The \texttt{mathastext} package

\textsc{Jean-François Burnol}  
jfbu (at) free (dot) fr  
Package version: 1.3w (2019/11/16)

The \texttt{mathastext} package changes the fonts which are used in math mode for letters, digits and a few other punctuation and symbol signs to replace them with the font as used for the document text. Thus, the package makes it possible to use a quite arbitrary font without worrying too much that it does not have specially designed accompanying math fonts. Also, \texttt{mathastext} provides a simple mechanism in order to use more than one math-as-text font in the same document.

\texttt{'mathastext' is a \LaTeX{} package}

\begin{verbatim}
\usepackage{mathastext}
\end{verbatim}

The document will use in math mode the text font as configured at package loading time, for these characters:

\begin{verbatim}
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!?,:;+-=()[#%&<>|{}\
\end{verbatim}

The command \texttt{MTsetmathskips} allows to set up extra spacings around each given letter.

Use multiple \texttt{Mathastext[name]'s} to define in the preamble various math versions using each a given text font, to be later activated in the document body via the command \texttt{MTversion[name]}.

With the subdued option, mathastext will be active only inside such math versions distinct from the normal and bold.

Main options: italic, defaultmathsizes, subdued, asterisk, LGRgreek.
1 What \texttt{mathastext} does

For changes see section 3.

1.1 Examples

\texttt{mathastext}'s basic aim is to have the same font for text and mathematics. With hundreds of free text fonts packaged for \LaTeX{} and only a handful of math ones, chances are your favorite text font does not mix so well with the available math ones; \texttt{mathastext} may then help. Note that \texttt{mathastext} was initially developed for the traditional \TeX{} fonts and engines, and that compatibility with Unicode engines and OpenType fonts is partial.

Here is an example with Latin Modern typewriter proportional:

Let $(X, Y)$ be two functions of a variable $a$. If they obey the differential system $(VI_{\nu,n})$:

\[
\begin{align*}
\frac{d}{da}X &= \nu X - (1 - X^2) 2na \frac{aX + Y}{1 - a^2 1 + aXY} \\
\frac{d}{da}Y &= -(\nu + 1) Y + (1 - Y^2) 2na \frac{X + aY}{1 - a^2 1 + aXY}
\end{align*}
\]

then the quantity $q = \frac{a^2 X + Y}{X + aY}$ satisfies as function of $b = a^2$ the
$P_{VI}$ differential equation:

$$\begin{align*}
\frac{d^2 q}{db^2} &= \frac{1}{2} \left( \frac{1}{q} + \frac{1}{q-1} + \frac{1}{q-b} \right) \left( \frac{dq}{db} \right)^2 - \left( \frac{1}{b} + \frac{1}{b-1} + \frac{1}{q-b} \right) \frac{dq}{db} \\
&\quad + \frac{q(q-1)(q-b)}{b^2(b-1)^2} \left\{ \alpha + \frac{\beta b}{q^2} + \frac{\gamma(b-1)}{(q-1)^2} + \frac{\delta b(b-1)}{(q-b)^2} \right\}
\end{align*}$$

with parameters $(\alpha, \beta, \gamma, \delta) = \left( \frac{(v+p)^2}{2}, \frac{-(v+p+1)^2}{2}, \frac{p^2}{2}, 1-p^2 \right)$.

Notice that the Latin (and Greek letters) are in upright shape. But perhaps we insist on obeying the standardized habits:

Let $(X, Y)$ be two functions of a variable $a$. If they obey the differential system $(V_{\nu,n})$:

$$\begin{align*}
\frac{d}{da} X &= \nu X - (1-X^2) \frac{2na}{1-a^2} \frac{aX + Y}{1 + aXY} \\
\frac{d}{da} Y &= -(\nu + 1)Y + (1-Y^2) \frac{2na}{1-a^2} \frac{X + aY}{1 + aXY}
\end{align*}$$

then the quantity $q = a \frac{Xx+y}{X+y}$ satisfies as function of $b = a^2$ the $P_{VI}$ differential equation:

$$\begin{align*}
\frac{d^2 q}{db^2} &= \frac{1}{2} \left( \frac{1}{q} + \frac{1}{q-1} + \frac{1}{q-b} \right) \left( \frac{dq}{db} \right)^2 - \left( \frac{1}{b} + \frac{1}{b-1} + \frac{1}{q-b} \right) \frac{dq}{db} \\
&\quad + \frac{q(q-1)(q-b)}{b^2(b-1)^2} \left\{ \alpha + \frac{\beta b}{q^2} + \frac{\gamma(b-1)}{(q-1)^2} + \frac{\delta b(b-1)}{(q-b)^2} \right\}
\end{align*}$$

This was typeset using the Times font (available in any \TeX{} distribution). Let us now be a bit more original and have our mathematics with italic letters from the sans serif font Helvetica, while the letters in text use New Century Schoolbook.

Let $(X, Y)$ be two functions of a variable $a$. If they obey the differential system $(V_{\nu,n})$:

$$\begin{align*}
\frac{d}{da} X &= \nu X - (1-X^2) \frac{2na}{1-a^2} \frac{aX + Y}{1 + aXY} \\
\frac{d}{da} Y &= -(\nu + 1)Y + (1-Y^2) \frac{2na}{1-a^2} \frac{X + aY}{1 + aXY}
\end{align*}$$

then the quantity $q = a \frac{Xx+y}{X+y}$ satisfies as function of $b = a^2$ the $P_{VI}$ differential equation:

$$\begin{align*}
\frac{d^2 q}{db^2} &= \frac{1}{2} \left( \frac{1}{q} + \frac{1}{q-1} + \frac{1}{q-b} \right) \left( \frac{dq}{db} \right)^2 - \left( \frac{1}{b} + \frac{1}{b-1} + \frac{1}{q-b} \right) \frac{dq}{db} \\
&\quad + \frac{q(q-1)(q-b)}{b^2(b-1)^2} \left\{ \alpha + \frac{\beta b}{q^2} + \frac{\gamma(b-1)}{(q-1)^2} + \frac{\delta b(b-1)}{(q-b)^2} \right\}
\end{align*}$$

3
with parameters \((a, \beta, \gamma, \delta) = (\frac{(\nu+n)^2}{2}, -\frac{(\nu+n+1)^2}{2}, \frac{n^2}{2}, \frac{1-n^2}{2})\).

And after all that, we may wish to return to the default math typesetting (let’s shorten the extract here in case the reader makes an indigestion . . .):

Let \((X, Y)\) be two functions of a variable \(a\). If they obey the differential system \((VI_{\nu,n}):\)

\[
\begin{align*}
\frac{d}{da} X &= \nu X - (1 - X^2) \frac{2na}{1 - a^2} + aXY \\
\frac{d}{da} Y &= -(\nu + 1) Y + (1 - Y^2) \frac{2na}{1 - a^2} X + aY
\end{align*}
\]

then the quantity \(q = a\frac{aX+Y}{X+aY}\) satisfies as function of \(b = a^2\) the \(PV_f\) differential equation with parameters \((\alpha, \beta, \gamma, \delta) = (\frac{(\nu+n)^2}{2}, -\frac{(\nu+n+1)^2}{2}, \frac{n^2}{2}, \frac{1-n^2}{2})\).

Notice that the Greek letters also changed according to the math version: \texttt{mathastext} has indeed some (limited) capabilities to this effect, with its \texttt{LGRgreek} option. This document uses the \texttt{LGR} encoded fonts \texttt{cmtt}, \texttt{cmss}, and \texttt{txr}, which are part of standard \TeX\ distributions.\footnote{The first two are available (with no need to load explicitly any package in the document) via the combination \texttt{cbfonts} (\texttt{cbgreek-complete}) \& \texttt{babel}, and the \texttt{LGR} encoded \texttt{txr} font (again no package loading is necessary) is part of the files of the \texttt{txfontab} package.}

### 1.2 Overview

#### 1.2.1 Basic use

The initial ideology of \texttt{mathastext} was to produce mathematical texts with a very uniform look, not separating math from text as strongly as is usually done.

As soon as one tries out other fonts for text than the Computer Modern ones one realizes how extremely “thin” are the default \TeX\ fonts for mathematics: they definitely do not fit well visually with the majority of text fonts. With \texttt{mathastext} one can get one’s (simple . . . or not) mathematics typeset in a manner more compatible with the text, without having to look for an especially designed font.

Here is a minimal example of what may go into the preamble:

\begin{verbatim}
\usepackage[T1]{fontenc}
\usepackage{times}
\usepackage[italic]{mathastext}
\end{verbatim}

The package records which font is set up for text, at the time it is loaded,\footnote{Alternatively it is possible to configure the text font after loading \texttt{mathastext}, and then the command \texttt{\Mathastext} will accomplish the necessary changes to the font for letters, digits and a few extra ascii symbols in math mode.} and then arranges things in order for this text font to be used in math mode as well. So, with the preamble as above all letters, digits, and punctuation signs inside math
mode will then be typeset in Times. The exact list of characters concerned by \texttt{mathastext} is a subset of the basic \texttt{ASCII} set:

\begin{verbatim}
  abcdefghijklmnopqrstuvwxyz
  ABCDEFGHIJKLMNOPQRSTUVWXYZ
  0123456789
  !?*,.:;+-=()]/#$ % & <>
  \end{verbatim}

As one can see, this is a very limited list! some possibilities are offered by \texttt{mathastext} for Greek letters and will be described later.

The text characters ’ and - are not used, and the asterisk is done optionally:

- the derivative sign ’ is left to its default as the text font glyph ‘ is not, as a rule, a satisfying alternative.
- for the minus sign \texttt{mathastext} uses the endash character –, if available, and not the hyphen character -.
- the \texttt{asterisk} option is mandatory for \texttt{mathastext} to replace the binary math operator \texttt{*} (and the equivalent control sequence \texttt{\ast}) with a version which uses the text asterisk * suitably lowered and with the correct spaces around it as binary operator). The reason is that after this inputs such as \$R^\ast\$ or \$R^-\ast\$ raise errors and must be written \$R^{\ast}\$ or \$R^{-\ast}\$.

Nothing is changed to the “large” math symbols, except for $\prod$ and $\Sigma$ in inline math which, like here: $\prod \Sigma$, will be taken from the Symbol Font if option \texttt{symbol-misc} was used.

The left and right delimiters are taken from the text font only for the base size: any $\bigl, \bigr, \big$, etc... reverts to the original math symbols.

\textbf{1.2.2 always load \texttt{mathastext} last}

The “large” math symbols are not modified in any way by \texttt{mathastext}. Only loading some math font packages such as \texttt{fourier, kpfonts, mathabx, mathdesign, txfonts, newtxmath}, etc... will change them. Think of loading these packages before \texttt{mathastext}, else they might undo what \texttt{mathastext} did.

More generally any package (such as \texttt{amsmath}) dealing with math mode should be loaded \texttt{before mathastext}.

TL;DR:

\begin{itemize}
  \item let’s do as if we did not know the excellent \texttt{txfonts} package which employs Times for text and has a very complete math support, including many additional mathematical glyphs in comparison to the CM fonts.
  \item v1.2 adds a customizable tiny space before ’ to separate it from the previous letter, this is really needed when using upright letters in math mode with the CM derivative glyph. Compare $f'$ with $f'$.
  \item see the \texttt{unicodeminus} option if using an OpenType font.
  \item the amount of lowering can be customized.
\end{itemize}
1.2.3 sans in math

The following set-up often gives esthetically pleasing results: it is to use the sans-serif member of the font family for math, and the serif for text.

\renewcommand\familydefault\sfdefault
\usepackage{mathastext}
\renewcommand\familydefault\rmdefault
\begin{document}

1.2.4 using mathastext with beamer

Starting with release 3.34 of beamer, mathastext is recognized as a “math font package”.

*Only with earlier beamer versions is it necessary to issue* \usefonttheme{professionalfonts} *in the preamble.* Example:

\documentclass{beamer}
%\usefonttheme{professionalfonts}% obsolete for mathastext since beamer 3.34
\usepackage{newcent}
\usepackage[scaled=.9]{helvet}
\renewcommand{\familydefault}{\rmdefault}
\usepackage[defaultmathsizes,symbolgreek]{mathastext}
\renewcommand{\familydefault}{\sfdefault}
\begin{document}
\begin{frame}
This is some text and next comes some math: $E=mc^2$
\[
E=mc^2=a^n+b^n-c^n=\alpha\beta\gamma
\]
\begin{align}
E&=mc^2
E&=\hbar\nu
\end{align}
And again some text.
\end{frame}
\end{document}

1.2.5 option LGRgreek

There is the issue of Greek letters. Sometimes the text font has Greek glyphs, in LGR encoding (this will be mentioned in the documentation of the font package). Then option LGRgreek tells mathastext to pick up these Greek letters. And it is possible to specify whether the Greek letters should be upright, or “italic”\footnote{the default CM and its replacement Latin Modern for european languages are (transparently to the user) extended with LGR encoded fonts from the cbfonts (cbgreek-complete) package.}.
It is naturally possible to leave the responsibility to set up Greek letters to some other packages loaded previously to \texttt{mathastext}. And even if \texttt{mathastext} has been loaded with one of its Greek related options the command $\texttt{\MTstandardgreek}$ will locally cancel its customization of Greek letters. See also $\texttt{\MTcustomgreek}$.

1.2.6 avoid OT1 encoding

We specified in our minimal working example a T1 encoding (LY1 would have been ok, too) because the default OT1 does not have the \texttt{< > | {} } and \texttt{\ } glyphs. If \texttt{mathastext} detects OT1 as the default encoding it will leave these characters to their defaults from the math fonts.\footnote{the \texttt{subdued} option, described next, acts a bit otherwise, it forces, contrarily to its usual low-key character, the replacement of OT1 by T1 for the fonts ultimately used with letters and digits in math mode.}

If \texttt{mathastext} detects the obsolete OT1 encoding it does not do anything with \texttt{<, >, |, {} and \}} which (except for monospace fonts) are not available in that encoding. To fully benefit from \texttt{mathastext} it is recommended to use some other encoding having these glyphs such as T1 or LY1.

\begin{mdframed}
\textbf{If \texttt{mathastext} detects the obsolete OT1 encoding it does not do anything with <, >, |, {}, and \} which (except for monospace fonts) are not available in that encoding. To fully benefit from \texttt{mathastext} it is recommended to use some other encoding having these glyphs such as T1 or LY1.}
\end{mdframed}

1.3 Main options

1.3.1 The italic option

In the initial version 1.0, the Latin letters in mathematical mode assumed the exact same shape as in text mode, and this meant, generally speaking, that they would turn up upright. Doing this gives a very uniform look to the document, so that one has to make an effort and read it with attention, and this was one of the design goals of \texttt{mathastext}.

Nevertheless, soon after I posted the initial version of the package to CTAN, I was overwhelmed by numerous\footnote{this means “more than one.”} questions\footnote{I thank in particular TARIQ PERWEZ and KEVIN KLEMENT for their kind remarks (chronological order).} on how to have the letters be in italic shape.

The default is still, as in version 1.0, for everything to be in upright shape, but it suffices to pass to the package the option \texttt{italic} to have the Latin letters in math mode in italic shape.\footnote{more precisely stated, the value of \texttt{\itdefault} is used.}

There is also an option \texttt{frenchmath} to make the uppercase letters nevertheless upright, because this is the way of traditional French mathematical typography.\footnote{more precisely stated, the value of \texttt{\shapedefault} is used.}
1.3.2 The defaultmathsizes option

The default sizes give for subscripts of subscripts barely legible glyphs (author’s opinion!). So \texttt{mathastext} makes more reasonable choices. It also redefines \texttt{\Huge} and defines a \texttt{\HUGE} size, copied from the \texttt{moresize} package. To cancel all of this use option \texttt{defaultmathsizes}.

1.3.3 The subdued option

This option was introduced in v1.15. It provides a manner to switch on the \texttt{mathastextification} only for limited portions of the document, with the help of the mechanism of math versions. Without the \texttt{subdued} option, the \texttt{mathastextification} applies by default to the whole of the document (and one may also define additional math versions in the preamble); with the \texttt{subdued} option the \texttt{mathastextification} is done only in \texttt{math versions} distinct from the standard and bold ones.

Despite some limitations I will now partially describe, the \texttt{subdued} option has its utility, as I think is illustrated enough by the examples given at the start of this document and it works reasonably well.

\texttt{mathastext} was not written initially in order to allow its action to be completely canceled. It does not store (all) mathcodes nor does it set them (all) when changing math versions; only that would allow a perfect subdued mode (and \texttt{\LaTeX} is rather obstinate in making that tricky or at least uneasy if sticking to its official interface to math mode, as it is almost entirely preamble only).

Releases 1.3t and 1.3u do this kind of things to maintain usability across multiple \texttt{mathastext}-ified math versions of characters which are obviously font encoding dependent such as the minus sign as en-dash (or unicode minus), the dotless i, the \texttt{\hbar}, the text accents.

But this should be extended to all \texttt{mathastext}-ified characters which basically would amount to an extensive rewrite of large legacy portions of the code. Currently the support for the \texttt{subdued} mode and to multiple math versions amounts to some kind of a kludge, added to an initial design which handled a single unique text font.

To get the displayed math (almost) as if \texttt{mathastext} had not been loaded, one must also use the option \texttt{defaultmathsizes}. But this does not quite suffice, as, for example, the colon, the dot, and the minus sign belong in the default \texttt{\LaTeX} math mode set-up to three distinct fonts whereas \texttt{mathastext} will pick (even subdued) the three of them in the same font,\textsuperscript{13} and although it will make a reasonable choice of

---

\textsuperscript{13}The minus sign is now perfectly subdued, because its original mathcode is stored and restored; this was only way to handle the case with Unicode engines where the math operator font is in a classic \TeX encoding, but the minus sign is configured by \texttt{mathastext} to use a Unicode en-dash or minus character in non-subdued math versions.
this font, this is not an exact re-installment of the previously prevailing situation. And then other packages could have done arbitrary things regarding character mathcodes, so to be on the safe side one needs the basic option which limits the mathastextification to letters and digits.\footnote{The subdued mode does extinguish in the normal and bold math versions the action of options selfGreek, eulergreek, and symbolgreek (previously only LGRgreek was subdue-able).} Even then, in some circumstances, this may not suffice: for example the euler package puts the digits in the same font as the Latin letters in math mode, but the subdued mathastext will pick them up in the same font as used for operator names, which for example in the case of the euler package, is the main document font.

1.4 Math versions

\LaTeX{} has the concept of math versions, but most font packages do not define any such version beyond the default normal and bold (that they possibly customize to use such or such math font). The package unicode-math for unicode engines fruitfully uses this concept. mathastext uses math versions in order to allow the math mode fonts (for letters, digits, punctuation and a few other ascii symbols) used in the different parts of the document to be kept in sync with the text fonts. However the other math symbols (sums, products, integrals, logical signs, etc... ) will be the same throughout the document as it is not in mathastext power to modify them. There are some possibilities to use different sets of fonts for the Greek letters, though.

The present document illustrated the use of various fonts, here is its preamble (slightly stripped-down):

\begin{verbatim}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\usepackage[subdued,italic,defaultmathsizes]{mathastext}
\MTDeclareVersion[n]{lmvtt}{T1}{lmvtt}{m}{n}
\usepackage{newcent}
\Mathastext[newcent]
\usepackage{times}
\Mathastext[times]
\usepackage[scaled]{helvet}
\Mathastext[helvet]
\begin{document}\MTversion{normal}
\end{verbatim}

Let us examine this code: it uses once the command \MTDeclareVersion and three times the command \Mathastext, thus defining four math versions\footnote{The \texttt{\textbackslash imath} and \texttt{\textbackslash jmath} now obey the subdued regime.} \footnote{The \texttt{\textbackslash hbar} and the math accents (see mathaccents option) obey the subdued regime.} \footnote{Math versions are discussed in the document fntguide.pdf from your \TeX{} distribution.}: lmvtt, newcent, times, and helvet. The names can be taken arbitrarily (they only need to be suitable arguments to the \LaTeX{} \texttt{\DeclareMathVersion} command which is
invoked internally). Two additional math versions preexist: the normal and bold, which, because there was the subdued option, were left untouched by mathastext.

