1 Main macro \tkzCompass

\begin{tikzpicture}
\tkzDefPoint(1,1){A}
\tkzDefPoint(6,1){B}
\tkzInterCC[R](A,4cm)(B,3cm)
\tkzGetPoints{C}{D}
\tkzDrawPoint(C)
\tkzCompass[color=red,length=1.5](A,C)
\tkzCompass[color=red](B,C)
\tkzDrawSegments(A,B A,C B,C)
\end{tikzpicture}

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzInterCC[R](A,4cm)(B,3cm)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompass[color=red,delta=20](A,C)
\tkzCompass[color=red,delta=20](B,C)
\tkzDrawPolygon(A,B,C)
\tkzMarkAngle(A,C,B)
\end{tikzpicture}

26.1.1 Option length

\begin{tikzpicture}
\tkzDefPoint(1,1){A}
\tkzDefPoint(6,1){B}
\tkzInterCC[R](A,4cm)(B,3cm)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompass[color=red,length=1.5](A,C)
\tkzCompass[color=red](B,C)
\tkzDrawSegments(A,B A,C B,C)
\end{tikzpicture}

26.1.2 Option delta

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzInterCC[R](A,4cm)(B,3cm)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompass[color=red,delta=20](A,C)
\tkzCompass[color=red,delta=20](B,C)
\tkzDrawPolygon(A,B,C)
\tkzMarkAngle(A,C,B)
\end{tikzpicture}

26.2 Multiple constructions \tkzCompasss

\begin{tikzpicture}
\tkzDefPoint(1,1){A}
\tkzDefPoint(6,1){B}
\tkzInterCC[R](A,4cm)(B,3cm)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompasss[length=1.5](A,B)
\end{tikzpicture}

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzInterCC[R](A,4cm)(B,3cm)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompasss[delta=20](A,B)
\end{tikzpicture}

Attention the arguments are lists of two points. This saves a few lines of code.

\begin{tabular}{lll}
\hline
options & default & definition \\
\hline
delta & 0 (deg) & Modifies the angle of the arc by increasing it symmetrically (in degrees) \\
length & 1 (cm) & Changes the length \\
\hline
\end{tabular}
26 Using the compass

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B}
\tkzDefPoint(3,4){C} \tkzDrawPoints(A,B)
\tkzDrawPoint[color=red,shape=cross out](C)
\tkzCompass[color=orange](A,B A,C B,C C,B)
\tkzShowLine[mediator,color=red,
dashed,length = 2](A,B)
\tkzShowLine[parallel = through C,
color=blue,length=2](A,B)
\tkzDefLine[mediator](A,B) \tkzGetPoints{i}{j}
\tkzDefLine[parallel=through C](A,B) \tkzGetPoint{D}
\tkzDrawLines[add=.6 and .6](C,D A,C B,D)
\tkzDrawLines(i,j) \tkzDrawPoints(A,B,C,i,j,D)
\tkzLabelPoints(A,B,C,i,j,D)
\end{tikzpicture}

26.3 Configuration macro \tkzSetUpCompass

\begin{verbatim}
\tkzSetUpCompass[(local options)]
\end{verbatim}

<table>
<thead>
<tr>
<th>option</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>line width</td>
<td>0.4pt</td>
<td>line thickness</td>
</tr>
<tr>
<td>color</td>
<td>black!50</td>
<td>line colour</td>
</tr>
<tr>
<td>style</td>
<td>solid</td>
<td>solid line style, dashed,dotted,...</td>
</tr>
</tbody>
</table>

26.3.1 Use of \tkzSetUpCompass

\begin{verbatim}
\begin{tikzpicture}[scale=.75,
  showbi/.style={bisector,size=2,gap=3}]
\tkzSetUpCompass[color=blue,line width=.3 pt]
\tkzDefPoints{0/1/A, 8/3/B, 3/6/C}
\tkzDrawPolygon(A,B,C)
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzShowLine[showbi](B,a)
\tkzShowLine[showbi](C,b)
\tkzInterLL(A,a)(B,b) \tkzGetPoint{I}
\tkzDefPointBy[projection= onto A--B](I)
\tkzDefPointBy[projection= onto A--B](I)
\tkzGetPoint{H}
\tkzDrawCircle[radius,color=gray](I,H)
\tkzDrawSegments[color=gray!50](I,H)
\tkzDrawLines[add=0 and -.2,color=blue!50 ](A,a B,b)
\tkzShowBB
\end{tikzpicture}
\end{verbatim}
27 The Show

27.1 Show the constructions of some lines \tkzShowLine

\begin{tikzpicture}
\tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C}
\tkzDrawLine(A,B)
\tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c}
\tkzShowLine[parallel=through C](A,B)
\tkzDrawLine(C,c) \tkzDrawPoints(A,B,C,c)
\end{tikzpicture}

27.1.2 Example of \tkzShowLine and perpendicular

\begin{tikzpicture}
\tkzDefPoints{0/0/A, 3/2/B, 2/2/C}
\tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c}
\tkzShowLine[perpendicular=through C](A,B)
\tkzDrawPoints(A,B,C,c)
\end{tikzpicture}
27.1.3 Example of \tkzShowLine and bisector

\begin{tikzpicture}[scale=1.25]
\tkzDefPoints{0/0/A, 4/2/B, 1/4/C}
\tkzDrawPolygon(A,B,C)
\tkzSetUpCompass[color=brown,line width=.1 pt]
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzInterLL(A,a)(B,b) \tkzGetPoint{I}
\tkzDefPointBy[projection = onto A--B](I)
\tkzGetPoint{H}
\tkzShowLine[bisector,size=2,gap=3,blue](B,A,C)
\tkzShowLine[bisector,size=2,gap=3,blue](C,B,A)
\tkzDrawCircle[radius,color=blue,line width=.2pt](I,H)
\tkzDrawSegments[color=red!50](I,tkzPointResult)
\tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b)
\end{tikzpicture}

27.1.4 Example of \tkzShowLine and mediator

\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDrawPoints(A,B)
\tkzShowLine[mediator,color=orange,length=1](A,B)
\tkzGetPoints{i}{j}
\tkzDrawLines[i,j]
\tkzDrawLines(A,B)
\tkzLabelPoints[below =3pt](A,B)
\end{tikzpicture}

27.2 Constructions of certain transformations \tkzShowTransformation

These constructions concern orthogonal symmetries, central symmetries, orthogonal projections and translations. Several options allow the adjustment of the constructions. The idea of this macro comes from Yves Combe.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflection= over pt1--pt2</td>
<td>reflection</td>
<td>constructions of orthogonal symmetry</td>
</tr>
<tr>
<td>symmetry=center pt</td>
<td>reflection</td>
<td>constructions of central symmetry</td>
</tr>
<tr>
<td>projection=onto pt1--pt2</td>
<td>reflection</td>
<td>constructions of a projection</td>
</tr>
<tr>
<td>translation=from pt1 to pt2</td>
<td>reflection</td>
<td>constructions of a translation</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>circle within a triangle</td>
</tr>
<tr>
<td>length</td>
<td>1</td>
<td>arc length</td>
</tr>
<tr>
<td>ratio</td>
<td>.5</td>
<td>arc length ratio</td>
</tr>
<tr>
<td>gap</td>
<td>2</td>
<td>placing the point of construction</td>
</tr>
<tr>
<td>size</td>
<td>1</td>
<td>radius of an arc (see bisector)</td>
</tr>
</tbody>
</table>

\tkz-euclide AlterMundus
27.2.1 Example of the use of \texttt{\tkzShowTransformation}

```latex
\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A}
\tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B)
\tkzLabelPoints(A,O,B)
\tkzDrawLine[add= 2 and 2](O,A)
\tkzDefPointBy[translation=from O to A](B)
\tkzGetPoint{C}
\tkzDrawPoint[color=orange](C) \tkzLabelPoints(C)
\tkzShowTransformation[translation=from O to A,%
length=2](B)
\tkzDrawSegments[->,color=orange](O,A B,C)
\tkzDefPointBy[reflection=over O--A](B)
\tkzGetPoint{E}
\tkzDrawSegment[blue](B,E)
\tkzDrawPoint[blue](E)\tkzLabelPoints(E)
\tkzShowTransformation[reflection=over O--A,size=2](B)
\tkzDefPointBy[symmetry=center O](B)
\tkzGetPoint{F}
\tkzDrawSegment[green](B,F)
\tkzDrawPoint[green](F)\tkzLabelPoints(F)
\tkzShowTransformation[symmetry=center O,%
length=2](B)
\tkzDefPointBy[projection=onto O--A](C)
\tkzGetPoint{H}
\tkzDrawSemiCircle[diameter](A,B)
\tkzDrawSegments(I,A I,B A,B B,M A,N)
\tkzMarkRightAngles(A,M,B A,N,B)
\tkzShowTransformation[projection=onto O--A,%
color=red,size=3,gap=-2](C)
\end{tikzpicture}
```