Once these math versions are defined, \MTversion{name_of_version}, or equivalently \Mathastextversion{name_of_version}, enacts the font switches in the body of the document. As is usual with \TeX{} one can limit the scope to the inside of a group, or also switch back to the main set-up through issuing \Mathastextversion{normal}.

When \Mathastext{} is used in the preamble, it records the current font defaults and (except for the normal and bold versions under the subdued regime) sets up the math font to be used in that version to be the text font as found in \familydefault. But it is still possible for a mathastext-declared math version to have distinct fonts for text and math:

1. in the body of the \TeX{} source, an optional argument (the name of a mathastext-declared math version) to \MTversion{} is allowed, and for example we used in the source of this document \MTversion[newcent]{helvet} meaning “New Century Schoolbook for the text and Helvetica for the math.”

2. there are preamble-only commands \MTencoding, \MTfamily, \MTseries, \MTshape, \MTlettershape which tell mathastext what to do (for math only) in each math version declared afterwards, independently of the text fonts.

The native \TeX{} command \mathversion{version_name} would change only the fonts used in math mode. It is important to use rather the package command \MTversion{} (or one of its synonyms \mathastextversion, \Mathastextversion, \MTversion), with its mandatory argument {version_name}, as it does additional actions:

- it sets the font for math mode (letters, math operator names, digits, punctuations, some other symbols) according to the version name given as mandatory argument,

- it resets the text font of the document and the {family,rm,sf,...}defaults to their values as registered at the time of definition of the version. Use the starred variant in case this is not desired. It is possible to also specify within brackets an extra optional version name, and the text font will be set according to it.

For all math versions if not using the subdued option, or only for the non-normal and non-bold math versions if using the subdued option, \MTversion{} does further additional tasks:

NEW FEATURE! • it resets the \hbar, \imath (see \inodot), \jmath, math accents (see option mathaccents) and minus sign as en dash according to the used font encoding for the mathastext-ified text font,
• (see sections 1.5 and 1.6) it re-issues the command \texttt{MTmathactiveletters} to let \texttt{a} to \texttt{z}, \texttt{A} to \texttt{Z}, be mathematically active in order to automatically insert the skips as defined by the user with \texttt{MTsetmathskips}, and the italic corrections (if the font is not italic or slanted),

• (see section 1.7) it resets the extra spaces after the symbols \texttt{∃}, \texttt{∀} and before the derivative ‘ to the values as decided by the user in the preamble on a \textit{per version} basis,

• (see section 1.8) it re-issues the commands \texttt{MTmathoperatorsobeymathxx} and \texttt{MTeasyynonlettersobeymathxx} to let the math operator names and (‘easy’) non letter characters obey the math alphabets,

• in case of option \texttt{asterisk}, it re-issues \texttt{MTactiveasterisk},

• it does the additional set-up for Greek letters in case of the package received one of the Greek related options.

The scope is limited to the current \LaTeX{} environment or group.

It is sometimes not compatible with \texttt{mathastext} to load a font package after it, as the font package may contain instructions which will modify the math set-up. This may be a bit hidden to the user: for example the package \texttt{epigrafica} loads \texttt{pxfonts}. Hence it will interfere with \texttt{mathastext} if it is loaded after it.\footnote{may typically give a ‘too many math alphabets’ error message.}

But one can use instead \texttt{\renewcommand{\rmdefault}{epigrafica}},\footnote{sometimes one needs to look in the \texttt{.sty} file of the font package to figure out the font name (it is rarely as \texttt{epigrafica}, the same as the package name), and, if one does not know the arcanes of finding \texttt{.fd} files in one’s \TeX{} distribution, one should look at the log file of a test document to see if for example \texttt{T1} is available for that font; for \texttt{epigrafica} it is not, only \texttt{OT1} and \texttt{LGR} are possible.} followed with \texttt{\Mathastext}, or also \texttt{\MTfamily{epigrafica}\Mathastext} which will only change the font in math.

To use \texttt{epigrafica} for Greek in math mode one can use the package option \texttt{LGRgreek} and the command \texttt{\MTgreekfont{epigrafica}\Mathastext}. Or \texttt{\usepackage{epigrafica}} followed with \texttt{\usepackage[LGRgreek]{mathastext}}.

### 1.5 Extra spaces around letters

This is a new feature added with release 1.3: the command \texttt{MTsetmathskips} allows the user to set up some spaces (more precisely, ‘mu glue’; but stretch and shrink are discarded) to be automatically inserted around the letters in math mode. Some (very) unrealistic uses:

```latex
\% this may be anywhere in the document (also within a math group):
\MTsetmathskips{x}{20.33mu}{15.66mu}\% 20.33mu before all x’s and 15.66mu after.
\MTsetmathskips{y}{\thickmuskip}\% stretch and shrink are anyhow without effect.
\MTsetmathskips{z}{10mu}{5mu}\% stretch and shrink are anyhow without effect.
\MTsetmathskips{A}{\muexpr \thickmuskip*2}{\muexpr \medmuskip-\thinnmuskip/2}\%
```

\footnote{may typically give a ‘too many math alphabets’ error message.}
Here is what $\text{w} \text{x} \text{y} \text{t} \text{y} \text{z}^\text{w} \text{x} \text{y} \text{t} \text{z} = \text{B} \text{A} \text{C}^\text{B} \text{A} \text{C}$. Then gives using the Times font: \[ w \times t y t z \text{w} \times t y t z = \text{B} \text{A} \text{C}^{\text{B} \text{A} \text{C}}. \]

Any \TeX{} group or \LaTeX{} environment limits as usual the scope of this command. Furthermore the command \texttt{\MTunsetmathskips} cancels previous use of \texttt{\MTsetmathskips} for a given letter.

The implementation relies on the ‘mathematical activation’ of letters, which is done by default by the package since release 1.2b. Should this cause compatibility problems, the command \texttt{\MTmathstandardletters} cancels it entirely. To reactivate it, there is \texttt{\MTmathactiveletters}. Note that \texttt{\MTmathactiveletters} is done automatically by \texttt{mathastext} when loaded, and also each time the package enhanced math-version-switch command \texttt{\MTversion} is used, except for the normal and bold math versions under the \texttt{subdued} option.

The extra skips are set at natural width; they do not contribute to the overall stretchability or shrinkability of the math formula and do not create break points.

\textbf{Changed with 1.3i}: they are not applied within the scope of math alphabet commands.

\textbf{1.6 Italic corrections}

Note: this is somewhat technical discussion which may well be skipped in its entirety on first reading.

With the \texttt{italic} option the letters in math will be generally in italic shape (and, normally, upright in operator names).

For the built-in placement routines of \TeX{} in math mode to work as well as they usually do, the characters from the math italic font obviously should have their bounding boxes wide enough for the glyphs not to collide with other symbols. A letter from a text italic font such as \texttt{f} extends way out of its declared bounding box; let us compare the bounding boxes\textsuperscript{20} for the letter \texttt{f} in the math italic font to the one from the text italic font: \texttt{f} vs. \texttt{f}.

This could make us think that attempting to use in math a text italic font will lead to disaster. Well, surprisingly the situation is not that bad. Sure \texttt{f(x)} is wider with the standard math italic \texttt{f(x)} (21.31474pt) than it is with the text italic font used in math:\texttt{f(x)} (19.74986pt) but we should be surprised that our text italic \texttt{f} did not end up even closer to the opening parenthesis. Why is it so?

The explanation is that \TeX{} uses in such a situation the \textit{italic correction} for the letter \texttt{f}. The italic correction also exists and is used for the math italic font, it was inserted in \texttt{f} without us having to ask anything. Its value is 1.17865pt for the math italic \texttt{f} and 1.8919pt for the text italic \texttt{f}.\textsuperscript{22} With the italic corrections

\textsuperscript{20}let’s be honest, we are lying here about what exactly the first of these is bounding; this is explained later!

\textsuperscript{21}we used simply \texttt{$\mathit{f(x)}$}.

\textsuperscript{22}these values are for the Latin Modern fonts of course.
included our bounding boxes are indeed more alike: \[\] vs \[\].

Without the italic corrections\(^{23}\) it is \[\] vs \[\]. I said that \$f\$ included the italic correction automatically, but if we tell \TeX{} to use the text italic in math, and typeset the alphabet, we obtain something exactly identical to typing the letters in text, hence without any italic correction:

\begin{verbatim}
  abedefghijklmnopqrstuvwxyz  text italic in text
  abedefghijklmnopqrstuvwxyz  text italic in text
  abedefghijklmnopqrstuvwxyz  math italic in math
  abedefghijklmnopqrstuvwxyz  math italic in text
\end{verbatim}

Where are our italic corrections gone? The last line was done with \texttt{\usefont{OML}{lmm}{m}{it}} and confirms that italic corrections have been used for the math italic in math.

Turning to the \TeX{}book (and its Appendix G) we learn that in such circumstances, for the italic corrections to be put in from the font, one of its parameters, the interword space (aka \texttt{\fontdimen2}), should be zero. It is indeed zero for the math italic font, not for the text italic.

It is possible to make \TeX{} believe it is. Doing so, we obtain in math mode with the text italic:

\begin{verbatim}
  abedefghijklmnopqrstuvwxyz  text italic in math
  abedefghijklmnopqrstuvwxyz  math italic in math
\end{verbatim}

We saw that the italic correction was taken into account automatically (independently of the value of the interword space font parameter) in expressions such as \$f(x)\$. Another clever thing done by \TeX{} is to use it for the placement of superscripts; the next examples systematically use the text italic in math. We see that \(f^j\) is very different from \(f^j\) where the latter was coded with \$\hbox{itshape f}^j\$. The inputs \$\mathit{\hbox{itshape f\^j}}\$ and \$\mathit{f^j}\$ give almost identical results: \[\] vs. \[\]. Close examination reveals that the horizontal spacing is exactly identical, however the exponent in the second case is a bit lower. Anyway, the point is that in the second case the italic correction for \(f\) was indeed used.

Subscripts are another matter: they do not take into account the italic correction. For example \$\mathit{f_i}\$ gives the same horizontal positions as \$\mathit{\hbox{itshape f}_i}\$: \(f_i\) vs. \(f_i\). Printing them one on another gives \(f_i\) and reveals (use the zoom of your viewer!) that only the vertical placement was affected, not the horizontal placement.

We learn in Appendix G of the \TeX{}book that the italic correction is used for the horizontal shift of the superscript with respect to the position of the subscript: \(f_i^j\), or, going back now to the standard math italics \(f_i^j\). In the next paragraphs we use \(f_i^j\) for more accurate comparison of the positioning of the sub- and superscript.

If we try something like this: \$f\backslash_i^i\$ we obtain \(f_i^i\). Our overlapping game with \texttt{\rlap{f\_i\_i}}\$\{f\backslash_i\_i\}$ gives \(f_i^i\). We discover that the effect of the explicit italic correction has mainly been to translate the subscript horizontally to be

\[^{23}\text{here we give correctly the bounding box for the math italic } f\ldots\text{ without its italic correction!}\]
We most probably do not want this to happen for our indices and exponents in math mode. So perhaps we can rejoice in how astute \TeX has been in judiciously using the italic correction data, and there seems to be no need into fiddling with this algorithm which seems to work well even when applied to a text italic font. Actually we may even be of the opinion that the text italic version $f_i^i$ is a bit better-looking than the true math italic $f_i^i$. . . .

But wait... \texttt{mathastext} was initially developed to easily use in math mode the document text font not in its italic variant, but as is, so, usually, upright. And upright \TeX fonts may also have italic correction data! And what I just said about the shift of the superscript with respect to the subscript apply equally well to such a font, if \TeX has been told to use it. Let’s try Latin Modern Upright for letters in math: $f_i^i$ now gives $f_i^i$. We see the italic correction in action for the positioning of the superscript! Compare with $\texttt{\textit{f}_{i}^{i}}$: $\textit{f}_{i}^{i}$. Overlapping with $\texttt{\LaTeX}$$\texttt{\textit{f}_{i}^{i}}$ gives $\textit{f}_{i}^{i}$ and shows that the upright $f$ has an italic correction which was used to shift the superscript to the right (and it is now in a slightly lower position). Let’s now do $\texttt{\mathbb{f}}_{i}^{i}$: this gives $\mathbb{f}_{i}^{i}$ and the subscript is shifted to the right, and is now on the same vertical axis as the superscript. There are also some slight vertical displacements, $\texttt{\LaTeX}$$\texttt{\mathbb{f}_{i}^{i}}$ gives $\mathbb{f}_{i}^{i}$.

People will tell me crazy, but if we decide for using upright fonts in math, wouldn’t it be satisfying to have the subscript and superscript positioned on the same vertical axis? the letter has no slant, why should the indices display one?

We end up in this strange situation that it is attractive to systematically incorporate the italic corrections after the upright Latin characters in math! But we don’t want to do this inside the arguments to math alphabets as this would make impossible the formation of ligatures (the standard $\texttt{\textit{ff}}, \texttt{\textbf{ff}}, \texttt{\textsf{ff}}$ all give ligatures \textit{ff}, \textbf{ff}, \textsf{ff}, and \texttt{ff} and we would like to preserve this behavior).

Starting with version v1.2b, \texttt{mathastext} adds the italic correction automatically after each letter of the Latin alphabet in math mode, except when these letters are italic or slanted.

These italic corrections are canceled inside the arguments to the math alphabet commands, to allow the formation of ligatures as is expected in the standard default \TeX font set-up in math.

\footnote{there are also some tiny vertical displacements of the sub- and superscripts.}

\footnote{we just use $\texttt{\textit{f}_{i}^{i}}$.}
The feature-implementing commands \texttt{\MTicinmath, \MTnoicinmath, \MTicalsoinmathxx} are described in section 2.3.4.

Note: from brief testing on 2012/12/28, \texttt{X\TeX} seems not to obey in math mode italic corrections for OpenType fonts. Hence the \texttt{TEX} placement algorithms for math mode described in this section do not work well when an OpenType (text) font is used for the letters in math mode, and the document is compiled with the \texttt{X\TeX} engine. On the other hand \texttt{Lua\TeX} seems to implement the italic corrections when using OpenType fonts, but only with italic fonts (as far as I could tell). Try the following (which will use the OpenType Latin Modern font) on a recent \texttt{TEX} installation and compare the output of both engines:

\begin{verbatim}
\documentclass{article}
\usepackage{fontspec}
\begin{document}
\Huge
$\mathit{f_i^i}$\par $\mathrm{f_i^i}$
\end{document}
\end{verbatim}

Comment out the \texttt{fontspec} line and use \texttt{pdf\LaTeX}. All three outputs are different on my \texttt{TEX} installation. \texttt{X\TeX} does not have the italic corrections. \texttt{Lua\TeX} does, but only for the italic font. \texttt{pdf\LaTeX} has them for both the italic and the upright font.\footnote{the situation is rather ironical! by the way, the warnings in section 1.8 with $x^)?$ or similar are less of an issue here, because the letter is only followed by $\backslash$ and anyhow the whole is put by \texttt{mathastext} within group braces, so no surprises with $x^{y}$ or $\backslash\texttt{mathbin} x$. Nevertheless it is still true that (in math mode only) the letters a–z, A–Z, expand to composite objects, something which could surprise other packages. The command \texttt{\MTmathstandardletters} cancels this mechanism.}

1.7 Extra glue after $\exists$, $\forall$, and before the prime glyph

\texttt{\MTforallskip, \MTexistsskip,} and \texttt{\MTprimeskip} are three commands with each a mandatory argument like for example \texttt{3mu plus 1mu minus 1mu} or just \texttt{2.5mu}. They are especially useful when using an upright font in math mode. The \texttt{mu} is a unit length used in math mode (‘math unit’, 1/18th of the ‘quad’ value of the symbol font in the current style). Its value is relative to the current math style. Its use is mandatory in the commands described here.

- compare \texttt{$\forall B$} with \texttt{$\forall B$}, typeset after \texttt{\MTforallskip{2mu}},
- compare \texttt{$\exists N$} with \texttt{$\exists N$}, typeset after \texttt{\MTexistsskip{2mu}},
- and finally compare \texttt{f’} with \texttt{f’}, typeset after \texttt{\MTprimeskip{2mu}}.

These three commands may be used throughout the document, or also in the preamble, in which case the declared math versions will record the then current values of the skips. \texttt{mathastext} applies the following (small) default skips: \texttt{0.6667mu}

\footnote{Formerly, italic corrections were added to the \texttt{\mathnormal} arguments.}

\footnote{2016/11/04: the situation hasn’t changed a iota since, at least on current \texttt{TL2016}.}
for the skip after ∀, 1mu for the skip after ∃, and 0.5mu for the skip before the prime. The examples above become ∀B, ∃N and f'. 29

With the italic option the defaults are set to zero. Indeed ∀B, ∃N and f' look fine without additional skips. If the document decides then to declare in the preamble a math version with an upright font it is thus recommended to use the commands in the preamble before the \Mathastext[version_name] (or \MTDeclareVersion) command defining the version. They will be remembered when this math version is entered in the document. The commands may also be used directly in the document body.

Under the subdued option, the normal math version (at the start of the document body, or after \MTversion{normal}) and the bold math version (either at the start of the document body after \boldmath, or after \MTversion{bold}) do not have any extra skip inserted (even one of zero width) after ∀, ∃, or before the ′. 30

1.8 Extended scope of the math alphabets commands

Ever since the initial version of the package, some characters usually unaffected by the math alphabet commands \mathbf, \mathtt, \mathsf... are declared to be of ‘variable family type’, in order for them to obey these commands: for example the hash sign # gives # if input as $\mathbf{#}$ (\mathastext, especially in its beginnings, wanted as many characters as possible to be picked up from the text font and to behave similarly to letters and digits).

So it was especially frustrating that mathematical characters such as +, or <, or ] could not be declared of ‘variable family’ (in addition to being picked up in the text font) as this would, for reasons of the inner workings of \TeX, not be compatible with the automatically inserted spaces around them.

A revolutionary ;-) novelty is introduced with version 1.2 of the package: 1.2

1. the pre-declared or user-declared (using the amsmath \DeclareMathOperator or equivalent) operator names obey the math alphabet commands, 31

2. and, optionally, all non alphabetical characters 32 treated by \mathastext, i.e., if not disabled by options, !?;:;+-=()[]<>{}, the asterisk *, and ./|\#$%& 33 will also obey the math alphabet commands (when not used

---

29the derivative glyph from the \times font math symbols adapts itself better to an upright letter, no skip seems to be needed then.

30Formerly, skips of zero widths were inserted.

31contrarily to the next feature, this one is not likely to create incompatibilities with other packages, so it is activated by default.

32of course some of them are input preceded by a backslash, and the backslash itself is input as \backslash.

33# % & obey the math alphabets since the initial version of \mathastext; the dot ., the slash /, the vertical bar | and the backslash \ do not have specific spacings inserted by \TeX around them, and the procedure is then not a devilish one, this is why it is made the default for these characters which are listed apart. The math symbols \mid (which is | with type \mathrel) and \setminus (\ with type \mathbin) are counted among the ‘difficult’ cases, not the ‘easy non-letters’. 30

changed:
as delimiters). The important thing is that the spaces added by \TeX before and after are not modified.

Let us compare, for example, the new behavior of \texttt{\mathtt} and \texttt{\mathbf}

\[
\sin(n!) < \cos(m - p)\] 
\[\sin(x + y) = \cos(z - t)\]

with the traditional default behavior:

\[
\sin(n!) < \cos(m - p)\] 
\[\sin(x + y) = \cos(z - t)\]

The first feature is activated by default, except of course for the normal and bold math versions when the package was given the \texttt{\subdued} option. The second feature is \texttt{off} by default for the characters listed first. It is \texttt{on} for the ‘easy’ cases \# \$ \& . / \| \ (activating the feature for them puts no constraint on the user input and should not be too upsetting to other packages), and also for \texttt{*} but only if this was required explicitly by the option \texttt{asterisk}, as the user then is supposed to know that \$R^*\$ is no valid input anymore and should be replaced by \$R^{*}\$.

The remaining ‘difficult’ cases create similar constraints, which will be commented more upon next. The relevant commands are

\texttt{\MTmathoperatorsdonotobeymathxx}
\texttt{\MTnonlettersdonotobeymathxx}
\texttt{\MTeasynonlettersdonotobeymathxx}

for deactivation and

\texttt{\MTmathoperatorsobeymathxx}
\texttt{\MTnonlettersobeymathxx}
\texttt{\MTeasynonlettersobeymathxx}

for activation.\footnote{these commands are to be used outside of math mode. Their scope is limited to the current \LaTeX environment or group. They use the \texttt{\everymath} \texttt{\everydisplay} mechanism so if the document needs to modify these token lists it has to do so in a responsible manner, extending not annihilating their previous contents.}

\textbf{Important:} the package does \texttt{\MTnonlettersdonotobeymathxx} by default. The reason is that activating the mechanism adds some constraints to the way things must be input, adding

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\MTmathoperatorsdonotobeymathxx}
\texttt{\MTnonlettersdonotobeymathxx}
\texttt{\MTeasynonlettersdonotobeymathxx}

\texttt{\MTmathoperatorsobeymathxx}
\texttt{\MTnonlettersobeymathxx}
\texttt{\MTeasynonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\MTmathoperatorsdonotobeymathxx}
\texttt{\MTnonlettersdonotobeymathxx}
\texttt{\MTeasynonlettersdonotobeymathxx}

\texttt{\MTmathoperatorsobeymathxx}
\texttt{\MTnonlettersobeymathxx}
\texttt{\MTeasynonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\MTmathoperatorsdonotobeymathxx}
\texttt{\MTnonlettersdonotobeymathxx}
\texttt{\MTeasynonlettersdonotobeymathxx}

\texttt{\MTmathoperatorsobeymathxx}
\texttt{\MTnonlettersobeymathxx}
\texttt{\MTeasynonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\usepackage{mathastext}\MTnonlettersobeymathxx}

\texttt{\MTmathoperatorsdonotobeymathxx}
\texttt{\MTnonlettersdonotobeymathxx}
\texttt{\MTeasynonlettersdonotobeymathxx}

\texttt{\MTmathoperatorsobeymathxx}
\texttt{\MTnonlettersobeymathxx}
\texttt{\MTeasynonlettersobeymathxx}
Even if this rule is respected in the document source, it is still a possibility that incompatibilities with other packages will arise because `mathastext` does a *mathematical activation* of the characters which could be unexpected and unchecked for by other packages. This is precisely the case with the `amsmath` package, and the problem goes away by just making sure that `amsmath` is loaded before `mathastext` (generally speaking, `mathastext` should be loaded last after all packages dealing with math things).

The braces \{ and \} remain unresponsive to the alphabet changing commands even after `\MTnonlettersobeymathxx`. One must issue also `\MTexplicitbraceobeymathxx`, but it has the disadvantage that \{ and \} become then unusable as variable-size delimiters: `\big\{` or `\big\}` create errors and one must make use of `\big\brace` and `\big\bracer`. But one can now enjoy `{a, a > b}`, `{a, a > b}`, `{a, a > b}`, or even `{a, a > b}`.\(^{35,36}\)

Even with `\MTnonlettersobeymathxx`, the parenthese-like symbols (, ), [, ], < and > and the slashes /, \, if used as left/right delimiters (i.e. with `\left/\right`) do not react to math alphabet commands. This is mainly explained by the fact that the text font will not contain suitable glyphs, hence no attempt was made to make the delimiters pick up their glyphs there.

But `mathastext` does try to pick up most of the ‘small variants’ of the delimiters from the text font: `$\{\left<x\right>\}$ gives <x> (but `$\{\left<b\right>\}$ gives b). Notice that this differs from standard \LaTeX\ for which `$\{\left<x\right>\}$ gives \langle x\rangle. As it is perhaps a bit strange to have <x> next to X there is option `nonsmalldelims`: with this option the small-sized variants of the delimiters are not modified by `mathastext` (option `nonsmalldelims` has the side effect that, for the non-delimiter uses of \{, \} to be `mathastext`-ified it is necessary to issue `\MTnonlettersobeymathxx` and `\MTexplicitbracesobeymathxx`.)

At any rate, as said above, whether ‘small’ or not, delimiters are unresponsive to math alphabet commands, due to technical aspects of \TeX, and the way `mathastext` handles these things. Examples: `\mathbf{<a, b>}` gives <a, b> (no use of `\left/\right`, hence brackets do obey the math alphabets — as we issued `\MTnonlettersobeymathxx` a bit earlier), `\mathbf{\{\left<x, b\right>\}}` gives \langle x, b\rangle (brackets used with `\left/\right` do not obey the math alphabets), `\mathbf{\{\mathopen{<}a, b \\mathclose{>}\}}` gives <a, b> (no `\left/\right`, brackets do obey the math alphabets).

For comparison, the \LaTeX\ standard behavior for `\mathbf{\{\mathopen{<}a, b \\mathclose{>}\}}` is <a, b> (neither brackets nor the comma do respond).

\(^{35}\)This last example uses the `\mathnormalbold` additional alphabet defined by `mathastext`.

\(^{36}\)Let me recall that braces will anyhow not be handled at all by `mathastext` if the document font encoding is OT1, except under option `alldelims`. 
1.9 Greek letters

The Computer Modern fonts are very light and thin in comparison to many text fonts, and as a result rarely mix well with them (particularly if the Latin letters in math mode are upright). The following options are provided by \texttt{mathastext}:

\textbf{no option}: nothing is done by the package, Greek letters are the default Computer Modern ones or have been set-up by other packages; for example by the \texttt{fourier} package with option ‘upright’, which gives upright Greek letters.

\textbf{LGRgreek}: this is for fonts which additionally to Latin letters also provide Greek letters in LGR encoding. Here is a list from a 2012 standard \TeX installation: the Computer Modern, Latin Modern, and the CM-LGC fonts; the Greek Font Society fonts (such as GFS Didot), the epigrafica and kerkis packages, the \texttt{txfonts} package which extends the \texttt{txfonts} package with LGR-encoded Greek letters; the Droid fonts, the DejaVu fonts, the Comfortaa font, and the Open Sans font. The LGR encoded CM/LM fonts (in serif, sans-serif and typewriter family) give the nice Greek letters in upright shape from the \texttt{cbfonts} package. To get these letters in your \texttt{mathastext} math mode, you can do the following:

\begin{verbatim}
% instructions to load the document fonts:
\usepackage{nice_font}
% and then the following:
\renewcommand{\familydefault}{cmr} % or cmss or cmtt for sans resp. mono
\usepackage[LGRgreek]{mathastext}
\renewcommand{\familydefault}{\rmdefault}
\Mathastext % this re-initializes mathastext with the nice_font,
% without changing the LGR font cmr/cmss/cmtt used for Greek letters
% in math mode.
\begin{document}
If you use the \texttt{italic} option note that the italic Greek letters from the \texttt{cbfonts} are not the same glyphs as the default Greek letters from the OML encoded font \texttt{cmmi}.

\textbf{eulergreek}: the Greek letters will be taken from the Euler font (the document does not have to load the eulervm package, \texttt{mathastext} directly uses some file included in this package, as it provides a mechanism to scale by an arbitrary factor the Euler font.) The letters are upright.

\textbf{symbolgreek}: the Greek letters will be taken from the (Adobe Postscript) Symbol font. A command is provided so that the user can scale the Symbol font to let it better fit with the text font. The letters are upright.

\textbf{selfGreek}: this option concerns only the eleven Greek capitals from the OT1-encoding. It does nothing for the lowercase Greek letters. The encoding used in the document does not have to be OT1.
There is also \texttt{LGRgreeks} which tells \texttt{mathastext} to pick up in each math version the letters from the LGR encoded font used in that version, and \texttt{selfGreeks} to tell \texttt{mathastext} to do as for \texttt{selfGreek} but separately in all math versions.

Under the \texttt{subdued} option the Greek letters in the normal and bold math versions are kept to their defaults as found at the time of loading the package.

The commands \texttt{\MTstandardgreek} allow at any point in the document to turn inactive any Greek related option passed to \texttt{mathastext}. And conversely \texttt{\MTcustomgreek} reactivates it.

### 1.9.1 Shape of Greek letters

Classic TEX uses in math mode italic lowercase and upright uppercase Greek letters. French typography uses upright shape for both lowercase and uppercase. And the ISO standard is to use italic shape for both lowercase and uppercase.

The Euler and Symbol fonts not being available in other than their default upright shape, this question of shapes for Greek letters raises issues only in the case of the options \texttt{LGRgreek} and \texttt{selfGreek}.

The options \texttt{frenchmath}, \texttt{itgreek}, \texttt{upgreek}, \texttt{itGreek} and \texttt{upGreek} modify the Greek letter shapes according to the following rules, listed from the lowest to the highest priority:

- **no option**: the lowercase Greek letters are in the same shape as Latin letters, and the uppercase in the same shape as applied to digits and operator names,
- **frenchmath**: both lowercase and uppercase are in the same shape as the digits and operator names (most of the time this means “upright shape”, but it can be otherwise),
- **itgreek, upgreek**: both lowercase and uppercase are in the \texttt{\itdefault}, respectively the \texttt{\updefault} shape (at the time of loading the package or at the time of a subsequent call to \texttt{\Mathastext} or \texttt{\MathastextWillUse}),
- **itGreek, upGreek**: same as above, but only for the uppercase letters.

So, the default gives the classic TEX behavior when option \texttt{italic} was passed. Each call to \texttt{\Mathastext} (or \texttt{\MathastextWillUse}) macros (described in a later section) reinitializes the computation of the shapes.

As mentioned already the package allows to define various “math versions”. In the case of \texttt{eulergreek} or \texttt{symbolgreek} they apply to all these versions. In the case of the options \texttt{LGRgrees} or \texttt{selfGreeks} (notice the additional “s”), each math version is assumed to have its text font available in LGR (or OT1 encoding) and also the shapes will be local to the math version.

Finally version 1.15c of \texttt{mathastext} introduces new preamble-only commands to change the shapes, and even the font, used for Greek letters, in case of package options \texttt{LGRgreek/selfGreek}. They are \texttt{\MTitgreek}, \texttt{\MTupgreek}, \texttt{\MTitGreek}, \texttt{\MTupGreek}: these are used like the options and change only the shapes
for the math versions which will be declared \textit{next} in the preamble; and \texttt{MTgreek-font\{name\_of\_font\}} will tell the \textit{next} math versions to use that font family. To use this command you need to know the (little) name of a suitable font family available in LGR encoding: for example \texttt{lmr, txr} (needs \texttt{txfonts}b package on your system), \texttt{DejaVu Serif-TLF} (needs \texttt{dejavu} package on your system), etc…

1.10 Unicode engines

\texttt{mathastext} is minimally Unicode aware since 1.12 and can be used with \texttt{Xe\TeX} or \texttt{Lua\LaTeX}. Starting with release 1.3, it needs \texttt{lualatex} to be at least as recent as the one which was provided with the TL2013 distribution.

1.10.1 Caveat emptor

With \texttt{Xe\TeX} the user is strongly advised to first consider using the \texttt{mathspec} package, which is designed for Unicode, with a key-value interface. With both \texttt{Xe\TeX} and \texttt{Lua\LaTeX}, \texttt{unicode-math} is recommended for OpenType math fonts.

Particularly in the latter case (\textit{i.e.} using \texttt{unicode-math}) you probably don’t need, don’t want, and should not use \texttt{mathastext}: it is extremely far from being able to define a math font, as it applies basically only to a subset of the 32–127 ascii range, and in particular it does not know how to use a given Unicode font simultaneously for Latin and Greek letters. Again the user is strongly advised to look at \texttt{mathspec} and \texttt{unicode-math}.

Let me point out explicitly that \texttt{mathastext} has not been tested in any systematic manner under the Unicode engines; and that it is expected to be most definitely incompatible with \texttt{unicode-math}, although your mileage may vary and some features may appear to work.

When using \texttt{mathastext} with either \texttt{Xe\TeX} or \texttt{Lua\LaTeX} it is recommended to use the \texttt{fontspec} package (see remark below on \texttt{\encodingdefault}). Furthermore, it is \texttt{necessary} to load \texttt{fontspec} with its \texttt{no-math} option, and this \texttt{must} happen before loading \texttt{mathastext}.

- Use \texttt{fontspec} with its \texttt{no-math} option, and load it \texttt{prior} to \texttt{mathastext}. As some packages load \texttt{fontspec} themselves (for example \texttt{polyglossia}), a \texttt{\PassOptionsToPackage{no-math}{fontspec}} early in the preamble might be needed.
- The \texttt{amsmath} package, if used, \texttt{must} be loaded \texttt{prior} to \texttt{mathastext}.
- Under \texttt{lualatex} engine, it has long been recommended to also load the package \texttt{lualatex-math}. Please check its documentation as possibly it has now been incorporated upstream (I am not following up on the situation).
I already mentioned in the section 1.6 the fact that the italic corrections were not available for OpenType fonts under the Xe\TeX engine and only partially available for the Lua\TeX engine, with the result that the spacings in math mode when using for the letters an upright text font will be less satisfying than with the standard PDF\TeX engine (the OpenType fonts not being usable with the latter engine, this is not a criterion of choice anyhow).

To define math versions when using unicode fonts, use fontspec’s \setmainfont before the \Mathastext\[version\] command, or simply before loading mathastext for the default math versions.

It is possible to mix usage of Unicode fonts and classical \TeX fonts. All used 8bits font encoding must have been passed as options to the fontenc package.

1.10.2 The unicodeminus option

For legacy reason, mathastext uses by default the EN DASH U+2013 for the minus sign in math mode, if the font is determined to be a “Unicode” font.

There is now the unicodeminus to use rather MINUS SIGN U+2212.\footnote{Thanks to Tobias Brink who asked for this feature.} Check its \footnote{A tex mathastext.dtx (in a temporary repertory) on a copy of kpsewhich mathastext.dtx will extract extended versions of these examples as test files.} documentation on page 40.

1.10.3 Two examples

I include here two examples which compiled successfully with Xe\TeX and Lua\TeX, the first one on a Linux machine, the second one on a Mac OS X machine.\footnote{A tex mathastext.dtx (in a temporary repertory) on a copy of kpsewhich mathastext.dtx will extract extended versions of these examples as test files.}

\documentclass{article}
\usepackage[hscale=0.8]{geometry}
\usepackage{multicol}
\usepackage[nomath]{fontspec}
\usepackage{lmodern}
\usepackage[subdued,italic]{mathastext}
\setmainfont[Color=999999]{Verdana} \Mathastext[Verdana]
\setmainfont[Color=0000FF]{Arial} \Mathastext[Arial]
\setmainfont[Color=00FF00]{DejaVu Serif} \Mathastext[DejaVu]
\MTDeclareVersion{times}{T1}{ptm}{m}{n}
\setmainfont[Color=FF0000]{Andale Mono} \Mathastext[Andale]
\begin{document}
\newcommand\TEST[1]{\MTversion{#1}\
\begin{multicols}{2}
\hbox to\columnwidth{\hbox to\columnwidth{\hfil $abcdefghijklmnopqrstuvwxyz$\hfil}\kern-2.5em{#1}}
\centerline{ $ABCDEFGHIJKLMNOPQRSTUVWXYZ$ }
\centerline{ $0123456789$ }
\centerline{ $!\,?\,*\,,\,\cdot\,\colon\,;\,\+\,-\,=\,\langle\,\rangle\,\{\,\}\,\backslash$ }
\end{multicols}}
\begin{multicols}{2}
$ABCDEFGHIJKLMNOPQRSTUVWXYZ$
\end{multicols}
\end{document}
And now the same thing with fonts available on Mac OS X:

\documentclass{article}
\usepackage[hscale=0.8]{geometry}
\usepackage{multicol}
\usepackage[no-math]{fontspec}
\usepackage[modern]
\usepackage[subdued,italic]{mathastext}
\setmainfont[Color=FF0000]{Hoefler Text} \Mathastext[Hoefler]
\setmainfont[Color=336633]{American Typewriter}\Mathastext[Typewriter]
\setmainfont[Color=0000FF]{Herculanum} \Mathastext[Herculanum]
\setmainfont[Color=FF00FF]{Didot} \Mathastext[Didot]
\setmainfont[Color=999999]{Comic Sans MS} \Mathastext[Comic]
\begin{document}

--- copy here the code from the previous example ---
\TEST{Didot}\TEST{Comic}\TEST{normal}\TEST{Herculanum}
\TEST{Hoefler}\TEST{Typewriter}\TEST{bold}
\end{document}

1.11 Compatibility issues

Compatibility issues (or just questions of who decides last) are naturally to be expected with packages dealing with the math setting; the fix is simply to load mathastext last. And one should always load amsmath before mathastext (this is especially true when using Unicode engines but applies in general as well).

Any definition made in a package loaded before mathastext of the font to be used for letters or for the common characters in the ascii basic range will be overruled by the loading of mathastext (this includes the case when the earlier package had made the character ‘mathematically active’). Conversely most of the set-up done by mathastext may well be overruled by packages loaded later which do math related things.
In case of a ‘too many math alphabets’ message try the \texttt{defaultalphabets} option
or one of its \texttt{defaultnormal}, \texttt{defaulttt}, etc... sub-options.

Starting with version 1.2, \texttt{mathastext} makes some characters ‘mathematically
active’ to achieve certain effects: automatic insertion of the italic corrections when
using an upright text font in math, extended scope of the math alphabet commands
which now apply to non-letter symbols (and also to math operator names, but this
is much easier to achieve). And the (already mathematically active) right quote is
modified to have some extra space added before the derivative glyph ’.

This is compatible with using \texttt{\label} and \texttt{\ref} in and outside of math mode.
But a difficulty arises when some other package has made the character ‘globally
active’ everywhere in the document. The action of \texttt{mathastext} is made anew at
each mathematical inline or displayed formula. If it is detected that a character has
been activated then nothing further will be done (so the \texttt{mathastext} feature\textsuperscript{39}
for that character is lost) except if it appears that this activation was done by the Ba-
bel system. In that case \texttt{mathastext} does not make the character mathematically
active but it modifies in the appropriate manner the action of Babel for that char-
acter in math mode. Furthermore \texttt{mathastext} makes the character mathematically
inactive.\textsuperscript{40}

Here is indeed some code that you should \textbf{not} try at home:

\begin{verbatim}
\documentclass{article}
\usepackage[french]{babel}
\usepackage{mathtools}\mathtoolsset{centercolon}
\begin{document}
  $:$
\end{document}
\end{verbatim}

\textbf{DO NOT DO THIS AT HOME}: it creates an infinite loop.\textsuperscript{41} This is due to the
fact that the colon is simultaneously active (this is made by \texttt{babel+frenchb} at
begin document) and mathematically active (done by \texttt{mathtools} in the preamble).
The interaction gives an infinite loop. Such a situation will be cured by \texttt{mathastext},
even loaded before \texttt{mathtools}, if use is made of \texttt{\MTnonlettersobeymathxx}. At
each math formula \texttt{mathastext} will detect that Babel has activated the colon, and
will cancel the mathematical activation (the precise definition done by \texttt{mathtools}
was already lost at begin document due to overwriting by \texttt{babel} but the fact that
the character was mathematically active remained true).

So far I have briefly described the problem of document active characters (see the
test file \texttt{mathastexttestalphabets.tex} for more explanations and illustrations,

\textsuperscript{39}italic correction insertion for the latin letters, receptivity to the math alphabet action for the other
caracters.

\textsuperscript{40}only the characters ; : ! ? + - = < > ( ) [[]] * mentioned in section 1.8 as ‘difficult non letters’ (and the
right quote ’) and the latin letters are concerned here; it seems highly improbable that a latin letter
$e\in\{a$–$z$, $A$–$Z\}$ will have been made globally active (only letters never being used in command names
are possible candidates), but \texttt{mathastext} has been designed to cope with it, should it happen ...\n
\textsuperscript{41}This seems to still be the case with Babel 3.9f and frenchb.ldf 2.6e, as tested on Sep. 2, 2013.
Again tested with up-to-date TL2015 Jan. 15, 2016 with same result.
and the commented source code of the package). Pure mathematical activation revealed an incompatibility of another type with amsmath. To fix it, mathastext now replaces an inner macro of amsmath (\resetMathstrut) with its own version. [Always load amsmath before mathastext.]

Actually this last commandment was already made necessary by the use of the text endash to represent the minus sign in math mode, and, especially for Unicode engines, some aspects of the \DeclareMathOperator macro from amsmath.