27.2.2 Another example of the use of \texttt{\tkzShowTransformation}

You’ll find this figure again, but without the construction features.

```latex
\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,8/0/B,3.5/10/I}
\tkzDefMidPoint(A,B) \tkzGetPoint{O}
\tkzDefPointBy[projection=onto A--B](I)
\tkzGetPoint{J}
\tkzInterLC(I,A)(O,A) \tkzGetPoints{M'}{M}
\tkzInterLC(I,B)(O,A) \tkzGetPoints{N}{N'}
\tkzDrawSemiCircle[diameter](A,B)
\tkzDrawSegments(I,A I,B A,B B,M A,N)
\tkzMarkRightAngles(A,M,B A,N,B)
\tkzDrawSegment[style=dashed,color=blue](I,J)
\tkzShowTransformation[projection=onto A--B,%
color=red,size=3,gap=-3](I)
\tkzDrawPoints[shape=regular*color=red](M,N)
\tkzDrawPoints[shape=regular*color=blue](O,A,B,I)
\tkzLabelPoints(O)
\tkzLabelPoints[above right](N,I)
\tkzLabelPoints[below left](M,A)
\end{tikzpicture}
```
28 Different points

28.1 \tkzDefEquiPoints

This macro makes it possible to obtain two points on a straight line equidistant from a given point.

\begin{tikzpicture}
\tkzSetUpCompass[color=purple,line width=1pt]
\tkzDefPoint(0,1){A}
\tkzDefPoint(5,2){B}
\tkzDefPoint(3,4){C}
\tkzDefEquiPoints[from=C,dist=1,show,\tkzcompass/delta=20](A,B)
\tkzGetPoints{E}{H}
\tkzDrawLines[color=blue](C,E C,H A,B)
\tkzDrawPoints[color=blue](A,B,C)
\tkzLabelPoints(E,H)
\tkzLabelPoints[color=blue](A,B,C)
\end{tikzpicture}
Based on an idea by Yves Combe, the following macro allows you to draw a protractor. The operating principle is even simpler. Just name a half-line (a ray). The protractor will be placed on the origin $O$, the direction of the half-line is given by $A$. The angle is measured in the direct direction of the trigonometric circle.

\begin{verbatim}
\tkzProtractor[local options]((O,A))
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>lw</td>
<td>0.4 pt</td>
<td>line thickness</td>
</tr>
<tr>
<td>scale</td>
<td>1</td>
<td>ratio: adjusts the size of the protractor</td>
</tr>
<tr>
<td>return</td>
<td>false</td>
<td>trigonometric circle indirect</td>
</tr>
</tbody>
</table>

### 29.1 The circular protractor

Measuring in the forward direction

\begin{verbatim}
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(2,0){A}\tkzDefPoint(0,0){O}
\tkzDefShiftPoint[A](31:5){B}
\tkzDefShiftPoint[A](158:5){C}
\tkzDrawPoints(A,B,C)
\tkzDrawSegments[color = red, line width = 1pt](A,B A,C)
\tkzProtractor[scale = 1](A,B)
\end{tikzpicture}
\end{verbatim}

### 29.2 The circular protractor, transparent and returned

\begin{verbatim}
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(2,3){A}
\tkzDefShiftPoint[A](31:5){B}
\tkzDefShiftPoint[A](158:5){C}
\tkzDrawPoints(A,B,C)
\tkzDrawSegments[color=red, line width=1pt](A,B A,C)
\tkzProtractor[return](A,C)
\end{tikzpicture}
\end{verbatim}
Some examples

30.1 Some interesting examples

30.1.1 Similar isosceles triangles

The following is from the excellent site Descartes et les Mathématiques. I did not modify the text and I am only the author of the programming of the figures.

http://debart.pagesperso-orange.fr/seconde/triangle.html

Bibliography:

– Géométrie au Bac - Tangente, special issue no. 8 - Exercise 11, page 11
– Elisabeth Busser and Gilles Cohen: 200 nouveaux problèmes du "Monde" - POLE 2007 (200 new problems of "Le Monde")
– Affaire de logique n° 364 - Le Monde February 17, 2004

Two statements were proposed, one by the magazine Tangente and the other by Le Monde.

Editor of the magazine "Tangente": Two similar isosceles triangles $AXB$ and $BYC$ are constructed with main vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $AXB = BYC$. We then construct a third isosceles triangle $XYZ$ similar to the first two, with main vertex $Z$ and "indirect". We ask to demonstrate that point $Z$ belongs to the straight line $(AC)$.

Editor of "Le Monde": We construct two similar isosceles triangles $AXB$ and $BYC$ with principal vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $AXB = BYC$. The point $Z$ of the line segment $[AC]$ is equidistant from the two vertices $X$ and $Y$.

At what angle does he see these two vertices?

The constructions and their associated codes are on the next two pages, but you can search before looking. The programming respects (it seems to me ...) my reasoning in both cases.
30 Some examples

30.1.2 Revised version of "Tangente"

\begin{tikzpicture}[scale=.8,rotate=60]
\tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y}
\tkzDefShiftPoint[X]{-110:6}{A} \tkzDefShiftPoint[X]{-70:6}{B}
\tkzDefShiftPoint[Y]{-110:4.2}{A'} \tkzDefShiftPoint[Y]{-70:4.2}{B'}
\tkzDefPointBy[translation= from A' to B ](Y) \tkzGetPoint{Y}
\tkzDefPointBy[translation= from A' to B ](B') \tkzGetPoint{C}
\tkzInterLL(A,B)(X,Y) \tkzGetPoint{O}
\tkzDefMidPoint(X,Y) \tkzGetPoint{I}
\tkzDefPointWith[orthogonal](I,Y)
\tkzInterLL(I,tkzPointResult)(A,B) \tkzGetPoint{Z}
\tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
\tkzDrawCircle(O,X)
\tkzDrawLines[add = 0 and 1.5](A,C) \tkzDrawLines[add = 0 and 3](X,Y)
\tkzDrawSegments(A,X B,X B,Y C,Y) \tkzDrawSegments[color=red](X,Z Y,Z)
\tkzDrawPoints(A,B,C,X,Y,O,Z)
\tkzDrawPoints[above right](X,Y,O)
\end{tikzpicture}
30 Some examples

30.1.3 "Le Monde" version

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPoint(9,0){C}
\tkzDefPoint(1.5,2){X}
\tkzDefPoint(6,4){Y}
\tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
\tkzDefMidPoint(X,Y) \tkzGetPoint{I}
\tkzDefPointWith[orthogonal](I,Y) \tkzGetPoint{i}
\tkzDrawLines[add = 2 and 1,color=orange](I,i)
\tkzInterLL(I,i)(A,B) \tkzGetPoint{Z}
\tkzInterLC(I,i)(O,B) \tkzGetSecondPoint{M}
\tkzDefPointWith[orthogonal](B,Z) \tkzGetPoint{b}
\tkzDrawCircle(O,B)
\tkzDrawLines[add = 0 and 2,color=orange](B,b)
\tkzDrawSegments(A,X B,X B,Y C,Y A,C X,Y)
\tkzDrawSegments[color=red](X,Z Y,Z)
\tkzDrawPoints(A,B,C,X,Y,Z,M,I)
\tkzLabelPoints(A,B,C,Z)
\tkzLabelPoints[above right](X,Y,M,I)
\end{tikzpicture}

30.1.4 Triangle altitudes

The following is again from the excellent site Descartes et les Mathématiques (Descartes and the Mathematics).

http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html
30 Some examples

The three altitudes of a triangle intersect at the same H-point.

\begin{tikzpicture}[scale=.8]
\tkzDefPoint(0,0){C}
\tkzDefPoint(7,0){B}
\tkzDefPoint(5,6){A}
\tkzDrawPolygon(A,B,C)
\tkzDefMidPoint(C,B)
\tkzGetPoint(I)
\tkzDrawArc(I,B)(C)
\tkzInterLC(A,C)(I,B)
\tkzGetSecondPoint(B')
\tkzInterLC(A,B)(I,B)
\tkzGetFirstPoint(C')
\tkzInterLL(B,B')(C,C')
\tkzGetPoint(H)
\tkzInterLL(A,H)(C,B)
\tkzGetPoint(A')
\tkzDefCircle[circum](A,B',C')
\tkzGetPoint(O)
\tkzDrawCircle[color=red](O,A)
\tkzDrawCircle[color=orange](B,B' C,C' A,A')
\tkzMarkRightAngles(C,B',B B,C',C C,A',A)
\tkzDrawPoints(A,B,C,A',B',C',H)
\tkzLabelPoints(A,B,C,A',B',C',H)
\end{tikzpicture}

30.1.5 Altitudes – other construction

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
\tkzDefPoint(3.5,10){C}
\tkzDefMidPoint(A,B)
\tkzGetPoint{O}
\tkzDefPointBy[projection=onto A--B](C)
\tkzGetPoint{P}
\tkzInterLC(C,A)(O,A)
\tkzGetSecondPoint{M}
\tkzInterLC(C,B)(O,A)
\tkzGetFirstPoint{N}
\tkzInterLL(B,M)(A,N)
\tkzInterLL(B,M)(A,N)
\tkzGetPoint{I}
\tkzDrawCircle[diameter](A,B)
\tkzDrawSegments(C,A C,B A,B B,M A,N)
\tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C)
\tkzDrawSegment[style=dashed,color=orange](C,P)
\tkzLabelPoints(O,A,B,P)
\tkzLabelPoint[left](M){$M$}
\tkzLabelPoint[right](N){$N$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[above right](I){$I$}
\tkzDrawPoints[style=dashed,color=orange](C,P)
\tkzDrawPoints[style=dashed,color=orange](C,P)
\tkzDrawPoints[style=dashed,color=orange](C,P)
\tkzDrawPoints[style=dashed,color=orange](C,P)
\end{tikzpicture}
30.2 Different authors