**Important!** As is mentioned in the section 1.8, after command \MTnonlettersobeymathxx, characters such as ?, or [, now represent *two* ‘tokens’ and this will utterly confuse \TeX{} if some precautions are not taken. Examples: \$0^\ast$ or \texttt{x\mathrel{?}y}$ or \$R^\ast$ must be input now as \$0^\ast\{\}$ and, respectively, \texttt{x\mathrel{?}y}$ or \$R^\ast\{\$. This is why the package does \MTnonlettersdonotobeymathxx by default.

One thing to take note of is that this mechanism uses the \everymath and \everydisplay, so if it is needed to add to these \TeX{} ‘token lists’ some additional things this should be done in a way preserving the former contents.

If one issues (after \begin{document}) \everymath={} and \everydisplay={} this annihilates not only all the mathastext (evil ?) doings with math active characters but also everything else some other package might have put in these token registers, so it is better, if the need arises to cancel the math activation of characters done by mathastext to use the command \MTeverymathoff, which does all of \MTmathoperatorsdonotobeymathxx, \MTnonlettersdonotobeymathxx (already default), \MTmathstandardletters, \MTnormalprime, and \MTnormalasterisk. This is supposed to be used in a group or environment (as there is no \MTactivemathon). It must be used prior to entering math mode.

**New with 1.3i:** mathastext patches \url of packages url and hyperref, and also \nolinkurl, to force them to do automatically \MTeverymathoff. Indeed they use math mode, and it is better to turn mathastext off for their dealings.

2 Package options and commands

2.1 Summary of main options

*italic, frenchmath:* italic letters in math, upright uppercase if frenchmath.

*subdued:* acts in a subdued way. The \TeX{} normal and bold math versions are left (quasi) unchanged. With version 1.15e of the package this statement applies
also to the math alphabets \textbf, \textit, \textsf, and \mathtt (and not only to \textnormal and \texttt as in previous versions.)

**LGRgreek, eulergreek, symbolgreek:** the Greek letters will be taken, respectively from the text font itself (in LGR encoding), or from the Euler font, or from the Postscript Symbol font.

**symbolmax:** all characters other than letters and digits, are taken from the Symbol font. This option also makes a number of further glyphs available, such as some basic mathematical arrows, and the sum and product signs. For documents with very simple needs in mathematical symbols, mathastext with option symbolmax may give in the end a PDF file quite smaller than the one one would get without the package.

**defaultmathsizes:** mathastext sets up bigger sizes for subscripts (it also copies code from the moresize package to redefine \huge and define \HUGE). Use this option to prevent it from doing so.

**defaultalphabets:** by default, mathastext redeclares the math alphabets \texttt, \textit, \mathtt etc... (but not \textcal of course) to refer to the current document text fonts (at the time of loading the package and in each mathastext math version). Use this option to prevent it from doing so (each alphabet also has its own disabling option).

### 2.2 Miscellaneous

**the en-dash as minus sign:** very often the - character from the text font does not give a good minus sign. So by default, the package uses the en-dash sign –. Use noendash to deactivate it. Starting with version 1.12 of the package this ‘en-dash as minus’ should work in all encodings, including Unicode (if fontspec has been loaded); see also unicodeminus for OpenType fonts.

**amsmath:** the behaviour of the \DeclareMathOperator command of amsmath is changed: modified by mathastext for it to use the correct font. Additionally, release 1.3n of mathastext at long last also handles an extra operation done by amsmath for ‘.:/-*/ to be used in operator names without the extra math spacing. This customization is suppressed in subdued mode for the normal and bold math versions.

**hbar:** the default \LaTeX definition of \hbar would in our context make use of the \h of the current math font (so for us, it is also the text font, perhaps in italic

---

42To the experts: there is a long story here that \newmcode hardcodes the font, that it was not compatible with Unicode engines, that during some time (2013-2016) lualatex-math fixed that and very recently amsopn. aty 2016/03/08 v2.02 also, so now lualatex-math 1.6 does nothing as it is already fixed “upstream” in amsopn. aty, but anyhow in both cases, this still hardcodes the font, so finally mathastext does the right thing from its point of view. See the code comments for more, there is an issue here with Lua\TeX not applying the curly right quote contrarily to \TeX.
shape), but with a bar across the \h from the original default math font for letters (usually \textfont). We redefine \hbar to use the text font macron accent (\textbar) as a mock math accent (this takes into account the \textit option and is compatible with subscripts and superscripts).

Since 1.12 \texttt{mathastext} when dealing with a Unicode font sets the \hbar to be the character from the font having hexadecimal codepoint U+0127.

Since 1.3u the general 8bits font encoding is supported (see discussion of the \texttt{mathaccents} option at end of this list for the shared limitations). Brief testing with various usual \TeX fonts shows that the vertical positioning of the bar isn’t satisfying. It is planned to either add a parameter to adjust it or to modify altogether the mode of construction of the \hbar.

Use \texttt{nohbar} to tell \texttt{mathastext} not do provide its own \hbar.

\texttt{dotless i and j}: by default the package redefines \texttt{imath} and \texttt{jmath} to give (in math mode) the dotless i and j (if it exists at all) from the text font.\footnote{Since 1.12 it also redefined \texttt{i} and \texttt{j} for usability both in text and math modes, but this has been dropped at 1.3t. Breaking change!}

\texttt{asterisk}: versions of \texttt{mathastext} earlier than 1.2d [2013/01/02] did not do anything with the \texttt{ast} control sequence but did pick the asterisk * in the document text font, and this often was a rather silly thing as the text asterisk is generally in a raised position. Furthermore, the * lost its status of a binary operator and was treated as an ‘ordinary’ symbol. An option \texttt{noasterisk} turned this feature off. Starting with 1.2d, the \texttt{noasterisk} option is deprecated and the new default is to do nothing. But when option \texttt{asterisk} is received by the package, then both \texttt{ast} and * are simultaneously modified to use (as binary operators) the text asterisk, slightly lowered. The amount of lowering\footnote{with the option \texttt{symbolmic}, the asterisk is picked from the Symbol font, and the amount of lowering is non-customizable; however if a math alphabet command is used, the asterisk is then again from a text font and the lowering will be as specified by \texttt{MTlowerast}.} is decided by the mandatory argument to the command \texttt{MTlowerast}\{\textit{dimen}\}. The package initially does \texttt{MTlowerast}\{.3\height\}. Doing \texttt{MTlowerast}\{.5\textit{ex}\} is not a good idea as it does not scale properly in the script and scriptscript styles. With an argument given as a multiple of \height, the asterisk will behave as expected in subscripts and superscripts of subscripts. But * is now ‘mathematically active’\footnote{in a hopefully safe way, for example $\label{eq*1}$ is ok.} and \texttt{\$R^\ast\$} or \texttt{\$R^{\ast}\$} must be input as \texttt{\$R^{\ast}\$} and \texttt{\$R^{-\ast}$}. Furthermore, they will obey the math alphabet commands.

\texttt{X\TeX and Lua\TeX}: regarding the en-dash and the dotless i and j, the package is now under the Unicode engines compatible not only with the “Unicode” \texttt{X\TeX} font encodings EU1 (Xg\TeX, old fonts), EU2 (Lua\TeX, old fonts),
TU (Xe\TeX and Lua\TeX, modern fontspec), but also with traditional 8bit-encodings declared as a \texttt{fontenc} option. Formerly, with a Unicode engine, only OT1, T1 and LY1 were supported by \texttt{mathastext} as the 8bit encoding of the document text font, regarding the minus as en-dash and the dotless i and j.

\texttt{fontspec}: one more note to users of Xe\TeX/Lua\TeX with fontspec: it has to be loaded with the option \texttt{no-math} and before \texttt{mathastext}.

\texttt{vec} accent: The default $\vec$ accent is not appropriate for upright letters, so \texttt{mathastext} provides a $\fouriervec$ which takes its glyph in a Fourier font, and an Ersatz $\pmvec$ which is reasonably good looking on upright letters and works with the $\rightarrow$ glyph. Contrarily to version 1.0, the default $\vec$ is not overwritten with $\fouriervec$. And contrarily to version 1.1, one now needs to pass the option $\fouriervec$ to have the math accent $\fouriervec$ defined by the package.

\texttt{math alphabets}: • We define a new math alphabet command $\mathnormalbold$ which gives direct access to the bold version of the $\mathnormal$ alphabet (rather than using either the $\bm$ command from the $\bm$ package or the $\boldsymbol$ command from the \texttt{amsbsy} package). As it does not exist in the default \LaTeX\ math font set-up, this alphabet is \emph{not} subjected to the subdued option action.

• The other math alphabet changing commands defined by the package are $\MathEulerBold$, $\MathEuler$ and $\MathPSymbol$.

• $\mathnormal$, $\mathrm$, $\mathbf$, $\mathit$, $\mathsf$ and $\mathtt$ are modified to make reference to the document text fonts (this can be disabled by suitable package options).

• version 1.2 of \texttt{mathastext} has extended the scope of the math alphabets to apply to non-alphabetical characters and to operator names. This respects the automatic white spaces added by \LaTeX around math symbols.

• the extra skips around letters (see subsection 1.5 and subsection 1.6) are removed in the scope of the math alphabets.

\texttt{math accents}: if option $\mathaccents$ is used then \texttt{mathastext} attempts to let the math accents $\acute$, $\grave$, etc... use the suitable glyphs from the text font. Prior to 1.3u only OT1, T1, and LY1 were supported (via hardcoded slots).

\texttt{NEW FEATURE!} It should now work with any 8bits font encoding having been declared as an option to the \texttt{fontenc} package (and of course providing the ten needed text accents which will mock math accents).\footnote{this costs a math family, as I never came back to this to try to do otherwise.}

\texttt{NEW FEATURE!} The code will raise low-level \LaTeX errors if the user attempts to use an 8bits font encoding whose \LaTeX\ definition file is lacking the suitable uses of $\texttt{\DeclareTextAccent}$ or if the low level \LaTeX\ \texttt{28}
The \textbf{vec} math accent is not handled here, as it is not available in the usual 8bits font encodings. See the \texttt{fouriervec} option or the \texttt{pmvec} command.

The math accents obey the \texttt{subdued} option and will change in sync with the \texttt{mathastext}-ified text font used in each non subdued math version.

(Very) brief testing during 1.3u development with \TeX{} and \LaTeX{} let the author conclude that usage with the \texttt{Umathaccent} primitive of an OpenType accent glyph slot (which in the text font is for usage as a postpended combining character) gives definitely bad horizontal placements for both engines (each in its own way). Thus, the redefinitions of accents for a \texttt{mathastext} declared math version with an OpenType font is by default canceled.\footnote{I.e., the \texttt{grave} etc... control sequences will, in math versions with an OpenType \texttt{mathastext}-ified font, expand to macros holding their initial meanings, unmodified by \texttt{mathastext}, which was in force at the \texttt{begin(document)}.} Use \texttt{unimathaccents} to force usage of the OpenType font text accents glyph slots with the \texttt{Umathaccent} primitive. Expert users are invited to check out the code and to contribute suggestions if some extras can improve it.

\textbf{varying font encodings:} the very first release of \texttt{mathastext} dealt with only one font; very soon thereafter it acquired the capacity to define multiple math versions, each one using its own text font. But, as was documented at this location formerly, various encoding dependent decisions were done once and for all during package loading.

This meant in particular that the minus sign (using the text endash), the dotless \texttt{i} and \texttt{j}, the \texttt{\hbar}, the math accents were all set up for only one unique font encoding. It was thus recommended that all math versions share the same font encoding.

The 1.3u release has lifted this restriction.

\subsection*{2.3 Commands}

A few preliminary comments, mainly destined to advanced users aware of some \TeX{} innards (more extensive explanations are to be found in the code comments).

The timing for actions of \texttt{mathastext} falls into three cases:

1. things done during the loading of the package, or delayed to \texttt{AtBeginDocument},

2. things done as the result of user commands, either in the preamble or in the body of the document,

3. things done everytime math mode is entered.
The second category overlaps with the others, as the (preamble) use of some commands can have either immediate effect or only trigger some actions in \AtBeginDocument or perhaps only influence the things done later by \texttt{mathastext} each time math mode is entered.

The third category deserves some brief additional comments: it mainly (but not exclusively) regards the “math activation” of characters, and conversely all “math activations” fall into this category. The package re-checks each time math mode is entered if some characters have been made in-between catcode active, or math active, and takes appropriate decisions: one important aspect of this issue is that \texttt{babel}’s mechanism for activating character was not, last time I checked, very robust against math active characters. I now checked again (on January 15, 2016) that

\begin{verbatim}
\documentclass{article}
\usepackage[french]{babel}
\usepackage{mathtools}\mathtoolsset{centercolon}
\begin{document}
$:$
\end{document}
\end{verbatim}

creates an infinite loop (see section \ref{sec:mathversion} where this was mentioned already, some years ago). Thus \texttt{mathastext} has (since 1.2e 2013/01/10) a somewhat elaborate mechanism related to these issues (see the code comments), installed into the list of things done by \LaTeX{} systematically each time it enters math mode. For some legacy reason the package also puts into this list a few other things which could arguably be done elsewhere once and for all. The command \texttt{\MTeverymathoff} cancels all actions done by \texttt{mathastext}.

### 2.3.1 Preamble-only commands

These commands mainly facilitate the definition of math versions, in a \texttt{mathastext} extended sense. It is not necessary to use them to activate the package basic functionalities, as loading \texttt{mathastext} is enough (except with the \texttt{subdued} option).

- \texttt{\Mathastext} (or \texttt{\mathastext}) reinitializes \texttt{mathastext}: it sets the fonts used in math mode (in versions \texttt{normal} and \texttt{bold}) for letters, digits and a few ascii symbols to the current defaults of encoding, family, series and shape.\footnote{\texttt{\Mathastext} updates also the font and shapes for the Greek letters (\texttt{LGRgreek} option), and the skips to be inserted after the symbols $\forall$ and $\exists$, see infra.} Both the normal and bold math version are modified by this action of \texttt{\Mathastext}.

- \textbf{math versions:} \texttt{\Mathastext} accepts an optional argument \texttt{\[(name)\]}.
  
  With this (within square brackets) argument, rather than redefining the fonts for math mode, \texttt{\Mathastext} declares a new math version, and it is this math version which will use the then current text font in math mode.\footnote{The allowed version names are as for the \LaTeX{} \texttt{\DeclareMathVersion} macro. \textit{Do not use} \texttt{\Mathastext[foo] with foo equal to “normal” or “bold”}; this is already taken care of by the initial loading of the package or a later command \texttt{\Mathastext} without any optional argument.}
• inheritance: starting with version 1.3c a second optional argument (other_version) will transfer its set-up for things not affected by mathastext action, like large symbols, to the declared math version whose name was given as first optional argument. The main use will be with [bold] in order for the symbols and large symbols to be typeset as in the bold math version. For example, this document has in its preamble:
\usepackage{newcent}\% this package makes New Century the roman font \Mathastext[newcent]\% this math version will use New Century \MTseries{b}\% next Mathastext will use a bold font \Mathastext[boldnewcent]{bold}\% large symbols, etc, will be bold too

We can check that it does work:
\MTversion{newcent}: abcde \bigvee \bigcap \bigoplus
\MTversion{boldnewcent}: abcde \bigvee \bigcap \bigoplus

Naturally, for this one needs an initial math font setup with some nice bold fonts also for large symbols. This is the case with the excellent txfonts package of Young Ryu. As the present document must use many fonts and declares many math alphabets, we did not load the full package and fonts but only the largesymbols:
\DeclareSymbolFont{largesymbols}{OMX}{txex}{m}{n} \SetSymbolFont{largesymbols}{bold}{OMX}{txex}{bx}{n} \DeclareFontSubstitution{OMX}{txex}{m}{n}

\Mathastext may be preceded optionally by one or more of \MTencoding{enc}, \MTfamily{fam}, \MTseries{ser}, \MTshape{sh}, and \MTletternumber{ltsh}. For example valid values are, respectively, \langle T1 \rangle, \langle phv \rangle, \langle m \rangle, \langle n \rangle, and \langle it \rangle: this is the Helvetica font in T1-encoding, regular (medium) series, upright shape, and the letters will be in italic shape. Once used their effect applies to all succeeding calls to \Mathastext, and can only be undone by using them again.

\MTWillUse{ltsh}{enc}{fam}{ser}{sh} tells mathastext to use the font with the specified encoding, family, series, and shape for the letters and digits (and all other afflicted characters) in math mode. The optional argument \langle ltsh \rangle specifies a shape for the letters, for example \langle it \rangle, or directly \langle it \rangle or \langle sc \rangle.

\MTDeclareVersion{ltsh}{name}{enc}{fam}{ser}{sh}{{other_version}} declares that the document will have access to the font with the specified characteristics, under the math version name \langle name \rangle. For example:
\MTDeclareVersion{sc}{palatino}{T1}{ppl}{b}{s1} declares under the name palatino a version where mathematics will be typeset using the Palatino font in T1-encoding, bold, slanted, and the letters will in fact

\footnote{These commands exist also with long names: \Mathastextencoding, etc... The same applies to the other commands mentioned in this section.}
be in caps and small caps (and bold).\footnote{I do not especially recommend to use this in real life!} When the initial optional argument is absent, and `\mathastext` was loaded with the italic option, then the default letter shape will be it,\footnote{more precisely, the shape is the latest value passed in one of the previously used package commands to specify the shape of letters, or the \itdefault of the time of loading the package.} else letters will have the same shape as used for digits and operator-names.

Another optional argument may be used as last argument. Similarly as its use with `\Mathastext` this makes the declared math version inherit, for things not modified by `\mathastext` like large symbols, the font set up of the math version whose name was passed as optional argument (typical use will be with [bold]).

- `\MTboldvariant{\langle\text{var}\rangle}`: when used before `\Mathastext`, specifies which bold (b, sb, bx, ...) to be used by `\mathbf` (and `\boldmath`). Default is the `\bfdefault` at the time of loading `\mathastext`. When used before the declaration of a version, decides the way `\mathbf` will act in this version.

- `\MTEulerScale{\langle\text{factor}\rangle}`: scales the Euler font by \langle\text{factor}\rangle.

- `\MTSymbolScale{\langle\text{factor}\rangle}`: scales the Symbol font by \langle\text{factor}\rangle.

- `\MTgreekfont{\langle\text{fontfamily}\rangle}`: optional command with a mandatory argument which specifies the font for Greek letters in all `\mathastext` math versions declared afterwards via `\Mathastext` or `\MTDeclareVersion`. Only effective with LGRgreek option.

2.3.2 Commands usable only outside of math mode

They are usable only from outside math mode because they act via turning on or off the execution, each time math mode is entered, of certain macros added by `\mathastext` to the `\everymath` and `\everypmath` token list variables.

- `\MTmathactiveletters`: activates the ‘math activation’ of Latin letters. This is done by the package during loading, except under the subdued option.\footnote{Formerly, it was also executed from each `\Mathastext` in the preamble.} It is again executed in the body at each `\MTversion`, except under the subdued option when switching to the normal or bold math versions.

The letters are made mathematically active\footnote{the mathcode’s are only modified at the time of execution of `\everymath`, `\everypmath` to insert the extra skips as specified by `\MTsetmathskips` (see section 1.5), and also possibly the italic corrections when using upright fonts (see section 1.6).} to insert the extra skips as specified by `\MTsetmathskips` (see section 1.5), and also possibly the italic corrections when using upright fonts (see section 1.6).
\textbf{MTmathstandardletters}: cancels the ‘math activation’ of the letters. Must be re-issued after each \texttt{MTversion}, but see \texttt{MTeverymathdefault}.

\textbf{MTicinmath}: this command is executed by default by \texttt{mathastext} except in case of option subdued or if the user chosen letter shape is oblique (\texttt{it} or \texttt{sl}). It tells \texttt{mathastext} to add italic corrections after all letters in math mode, except within the scope of math alphabets.\footnote{Formerly, italic corrections were added to the (non-oblique) letters of \texttt{mathnormal} arguments.}

This command and the next ones in this item can be used in the preamble as well as in the body of the document (in case of \texttt{subdued} option, using the commands from within the preamble will remain without effect, as the document body will start in the subdued normal math version anyhow.) But each \texttt{MTversion} in the body will re-emit \texttt{MTicinmath} (in case of non-oblique letter shape), except if the \texttt{subdued} option was used and the chosen math version is \texttt{normal} or \texttt{bold}.

The effect of this and the other commands of this item is local to the group or environment in which it has been issued.

It may theoretically be used from inside math mode, but the included \texttt{MTmathactiveletters} will have an effect only if issued prior to entering math mode.

\texttt{MTnoicinmath}: this command deactivates the package added italic corrections. It can be used inside as well as outside of math mode (or in the preamble of the document).

\texttt{MTICinmath, MTnoICinmath}: these commands activate the italic corrections only for the uppercase letters (but recall that \texttt{MTicinmath} is done by default, thus this will typically have to follow \texttt{MTnoicinmath}.)

\texttt{MTicalsoinmathxx}: this command de-activates the de-activation of the italic corrections inside the arguments to the math alphabet commands. It can be issued inside as well as outside of math mode. Will be effective only if \texttt{MTicinmath} or \texttt{MTICinmath} is in force. To cancel its effect either enclose it in a group or environment or re-issue \texttt{MTicinmath} after it.

\texttt{MTnormalasterisk, MTactiveasterisk}: the latter will use for \texttt{*} and \texttt{\ast} the text font asterisk, suitably lowered; the former tells \texttt{mathastext} to not modify the \LaTeX{} default. Both are no-op without option \texttt{asterisk}.

\texttt{MTeasynonlettersobeymathxx, MTeasynonlettersdonotobeymathxx}: the former is done by default, it makes characters , / , \backslash , . , # , $ , \%	ext{, and} & (if not excluded by package options) obey math alphabet commands. See also section 1.8. This functionality does not make the characters “math active” (but it does modify \texttt{mathcode}’s, naturally).

\texttt{MTnonlettersobeymathxx, MTnonlettersdonotobeymathxx}: the former will make (except if excluded by relevant package options) !, ?, , :, ;, +, -, =, (, ), [ , ], <, and > obey the math alphabet commands (when not used as delimiters). These characters are made “math active”, and each one now expands to two tokens. This makes for example \texttt{$a^!$} illegal input and it will have to be coded \texttt{$a^{!}$}. Hence, by default, the package does \texttt{MTnonlettersdonotobeymathxx}.\footnote{\texttt{MTversion} changed: (1.3i)}
Under **subdued** option, \texttt{\MTnonlettersobeymathxx} effect is of course canceled in the **normal** and **bold** math versions; but please note that when switching back to a non-subdued math version it will be mandatory to issue again \texttt{\MTnonlettersobeymathxx} explicitly if its effect is to be re-activated.

In particular, executing \texttt{\MTnonlettersobeymathxx} in the preamble or at the start of the document body serves nothing, because the document is in the subdued **normal** math version regime then. It must thus be executed after the first usage of \texttt{\Mtversion} switching to a non-subdued math version, and again on each successive exit from the **normal** or **bold** math versions.

\texttt{\MTexplicitbracesobeymathxx} extends an earlier \texttt{\MTnonlettersobeymathxx} to also treat \texttt{\{ and \}. But then \texttt{\left\{, \right\}} must be coded \texttt{\left\{brace, \right\}brace} rather. There is also \texttt{\MTexplicitbracesdonotobeymathxx}.

- \texttt{\MTnormalprime}, \texttt{\MTprimedoesskip}: the latter (done by default if not **subdued**, (1.3j) and also on each use of \texttt{\Mtversion} in the body of the document except for the **subdued** **normal** and **bold** math version) makes it so that ' takes into account the math glue as specified by \texttt{\MTprimeskip}. The former is its opposite. In all cases the right quote ' is a mathematically active character producing ' as is the default in \TeX, it is only its meaning which changes to include or not an extra skip. For some (legacy) reason, this change of meaning is done anew by \texttt{mathastext} each time math mode is entered. The commands of this item are thus no-op from inside math mode.

- \texttt{\MTeverymathdefault}: this hook is executed by \texttt{\Mtversion\{\version_name\}}, (1.3j) except under option **subdued** when switching to the **normal** or **bold** math versions. Its default meaning is:

\begin{quote}
\texttt{\MTactiveasterisk} % this has no effect without option asterisk
\texttt{\MTprimedoesskip} % this makes prime glyph obey extra space
\texttt{\MTasynonlettersobeymathxx}
\texttt{\MTicinmath} % this does \texttt{\MTmathactiveletters}, hence also skips from % \texttt{\MTsetmathskips} are obeyed.
\texttt{\MTfixfonts} % only operant under \LaTeX.
\end{quote}

Notice that under **subdued** option, switching to the **normal** or **bold** version does \texttt{\MTeverymathoff} which includes \texttt{\MTnonlettersdonotobeymathxx}.

The default \texttt{\MTeverymathdefault} which is issued when going back to a non-**normal** or **bold** math version doesn’t do \texttt{\MTnonlettersobeymathxx}: thus it is up to the user to correct this if needed (no issue without **subdued** option).

Notice also that \texttt{\Mtversion\{\version_name\}}, except for **normal** or **bold** if **subdued** does \texttt{\MTforalldoesskip} and \texttt{\MTexistsdoesskip}, which are not included in \texttt{\MTeverymathdefault} actions as they are not related to \texttt{everymath} and \texttt{everydisplay}.

- \texttt{\MTeverymathoff}: does \texttt{\MTnormalasterisk}, \texttt{\MTnormalprime}, \texttt{\MTnonletters} (1.3j) \texttt{\MTnonlettersobeymathxx}, \texttt{\MTasynonlettersdonotobeymathxx}, \texttt{\MTmathstandardletters} and \texttt{\MTdonotfixfonts}. 

34
The commands `\url`/\nolinkurl of package hyperref and url from url.sty (which use math mode under the hood) are patched by mathastext to do \MTeverymathoff automatically: this is needed because mathastext modifies anew some mathcodes each time math mode is entered, hence may overwrite to some extent the specific preparation done by \{url,hyperref\}.sty.

Automatically done by \MTversion under option subdued if switching to the normal or bold math versions; and \MTversion then does also \MTnormalexists and \MTnormalforall.

- \MTfixfonts: this is operant only under LuaLaTeX. It has the effect that each time math mode is entered macro \MTfixmathfonts will be executed. The latter forces so-called base mode for the used text font in math mode, in an effort to (only partially, see code comments) fix the fact that OpenType features such as Lining Figures were in some cases not being applied in math mode when one uses text fonts there (text fonts are declared by LuaTeX+luaotfload to use node mode, which is non-functional in math.) It is invoked automatically by the package (except for normal and bold math versions under subdued option), and in normal situations, there is no reason to use it directly.

- \MTdonotfixfonts: cancels the job of \MTfixfonts. Done automatically in subdued mode when in the normal or bold math version; in normal contexts, there is no reason to use this command. Only operant under LuaLaTeX.

2.3.3 Commands usable only in math mode

\MTfixmathfonts: this used to be an inner macro but it is given a public name by 1.3p because I discovered that $\.\hbox{\mathversion{foo}$..$}$ causes an issue and one needs to invoke again \MTfixmathfonts after the \hbox, for some reason. To be used only under LuaLaTeX and only for such rare cases where it may be needed.

2.3.4 Commands usable everywhere

- \MTsetmathskips\{\langle a-z/A-Z\rangle\}{\langle muglue\_before\rangle}{\langle muglue\_after\rangle}: is used to specify extra skips (or rather mu glue) to be inserted in math mode, before and after a letter. The rationale is that standard text fonts used in math mode may sometimes cause glyph (near-) collisions with math symbols, as \TeX has some implicit expectations on the design of fonts for math letters.

These extra skips around letters are set at their natural width and do not add any stretchability or shrinkability to the math formula as a whole, nor do they result in extra potential break points.

Random (silly) examples:
\MTsetmathskips\{x\}\{\medmuskip\}\{\thickmuskip\}
\MTsetmathskips\{A\}\{.5mu\}\{2.3mu\}
and the effect: vw x yz A BC vwx yzA B C. The effect obeys the usual \LaTeX scoping rules.

The first argument of \MTsetmathskips may be any expandable code giving a letter; this facilitates use of \MTsetmathskip in \@for loops such as this one:
Starting with v1.3i: the extra skips are not applied to the letters within the scope of math alphabet commands, or the letters from operator names (pre-defined or user declared).

Note that contrarily to the \texttt{\MTexistsskip}, \texttt{\MTforallskip}, and \texttt{\MTprimeskip} commands described next, these extra skips (which may be specified in the preamble) are not recorded in the definition of the math version (as defined via \texttt{\Mathastext} with its optional argument or via \texttt{\MTDeclareVersion}). The declared skips hold throughout the document until modified or canceled, independently of math versions (of course, \texttt{\Mathastext} cancels the skips in the normal and bold math versions if package option \texttt{subdued} was used).

\textbullet \texttt{\MT_unsetmathskips\{a-z/A-Z\}}: cancels the skips for that letter (they are not set to 0mu but completely removed).

The argument may be a macro (or any expandable code) expanding to a letter.

\textbullet \texttt{\MTexistsskip\{math glue\}}: specifies the amount of skip or more generally glue to put after each $\exists$ math symbol. Indeed, upright letters (or digits for that matter) often appear to be positioned a bit too close to the quantifier: $\exists B$. The package default is to add a 1mu skip (this default is set to zero in the case of \texttt{italic}): $\exists B$. One can change the default with the following syntax: \texttt{\MTexistsskip\{2mu plus 1mu minus 1mu\}}, which if used in the preamble and followed with a \texttt{\Mathastext} command (or \texttt{\MTDeclareVersion}), will be recorded in the definition of this math version (and subsequent ones). One may also use the command at any time in the document. In the case of the option \texttt{subdued}, the skip is canceled in the \texttt{normal} and \texttt{bold} math versions.\footnote{Formerly, it was set to 0mu.}

In the case of the option \texttt{italic}, the default skip is set to zero.

\textbullet \texttt{\MTnormalexists, \MTexistsdoeskip}: the latter (done by default if not \texttt{subdued}, and also on each use of \texttt{\MTversion} in the body of the document) makes it so that $\exists$ takes into account the math glue as specified by \texttt{\MTexistsskip}. The former is its opposite.

\textbullet \texttt{\MTforallskip\{math glue\}}: the default is to add a .6667mu math skip after each $\forall$ (except with the option \texttt{italic} for which the default skip is set to zero). Compare $\forall F$ (has the skip) with $\forall F$ (has no skip). Use this command in the preamble to set up the skip or glue to be used in the \textit{next to be declared} math versions. In the case of the option \texttt{subdued}, the skip is canceled in the \texttt{normal} and \texttt{bold} math versions.\footnote{Formerly, it was set to 0mu.} In the case of the option \texttt{italic}, the default skip is set to 0mu.
zero for all math versions. One may use the command at any location in the document.

- \texttt{\MTnormalforall, \MTforalldoesskip}: the latter (done by default if not subdued, and also on each use of \texttt{\MTversion} in the body of the document) makes it so that $\forall$ takes into account the math glue as specified by \texttt{\MTforallskip}. The former is its opposite.

- \texttt{\MTprimeskip\{}\textit{math glue}\}\}: the default is to add a 0.5mu skip before the derivative glyph, except for the italic option. In the case of the option subdued, the skip is canceled in the normal and bold math versions.\footnote{Formerly, it was set to 0mu.}

- \texttt{\MTlowerast\{}\textit{dimen}\}\}: a \texttt{\raisebox} command is used to lower the text asterisk to produce a reasonable math asterisk. The package uses this command initially with argument 0.3\texttt{\height}, this will have to be fine-tuned for each given text font but worked out ok with the fonts we tried. Note that the dimension argument will be used also in sub-scripts and sub-sub-scripts, so it is best not to use an absolute dimension.

- \texttt{\MTmathoperatorsobeymathxx, \MTmathoperatorsdonotobeymathxx}: the former is done by default, it makes operator names obey math alphabets. See also section 1.8. This functionality does not rely on “math active characters”. Automatically issued by each \texttt{\MTversion}, except under option subdued when switching to normal or bold math versions.

- \texttt{\MTcustomgreek}: in case \texttt{\mathastext} has been loaded with one of its Greek related options, this activates the corresponding customization of Greek letters in math mode. It is issued automatically by the package in the preamble (except if loaded with subdued option) and at each switch of math version via \texttt{\MTversion} or \texttt{\MTversion*} (except for the normal and bold math versions in subdued mode). Also available as \texttt{\Mathastextcustomgreek}. May be used even inside of math mode.

- \texttt{\MTstandardgreek}: in case \texttt{\mathastext} was loaded with one of the Greek related options this command reverts the customization, it resets the Greek letters to their definitions in force at package loading time. Can be used in the preamble, but is mainly for the document body (may even be used inside math mode ...). Done automatically under the subdued option when switching to the normal or bold math version. Also available as \texttt{\Mathastextstandardgreek}.

### 2.3.5 Body-only commands

- \texttt{\MTversion\{}\textit{nametext}\}\}{{\textit{namemath}}}, \texttt{\MTversion*\}{{\textit{namemath}}}, also known as \texttt{\Mathastextversion} (and as \texttt{\MTVersion}, and \texttt{\mathastextversion}):\footnote{\texttt{\MTVersion} and \texttt{\mathastextversion} are also known as \texttt{\MTVersion} and \texttt{\mathastextversion}.}

\texttt{\MTversion}\{}\textit{nametext}\}\}: the former is its opposite.
• the non-starred version changes both the document text fonts and the math fonts (for those characters treated by \textastext): the mandatory argument is the math version to be used for math; the optional argument is the name of (another) \textastext-declared math version, the font which was chosen during its declaration will be set as document text font (and \textastext etc... also are redefined). In the absence of the optional argument, the mandatory one is used. The versions must be either normal, or bold, or previously declared ones via \textastext or \MTDeclareVersion.

• the starred variant does the math set-up, but changes nothing to the text fonts (see subsection 1.4 for a description of the math set-up, which summarizes what is done additionally to only using \LaTeX's \textversion).

\textversion[(nametext)]{(namemath)} does \textversion{everymathdefault} (except for \textversion{normal} and \textversion{bold} under package option subdued), which in particular activates the insertion of skips around letters specified by \textversion{setmathskips} and also, if the font used is not oblique the insertion of italic corrections (for better positioning of subscripts; see the discussion in subsection 1.6). Under the frenchmath option the package checks separately the letter shape for lowercase and uppercase.

\textversion also does \textversion{existsdoesskip}, \textversion{foralldoesskip}, and also \textversion{primedoesskip}, \textversion{mathoperatorsobeymathx}, except under the subdued option for normal and bold, in which case it does the opposite actions.

All further commands are usable only inside math mode.

• \hbar: this macro is by default redefined (in a way compatible with the italic option) combining the h letter and the \text text accent from the \textastext font. Note that \textbf{\hbar} and \textit{\hbar} will work and that \hbar does scale in subscripts and exponents. Since 1.3u, this is a priori compatible with all 8bits text font encodings supporting the \text accent in the LaTeX way.\footnote{The horizontal skips for letter h from \textversion{setmathskips} are ignored for \hbar. Formerly, a positive “before” skip was not properly taken into account for the horizontal positioning of the accent and thus gave a bad result. The user can extend the package \hbar definition to add skips.} \footnote{The \hbar redefinition is canceled in normal and bold math versions under the subdued option.}

• \fouriervec: this is a \vec accent taken from the Fourier font; the fourier package need not be loaded. Active only if option fouriervec.

• \pmvec: this provides a poor man \vec accent command, for upright letters. It uses the right arrow. Does not change size in subscripts and exponents.

• \mathnormal, \mathrm, \mathbf, \mathit, \mathsf, \mathtt: modifications of the original \mathnormal, \mathrm, \mathbf, \mathit, \mathsf, \mathtt
to use the mathastextified font. The underlying internal \LaTeX\ structures related to the original commands are not overwritten, so the original commands can be saved under other names before `\usepackage{mathastext}`, to be used in case of necessity (this is what option `subdued` does.)

- **\mathnormalbold**: a bold version of `\mathnormal`. Differs from `\mathbf` when the italic option has been used, or when use has been made of `\MTlettershape` to specify a shape for letters distinct from the one for digits and operator names, or similarly when the math version has been declared via `\MTDeclareVersion` with its optional parameter for shape of letters.

- **\imodot, \jnodot**: the corresponding glyphs in the mathastext-ified font for use in math mode. By default, `\imath` and `\jmath` are redefined to use them. Since 1.3t, these macros obey the `subdued` regime.

- **\MathEuler, \MathEulerBold**: math alphabets to access all the glyphs of the Euler font, if option `eulergreek` (or `eulerdigits` was passed to the package.

- **\MathPSymbol**: math alphabet to access the Symbol font.

- When one of the options `symbolgreek`, `eulergreek`, or `selfGreek` is passed to the package the capital Greek letters which look like their Latin counterparts acquire names: `\Digamma`, `\Alpha`, `\Beta`, `\Epsilon`, `\Zeta`, `\Eta`, `\Iota`, `\Kappa`, `\Mu`, `\Nu`, `\Omicron`, `\Rho`, `\Tau`, `\Chi` (no `\Digamma` for Symbol). Also an `\omicron` control sequence is provided.

- **\LGR Greek and ‘var’-letters**: only the `\varsigma` is available in this encoding, so using for example `\varphi` will load the previous default math font. It might thus be suitable when recompiling already written \LaTeX\ sources to add to the preamble `\let\varphi=`\phi, `\let\varepsilon=`\epsilon, etc..., in case only the ‘variant’ form of the letter was used in the documents.

- **Miscellaneous mathematical symbols from the postscript Symbol font are made available (or replaced) by option `symbolmisc`**. They are `\prod`, `\sum \\implies \iff \shortiff \to \longto \mapsto \longmapsto \aleph \emptyset \sqrt \nabla \angle \forall \exists \neg \clubsuit \diamondsuit \heartsuit \spadesuit \smallint \int \wedge \vee \cap \cup \bullet \div \\times \\propto \mid \leq \geq \approx \supset \subset \subseteq \in \sim \cong \perp \equiv`.

---

62 Formerly (i.e. since 1.12) mathastext redefined the `\i` and `\j` as robust commands usable both in text and math mode and using the above macros in the latter. I have decided it wasn’t such a good idea and there is from now on 1.3t no such redefinition of `\i` and `\j`!

63 Option `asterisk` is also required to treat the `\ast`. Recall from subsection 1.8 that the asterisk in math mode (also when using the control sequence `\ast`) appears then to \LaTeX\ to be a composite object.
And a \DotTriangle is made available by option symbolre (which overwrites \Re and \Im: \Re, \Im). The \infty and \propto have these names to leave up to the user the choice to replace (or not) the original (larger) \infty and \propto.

Regarding the \prod and \sum commands: they will use the Symbol glyphs $\prod \sum$ in inline math, and in display math the Computer Modern ones (or whatever is set up by other packages; here we have the symbols from txfonts):

\[
\prod \sum
\]

The package provides \prodpsy and \sumpsy: if one really wants in all situations the Symbol glyphs, one can do \let\prod\prodpsy and \let\sum\sumpsy. Also \MToriginalprod and \MToriginalsum will refer to the \prod and \sum before redefinition by the package: this is to allow constructs such as \text{\displaystyle\MToriginalprod} or \text{\textstyle\MToriginalprod}, because they would not work with the \prod and \sum as re-defined by the package.

### 2.4 Complete list of options

- **basic**: only mathastextify letters and digits.
- **subdued**: do not change the default fonts or the math alphabets in math mode for the normal and bold math versions, turn on the mathastextification only after an explicit \MTversion (or \mathastextversion) command activating an additional math version as declared in the preamble. With option subdued \MTversion{normal} and \MTversion{bold} do \MTmathoperatorsdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTnonlettersdonotobeymathxx, \MTmathstandardletters.
- **italic**: the letters default to italic shape in math mode.
- **frenchmath**: italic lowercase Latin letters, but uppercase Latin letters in the same font as for digits and operator names. In general this means that they will be upright. In case of the LGRgreek option, frenchmath influences also the shape of the Greek letters.
- **endash, emdash**: use the text font en-dash (–) or even the em-dash (—, but this seems crazy) for the minus sign rather than -. endash option is default for the package.
- **unicodeminus**: use the MINUS SIGN U+2212 (requires fontspec.) Or, in the form unicodeminus=HHHH with four uppercased hexadecimal digits: use the U+HHHH code point. As noendash really means “use the hyphen from the text font”, unicodeminus remains without effect under it, or, naturally, under nominus. Without this option, mathastext uses the EN DASH U+2013 by default for OpenType fonts.
• **asterisk**: use the text font (or the Symbol font) asterisk in math mode.