30.2.1 Square root of the integers

How to get $1, \sqrt{2}, \sqrt{3}$ with a rule and a compass.

\begin{tikzpicture}[scale=1.5]
    \tkzDefPoint(0,0){O}
    \tkzDefPoint(1,0){a0}
    \tkzDrawSegment[blue](O,a0)
    \foreach \i [count=\j] in {0,...,10}{{%
        \tkzDefPointWith[orthogonal normed](a\i,O)
        \tkzGetPoint{a\j}
        \tkzDrawPolySeg[color=blue](a\i,a\j,O)}
\end{tikzpicture}

30.2.2 About right triangle

We have a segment $[AB]$ and we want to determine a point $C$ such that $AC = 8$ cm and $ABC$ is a right triangle in $B$.

\begin{tikzpicture}[scale=.5]
    \tkzDefPoint\[ "$A$ left\](2,1){A}
    \tkzDefPoint(6,4){B}
    \tkzDrawSegment(A,B)
    \tkzDrawPoint[color=red](A)
    \tkzDrawPoint[color=red](B)
    \tkzDefPointWith[orthogonal,K=-1](B,A)
    \tkzDrawLine[add = .5 and .5](B,tkzPointResult)
    \tkzInterLC[R](B,tkzPointResult)(A,8 cm)
    \tkzGetPoints{C}{J}
    \tkzDrawPoint[color=red](C)
    \tkzCompass(A,C)
    \tkzMarkRightAngle(A,B,C)
    \tkzDrawLine[color=gray,style=dashed](A,C)
\end{tikzpicture}

30.2.3 Archimedes

This is an ancient problem proved by the great Greek mathematician Archimedes. The figure below shows a semicircle, with diameter $AB$. A tangent line is drawn and touches the semicircle at $B$. An other tangent line at a point, $C$, on the semicircle is drawn. We project the point $C$ on the line segment $[AB]$ on a point $D$. The two tangent lines intersect at the point $T$.

Prove that the line $(AT)$ bisects $(CD)$
30 Some examples

\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D}
\tkzDefPoint(8,0){B}\tkzDefPoint(4,0){I}
\tkzDefLine[orthogonal=through D](A,D)
\tkzInterLC[\R](D,tkzPointResult)(I,4 cm) \tkzGetFirstPoint{C}
\tkzDefLine[orthogonal=through C](I,C) \tkzGetPoint{c}
\tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint{b}
\tkzInterLL(C,c)(B,b) \tkzGetPoint{T}
\tkzInterLL(A,T)(C,D) \tkzGetPoint{P}
\tkzDrawArc(I,B)(A)
\tkzDrawSegments(A,B A,T C,D I,C) \tkzDrawSegment[color=orange](I,C)
\tkzDrawLine[add = 1 and 0](C,T) \tkzDrawLine[add = 0 and 1](B,T)
\tkzMarkRightAngle(I,C,T)
\tkzDrawPoints(A,B,I,D,C,T)
\tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D)
\end{tikzpicture}

30.2.4 Example: Dimitris Kapeta

You need in this example to use \texttt{mkpos=.2} with \texttt{tkzMarkAngle} because the measure of $\hat{CAM}$ is too small. Another possibility is to use \texttt{tkzFillAngle}.
Some examples

30.2.5 Example 1: John Kitzmiller

Prove that $\triangle LKJ$ is equilateral.
\begin{tikzpicture}[scale=2]
\tkzDefPoint[label=below left:A](0,0){A}
\tkzDefPoint[label=below right:B](6,0){B}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
\tkzDefSegments[mark=|](A,B A,C B,C)
\tkzDefBarycentricPoint(A=1,B=2) \tkzGetPoint{C'}
\tkzDefBarycentricPoint(A=2,C=1) \tkzGetPoint{B'}
\tkzDefBarycentricPoint(C=2,B=1) \tkzGetPoint{A'}
\tkzInterLL(A,A') (C,C') \tkzGetPoint{J}
\tkzInterLL(C,C') (B,B') \tkzGetPoint{K}
\tkzInterLL(B,B') (A,A') \tkzGetPoint{L}
\tkzLabelPoint[above](C){C}
\tkzDrawPolygon(A,B,C) \tkzDrawSegments(A,J B,L C,K)
\tkzMarkAngles[size=1 cm](J,A,C K,C,B L,B,A)
\tkzMarkAngles[thick,size=1 cm](A,C J C,B K B,A, L)
\tkzMarkAngles[opacity=.5](A,C J C,B K B,A, L)
\tkzFillAngles[fill= orange, size=1 cm, opacity=.3](J,A,C K,C,B L,B,A)
\tkzFillAngles[fill= orange, opacity=.3, thick, size=1](A,C J C,B K B,A, L)
\tkzFillAngles[fill= green, size=1, opacity=.5](A,C J C,B K B,A, L)
\tkzFillPolygon[border= yellow, opacity=.2](J,A,C)
\tkzFillPolygon[border= yellow, opacity=.2](K,B,C)
\tkzFillPolygon[border= yellow, opacity=.2](L,A,B)
\tkzDrawSegments[line width=3pt, color= cyan, opacity=0.4](A,J C,K B,L)
\tkzDrawSegments[line width=3pt, color= red, opacity=0.4](A,L B,K C,J)
\tkzMarkSegments[mark=o](J,K L L, J)
\tkzLabelPoint[right](J){J}
\tkzLabelPoint[below](K){K}
\tkzLabelPoint[above left](L){L}
\end{tikzpicture}

30.2.6 Example 2: John Kitzmiller

Prove that \( \frac{AC}{CE} = \frac{BD}{DF} \).

Another interesting example from John, you can see how to use some extra options like \texttt{decoration} and \texttt{postaction} from TikZ with \texttt{tkz-euclide}.
30 Some examples

\begin{tikzpicture}[scale=2,decoration={markings, mark=at position 3cm with {\arrow[scale=2]{>}}}]\tkzDefPoints{0/0/E, 6/0/F, 0/1.8/P, 6/1.8/Q, 0/3/R, 6/3/S}\tkzDrawLines[postaction={decorate}](E,F P,Q R,S)\tkzDefPoints{3.5/3/A, 5/3/B}\tkzDrawSegments(E,A F,B)\tkzInterLL(E,A)(P,Q) \tkzGetPoint{C}\tkzInterLL(B,F)(P,Q) \tkzGetPoint{D}\tkzLabelPoints[above right](A,B)\tkzLabelPoints[below](E,F)\tkzLabelPoints[above left](C)\tkzDrawSegments[style=dashed](A,F)\tkzInterLL(A,F)(P,Q) \tkzGetPoint{G}\tkzLabelPoints[above right](D,G)\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](A,C A,G)\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](C,E G,F)\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](B,D)\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](D,F)\end{tikzpicture}

30.2.7 Example 3: John Kitzmiller

Prove that $\frac{BC}{CD} = \frac{AB}{AD}$ (Angle Bisector).
30.2.8 Example 4: author John Kitzmiller

Prove that $\overline{AG} \cong \overline{EF}$  (Detour).
30.2.9 Example 1: from Indonesia
30 Some examples

\begin{tikzpicture}[scale=3]
\tkzDefPoints{0/0/A,2/0/B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDefPointBy[rotation=center D angle 45](C)\tkzGetPoint{G}
\tkzDefSquare(G,D)\tkzGetPoints{E}{F}
\tkzInterLL(B,C)(E,F)\tkzGetPoint{H}
\tkzFillPolygon[gray!10](D,E,H,C,D)
\tkzDrawPolygon(A,...,D)\tkzDrawPolygon(D,...,G)
\tkzDrawSegment(B,E)
\tkzMarkSegments[mark=|,size=3pt,color=gray](A,B B,C C,D D,A E,F F,G G,D D,E)
\tkzMarkSegments[mark=||,size=3pt,color=gray](B,E E,H)
\tkzLabelPoints[left](A,D)
\tkzLabelPoints[right](B,C,F,H)
\tkzLabelPoints[above](G)\tkzLabelPoints[below](E)
\tkzMarkRightAngles(D,A,B D,G,F)
\end{tikzpicture}