• **nohbar**: prevents `mathastext` from defining its own \hbar.

• **noendash**: the minus sign will be the - from the text font, not the en-dash –.

• **nolessnomore**: besides !,?,.,:::+-=(/\#\%& `mathastext` treats also < > | { } and \. Use this option to let it not do it. This is the default in case of OT1-encoding.

• Further excluding options: **noexclam**, **nopunctuation**, **noplus**, **nominus**, **noplusnominus**, **noequal**, **noparenthesis**, **nospecials** (\# $ % &) and **nodigits**.

• **alldelims**: true by default, means that the characters excluded by **nolessnomore** are treated. Use this option in case of a mono-width OT1-encoded font.

• **nosmalldelims**: this prevents `mathastext` from trying to pick up in the text font the ‘small variants’ of some math delimiters; it only affects what happens when a character such as a left parenthesis ( or [ is used as a delimiter, and in the event that \TeX has chosen the smallest sized variant. This has no impact on what happens when they are not used as delimiters: then, and if not disabled by the corresponding options, these characters are always picked up from the text font.\footnote{In this very special situation of option nosmalldelims, the braces are an exception to this rule and they require both of \MTnonlettersobeymathxx and \MTexplicitbracesobeymathxx for being picked up from the text font when not used as delimiters.

• **symbolgreek**, **symboldigits**: to let Greek letters (digits) use the Symbol font.

• **symbolre**: replaces \Re and \Im by the Symbol glyphs \Re, \Im and defines a \DotTriangle command (\).\footnote{This is for a font which is also available in LGR-encoding. It is possible to change the font per math version, via the use of the \LTgreekfont command in the preamble.}

• **symbolmisc**: takes quite a few glyphs, including logical arrows, product and sum signs from Symbol. They are listed \supra. Doing \renewcommand{\int}{\smallint} will maximize even more the use of the Symbol font.

• **symboldelimiters**: the characters apart from letters and digits will be taken from the Symbol font.

• **symbol**: combines **symbolgreek**, **symbolre**, and **symbolmisc**.

• **symbolmax**: combines **symbol** and **symboldelimiters**.

• **eulergreek**, **eulerdigits**: to let Greek letters (digits) use the Euler font.
• **LGRgreeks:** each declared math version will be supposed to be with a font which is also available in LGR-encoding.

• **selfGreek:** this is for a font which is also available in OT1-encoding and contains the glyphs for the default eleven capital Greek letters.

• **selfGreeks:** each declared math version will be supposed to be with a font with the eleven capital Greek letters in its OT1-encoded version.

• **upgreek, itgreek, upGreek, itGreek:** options to tell to use \itdefault or \updefault for the lowercase and uppercase (or only the uppercase) Greek letters. Only operant in the case of the LGRgreek(s) and selfGreek(s) options.

• **mathaccents:** use the text font also for the math accents. As in vanilla \LaTeX, they are taken from the font for the digits and \log-like names. Obey the alphabet changing commands.

• **unimathaccents:** extends mathaccents to OpenType fonts. Gave bad results in my brief testing.

• **defaultbf, defaultit, defaultsf, defaulttt:** do not set up, respectively, the \mathbf, \mathit, \mathsf, and \mathtt commands to use the mathastext-ified font. This also prevents mathastext to create internally \Mathxx alphabets (it never overwrites the original \mathxx things but let \mathxx point to \Mathxx instead), so one can use these options if one encounters a ‘too many math alphabets’ \LaTeX error.

• **defaulnormal, defaultrm:** do not identify the default \mathnormal (resp. \mathrm) with the newly created \Mathnormal (resp. \Mathrm) commands which use the mathastextified fonts in each math version.

• **defaultalphabets:** all the defaultxx options together, and additionally tells mathastext not to create the \mathnormalbold alphabet either.

• **defaultimath:** do not overwrite \imath and \jmath to use \inodot and \jnodot.

• **defaultmathsizes:** do not change the \LaTeX defaults for the sizes of exponents and subscripts.

• **fouriervec:** provides a \fouriervec command. The user can then add in the preamble \let\vec=\fouriervec. There is also always available a “poor man” vec accent \pmvec for upright letters.

Thanks to Kevin KLEMENT, Tariq PERWEZ and Ricard TORRES for sending bug reports and feature requests when the first version of the package was issued.

Numerous examples will be found there:

http://jf.burnol.free.fr/mathastext.html

http://jf.burnol.free.fr/showcase.html
3 Change log

1.3w [2019/11/16]

- LaTeX 2019-10-01 release (up to patch level 3 inclusive) together with amsmath conspired :-/ to break mathastext, in connexion with math accents. This has been fixed upstream, but I am releasing nevertheless a hot fix to this https://github.com/latex3/latex2e/issues/216 issue (this is compatible with future LaTeX releases).

- Fix: the \hbar is originally a robust command but becomes a \mathchardef token if (e.g.) amsfonts is loaded and then with recent LaTeX \hbar<space> is made undefined and mathastext definition of it remained without effect. The \mathastext own \hbar is now defined \protected.

- Fix: option noendash (or symboldelimiters which implies it) caused (since 1.3u) a bug under Unicode engines when setting up the minus sign.

- Version names declared via the optional argument of \Mathastext or as first argument of \MTDeclareVersion must not be normal or bold. Enforce that! (this was marked as a bug to fix since 2012/10/24...)

1.3v [2019/09/19]

- LaTeX 2019-10-01 release has made more math macros robust. This applies in particular to the math accents and to the \hbar. This required for mathastext to adapt. Also \leftarrowfill and \rightarrowfill are now defined robust by the kernel, hence mathastext does the same. These changes are dropped if mathastext detects an older LaTeX format.

- These LaTeX kernel changes motivated an examination of some redefinitions done (optionally) by mathastext:
  - The user math alphabet macros got redefined as expanding to some other (robust) math alphabet macros, but were not robust in the strict sense. This does cause some issues for moving arguments in the context of multiple math versions, hence it was a bug. The special behaviour of the math alphabet commands (they redefine themselves and other macros on first use) makes is somewhat problematic for mathastext to keep them updated across math versions and at the same time strictly LaTeX2e robust. Thus mathastext now requires the e-TeX primitive \protected and uses it for the definitions of the user level math alphabet macros.
  - There are a number of \mathchardef tokens which (under certain options and/or configuration via the package user interface), mathastext redefines as macros. These macros cause no issue in moving arguments (they are not "fragile"), still it is probably better if they expand only at the time of typesetting. To this effect they are now also \protected: \\exists, \\forall, \\colon, \\setminus, \\mid, \\prod, \\sum, \mathi, \jmath.
  - The macro \text (which expands to a \textchar) is now defined robust by LaTeX. Its mathastext redefinition is a \protected one rather.
  - The \{ and \} (which get redefined only under \MTexplicitbracesobeymathxx regime) are now strictly robust in the LaTeX2e sense (formerly they were \let to some robust macros, and this did not make them strictly LaTeX2e-robust entities).
  - The various changes in mathastext described in the previous item apply independently of the LaTeX release version. The LaTeX format itself requires the e-TeX extensions since 2015.

1.3u [2019/08/20]

- new feature: the initial release dealt with only one font, and although shortly thereafter the 1.11 version added support for extended math versions, it was documented that some font-dependent setup (minus as endash, dotless i and j, hbar, math accents) was done only once. This release makes the relevant characters font encoding savvy in each mathastext-extended math version. Thus, they should render correctly even with multiple math versions using fonts with varying encodings. This reinforces importance of using \MTversion and not the LaTeX \mathversion when switching to a new math version (which got declared via the package interface). The implementation is compatible with Unicode engines and mixed usage of TU encoding (OpenType fonts) with traditional 8bits TeX font encodings. For all engines, all used (8bits) encodings must have been passed as options to the fontenc package.
  - Thanks to Falk Hanisch for feature request and code suggestions.
  - new option unimathaccents: this adds to option mathaccents the demand to use the text font
accents for OpenType fonts in math mode via the \Umathaccent primitive. Indeed, as my testing showed that this gave non-satisfactory results both with XeTeX and LuaTeX regarding the horizontal placement of the accents, the main option mathaccents acts only on 8bits encoded fonts.

* bugfix: the \Mathastext without optional argument forgot to repeat some font-encoding dependent initialization set-up done originally during package loading.
  * bugfix: under the subdued option macros \MTmathactiveletters or \MTnonlettersobeymathxx now act like no-ops if issued explicitly while in the normal or bold math version. Formerly, this was not the case and could cause bugs such as a disappearing minus sign in math mode.
  * bugfix: the letter h used in the \hbar obeyed the extra skips as set-up by \MTsetmathskips, badly interfering with the horizontal positioning of the bar accent. They are now ignored (as well as the added italic correction).

1.3t [2018/08/22]
  * bugfix: the 1.3s bugfix about subdued compatibility with fontspec was deficient.
  * bugfix: very old (v1.2, 2012/12/20) bug causing low-level TeX error during package loading (with pdflatex) when setting up the math minus sign to be the text font endash character, in cases with \encodingdefault other than OT1, T1 or LY1, e.g. something like T2A.
  * \imath and \jmath obey the subdued regime. And the minus sign is now handled especially to ensure perfect compatibility with the subdued option.
    * breaking change: mathastext does not redefine anymore \i and \j to let them be usable both in text and math mode.

1.3s [2018/08/21]
  * fix to an issue with subdued option in a fontspec context.

1.3r [2016/11/06]
  * documentation tweaks.

1.3q [2016/10/31]
  * new option unicodeminus.
    * the Recent Changes section of the documentation has been removed as it was a duplicate of information available in the Change Log.

* some other changes in the documentation, in particular the use of straight quotes in verbatim.

1.3p [2016/05/13]
  * bugfix: release 1.3n had forgotten to activate by default its new customization of the amsmath macro \newmcodes@ (it was done from using \MTversion in the document body but not by default at start of body.)
  * public name \MTfixmathfonts for a 1.3o macro.

1.3o [2016/05/03]
  * mathastext fixes an issue related to a feature of LuaLaTeX and luatotload that OpenType fonts are declared in one of two modes: node and base, and only the latter is functional in math mode. But by default text fonts are declared in mode node. Thus mathastext now intervenes to make it so that the font it declares in math mode will use mode base. This fixes issues with for example old style figures being used while the text font used lining figures (or vice versa, depending on the font). But see the code comments for more.

1.3n [2016/04/22]
  * at long last, mathastext takes care properly of annoying and perplexing amsmath’s \newmcodes@. The very recent change in amsopn.sty finally made it compatible with Unicode engines, but anyhow, mathastext must do its own patch to use the correct font. All of this taking into account the various options passed to the package. Lots of trouble for a tiny thing.

1.3m [2016/04/02]
  * minor code maintenance before annual TL freeze.

1.3l [2016/01/29]
  * compatibility with fontspec’s upcoming switch from EU1/EU2 to TU common to both Unicode engines.

1.3k [2016/01/24]
  * typos fixed in the documentation. In particular, the README link to the package homepage had remained broken from day one of the package releases: mathastext.html therein was misspelled as mathsastext.html ! (but the pdf documentation had the correct link; as well as the CTAN catalogue).
1.3j [2016/01/15]
* renamed and modified recent 1.3i's \MTactivevemathoff into \MTeveryvemathoff. Added \MTeveryvemathdefault.
* subdued mode is a bit stronger: also the asterisk reverts to the default (if it was modified due to option asterisk), the added extra \mskip's (useful with upright fonts) for \', \exists, and \forall are suppressed rather than re-configured to use 0mu. Related new commands \MTexistdoesskip, \MTforalldoesskip, \MTprimevemathoff, \MTnormallexists, \MTnormalforall, \MTnormalprime.
* the toggle for using mathematically active letters is only emitted once during package loading; the \Mathastext command does not do it anymore; the use in the preamble of \MTmathstandardletters, or \MTnoicinmath and related commands is not overruled by later use of \Mathastext.
* quite a few documentation improvements and rewrites, particularly in the description of commands which are related to the modifications of mathcodes (mainly for math activation of characters or letters) as done by mathastext at \everymath or \everydisplay.

1.3i [2016/01/06]
* \url from url.sty as well as \url and \nolinkurl from hyperref.sty use math mode and (by default) the monospace text font. To avoid mathastext overwriting the special preparation done by \url,\hyperref\nolinkurl are patched to do automatically \MTactivevemathoff (now \MTeveryvemathoff) before entering math mode.
* the extra skips specified by \MTsetmathskips are not inserted around letters if inside the arguments of math alphabet commands, or within operator names.
* the added explicit italic corrections (for non-oblique fonts) were disabled within math alphabet scopes, except mathnormal; they are now disabled within all math alphabets, inclusive of mathnormal.

1.3g [2015/10/15]
* following 2015/10/01 LaTeX release, removal of the "luatex" prefix from the names of the LuaLaTeX math primitives. Compatibility maintained with older LaTeX formats.

1.3f [2015/09/12]
* the replacement of amsmath’s \resetMathstrut@, when it is done, emits an Info rather than a Warning as this could be potentially stressful to some users.
* the README self-extracts from the dtx source, as a text file README.md with Markdown syntax.

1.3e [2015/09/10]
* bugfix: under option nosmalldelims, \brace and \rbrace were redefined as math symbols and could not be used as delimiters.

1.3d [2015/02/26]
* the documentation mentions the improved compatibility of mathastext with the latest (3.34) beamer release: no more need for \usefonttheme{professionalfonts}.

1.3d [2014/05/23]
* new commands \MTstandardgreek and \MTcustomgreek.
* The Greek letters, in case of use of one of the package related options, are left to their defaults in the normal and bold math versions if the subdued option was also used (this was so far the case only with options LGRgreek/LGRgreeks).
* \newmcodes@ of amsmath is left untouched if package lualatex-math is detected.

1.3c [2013/12/14]
* added a starred variant to \MTversion which tells mathastext to only do the math set-up and not modify the text fonts.
* added second optional version name argument to \Mathastext and to \MTDeclareVersion, to transfer settings for things not otherwise changed by mathastext from a math version to the one declared. This is mainly for symbols and large symbols to be the bold ones when the user sets up the series of a mathastextified font to be bold in a mathastext-declared version.
* renamed \defaultprod to \MToriginalprod, \defaultsum to \MToriginalsum, (this is in case of option symbolmisc).
* changes to the dtx organization; options for generating the documentation can be customized in generated mathastext.tex file.
* 1.2d code for \#, \$, \%, and \& modified erroneously the earlier correct 1.2c code and created a bug showing up with more than 16 math families (a possibility only with lualatex or xelatex).

1.3a [2013/09/04]
* the somewhat silly \string’s are removed from the \MTsetmathskips command of release 1.3, thus allowing its first argument to be a macro, or any expandable code, giving a letter.
* the amsmath \resetMathstrut@, which is incompatible with a mathematically active parenthesis (is now modified only if necessary (i.e. only when \MTnonlettersobeymathxx is issued) and is restored to its original value if not needed anymore (i.e. after \MTnonlettersdonotobeymathxx, as for example when switching to the normal version under option subdued).
* improved documentation.

1.3 [2013/09/02]
* commands \MTsetmathskips and \MTunsetmathskips added.
* commands \MTmathactiveletters and \MTmathstandardletters to govern the math activation of letters independently of its use for insertion of the italic corrections (\MTicinmath and \MTnoicinmath correspondingly modified).
* the new \luatexUmathcodenum as available since TL2013 allows identical treatment by mathastex of = and - under both LuaTeX and XeTeX.
* \newmcodes@ of amsmath is left untouched in case of option basic.
* a sentence containing | which was written to the log during the loading caused a problem if | was active (typically if \MakeShortVerb{\|} was added to the preamble prior to the loading of mathastex).
* some preemptive measures taken regarding things such as \mid, \{brace, and \}brace, as some packages define these things in manners which made the re-definitions done by mathastex issue errors.

1.2f [2013/01/21]
* minor code improvements. Change log added to the user manual.

1.2e [2013/01/10]
This version should be the last one in the 1.2 series as it seems to correct most of the main problems which were introduced with the massive use of mathematically active characters in versions 1.2 and 1.2b.

* It is indeed a thorny point when one wants to modify an active character in math mode only (without breaking usage in label’s and ref’s for example). The package now does that _only_ if the activation originated in the Babel system as it is then possible to modify appropriately the Babel macros \user@active<char> and \normal@char<char>, at the time of entering math mode (mathastex does all its activation job at \everymath and \everydisplay).

The relevant issues are discussed in section 2.10 of the user manual, in the test file mathastextalphabets.tex, and in the source code comments for macro \mst@mathactivate. The inherent incompatibility of Babel with packages having made mathematically active the characters itself makes document active is circumvented by this interference of mathastex. A generally applicable Babel patch could be derived from the method used by mathastex.

For the non catcode active characters, mathematical activation is used. This is done at the entrance in math mode.
* Sadly, the feature of added italic corrections introduced in version 1.2b did not behave as described in the user manual, due to forgotten group braces. Fixed.
* The command \MTlowerast from the user manual of v1.2d was not the one implemented in the source code. Fixed.
* The test files automatically extracted from a latex run on the dtx file have been revised and extended.
* The code is better documented.

1.2d [2013/01/02]
* an incompatibility with amsmath (its macro \resetMathstrut@), exists since version 1.2 of the package. This is fixed here.
* various improvements in dealing with the asterisk and in the mechanism of letting non-letter symbols obey the math alphabet commands.
* documentation extended and improved.
1.2c [2012/12/31]
* mathastext now inserts automatically after all (latin) letters in math mode their italic corrections, if the font used is upright (sic). This improves the spacings for the positioning of subscripts. The feature is de-activated inside the math alphabets commands (apart from \mathnormal), so as to not prohibit the formation of ligatures.
* the documentation has been extended to explain in detail the issues which are relevant to the new feature of added italic corrections.
* version 1.2 had some bad bugs when confronted to active characters. This is corrected and additionally \MTnonlettersdonotbeymathxx is made the default, as the user input is too much constrained in its absence.
* a less fatal, but still annoying, typo had made the dot in 1.2 of type \mathpunct rather than \mathord.
* the inner namespace has been rationalized a bit.

1.2 [2012/12/20]
* a new command sets up the amount of space to be automatically inserted before the derivative glyph (useful when using an upright font).
* the scope of the math alphabets has been extended to apply to the non-alphabetical characters, and also to operator names.
* the format of the dtx file has changed. The package file is self-extracting from the dtx, and four additional test files are also produced during latex mathastext.dtx.

1.15f and 1.15g [2012/10/25]
* \$, \#, \&, and \% had been re-defined by mathastext since its inception in a rather strange (but working) way, which could cause surprises to other packages. Fixed.
* the subduced mechanism for the math alphabets is implemented in a simpler and more efficient manner than in 1.15e.
* the defaultxx options act a bit differently, and are more useful in case of a too many math alphabets situation.
* various improvements in the documentation.
* general clean up and better commenting of the source code.

1.15e [2012/10/22]
* new user commands to specify skip or glue to be inserted after the math symbols \exists and \forall
* complete (user transparent) rewrite of the code implementing the subduced option; and its action has been extended to apply also to the \mathbf, \mathit, \mathsf, \mathtt alphabets and not only to \mathrm and \mathnormal as in the previous versions.
* improvements in the documentation.

1.15d [2012/10/13]
* the Unicode situation is now correctly treated, throughout the code (this had been left in a half-done way from version 1.14 of April 2011).
* this includes an issue related to amsmath and its DeclareMathOperator macro which has been fixed,
* and the code related to \relbar and \Relbar (and \models) has been revised.

1.15c [2012/10/05]
* it is now possible to use distinct fonts in LGR encoding for the Greek letters according to the current math version.
* improvements to the documentation.

1.15b [2012/09/26]
* corrected a ‘feature’ of 1.15 which was backward-incompatible
* improvements to the pdf documentation

1.15 [2012/09/26]
* the subdued option allows the mathastextification to act only locally.
* some measures taken to deal with amsmath related issues when using xetex or luatex.