30.2.10 Example 2: from Indonesia
\begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5},
seg/.style={tkzdotted,color=gray},
hidden pt/.style={fill=gray!40},
mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2},
scale=3]
\tkzSetUpPoint[size=2]
\tkzDefPoints{0/0/A,2.5/0/B,1.33/0.75/D,0/2.5/E,2.5/2.5/F}
\tkzDefLine[parallel=through D](A,B) \tkzGetPoint{I1}
\tkzDefLine[parallel=through B](A,D) \tkzGetPoint{I2}
\tkzDefLine[parallel=through E](A,D) \tkzGetPoint{I3}
\tkzDefLine[parallel=through D](A,E) \tkzGetPoint{I4}
\tkzInterLL(E,I3)(D,I4) \tkzGetPoint{K}
\tkzDefLine[parallel=through F](E,H) \tkzGetPoint{I5}
\tkzDefLine[parallel=through H](E,F) \tkzGetPoint{I6}
\tkzInterLL(F,I5)(H,I6) \tkzGetPoint{G}
\tkzDefMidPoint(G,H) \tkzGetPoint{P1}
\tkzDefMidPoint(G,C) \tkzGetPoint{Q1}
\tkzDefMidPoint(B,C) \tkzGetPoint{R1}
\tkzDefMidPoint(A,B) \tkzGetPoint{S1}
\tkzDefMidPoint(A,D) \tkzGetPoint{T1}
\tkzDefMidPoint(E,H) \tkzGetPoint{U1}
\tkzDefMidPoint(D,C) \tkzGetPoint{N1}
\tkzInterLL(B,D)(S,R) \tkzGetPoint{L1}
\tkzInterLL(H,F)(U,P) \tkzGetPoint{K1}
\tkzDefLine[parallel=through K1](D,H) \tkzGetPoint{I71}
\tkzInterLL(K,I71)(B,D) \tkzGetPoint{O1}
\tkzFillPolygon[pol](P,Q,R,S,T,U)
\tkzDrawSegments[seg](K,L,P,Q,R,S,T,U)
\tkzDrawPolygon(A,B,F,E)
\tkzDrawPoints[hidden pt](M,N,O,D)
\tkzMarkRightAngle[mra](L,O,K)
\tkzMarkSegments[mark=|,size=1pt,thick,color=gray](A,S,B,S,B,R,C,R)
\tkzLabelAngle[pos=.3](K,L,O){\$\alpha\$}
\tkzLabelPoints[below](O,A,S,B)
\tkzLabelPoints[above](H,P,G)
\tkzLabelPoints[below left](T,E)
\tkzLabelPoints[right](C,Q)
\tkzLabelPoints[below left](U,D,M)
\tkzLabelPoints[above right](L,N)
\tkzLabelPoints[below right](F,R)
\tkzLabelPoints[below left](K)
\end{tikzpicture}
30 Some examples

30.2.11 Three circles
\begin{tikzpicture}[scale=1.5]
\tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint(C)
\tkzDrawPolygon(A,B,C)
\tkzDefSquare(A,B) \tkzGetPoints{D}{E}
\tkzClipBB
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefMidPoint(B,C) \tkzGetPoint{N}
\tkzDefMidPoint(A,C) \tkzGetPoint{P}
\tkzDrawSemiCircle[gray,dashed](M,B)
\tkzDrawSemiCircle[gray,dashed](A,M)
\tkzDrawSemiCircle[gray,dashed](A,B)
\tkzDrawCircle[gray,dashed](B,A)
\tkzInterLL(A,N)(M,a) \tkzGetPoint{Ia}
\tkzDefPointBy[projection = onto A--B](Ia)
\tkzGetPoint{ha}
\tkzDrawCircle[gray](Ia,ha)
\tkzInterLL(B,P)(M,b) \tkzGetPoint{Ib}
\tkzDefPointBy[projection = onto A--B](Ib)
\tkzGetPoint{hb}
\tkzDrawCircle[gray](Ib,hb)
\tkzInterLL(A,c)(M,C) \tkzGetPoint{Ic}
\tkzDefPointBy[projection = onto A--C](Ic)
\tkzGetPoint{hc}
\tkzDrawCircle[gray](Ic,hc)
\tkzInterLL(A,Ia)(B,Ib) \tkzGetPoint{G}
\tkzDrawCircle[gray,dashed](G,Ia)
\tkzDrawPolySeg(A,E,D,B)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints(G,Ia,Ib,Ic)
\tkzDrawSegments[gray,dashed](C,M A,N B,P M,a M,b A,a a b b B A,D Ia,ha)
\end{tikzpicture}
30.2.12 "The" Circle of APOLLONIUS
Some examples

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{N}
\tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{O}
\tkzDefTriangleCenter[lemoine](A,B,C) \tkzGetPoint{K}
\tkzDefTriangleCenter[spieker](A,B,C) \tkzGetPoint{Sp}
\tkzDefExCircle(A,B,C) \tkzGetPoint{Jb}
\tkzDefExCircle(C,A,B) \tkzGetPoint{Ja}
\tkzDefExCircle(B,C,A) \tkzGetPoint{Jc}
\tkzDefPointBy[projection=onto B--C](Jc) \tkzGetPoint{Xc}
\tkzDefPointBy[projection=onto B--C](Jb) \tkzGetPoint{Xb}
\tkzDefPointBy[projection=onto A--B](Ja) \tkzGetPoint{Xa}
\tkzDefLine[parallel=through Xc](A,C) \tkzGetPoint{X'c}
\tkzDefLine[parallel=through Xb](A,B) \tkzGetPoint{X'b}
\tkzDefLine[parallel=through Za](C,A) \tkzGetPoint{Z'a}
\tkzDefLine[parallel=through Zb](C,B) \tkzGetPoint{Z'b}
\tkzInterLL(Xc,X'c)(A,B) \tkzGetPoint{B'}
\tkzInterLL(Xb,X'b)(A,C) \tkzGetPoint{C'}
\tkzInterLL(Za,Z'a)(C,B) \tkzGetPoint{A''}
\tkzInterLL(Zb,Z'b)(C,A) \tkzGetPoint{B''}
\tkzDefPointBy[reflection= over Jc--Jb](B') \tkzGetPoint{Ca}
\tkzDefPointBy[reflection= over Jc--Jb](C') \tkzGetPoint{Ba}
\tkzDefPointBy[reflection= over Ja--Jb](A'') \tkzGetPoint{Bc}
\tkzDefCircle[circum](Ac,Ca,Ba) \tkzGetPoint{Q}
\tkzDrawCircle[circum](Ac,Ca,Ba) \tkzGetPoint{nAc}
\tkzClipCircle[through](Q,nAc) \tkzGetPoint{Q}
\tkzDrawLines[add=1.5 and 1.5,dashed](A,B,C A,C)
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawPolygon[dashed,color=blue](Ja,Jb,Jc)
\tkzDrawCircles(ex)(A,B,C,B,C,A,C,A,B)
\tkzDrawLine[add=0 and 0,dashed](Ca,Bc,Ba A Ba B'B',C')
\tkzDrawLine[add=1 and 1,dashed](Xb,Xc)
\tkzDrawLine[add=7 and 3,blue](O,K)
\tkzDrawLine[add=8 and 15,red](W,Sp)
\tkzDrawSegments(Ba,Ca Bc,Ac)
\tkzDrawPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp,K,0)
\tkzLabelPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp)
\tkzLabelPoints[above](K,0)
\end{tikzpicture}
31 Customization

31.1 Use of \tkzSetUpLine

It is a macro that allows you to define the style of all the lines.

<table>
<thead>
<tr>
<th>\tkzSetUpLine[⟨local options⟩]</th>
</tr>
</thead>
<tbody>
<tr>
<td>options</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>color</td>
</tr>
<tr>
<td>line width</td>
</tr>
<tr>
<td>style</td>
</tr>
<tr>
<td>add</td>
</tr>
</tbody>
</table>

31.1.1 Example 1: change line width

```latex
\begin{tikzpicture}
\tkzSetUpLine[color=blue,line width=1pt]
\begin{scope}[rotate=-90]
\tkzDefPoint(10,6){C}
\tkzDefPoint(0,6){A}
\tkzDefPoint(10,0){B}
\tkzDefPointBy[projection = onto B--A](C)
\tkzGetPoint{H}
\tkzDrawPolygon(A,B,C)
\tkzMarkRightAngle[size=.4,fill=blue!20](B,C,A)
\tkzMarkRightAngle[size=.4,fill=red!20](B,H,C)
\tkzDrawSegment[color=red](C,H)
\end{scope}
\tkzLabelSegment[below](C,B){a}
\tkzLabelSegment[right](A,C){b}
\tkzLabelSegment[left](A,B){c}
\tkzLabelSegment[color=red](C,H){h}
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[above left](H)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above](A)
\end{tikzpicture}
```
31.1.2 Example 2: change style of line

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(1,0){A} \tkzDefPoint(4,0){B}
\tkzDefPoint(1,1){C} \tkzDefPoint(5,1){D}
\tkzDefPoint(1,2){E} \tkzDefPoint(6,2){F}
\tkzDefPoint(0,4){A'}\tkzDefPoint(3,4){B'}
\tkzCalcLength[cm](C,D) \tkzGetLength{rCD}
\tkzCalcLength[cm](E,F) \tkzGetLength{rEF}
\tkzInterCC[R](A',\rCD cm)(B',\rEF cm)
\tkzGetPoints{I}{J}
\tkzSetUpLine[style=dashed,color=gray]
\tkzDrawLine(A',B')
\tkzDrawCompass(A',B')
\tkzDrawSegments(A,B C,D E,F)
\tkzDrawCircle[R](A',\rCD cm)
\tkzDrawCircle[R](B',\rEF cm)
\tkzSetUpLine[color=red]
\tkzDrawSegments(A',I B',I)
\tkzDrawCircles(A,B,C,D,E,F,A',B',I,J)
\tkzLabelPoints(A,B,C,D,E,F,A',B',I,J)
\end{tikzpicture}