1.14c [2011/04/03]
* a bug is fixed: the \Mathastext macro reinitializes the fonts in the normal and bold math versions, but it also erroneously redeclared the math alphabet changing commands which could have been set up in previously defined math versions (via earlier calls to \Mathastext\{version_name\}).

1.14b [2011/04/03]
* there was a bug with \$, \#, \&, \% in math mode which showed up when ten or more math families had been declared. This bug affected
also the minus sign under the same circumstances, when Unicode engines were used. Fixed.

* the options LGRgreek and selfGreek act now a bit differently, and new options LGRgreeks and selfGreeks have been defined.
* I also cleaned up a bit the code, for a more structured namespace.

1.14

* mathastext now modifies also the math alphabets \mathit, \mathsf and \mathtt, thus making it a quite generic complete manner to adapt the math configuration to fonts provided with no math support.

1.13b

* when the Symbol font is used for \prod and \sum this will be only for inline math; display math will use the default glyphs

1.13 [2011/03/11]

* the LGRgreek option is added.
* internal changes for better readability of the code.

1.12

* various bugs have been corrected.
* the endash and alldelims options are active by default.
* the package is more Unicode aware.
* the \Mathastext command has been improved to facilitate the mechanism of math versions also when using XeTeX or LuaTeX (with package fontspec.)
* the en-dash and dotless i and j now work with all encodings, Unicode inclusive.

1.11 [2011/02/06]

* optional argument to \Mathastext macro.

1.1 [2011/02/01]

* options italic and frenchmath.

1.0 [2011/01/25]

* Initial version.
4 Implementation

The usual catcode regime for letters and digits is assumed and some characters such as *, `, ", `= are supposed to be of catcode other at the time of loading of mathastext. The source of mathastext takes precautions for some other characters such as the right quote ', which may thus be active with no harm at the time of loading. By the way, I think \LaTeX\textsuperscript{2e} should have provided to authors a standard macro to be used at the beginning of a style file to make sure the catcodes are standard. Shorthands created by Babel should be mostly no problem as Babel does the activation only at the \begin{document}.

The comments have been accumulating through successive versions with only partial efforts to achieve some sort of coherence; as a result some are a bit strange or obsolete to various degrees. And the similar remark applies to some ancient parts of the code itself!

Should I require 2005/12/01 \LaTeX? (not sure about the month).

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage {mathastext}
3 \[2019/11/16 v1.3w Use the text font in math mode (JFB)]

\LaTeX\textsuperscript{2019-10-01} release has made robust math macros such as the math accents and \hbar.

4 \newif\ifmst@robust@obsessed@LaTeX@era
5 \@ifl@t@r\fmtversion{2019/10/01}{\mst@robust@obsessed@LaTeX@eratrue}{}
6 \edef\mst@robustifyingspace{\ifmst@robust@obsessed@LaTeX@era\space\fi}

Testing for X\TeX\textsuperscript{2015} and Lua\LaTeX.

1.3g 2015/10/15: update for the naming of primitives, the situation has evolved both on X\TeX\textsuperscript{2015} side and on the Lua\LaTeX\textsuperscript{2015} side (La\TeX base 2015/10/01): I was told 'U' named math primitives were always available for Lua\LaTeX. For X\TeX, the Xe\TeX prefix got replaced by \textsf{U} prefix with 0.99.. a certain number of 9. I opted for rather simple approach of just trying the "modern" names and if they don’t exist fall back on earlier (and in danger of being deprecated) names.

7 \let\mst@Umathcharnumdef\Umathcharnumdef
8 \let\mst@Umathcodenum\Umathcodenum
9 \let\mst@Umathcode\Umathcode
10 \let\mst@Umathchardef\Umathchardef
11 \let\mst@Umathaccent\Umathaccent
12 \newif\ifmst@XeTeX
13 \ifx\XeTeXinterchartoks\@undefined
14 \mst@XeTeXfalse
15 \else
16 \mst@XeTeXtrue
17 \ifx\XeTeXinterchartoks\@undefined
18 \let\mst@XeTeXmathcharnumdef\XeTeXmathcharnumdef
19 \let\mst@XeTeXmathcodenum\XeTeXmathcodenum
20 \let\mst@XeTeXmathcode\XeTeXmathcode
21 \let\mst@XeTeXmathchardef\XeTeXmathchardef
22 \let\mst@XeTeXmathaccent\XeTeXmathaccent
23 \fi
24 \fi
25 \newif\ifmst@LuaTeX
26 \ifx\directlua\@undefined
27 \mst@LuaTeXfalse
28 \else
29 \mst@LuaTeXtrue
30 \fi
31 \newif\ifmst@LuaTeXfalse

\"
1.2: all inner macros of `mathastext` now starts with \texttt{\textbackslash mst@} for a cleaner name-space.

1.31 2016/01/29: hmmm... at this late stage where nobody would expect me to still look at the code, I have found at least two macros which still didn’t: \texttt{\textbackslash do@the@endashstuff} and \texttt{\textbackslash do@the@emdashstuff}.

Ok, doing something more serious: compatibility with upcoming TL2016 fontspec and its switch to `TU` NFSS font encoding in replacement of `EU1/EU2` Anyhow, the code in `mathastext` has been common to the two Unicode engines for a while, hence it is not hard to adapt to the replacement of EU1/EU2 by TU, maintaining compatibility with legacy installations.

The \texttt{\textbackslash mst@OneifUniEnc} is expandable but must be used after having set \texttt{\textbackslash mst@tmp@enc}...

Macros to store the font settings, each math version will store its own records.

\texttt{\textbackslash mst@greekfont} 1.15c: for use by the LGRgreek and selfGreek options. Defined as an \texttt{\textbackslash ddef} in order to be able to set-up once and for all the Greek at the time of \texttt{\textbackslash usepackage}. Modifiable in the preamble via \texttt{\textbackslash MTgreekfont\{\textless font\_name\}\textbackslash Mathastext}.

Package options 2011/03/09: 1.13 introduces the option LGRgreek and systematic use of \texttt{\textbackslash if...} conditionals, for better readability (by myself) of the code.
\newif\ifmst@needsymbol
\newif\ifmst@symboldelimiters
\DeclareOption{symboldelimiters}{\mst@needsymboltrue\mst@symboldelimiterstrue}
\newif\ifmst@symboldigits
\DeclareOption{symboldigits}{\mst@needsymboltrue\mst@symboldigitstrue}
\newif\ifmst@symbolgreek
\newif\ifmst@customgreek %% new with 1.3d
\DeclareOption{symbolgreek}{\mst@needsymboltrue\mst@symbolgreektrue\mst@customgreektrue}
\newif\ifmst@symbolre
\DeclareOption{symbolre}{\mst@needsymboltrue\mst@symbolretrue}
\newif\ifmst@symbolmisc
\DeclareOption{symbolmisc}{\mst@needsymboltrue\mst@symbolmisctrue}
\DeclareOption{symbol}{\ExecuteOptions{symbolgreek,symbolmisc,symbolre}}
\DeclareOption{symbolmax}{\ExecuteOptions{symbol,symboldelimiters}}
\newif\ifmst@needeuler
\newif\ifmst@eulerdigits
\DeclareOption{eulerdigits}{\mst@needeulertrue\mst@eulerdigitstrue}
\newif\ifmst@eulergreek
\DeclareOption{eulergreek}{\mst@needeulertrue\mst@eulergreektrue\mst@customgreektrue}
\newif\ifmst@selfGreek
\DeclareOption{selfGreek}{\mst@selfGreektrue\mst@customgreektrue}
\newif\ifmst@selfGreeks
\DeclareOption{selfGreeks}{\mst@selfGreektruetruemst@selfGreektrue\mst@customgreektrue}
\newif\ifmst@LGRgreek
\DeclareOption{LGRgreek}{\mst@LGRgreektrue\mst@customgreektrue}
\newif\ifmst@LGRgreeks
\DeclareOption{LGRgreeks}{\mst@LGRgreektruetruemst@LGRgreektrue\mst@customgreektrue}
\def\mst@greek@select{0}
\newif\ifmst@itgreek
\newif\ifmst@upgreek
\DeclareOption{itgreek}{\mst@itgreektrue}
\DeclareOption{upgreek}{\mst@upgreektrue}
\DeclareOption{itGreek}{\def\mst@greek@select{1}}
\DeclareOption{upGreek}{\def\mst@greek@select{2}}
Starting with 1.15f the meaning of the ‘defaultxx’ options has changed. They now prevent \texttt{mathastext} from defining additional alphabets rather than prevent it from identifying the ‘mathxx’ with the new ‘Mathx’. The ‘Mathnormal’ and ‘Mathrm’ alphabet commands are always created as they are SymbolFontAlphabets.
\newif\ifmst@defaultit
\DeclareOption{defaultit}{\mst@defaultittrue}
\newif\ifmst@defaultsf
\DeclareOption{defaultsf}{\mst@defaultsftrue}
\newif\ifmst@defaulttt
\DeclareOption{defaulttt}{\mst@defaulttttrue}
\newif\ifmst@nonormalbold
\DeclareOption{defaultalphabets}{\ExecuteOptions{defaultnormal,defaultrm,\
defaultbf,defaultit,defaultsf,defaulttt}\mst@nonormalboldtrue}
\newif\ifmst@defaultsizes
\DeclareOption{defaultmathsizes}{\mst@defaultsizestrue}
\newif\ifmst@twelve
\DeclareOption{12pt}{\mst@twelvetrue}
\newif\ifmst@fouriervec
\DeclareOption{fouriervec}{\mst@fouriervectrue}
\newif\ifmst@subdued
\DeclareOption{subdued}{\mst@subduedtrue}
\def\mst@unicodeminus {2013}
\def\mst@checkoption #1unicodeminus#2\mst@#3\mst@@{
  \ifx\#3\%
    \PackageWarningNoLine{mathastext}
    {Unknown option `\CurrentOption\string'}\else
  \ifx\#2\%
    \def\mst@unicodeminus {2212}\else
  \expandafter\def\expandafter\mst@unicodeminus\expandafter{\@secondoftwo#2}%
  \fi\fi}
\DeclareOption*{
  \expandafter\mst@checkoption\CurrentOption\mst@ unicodeminus\mst@\mst@@}
\ProcessOptions\relax
\mst@DeclareMathAccent
I somehow missed realizing \LaTeX\ 2019-10-01 if used together with amsmath made repeated usage of \DeclareMathAccent trigger an error: \url{https://github.com/latex3/latex2e/issues/216}.
This broke usage of \Mathastext macro in preamble.
1.3w  works around this via \mst@DeclareMathAccent. And other changes were made in \mathastext code to cope with these complications around robustness.
\def\mst@DeclareMathAccent#1{\let#1\mst@undefined
  \expandafter\let\csname\expandafter\@gobble\string#1\space\endcsname\mst@undefined\expandafter\DeclareMathAccent\expandafter{#1}}
\def\mst@normalversionname{normal}%
\def\mst@boldversionname{bold}%
1.15e 2012/10/21: math skip/glue after \exists and \forall, this is useful with upright letters in math mode. Each math version has its own user defined values for the skips, stored as macros.

The redefinitions of $\exists$ and $\forall$ are done only at the end of the package as the symbol option will also want to redefine these math symbols.

The subdued option (later and only for the normal and bold math version) and the italic option (here) set to zero the package default skips. With 1.2 the skips can be modified on the fly in the document, they are not necessarily set in the preamble once and for all for each math version.

1.3j adds \MTnormalexists, \MTexistsdoesskip, \MTnormalforall, \MTforalldoesskip. Earlier to 1.3j, \let\mst@exists@original\exists was done at End of Package, now it is done at Begin Document, and same for \forall. We pay attention that use of \MTnormalexists etc... inside the preamble does not create self-let's.

Also subdued mode will do \MTnormalexists, \MTnormalforall (earlier than 1.3j, it only set the muskips to 0mu.) Same when using \MTversion{normal}, if subdued.

For some (random, legacy) reason, the handling of $\exists$ and $\forall$ is part of the things not included inside \everymath/\everydisplay.

1.3v The \textastext-defined \exists and \forall are created \protected. We feel this matches better with their default definition as \mathchardef tokens than dealing with \LaTeX\ robust macros. Besides, the coding is simpler.

\newmuskip\mst@exists@muskip \% v 1.15e
\newmuskip\mst@forall@muskip
\def\mst@exists@skip{1mu}
\def\mst@forall@skip{.6667mu}
\ifmst@italic\ifmst@frenchmath\else
\def\mst@exists@skip{0mu}
\def\mst@forall@skip{0mu}
\def\mst@prime@skip {0mu}
\fi\fi
\protected\def\mst@exists{\mst@exists@original\mskip\mst@exists@muskip}
\protected\def\mst@forall{\mst@forall@original\mskip\mst@forall@muskip}

The document body starts in the normal math version, whether or not \textastext command as been used in the preamble (which either re-defines the normal/bold math version or defines another one in case of optional argument), and in case of subdued option should use the standard $\forall$ and $\exists$.

\AtBeginDocument{%
\let\mst@exists@original\exists
\let\mst@forall@original\forall
\def\MTnormalexists {\let\exists\mst@exists@original }%
\def\MTexistsdoesskip {\let\exists\mst@exists }%
\def\MTnormalforall {\let\forall\mst@forall@original }%
\def\MTforalldoesskip {\let\forall\mst@forall }%
\newcommand*{\MTnormalexists }{\AtBeginDocument {\MTnormalexists }}
}\fi
\else
\MTexistsdoesskip
\MTforalldoesskip
\fi

54
1.2 2012/12/17: math skip/glue before the \prime glyph. This is useful with the default CM glyph and upright letters (in contrast the prime from txfonts works fine with upright letters). For this we replace the \LaTeX kernel \active@math@prime with our own skip-enhanced version \mst@active@math@prime.

1.2b 2012/12/31: doing \catcode`\=`12 \gdef\mst@@modifyprime{\mst@mathactivate \mst@active@math@prime}

1.2e being paranoid, we take precautions against a possibly \catcode active right quote at the time of loading mathastext.

1.3i adds \MTactiveprime. 
1.3j renames it to \MTprimedoesskip. Besides, it makes use in the preamble of \MTnormalprime or \MTprimedoesskip.

1.3k \MTexistsskip \MTforallskip \MTprimeskip 1.15e: These user macros set up the amount of muglue after \exists or \forall. The normal and bold math versions inherit the same skips; these skips are set to zero in case of the subdued, or the italic option. Each command \Mathastext[(version_name)] stores the current values in the definition of the math version.
1.2 \MTprimeskip added, the silly \@onlypreamble are removed and the macros are modified to have immediate effect in the document, independently of their possible use in the preamble for the math versions to store values.

Note (september 2013): the names were badly chosen; \MTsetprimeskip for example would have been a better choice.

\newcommand\MTexistsskip[1]{\edef\mst@exists@skip{#1}\mst@exists@muskip\mst@exists@skip\relax}
\newcommand\MTforallskip[1]{\edef\mst@forall@skip{#1}\mst@forall@muskip\mst@forall@skip\relax}
\newcommand\MTprimeskip[1]{\edef\mst@prime@skip{#1}\mst@prime@muskip\mst@prime@skip\relax}
\let\Mathastextexistsskip=\MTexistsskip
\let\Mathastextforallskip=\MTforallskip
\let\Mathastextprimeskip=\MTprimeskip
\let\mathastextexistsskip=\MTexistsskip
\let\mathastextforallskip=\MTforallskip
\let\mathastextprimeskip=\MTprimeskip
\resetMathstrut@
\resetMathstrut@ 2012/12/31: The amsmath macro \resetMathstrut@ is not compatible with a mathematically active opening parenthesis: it does
   \mathchardef\@tempa\mathcode`\relax
and is made a part of the hook \every@math@size inside \glb@settings. This is called from \check@mathfonts which is done in particular in \frozen@everymath, hence before (but wait) what mathastext puts in \everymath. Also, \glb@settings is triggered by \mathversion which must be done outside of math mode.

Alas, with things such as $...\hbox{...$...$...}...$ mathastext will have already made the parenthesis (mathematically) active. And \boldsymbol from amsbsy disables the \@nomath switch and executes \mathversion{bold} directly in math mode. So we have a problem with \resetMathstrut@.

lualatex-math replaces \resetMathstrut@ with its own version (which also looks at )) and no error is signaled when mathastext has done \mathcode`="8000, but the \Mathstrutbox@ created by mathastext is then wrong.

The replacement macro avoids a potentially math active (). It assumes that there is still some appropriate glyph in slot 40 of operators and it sets the height and depth of \Mathstrutbox@ to be large enough to accommodate both this glyph and the one from the mathastext font (both in the current math version). If optionnoparenthesis was used, we leave everything untouched.

In 1.3a, 2013/09/04, the modification is done only at the time of \MTnonlettersobeymathxx. It is canceled by \MTnonlettersdonotobeymathxx. So the code has been moved to these macros and here we just store at the begin document the then meaning of \resetMathstrut@, and check also if \MTnonlettersdobyemathxx has been invoked in the preamble.

1.3f 2015/09/12 issues only an Info message not a Warning, as I am becoming aware from another context (etoc) that Warnings are stressful to users, in some integrated environments for editing and compiling \TeX\ source files.
\resetMathstrut@
\resetMathstrut@ 2012/12/31: The amsmath macro \resetMathstrut@ is not compatible with a mathematically active opening parenthesis: it does
   \mathchardef\@tempa\mathcode`\relax
and is made a part of the hook \every@math@size inside \glb@settings. This is called from \check@mathfonts which is done in particular in \frozen@everymath, hence before (but wait) what mathastext puts in \everymath. Also, \glb@settings is triggered by \mathversion which must be done outside of math mode.

Alas, with things such as $...\hbox{...$...$...}...$ mathastext will have already made the parenthesis (mathematically) active. And \boldsymbol from amsbsy disables the \@nomath switch and executes \mathversion{bold} directly in math mode. So we have a problem with \resetMathstrut@.

lualatex-math replaces \resetMathstrut@ with its own version (which also looks at )) and no error is signaled when mathastext has done \mathcode`="8000, but the \Mathstrutbox@ created by mathastext is then wrong.

The replacement macro avoids a potentially math active (). It assumes that there is still some appropriate glyph in slot 40 of operators and it sets the height and depth of \Mathstrutbox@ to be large enough to accommodate both this glyph and the one from the mathastext font (both in the current math version). If optionnoparenthesis was used, we leave everything untouched.

In 1.3a, 2013/09/04, the modification is done only at the time of \MTnonlettersobeymathxx. It is canceled by \MTnonlettersdo notobeymathxx. So the code has been moved to these macros and here we just store at the begin document the then meaning of \resetMathstrut@, and check also if \MTnonlettersdobyemathxx has been invoked in the preamble.

1.3f 2015/09/12 issues only an Info message not a Warning, as I am becoming aware from another context (etoc) that Warnings are stressful to users, in some integrated environments for editing and compiling \TeX\ source files.
1.2 2012/12/20 does some rather daring math activation of ; , : ! ? + - = < > ( ) [ ] in math mode to achieve something I wanted to do since a long time: overcome the mutually excluding relation between the variable-family concept and the automatic spacing concept. After loading \texttt{mathastext}, these characters now obey the math alphabets commands but still have the automatic spacing. The use as delimiters for those concerned is also ok.

The activation is done via setting the \texttt{\mathcode} to "8000 through the macro \texttt{\mst@mathactivate} which in turn is put into the \texttt{\everymath} and \texttt{\everydisplay} token lists. No character is made active in the sense of the \texttt{\catcode} (the issues with catcode active characters at the entrance of the math mode are discussed later). [but the concerned characters will now expand in math mode to two tokens.]

\texttt{\mst@mathactivate} 1.2b 2012/12/30: there were bad oversights in the 1.2 code for \texttt{\mst@mathactivate} related to the possibility for some characters to have been made active (in the sense of the catcode) elsewhere (something which often is done by language definition files of the \texttt{babel} system). The code from v1.2b tried to provide correct behavior using a prefix called \texttt{\mst@fork} (its definition and its use has since been modified) which let the active character expand to the \texttt{mathastext} re-definition only in math mode and only if \texttt{\protect} was \texttt{\@typeset@protect}. This indeed took care of situations such as \texttt{$\hbox{?}$} with an active ? or \texttt{$x\mathrel{?}y$} now create errors. They must be input \texttt{$x^{?}$}, respectively \texttt{$x\mathrel{?}y$}. The disactivating macro \texttt{\MTnonlettersdonotobeymathxx} is made the default.