31.1.3 Example 3: extend lines

\begin{tikzpicture}
\tkzSetUpLine[add=.5 and .5]
\tkzDefPoints{0/0/A,4/0/B,1/3/C}
\tkzDrawLines(A,B B,C A,C)
\end{tikzpicture}

31.2 Points style

\begin{tabular}{lll}
\hline
\textbf{options} & \textbf{default} & \textbf{definition} \\
\hline
\texttt{color} & \texttt{black} & \texttt{point color} \\
\texttt{size} & \texttt{3pt} & \texttt{point size} \\
\texttt{fill} & \texttt{black!50} & \texttt{inside point color} \\
\texttt{shape} & \texttt{circle} & \texttt{point shape circle or cross} \\
\hline
\end{tabular}
31.2.1 Use of \tkzSetUpPoint

\begin{tikzpicture}
\tkzSetUpPoint[shape = cross out, color = blue]
\tkzInit[xmax = 100, xstep = 20, ymax = .5]
\tkzDefPoint(20,1){A}
\tkzDefPoint(80,0){B}
\tkz.DrawLine(A,B)
\tkzDrawPoints(A,B)
\end{tikzpicture}

31.2.2 Use of \tkzSetUpPoint inside a group

\begin{tikzpicture}
\tkzInit[ymin = -0.5, ymax = 3, xmin = -0.5, xmax = 7]
\tkzDefPoint(0,0){A}
\tkzDefPoint(0.25,0.25){B}
\tkzDefPoint(4,0){C}
\tkzDefPoint(3,2){D}
\tkzDrawSegments(A,B A,C A,D)
\tkzSetUpPoint[shape = cross out, fill = teal!50, size = 4, color = teal]
\tkzDrawPoints(A,B)
\tkzSetUpPoint[fill = teal!50, size = 4, color = teal]
\tkzDrawPoints(C,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}

31.3 Use of \tkzSetUpCompass

\begin{tabular}{|l|l|l|}
\hline
\textbf{options} & \textbf{default} & \textbf{definition} \\
\hline
\textbf{color} & black & color of construction arcs \\
\textbf{line width} & 0.4pt & thickness of construction arcs \\
\textbf{style} & solid & style of the building arcs \\
\hline
\end{tabular}
31.3.1 Use of \texttt{tkzSetUpCompass} with bisector

```latex
\begin{tikzpicture}[scale=0.75]
\tkzDefPoints{0/1/A, 8/3/B, 3/6/C}
\tkzDrawPolygon(A,B,C)
\tkzSetUpCompass[\textcolor{red},line width=.2 pt]
\tkzDefLine[bisector](A,C,B) \tkzGetPoint{c}
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzShowLine[bisector,size=2,gap=3](A,C,B)
\tkzShowLine[bisector,size=2,gap=3](B,A,C)
\tkzShowLine[bisector,size=1,gap=2](C,B,A)
\tkzDrawLines[add=0 and 0](B,b)
\tkzDrawLines[add=0 and -.4](A,a C,c)
\tkzLabelPoints(A,B) \tkzLabelPoints[above](C)
\end{tikzpicture}
```

31.3.2 Another example of \texttt{tkzSetUpCompass}

```latex
\begin{tikzpicture}[scale=1,rotate=90]
\tkzDefPoints{0/1/A, 8/3/B, 3/6/C}
\tkzDrawPolygon(A,B,C)
\tkzSetUpCompass[\textcolor{brown},
 line width=.3 pt,style=tkzdotted]
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzInterLL(A,a)(B,b) \tkzGetPoint{I}
\tkzDefPointBy[projection= onto A--B](I)
\tkzGetPoint{H}
\tkzMarkRightAngle(I,H,A)
\tkzDrawCircle[radius,color=red](I,H)
\tkzDrawSegments[color=red](I,H)
\tkzDrawLines[add=0 and -.5 ,color=red](A,a)
\tkzDrawLines[add=0 and 0,color=red](B,b)
\tkzShowLine[bisector,size=2,gap=3](B,A,C)
\tkzShowLine[bisector,size=1,gap=3](C,B,A)
\tkzLabelPoints(A,B)\tkzLabelPoints[left](C)
\end{tikzpicture}
```

31.4 Own style

You can set the normal style with \texttt{tkzSetUpPoint} and your own style

```latex
\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(0,1){A}
\tkzDrawPoints(O)
\end{tikzpicture}
```

```latex
\tkzSetUpPoint[color=blue!50!white, fill=gray!20!red!50!white]
\tkzset{/tikz/mystyle/.style={color=blue!20!black,fill=blue!20}}
```

```latex
\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(0,1){A}
\tkzDrawPoints(0){}
\tkzDrawPoints[O]{}
\tkzDrawPoints[O]{}
\tkzDrawPoints[mystyle,\textcolor{mystyle}]{(A)} % my style
\tkzLabelPoints(0,A)
\end{tikzpicture}
```
32 Summary of \texttt{tkz-base}

\subsection{Utility of \texttt{tkz-base}}

First of all, you don't have to deal with TikZ the size of the bounding box. Early versions of \texttt{tkz-euclide} did not control the size of the bounding box, now the size of the bounding box is limited.

However, it is sometimes necessary to control the size of what will be displayed. To do this, you need to have prepared the bounding box you are going to work in, this is the role of \texttt{tkz-base} and its main macro \texttt{tkzInit}. It is recommended to leave the graphic unit equal to 1 cm. For some drawings, it is interesting to fix the extreme values (xmin,xmax,ymin and ymax) and to "clip" the definition rectangle in order to control the size of the figure as well as possible.

The two macros in \texttt{tkz-base} that are useful for \texttt{tkz-euclide} are:

\begin{itemize}
  \item \texttt{tkzInit}
  \item \texttt{tkzClip}
\end{itemize}

To this, I added macros directly linked to the bounding box. You can now view it, backup it, restore it (see the documentation of \texttt{tkz-base} section Bounding Box).

\subsection{\texttt{tkzInit} and \texttt{tkzShowBB}}

The rectangle around the figure shows you the bounding box.

\begin{tikzpicture}
  \tkzInit[xmin=-1,xmax=3,ymin=-1, ymax=3]
  \tkzGrid
  \tkzShowBB[red,line width=2pt]
\end{tikzpicture}

\subsection{\texttt{tkzClip}}

The role of this macro is to "clip" the initial rectangle so that only the paths contained in this rectangle are drawn.

\begin{tikzpicture}
  \tkzInit[xmax=4, ymax=3]
  \tkzAxeXY
  \tkzGrid
  \tkzClip
  \draw[red] (-1,-1)--(5,2);
\end{tikzpicture}

It is possible to add a bit of space
\tkzClip[space=1]

32.4 \tkzClip and the option space

This option allows you to add some space around the "clipped" rectangle.

\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
\tkzAxeXY
\tkzGrid
\tkzClip[space=1]
\draw[red] (-1,-1)--(5,2);
\end{tikzpicture}

The dimensions of the "clipped" rectangle are $x_{\text{min}}-1$, $y_{\text{min}}-1$, $x_{\text{max}}+1$ and $y_{\text{max}}+1$. 
33 FAQ

33.1 Most common errors

For the moment, I’m basing myself on my own, because having changed syntax several times, I’ve made a number of mistakes. This section is going to be expanded.

- \tkzDrawPoint(A,B) when you need \tkzDrawPoints.

- \tkzGetPoint(A) When defining an object, use braces and not brackets, so write: \tkzGetPoint{A}.

- \tkzGetPoint{A} in place of \tkzGetFirstPoint{A}. When a macro gives two points as results, either we retrieve these points using \tkzGetPoints{A}{B}, or we retrieve only one of the two points, using \tkzGetFirstPoint{A} or \tkzGetSecondPoint{A}. These two points can be used with the reference \tkzFirstPointResult or \tkzSecondPointResult. It is possible that a third point is given as \tkzPointResult.

- \tkzDrawSegment(A,B A,C) when you need \tkzDrawSegments. It is possible to use only the versions with an “s” but it is less efficient!

- Mixing options and arguments; all macros that use a circle need to know the radius of the circle. If the radius is given by a measure then the option includes a \texttt{R}.

- \tkzDrawSegments[color = gray,style=dashed]{B,B' C,C'} is a mistake. Only macros that define an object use braces.

- The angles are given in degrees, more rarely in radians.

- If an error occurs in a calculation when passing parameters, then it is better to make these calculations before calling the macro.

- Do not mix the syntax of \texttt{pgfmath} and \texttt{xfp}. I’ve often chosen \texttt{xfp} but if you prefer pgfmath then do your calculations before passing parameters.

- Use of \texttt{tkzClip}: In order to get accurate results, I avoided using normalized vectors. The advantage of normalization is to control the dimension of the manipulated objects, the disadvantage is that with TeX, this implies inaccuracies. These inaccuracies are often small, in the order of a thousandth, but they lead to disasters if the drawing is enlarged. Not normalizing implies that some points are far away from the working area and \texttt{tkzClip} allows you to reduce the size of the drawing.

- An error occurs if you use the macro \texttt{tkzDrawAngle} with too small an angle. The error is produced by the \texttt{decoration} library when you want to place a mark on an arc. Even if the mark is absent, the error is still present. It is possible to get around this difficulty with the option \texttt{mkpos=.2} for example, which will place the mark before the arc. Another possibility is to use the macro \texttt{tkzFillAngle}. 

\texttt{tkz-euclide} AlterMundus
Index

\add, 57
\ang, 104
\Ax, 122
\Ay, 122

\coordinate, 18
\dAB, 120
\Delta, 56
\draw (A)--(B);, 57

Environment
scope, 20
\fpeval, 92

\len, 121
\newdimen, 93

Operating System
Windows, 14

Package
fp, 14, 16
numprint, 14
pgfmath, 19, 154
tikz 3.00, 14
tkz-base, 14, 17, 22, 152
tkz-euclide, 14, 152
xfp, 14, 16, 18, 19, 92, 120, 154
\pgflinewidth, 29, 30
\pgfmathsetmacro, 92
\px, 122
\py, 122

\slope, 107
standalone, 12

TeX Distributions
MiKTeX, 14
TeXLive, 14

Ti\kZ Library
angles, 16
babel, 8
decoration, 154
quotes, 16
\tkzAngleResult, 104, 105, 108
\tkzCalcLength, 120
\tkzCalcLength: arguments
(pt1, pt2){name of macro}, 120
\tkzCalcLength: options
cm, 120
\tkzCalcLength{(local options)}{(pt1, pt2){(name of macro)}, 120
\tkzCentroid, 23
\tkzClip, 8, 16, 152-154
\tkzClipBB, 16
\tkzClipCircle, 79, 84, 88
\tkzClipCircle: arguments
((A, B)) or ((A, r)), 88

\texttt{tkzClipCircle}: options
\begin{itemize}
\item \texttt{R}, 88
\item \texttt{radius}, 88
\end{itemize}
\texttt{tkzClipCircle}\texttt{[(local options)]}(\texttt{A,B}) or \texttt{(A,r)}, 88
\texttt{tkzClipPolygon}, 76
\texttt{tkzClipPolygon}: arguments
\begin{itemize}
\item \texttt{(pt1,pt2)}, 76
\end{itemize}
\texttt{tkzClipPolygon}\texttt{[(local options)]}((\texttt{points list})), 76
\texttt{tkzClipSector}(O,A)(B), 113
\texttt{tkzClipSector}[R](O,2 cm)(30,90), 113
\texttt{tkzClipSector}[rotate](O,A)(90), 113
\texttt{tkzClipSector}, 113, 114
\texttt{tkzClipSector}: options
\begin{itemize}
\item \texttt{R}, 113
\item \texttt{rotate}, 113
\item \texttt{towards}, 113
\end{itemize}
\texttt{tkzClipSector}\texttt{[(local options)]}((\texttt{O,}))(\texttt{...(}}), 113
\texttt{tkzcmtopt}, 121
\texttt{tkzcmtopt}: arguments
\begin{itemize}
\item \texttt{\{nombre\}\{name of macro\}}, 121
\end{itemize}
\texttt{tkzCompass}, 117, 124
\texttt{tkzCompass}: options
\begin{itemize}
\item \texttt{\{delta\}}, 124
\item \texttt{\{length\}}, 124
\end{itemize}
\texttt{tkzCompass}, 124
\texttt{tkzCompass}: options
\begin{itemize}
\item \texttt{\{delta\}}, 124
\item \texttt{\{length\}}, 124
\end{itemize}
\texttt{tkzCompass}\texttt{[(local options)]}((\texttt{pt1,pt2 pt3,pt4,...})), 124
\texttt{tkzCompass}\texttt{[(local options)]}((\texttt{A,B})), 124
\texttt{tkzDefBarycentricPoint}, 23
\texttt{tkzDefBarycentricPoint}: arguments
\begin{itemize}
\item \texttt{(pt1=\alpha_1,pt2=\alpha_2,...)}, 23
\end{itemize}
\texttt{tkzDefBarycentricPoint}\texttt{(...)}((\texttt{pt1=\alpha_1,pt2=\alpha_2,...})), 23
\texttt{tkzDefCircle[...]}(A,B), 122
\texttt{tkzDefCircle}, 79
\texttt{tkzDefCircle}: arguments
\begin{itemize}
\item \texttt{(pt1,pt2)}, 79
\item \texttt{(pt1,pt2,pt3)}, 79
\end{itemize}
\texttt{tkzDefCircle}: options
\begin{itemize}
\item \texttt{\{K\}}, 79
\item \texttt{\{apollonius\}}, 79
\item \texttt{\{circum\}}, 79
\item \texttt{\{diameter\}}, 79
\item \texttt{\{euler or nine\}}, 79
\item \texttt{\{ex\}}, 79
\item \texttt{\{in\}}, 79
\item \texttt{\{orthogonal through\}}, 79
\item \texttt{\{orthogonal\}}, 79
\item \texttt{\{spieker\}}, 79
\item \texttt{\{through\}}, 79
\end{itemize}
\texttt{tkzDefCircle}\texttt{[(local options)]}((\texttt{A,B})), 79
\texttt{tkzDefCircle}((\texttt{A,B,C})), 79
\texttt{tkzDefEquiPoints}, 129
\texttt{tkzDefEquiPoints}: options
\begin{itemize}
\item \texttt{\{compass\}}, 129
\item \texttt{\{dist\}}, 129
\item \texttt{\{from\}}, 129
\item \texttt{\{show\}}, 129
\end{itemize}
\texttt{tkzDefEquiPoints}\texttt{[(local options)]}((\texttt{pt1,pt2})), 129
\tkzDefGoldRectangle, 74
\tkzDefGoldRectangle: arguments
  (pt1,pt2), 74
\tkzDefGoldRectangle(point,point), 74
\tkzDefLine, 49
\tkzDefLine: arguments
  (pt1,pt2,pt3), 49
  (pt1,pt2), 49
\tkzDefLine: options
  K, 49
  bisector out, 49
  bisector, 49
  mediator, 49
  normed, 49
  orthogonal=through..., 49
  parallel=through..., 49
  perpendicular=through..., 49
\tkzDefLine[local options](pt1,pt2) or (pt1,pt2,pt3), 49
\tkzDefMidPoint, 22
\tkzDefMidPoint: arguments
  (pt1,pt2), 22
\tkzDefMidPoint(point,point), 22
\tkzDefParallelogram, 72
\tkzDefParallelogram: arguments
  (pt1,pt2,pt3), 72
\tkzDefParallelogram(point,point,point), 72
\tkzDefPoint, 18, 19, 22, 90
\tkzDefPoint: arguments
  (α:d), 18
  (x,y), 18
  {name}, 18
\tkzDefPoint: options
  label, 19
  shift, 19
\tkzDefPointBy, 33
\tkzDefPointBy: arguments
  pt, 33
\tkzDefPointBy: options
  homothety, 33
  inversion, 33
  projection, 33
  reflection, 33
  rotation in rad, 33
  rotation, 33
  symmetry, 33
  translation, 33
\tkzDefPointBy[local options](pt), 33
\tkzDefPointOnCircle, 31
\tkzDefPointOnCircle: options
  angle, 31
  center, 31
  radius, 31
\tkzDefPointOnCircle[local options], 31
\tkzDefPointOnLine, 31
\tkzDefPointOnLine: arguments
  pt1,pt2, 31
\tkzDefPointOnLine: options
  pos=nb, 31
\tkzDefPointOnLine[local options](A,B), 31
\tkzDefPoints(0/0/0,2/2/A), 21
\tkzDefPoints, 21
\tkzDefPoints: arguments
\tkzDefPoints: options
  \tkzDefPointsBy, 33, 38, 39
\tkzDefPointsBy: arguments
  \tkzDefPointsBy: options
    \homothety = center #1 ratio #2, 39
    \reflection = over #1--#2, 39
    \rotation = center #1 angle #2, 39
    \rotation in rad = center #1 angle #2, 39
    \symmetry = center #1, 39
    \translation = from #1 to #2, 39
\tkzDefPointsBy[(local options)]{(list of points)}{(list of pts)}, 39
\tkzDefPoints[(local options)]{(x_1/y_1/n_1, x_2/y_2/n_2, \ldots)}, 21
\tkzDefPointWith, 40
\tkzDefPointWith: arguments
  \tkzDefPointWith: options
    \K, 40
    \colinear normed= at #1, 40
    \colinear= at #1, 40
    \linear, 40
    \linear normed, 40
    \orthogonal normed, 40
    \orthogonal, 40
\tkzDefRandPointOn, 16, 45
\tkzDefRandPointOn: options
  \circle =center pt1 radius dim, 45
  \circle through=center pt1 through pt2, 45
  \disk through=center pt1 through pt2, 45
  \line=pt1--pt2, 45
  \rectangle=pt1 and pt2, 45
  \segment= pt1--pt2, 45
\tkzDefRandPointOn[(local options)], 45
\tkzDefRegPolygon, 78
\tkzDefRegPolygon: arguments
  \tkzDefRegPolygon: options
    Options TikZ, 78
    \center, 78
    \name, 78
    \sides, 78
    \side, 78
\tkzDefRegPolygon[(local options)]{(pt1,pt2)}, 78
\tkzDefShiftPoint, 20
\tkzDefShiftPoint: arguments
  \tkzDefShiftPoint: options
    \pt, 20
\tkzDefShiftPoint[(Point)]{(x,y)}{(name)} or \tkzDefShiftPoint[Point] (x,y){(name)}, 20
\tkzDefSpcTriangle, 66
\tkzDefSpcTriangle: options
  \centroid or medial, 66
  \euler, 66
  \ex or excentral, 66

tkz-euclide AlterMundus
extouch, 66
feuerbach, 66
in or incentral, 66
intouch or contact, 66
name, 66
orthic, 66
tangential, 66

\tkzDefSpcTriangle[[local options]]((A,B,C)), 66
\tkzDefSquare, 71, 72
\tkzDefSquare: arguments
((pt1,pt2)), 71
\tkzDefSquare((pt1,pt2)), 71
\tkzDefTangent, 52
\tkzDefTangent: arguments
((pt1,pt2 or ((pt1,dim))), 52
\tkzDefTangent: options
at=pt, 52
from with R=pt, 52
from=pt, 52
\tkzDefTangent[[local options]]((pt1,pt2) or ((pt1,dim)), 52
\tkzDefTriangle, 63
\tkzDefTriangle: options
cheops, 63
equilateral, 63
euclide, 63
gothen, 63
gold, 63
pythagore, 63
school, 63
two angles= #1 and #2, 63
\tkzDefTriangleCenter, 25
\tkzDefTriangleCenter: arguments
(pt1,pt2,pt3), 25
\tkzDefTriangleCenter: options
centroid, 25
circum, 25
euler, 25
eX, 25
feuerbach, 25
in, 25
mittenpunkt, 25
nagel, 25
ortho, 25
spieker, 25
symmedian, 25
\tkzDefTriangleCenter[[local options]]((A,B,C)), 25
\tkzDefTriangle[[local options]]((A,B)), 63
\tkzDrawAngle, 154
\tkzDrawArc[angles](O,A)(0,90), 115
\tkzDrawArc[delta=10](O,A)(B), 115
\tkzDrawArc[R with nodes](0,2 cm)(A,B), 115
\tkzDrawArc[R](0,2 cm)(30,90), 115
\tkzDrawArc[rotate, color=red](O,A)(90), 115
\tkzDrawArc, 115
\tkzDrawArc: options
R with nodes, 115
R, 115
angles, 115
delta, 115
rotate, 115
towards, 115

\tkz-euclide AlterMundus
\tkzDrawArc[\textit{local options}]((O,...)(...)), 115
\tkzDrawCircle, 79, 83, 84
\tkzDrawCircle: arguments
  (\langle pt_1, pt_2 \rangle), 84
\tkzDrawCircle: options
  \texttt{\texttt{R}}, 84
  \texttt{\texttt{diameter}}, 84
  \texttt{\texttt{through}}, 84
\tkzDrawCircles, 84
\tkzDrawCircles: arguments
  (\langle pt_1, pt_2 pt_3, pt_4 \ldots \rangle), 85
\tkzDrawCircles: options
  \texttt{\texttt{R}}, 85
  \texttt{\texttt{diameter}}, 85
  \texttt{\texttt{through}}, 85
\tkzDrawCircles[\textit{local options}](\langle A,B,C,D \rangle), 84
\tkzDrawCircle[\textit{local options}](\langle A,B \rangle), 84
\tkzDrawGoldRectangle, 74
\tkzDrawGoldRectangle: arguments
  (\langle pt_1 \rangle), 74
\tkzDrawGoldRectangle: options
  Options TikZ, 74
\tkzDrawGoldRectangle[\textit{local options}](\langle point, point \rangle), 74
\tkzDrawLine, 54
\tkzDrawLine: options
  \texttt{\texttt{add= nb1 and nb2}}, 54
  \texttt{\texttt{altitude}}, 54
  \texttt{\texttt{bisector}}, 54
  \texttt{\texttt{median}}, 54
  \texttt{\texttt{none}}, 54
\tkzDrawLines, 55
\tkzDrawLines[\textit{local options}](\langle pt_1, pt_2 pt_3, pt_4 \ldots \rangle), 55
\tkzDrawLine[\textit{local options}](\langle pt_1, pt_2 \rangle) or (\langle pt_1, pt_2, pt_3 \rangle), 54
\tkzDrawMedian, 54
\tkzDrawPoint(A,B), 154
\tkzDrawPoint, 29
\tkzDrawPoint: arguments
  \texttt{\texttt{name of point}}, 29
\tkzDrawPoint: options
  \texttt{\texttt{color}}, 29
  \texttt{\texttt{shape}}, 29
  \texttt{\texttt{size}}, 29
\tkzDrawPoints(A,B,C), 30
\tkzDrawPoints, 30, 154
\tkzDrawPoints: arguments
  \texttt{\texttt{points list}}, 30
\tkzDrawPoints: options
  \texttt{\texttt{color}}, 30
  \texttt{\texttt{shape}}, 30
  \texttt{\texttt{size}}, 30
\tkzDrawPoints[\textit{local options}](\langle liste \rangle), 30
\tkzDrawPoint[\textit{local options}](\langle name \rangle), 29
\tkzDrawPolygon, 75
\tkzDrawPolygon: arguments
  (\langle pt_1, pt_2, pt_3 \ldots \rangle), 75
\tkzDrawPolygon: options
  Options TikZ, 75
\tkzDrawPolygon[\textit{local options}](\langle points list \rangle), 75
\tkzDrawPolySeg, 75
\tkzDrawPolySeg: arguments
  (\langle pt_1, pt_2 pt_3 \ldots \rangle), 75
\tkzDrawPolySeg: options
Options TikZ, 75
\tkzDrawPolySeg[(local options)]((points list)), 75
\tkzDrawSector(O,A)(B), 110
\tkzDrawSector[R with nodes](0,2 cm)(A,B), 110
\tkzDrawSector[R,color=blue](0,2 cm)(30,90), 110
\tkzDrawSector[rotate,color=red](O,A)(90), 110
\tkzDrawSector, 110–112
\tkzDrawSector: options
R with nodes, 110
R, 110
rotate, 110
towards, 110
\tkzDrawSector[(local options)]((O,...)((...), 110
\tkzDrawSegment(A,B A,C), 154
\tkzDrawSegment, 16, 57
\tkzDrawSegment: arguments
(pt1,pt2), 57
\tkzDrawSegment: options
TikZ options, 57
\tkzDrawSegments[color = gray,style=dashed]{B,B'} C,C'), 154
\tkzDrawSegments, 59, 154
\tkzDrawSegments[(local options)]((pt1,pt2 pt3,pt4 ...)), 59
\tkzDrawSegment[(local options)]((pt1,pt2)), 57
\tkzDrawSemiCircle, 86, 87
\tkzDrawSemiCircle: arguments
((pt1.pt2)), 86
\tkzDrawSemiCircle: options
diameter, 87
through, 87
\tkzDrawSemiCircle[(local options)]((A,B)), 86
\tkzDrawSquare, 73
\tkzDrawSquare: arguments
((pt1,pt2)), 73
\tkzDrawSquare: options
Options TikZ, 73
\tkzDrawSquare[(local options)]((pt1,pt2)), 73
\tkzDrawTriangle, 65
\tkzDrawTriangle: options
cheops, 65
equilateral, 65
euclide, 65
golden, 65
gold, 65
pythagore, 65
school, 65
two angles= #1 and #2, 65
\tkzDrawTriangle[(local options)]((A,B)), 65
\tkzDuplicateLen, 119
\tkzDuplicateLength, 119
\tkzDuplicateSegment, 119, 120
\tkzDuplicateSegment: arguments
(pt1,pt2)(pt3,pt4){pt5}, 119
\tkzDuplicateSegment((pt1,pt2)(pt3,pt4){pt5}), 119
\tkzFillAngle, 97, 136, 154
\tkzFillAngle: options
size, 97
\tkzFillAngles, 98

\tkz-euclide AlterMundus
\textbf{Index}

\texttt{tkzFillAngles[\{local options\}](⟨A,0,B⟩)(⟨A',0',B'⟩)etc., 98}
\texttt{tkzFillAngle[\{local options\}](⟨A,0,B⟩), 97}
\texttt{tkzFillCircle, 79, 84, 87}
\texttt{tkzFillCircle[\{local options\}](⟨A,B⟩), 98}
\texttt{tkzFillCircle: options}
\hspace{1em} R, 87
\hspace{1em} radius, 87
\texttt{tkzFillCircle[\{local options\}](⟨A,B⟩), 87}
\texttt{tkzFillPolygon, 77}
\texttt{tkzFillPolygon: arguments}
\hspace{1em} (⟨pt1,pt2,⟨...,⟩⟩), 77
\texttt{tkzFillPolygon[\{local options\}]⟨⟨points list⟩⟩, 77}
\texttt{tkzFillSector(R with nodes)(O,A)(B), 112}
\texttt{tkzFillSector(R,color=blue)(O,2 cm)(A,B), 112}
\texttt{tkzFillSector(R,color=red)(O,A)(90), 112}
\texttt{tkzFillSector, 112, 113}
\texttt{tkzFillSector[\{local options\}](⟨O,⟨...,⟩⟩), 112}
\texttt{tkzFindAngle, 105, 106}
\texttt{tkzFindAngle: arguments}
\hspace{1em} (pt1,pt2,pt3), 105
\texttt{tkzFindAngle⟨⟨pt1,pt2,pt3⟩⟩, 105}
\texttt{tkzFindSlope, 107}
\texttt{tkzFindSlope[\{local options\}]⟨⟨pt1,pt2⟩⟩, 107}
\texttt{tkzFindSlopeAngle, 108, 109}
\texttt{tkzFindSlopeAngle[\{local options\}]⟨⟨A,B⟩⟩, 108}
\texttt{tkzFindSlope[⟨pt1,pt2⟩]{⟨name of macro⟩}, 107}
\texttt{tkzGetAngle, 104, 105, 108}
\texttt{tkzGetAngle[⟨name of macro⟩], 104}
\texttt{tkzGetFirstPoint(A), 154}
\texttt{tkzGetFirstPoint(Jb), 82}
\texttt{tkzGetFirstPoint, 71}
\texttt{tkzGetFirstPointI, 80}
\texttt{tkzGetLength, 79, 122}
\texttt{tkzGetPoint(A), 154}
\texttt{tkzGetPoint(A), 154}
\texttt{tkzGetPoint(C), 40}
\texttt{tkzGetPoint(H), 33}
\texttt{tkzGetPoint, 16, 22, 25–27, 40, 45, 49, 63, 66, 72, 79}
\texttt{tkzGetPointCoord, 122, 123}
\texttt{tkzGetPointCoord[⟨name of macro⟩], 122}
\texttt{tkzGetPoints(A){⟨name of macro⟩}, 122}
\texttt{tkzGetRandPointOn, 16, 45}
\texttt{tkzGetSecondPoint(A), 154}
\texttt{tkzGetSecondPoint{Tb}, 82}
\texttt{tkzGetSecondPoint, 71}
\texttt{tkzGetSecondPointIb, 80}
\texttt{tkzGetVectxy, 44}
\tkzGetVectxy: arguments
(point)\{name of macro\}, 44
\tkzGetVectxy\{\(\langle A, R\rangle\}\}{\(\text{text}\)}, 44
\tkzInit, 8, 16, 17, 152
\tkzInterCC, 94
\tkzInterCC: options
N, 94
R, 94
with nodes, 94
\tkzInterCC\{\{\text{options}\}\}\{\(\langle O, A\rangle\)\}\{\(\langle O', A'\rangle\)\} or \(\langle O, r\rangle\)\{\(\langle O', r'\rangle\)\} or \(\langle O, A, B\rangle\)\{\(\langle O', C, D\rangle\)\}, 94
\tkzInterLC, 90
\tkzInterLC: options
N, 90
R, 90
with nodes, 90
\tkzInterLC\{\{\text{options}\}\}\{\(\langle A, B\rangle\)\}\{\(\langle O, C\rangle\)\} or \(\langle O, r\rangle\) or \(\langle O, C, D\rangle\), 90
\tkzInterLL\{\(\langle A, B\rangle\)\}\{\(\langle C, D\rangle\)\}, 90
\tkzLabelAngle, 101
\tkzLabelAngle: options
pos, 101
\tkzLabelAngles, 102
\tkzLabelAngles\{\{\text{local options}\}\}\{\(\langle A, O, B\rangle\)\}\{\(\langle A', O', B'\rangle\)\}etc., 102
\tkzLabelAngle\{\{\text{local options}\}\}\{\(\langle A, O, B\rangle\)\}, 101
\tkzLabelCircle\{\{\text{local options}\}\}\{\(\langle A, B\rangle\)\}\{\(\text{radius}\)\}, 89
\tkzLabelCircle: options
R, 89
radius, 89
\tkzLabelCircle\{\{\text{local options}\}\}\{\(\langle A, B\rangle\)\}\{\(\text{angle}\)\}\{\(\text{label}\)\}, 89
\tkzLabelLine\{\{\text{local options}\}\}\{\(\langle A, B\rangle\)\}\{\(\text{label}\)\}, 56
\tkzLabelLine\{\{\text{local options}\}\}\{\(\langle A, B\rangle\)\}, 56
\tkzLabelLine, 16, 56, 57
\tkzLabelLine: arguments
label, 56
\tkzLabelLine: options
pos, 56
\tkzLabelLine\{\{\text{local options}\}\}\{\(\langle pt1, pt2\rangle\)\}\{\(\text{label}\)\}, 56
\tkzLabelSegment\{\{\text{local options}\}\}\{\(\langle A, B\rangle\)\}(5), 61
\tkzLabelSegment\{\{\text{local options}\}\}\{\(\langle pt1, pt2\rangle\)\}, 61
\tkzLabelSegment: arguments
\text{label}, 61
\tkzLabelSegment: options
pos, 61
\tkzLabelSegments, 62
\tkzLabelSegments\{\{\text{local options}\}\}\{\(\langle pt1, pt2, pt3, pt4 \ldots\rangle\)\}, 62
\tkzLabelSegment\{\{\text{local options}\}\}\{\(\langle pt1, pt2\rangle\)\}\{\(\text{label}\)\}, 61
\tkzLength, 93
\tkzMarkAngle, 100, 136
\tkzMarkAngle: options
arc, 100
mark, 100
\text{mkcolor}, 100
\text{mkpos}, 100
\text{mksiz}, 100
size, 100
\tkzMarkAngles, 101
\tkzMarkAngles\{\{\text{local options}\}\}\{\(\langle A, O, B\rangle\)\}\{\(\langle A', O', B'\rangle\)\}etc., 101
\tkzMarkAngle\{\{\text{local options}\}\}\{\(\langle A, O, B\rangle\)\}, 100
\tkzMarkRightAngle, 102
\tkzMarkRightAngle: options
german, 102
size, 102
\tkzMarkRightAngles, 104
\tkzMarkRightAngles[\textit{\textbf{\{local options\}}}\langle A,O,B\rangle\langle A',O',B'\rangle\textit{etc.}, 104
\tkzMarkRightAngle[\textit{\textbf{\{local options\}}}\langle A,O,B\rangle, 102
\tkzMarkSegment, 59
\tkzMarkSegment: options
color, 59
mark, 59
pos, 59
size, 59
\tkzMarkSegments, 60
\tkzMarkSegments[\textit{\textbf{\{local options\}}}\langle pt1,pt2 pt3,pt4 ...\rangle, 60
\tkzMarkSegment[\textit{\textbf{\{local options\}}}\langle pt1,pt2\rangle, 59
\tkzProtractor, 130
\tkzProtractor: options
\textit{\textbf{\{local options\}}}(O,A), 130
\tkzpttocm, 121
\tkzpttocm: arguments
\textit{name of macro}, 121
\tkzpttocm\langle nombre\rangle\langle name of macro\rangle, 121
\tkzSaveBB, 16
\tkzSetUpCompass, 125, 150, 151
\tkzSetUpCompass: options
color, 125, 150
line width, 125, 150
style, 125, 150
\tkzSetUpCompass[\textit{\textbf{\{local options\}}}], 125, 150
\tkzSetUpLine, 148
\tkzSetUpLine: options
add, 148
color, 148
line width, 148
style, 148
\tkzSetUpLine[\textit{\textbf{\{local options\}}}], 148
\tkzSetUpPoint, 149, 150
\tkzSetUpPoint: options
color, 149
fill, 149
shape, 149
size, 149
\tkzSetUpPoint[\textit{\textbf{\{local options\}}}], 149
\tkzSaveBB, 152
\tkzShowBB, 126, 127
\tkzShowLine, 126, 127
\tkzShowLine: options
K, 126
bisector, 126
gap, 126
length, 126
mediator, 126
orthogonal, 126
perpendicular, 126
ratio, 126
size, 126
\tkzShowLine[\textit{\textbf{\{local options\}}}\langle pt1,pt2\rangle or \langle pt1,pt2,pt3\rangle, 126
\tkzShowTransformation, 127, 128
\tkzShowTransformation: options
Index

K, 127

gap, 127

length, 127

projection=onto pt1--pt2, 127

ratio, 127

reflection= over pt1--pt2, 127

size, 127

symmetry=center pt, 127

translation=from pt1 to pt2, 127

\tkzShowTransformation[\{local options\}]((pt1,pt2) or ((pt1,pt2,pt3)), 127

\tkzTangent, 52

\usetkzobj{all}, 16

\usetkztool, 16

\Vx, 44

\Vy, 44