The disactivating macro \texttt{\MTnonlettersdonotobeymathxx} is made the default.

The mechanism is (even more) off by default for \texttt{\{ and \}} as this is not compatible with their use as delimiters (\texttt{\lbrace} and \texttt{\rbrace} should be used instead) but it can be activated for them too.

At the entrance of the math mode are discussed later),

1.2c 2012/12/31: hence, this current implementation puts constraints on the input: \texttt{$x^{?}$} or \texttt{$x\mathrel{?}y$} now create errors. They must be input \texttt{$x^{?}$}, respectively \texttt{$x\mathrel{?}y$}.

The disactivating macro \texttt{\MTnonlettersdonotobeymathxx} is made the default.

The disactivating macro \texttt{\MTnonlettersdonotobeymathxx} is made the default.

\texttt{\mst@mathactivate} 1.2e 2013/01/09: alas \texttt{$\ref{eq:1}$} still was a problem. Indeed in that case the \texttt{mathastext} prefix had no means to know it was inside a \texttt{\ref} so it made the character expand to its \texttt{mathastext} redefinition, which is not acceptable inside a \texttt{\csname...\endcsname}. What happens with Babel is that it patches things such as \texttt{\ref}, \texttt{\newlabel},... we can test the \texttt{\if@safe@actives} flag to detect it in that case, but this is Babel specific. After having thought hard about this I see no general solution except patching all macros such as \texttt{\ref}...(in an imitation of what Babel does). So the final decision is to not do anything when the character is catcode active except it it seems that Babel is behind the scenes.

Incidentally, Babel and TikZ are buggy with characters which are mathcode actives. For example the combination of \texttt{[french]{babel}} and \texttt{mathtools} with its \texttt{centercolon} turns \texttt{"$:$} into an infinite loop !!!

In the case of Babel the reason is that, generally (but not always, the right quote ' is an exception), the \texttt{\normal@char} fall-back is \texttt{\string(char)}. But this is wrong if the mathcode is \texttt{32768!} The fall-back becomes the default if the user switches to a language where \texttt{\char} is ‘normal’ and then an infinite loop arises.

As a further example (I am not familiar with other languages from the Babel system) with \texttt{frenchb} the active !??;: expand in math mode to \texttt{\string! or ? or ; or :}. This creates an infinite loop if the mathcode is \texttt{32768}.
For the special case of the right quote ' when it is made active by Babel, its fall-back does not invoke \string' so being still of mathcode 32768 is not a problem.

I have posted online how Babel should possibly modify its definitions and I use this here. I simplify a bit my proposed replacement of \normal@char(char) as the check for \protect is superfluous, I think, having been done already at the level of the Babel prefix.

Replacing \user@active(char) is indeed not enough, and \normal@char(char) also must be changed, because when the user switches back to a language where the character is ‘normal’ it remains catcode active. The crucial thing is the test of \if@safe@actives in the replacement of the \normal@char(char), besides of course the test for math mode in both replacements.

When the character is not catcode active, then mathastext uses the math activation method. As the mathcode is not looked at in \edef, \write or inside \csname\endcsname nothing special needs to be done, I think, in terms of protection against premature expansion. (I did not know that initially).

So, to recapitulate, mathastext will use the mechanism of the active mathcode if the character is not catcode active, and in the opposite case will do something only in the context of Babel, modifying directly its \user@active(char) and its \normal@char(char) macros and it does NOT then set the mathcode to 32768!! rather it makes sure the character is not mathematically active.

As 1.2e is a bit paranoid it takes precautions against the possibility of characters it treats being active at the time of its loading. Excepted from the scope of the paranoia are the latin letters (that would be crazy!) and also *, " and the left quote `. 1.2f 2013/01/21 with earlier versions (*) it was important not to do twice the business of \mst@mathactivate (think $\hbox{$?$}$), so I used (this was a bit wasteful) some sort of boolean macro for each character. But now that there are the \mst@the.. prefixes, let’s just use them! (don’t know why I did not think of that earlier; perhaps I had in mind some more general character per character customization initially, which I just dropped.)

(*) it is still important to not do twice the thing when the character is active, in which case the babel macros are patched.

As an aside, $\hbox{\catcode`?=\active $?$}$ for an ? which was unactive at the first $ will just make mathastext overwrite the definition (assumed here to have been done earlier) of an active ?, but the result is that the inner ? can not be used in \label or \ref. So testing for active characters should be done always... many things should be done always... I leave as is.

1.3i 2016/01/06 removes a spurious end of line space in \mst@mathactivate (did not show as anyhow done in math mode).

\mst@addtodoaz \mst@addtodOAZ \mst@doaz \mst@doAZ

1.2b 2012/12/28 now that we understand the great advantages of "8000 we do it also for all letters a-z and A-Z to insert automatically the italic corrections. See the discussion in the user manual. Ironically I wrote the code initially for the italic option only to realize later it was more suitable to using an upright text font in math mode! So this mathematical activation of the letters is not done if the font shape is detected to be it or sl; to bypass this the command \MTicinmath is provided.

1.2e 2013/01/10 corrects a bad oversight of 1.2b in \mst@mathactivate which made the reproduction of the user manual illustrations with $f_i^i$ impossible. As \mst@mathactivate was originally used also to get the non-letters obey math alphabet while maintaining the \TeX spacings, it added no extra braces. The braces should however be added for expansion of math active letters, in order of things like x^y to work as expected. (the group braces do not prevent ligatures when the letters are arguments to the math alphabet commands, the added macros \mst@itcorr and \mst@before<letter> expanding to nothing).
Added note 2016/01/06: it should be explicitly said that the extra \{..\} in \texttt{\mst@mathactivate} for letters end up creating \texttt{\hbox}'es around each letter with its extra skips and explicit italic correction, when present. These skips are thus set at natural width and do not add any break point.

\begin{verbatim}
\MTmathactiveletters \MTmathstandardletters
\MTnonlettersobeymathxx \MTnonlettersdonotobeymathxx \resetMathstrut@
\end{verbatim}

1.3 2013/09/02 extends the use of mathematically active letters to allow the user to specify \texttt{\setmathskips}, below. Mathematically active letters were previously used only to add the italic correction; the math activation has now been separated and put in \texttt{\MTmathactiveletters}. There is also \texttt{\MTmathactiveLetters} to allow math activation only for the uppercase letters. To cancel the (now default, even with option italic) math activation of letters, there is \texttt{\MTmathstandardletters}. Version 1.3a removes some silly \texttt{\string}'s from the code, which prevented to pass macros as first argument to the command.

These macros are modified in version 1.3a 2013/09/04 in order to cleverly adjust, or not, the \texttt{amsmath \resetMathstrut@}. When used in the preamble, they just modify \texttt{\mst@the}. And there is code at begin document to check the status there of \texttt{\mst@the} and if its meaning is \texttt{\the}, then \texttt{\MTnonlettersobeymathxx} is activated again to do the patch. When used in the body they adjust \texttt{\resetMathstrut@}.

Notice that the saved meaning is the one at begin document (thus, possibly patched by \texttt{lualatex-math} -- not anymore since 1.5 of March 2016, as \texttt{amsmath.sty} now maintained by \LaTeX\ team has modified \texttt{\resetMathstrut@} to make it compatible to Unicode engines) but modifications done after that would not be seen in \texttt{\mst@savedresetMathstrut@}.

The new version of \texttt{\resetMathstrut@} from \LaTeX\ team release 2016/03/03 v2.15a of \texttt{amsmath.sty} is still not compatible with a math active opening parenthesis. Hence my patch here is still needed.

At 1.3u \texttt{\MTnonlettersobeymathxx} and \texttt{\MTeasynonlettersobeymathxx} are made no-ops under subdued mode. This fixes some bug if for example the former was used in preamble or immediately after \texttt{\begin{document}} making the minus sign math active although the \texttt{mathastext} action was supposedly subdued. Similarly \texttt{\MTmathactiveletters} is now a no-op if issued under subdued mode in the \texttt{normal} or \texttt{bold} math versions.

\begin{verbatim}
254 \newtoks\mst@do@nonletters
255 \newtoks\mst@do@easynonletters
256 \newtoks\mst@do@az
257 \newtoks\mst@do@AZ
258 \let\mst@the\@gobble
259 \newcommand\MTnonlettersdonotobeymathxx{%
260  \ifx\mst@the\@gobble
261   \else
262   \@ifundefined{mst@savedresetMathstrut@}{}{%
263     \PackageInfo{mathastext}{restoring (for this group or environment) ams-
264         math \string\resetMathstrut@}%
265     \let\resetMathstrut@\mst@savedresetMathstrut@
266   \fi
267 }
268 \let\mst@the\@gobble
269 }
1.3u adds this check that we are not in a subdued normal or bold math version. No need for expandable coding.
\end{verbatim}
\ifmst@subdued
\ifx\math@version\mst@normalversionname
\else
\ifx\math@version\mst@boldversionname
\else
\#1%
\fi
\fi
\else
\#1%
\fi
\fi
\def\mst@nonlettersobeymathxx{\
\ifundef\mst@savedresetMathstrut{}{\
\ifmst@symboldelimiters
\def\resetMathstrut@{\
\setbox\z@\hbox{\the\textfont\symmtpsymbol\char40 \\
\the\textfont\symmtoperatorfont\char40 \\
\the\textfont\symoperators\char40}\
\ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@}%
}\else
\def\resetMathstrut@{\
\setbox\z@\hbox{\the\textfont\symmtoperatorfont\char40 \\
\the\textfont\symoperators\char40}\
\ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@}%
}\fi
\PackageInfo{mathastext}{\string\resetMathstrut\space from amsmath replaced (for this group or environment)}%}
\let\mst@the\the
\newcommand*\MTnonlettersobeymathxx{\mst@OnlyIfNotSubdued\mst@nonlettersobeymathxx}
\newcommand*\MTeasynonlettersdonotobeymathxx{\let\mst@theeasy\@gobble}
\let\mst@easynonlettersobeymathxx\\mst@the\the
\newcommand*\MTeasynonlettersobeymathxx{\mst@OnlyIfNotSubdued\mst@easynonlettersobeymathxx}
\newcommand*\MTmathactiveletters{\mst@OnlyIfNotSubdued\mst@mathactiveletters}
\newcommand*\MTmathactiveLetters{\mst@OnlyIfNotSubdued\mst@mathactiveLetters}
\newcommand*\MTmathstandardletters{\let\mst@thef\@gobble \let\mst@theF\@gobble}
}
\verb!\MTicinmath! can also be used from inside math mode.

\verb!\MTICinmath! is destined to be used inside \verb!\mathnormalbold! as I didn’t want to add the complication of extracting the family number used inside \verb!\mathnormalbold! (will perhaps come back if I have time to spend on source2e). Added note 2016/01/06: this number is a priori simply \verb!\symmletterfont+1!.

\verb!\MTicinmath! can also be used inside math mode, to revert an earlier \verb!\MTnoicinmath! from inside the same math group: the math mode had to be entered with the math activation of letters allowed.

1.3i 2016/01/06: For some reason which I have now forgotten I did until now:

\begin{verbatim}
% \def\mst@itcorr{\ifnum\fam=\m@ne/\else\ifnum\fam=\symmletterfont/\fi\fi}

% hence italic corrections were also applied inside \verb!\mathnormal! (for upright fonts; \verb!\mathnormalbold! math alphabet was not treated like \verb!\mathnormal!). I now drop this to be more in sync with the handling of the extra skips around letters. Everything gets suppressed inside all math alphabets, allowing ligatures, even for \verb!\mathnormal!.

\end{verbatim}

\newcommand*{\MTicinmath}{\MTmathactiveletters\def\mst@itcorr{\ifnum\fam=\m@ne/\fi}}
\newcommand*{\MTICinmath}{\MTmathactiveLetters\def\mst@ITcorr{\ifnum\fam=\m@ne/\fi}}
\newcommand*{\MTnoicinmath}{\let\mst@itcorr\@empty\let\mst@ITcorr\@empty}
\newcommand*{\MTnoICinmath}{\let\mst@ITcorr\@empty}
\newcommand*{\MTicalsoinmathxx}{\ifx\mst@itcorr\@empty\else\def\mst@itcorr{/}\fi\ifx\mst@ITcorr\@empty\else\def\mst@ITcorr{/}\fi}

\verb!\MTsetmathskips! 1.3 2013/09/02: user level command to specify extra spaces in math mode around the letters (only the 7bit a,b,...,z and A,B,...,Z). First parameter is the letter, second is the math skip to be inserted before, and third the skip to be inserted after; for example \verb!\thickmuskip! or explicitly 0.1mu.

For this, letters are made mathematically active. This is now the package default (version 1.2 did this only in the absence of option italic, or more precisely when the font used was not of shape it or sl). But if \verb!\MTsetmathskips! has not been used for that letter, the only effect of the math activation is, as in 1.2, to add the italic correction automatically, except when the font shape is detected to be it or sl; in these latter cases, although mathematically active, the letter acts in the standard way.

The command \verb!\MTmathstandardletters! turns off math activation and its effects for all letters.

Ligatures within the argument of a math alphabet command are impeached by skips; so \verb!\MTunsetmathskips! is provided to cancel the skips for one specific letter (f for example).

1.3a 2013/09/04: I strangely had \verb!\string#1! inside \verb!\MTsetmathskips!. Phobic of catcode active letters... but with \verb!\string! one needs some \verb!\expandafter! to use \verb!\MTsetmathskips! in an \verb!\@for! loop for example. It is better to allow the first argument to be a macro or anything expanding to a letter, and to not be paranoid about improbable catcode active letters (the user just has to tame them at the time of the \verb!\MTsetmathskip! so I take out these \verb!\string!s.

1.3i 2016/01/06: the extra skips are suppressed for the arguments of math alphabet commands. This applies in particular for amsmath’s \verb!\DeclareMathOperator!. 

61
Added note 2016/01/06: Notice that the initially \relax tokens \mst@before\mst@after\mst@letter do not modify TeX’s math layout: \relax \relax is like \mst@mathactivate f (also for ligatures inside \mthrm for example).
\begingroup
\lccode`~=`\texttt{\#1}
\lccode`##1=`\texttt{\#1}
\lowercase{\endgroup}
\ifnum\catcode`~=`\active
\mst@do@activecase ##1{##2}##3%
\else
\mathcode`~=`\texttt{8000}
% version 1.3 adds the possibility of extra skips around letters, % (only if non catcode active at the time of use).
\ifcat##1a\edef~{% extra braces for a^b for example
{\expandafter\noexpand\csname mst@before##1\endcsname
##2\noexpand##3%}
\else\def~{##2##3}\fi
\fi}}}
\def\mst@addtodo@nonletters#1#2#3{% #1 will be of cat 11 or 12.
\mst@do@nonletters\expandafter{\the\mst@do@nonletters \mst@mathactivate#1#2#3}%
}
\def\mst@addtodo@easynonletters#1#2{% #1 is a one char control sequence
\mst@do@easynonletters\expandafter{\the\mst@do@easynonletters\mathcode`#1=#2}%
}
\def\mst@addtodo@az#1#2{\mst@do@az\expandafter{\the\mst@do@az\mst@mathactivate#1#2\mst@itcorr}}
\def\mst@addtodo@AZ#1#2{\mst@do@AZ\expandafter{\the\mst@do@AZ\mst@mathactivate#1#2\mst@ITcorr}}

\newmcodes@\mst@newmcodes@\MTresetnewmcodes\Customizemcodes
1.15d: the \newmcodes@ amsmath macro causes an error in Unicode engines as soon someone assigns a Unicode mathmode to the minus sign, and then makes a \DeclareMathOperator declaration. Furthermore it hard-codes the font family 0 as being the one to be used. Moreover just putting the concerned signs -, ; , \ , ' , * inside braces emulates enough the behavior (although
the tick will give a prime).
1.3: now tests if 'basic' option was used.
1.3d: I should re-examine the situation with \newmcodes@. In the meantime its relaxification will not be done if luatex-math is loaded. And the whole thing is put at begin document.
1.3m: lualatex-math 1.5 n’a pas modifié son traitement de \newmcodes@ mais par contre a supprimé le patch de \resetMathstrut@. Mais la date de release est restée à 2015/09/22 (date de 1.4a) au lieu de quelque chose comme 2016/03/13 (date pour l’annonce sur CTAN). Il faudra suivre l’évolution future de amsmath.sty maintenant assurée par D.C.
1.3n 2016/04/22: there is no more a patch of \newmcodes@ by lualatex-math 1.6 (2016/04/16), as amsmath 2016/03/10 v2.15b has now a version compatible with LuaLaTeX.
My very radical \let\newmcodes@relax was only a temporary measure I adopted for lack of time on October 13, 2012, and apart from avoiding to do that in case lualatex-math was detected, I never came back... finally I handle it myself for 1.3n. The remaining problem of this macro (now that it does not anymore crash lualatex or vice versa) is that (also with amsmath version 2016/03/10 v2.15b) it hardcodes the font used. The aim of the macro is to modify the type of spacing affected to symbols ‘, *, ., -, /, :, in case they are used in operator names.

- As I don’t want to monopolize a count register only for computations, let’s just be mean if \epsilon-TeX not there.
- mathtext makes (or not, depending on commands issued by the user) these characters math active (the right tick already is), which complicates recovery of former mathcode. We have mathchar type macros, but then the complication is in diverging behaviours of the engines: \numexpr\mst@varfam@minus\relax works with LuaTEX, not with XeTEX.
- the * must presumably really be the non-lowered text glyph.
- for the – I hesitated but do use the hyphen in the end.
- seems I simply don’t understand what the amsmath code does with \std@minus. It is used in \relbar and it escapes me why \newmcodes@ would ever want to redefine it, and more importantly why on earth it tests the mathcode of – for that ? yes, \std@minus is defined (at begin document) using the mathcode of –, but what’s the connexion to \newmcodes@ ?? Any way mathtext defines \relbar with \mst@minus@sign. Thus I just drop this conditional.
- things are complicated by the options such as nominus, noparenthesis.
- the \newmcodes@ macro is anyhow assuming that if a new math font is used it occupies math groups 0 and 1 !! very bad; fixing it in passing if the character has not been handled by mathtext could be envisioned, but that’s not mathtext’s job.
- years go by, and I remain as baffled as ever about the story of “more than 16 math families”. I will not test again, but I am pretty sure that \DeclareMathSymbol does not work with more than 16 families, thus when I try to be a good boy and use \Umathcode syntax with symmtoperatorfont I am perhaps doing unnecessary efforts.
- I noticed that LuaETEX does not apply the “\TeX Ligature” (bad name) regarding the right tick APOSTROPE being transformed into RIGHT SINGLE QUOTATION MARK in math mode, but XeTEX does. From the point of view of mathtext, the behaviour of XeTEX is the coherent one. It appears that LuaETEX use in math mode of a text font does not obey the set features.I opened a ticket at https://github.com/wspr/fontspec/issues/238, but as usual it is hard to figure out the best place where to report font matters. This item might be obsolete – not checked (1.3q).
- Some hesitation about what to do under option symboldelimiters. I temporarily used \symmtpsymbol, except for the right quote and for the hyphen, but finally I drop that and use \symmtoperatorfont always. (after testing how it looked like).

All in all this is a great deal of trouble and I understand I postponed back in 2012! I spent some hours on this small thing, with consequent testing and for example this \TeX Ligature issue with Unicode engines.

Since 1.3v we require \epsilon-TEX extensions, so a test for \numexpr has been dropped here.
\else
\ifmst@XeOrLua
\AtBeginDocument {%
\ifx\newmcodes@\@undefined\else
\edef\mst@newmcodes@{%
\mst@Umathcode ` \noexpand' 0 \symmtoperatorfont 39\relax
\ifmst@asterisk
\mst@Umathcode ` \noexpand* 0 \symmtoperatorfont 42\relax
\else\mathcode ` \noexpand* 42
\fi
\ifmst@nopunct\mathcode ` \noexpand."613A \mathcode ` \noexpand": "603A
\else
\mst@Umathcode ` \noexpand\. 6 \symmtoperatorfont 46\relax
\mst@Umathcode ` \noexpand/: 6 \symmtoperatorfont 58\relax
\fi
\ifmst@nominus\mathcode `- 45
\else
\mst@Umathcode `- 0 \symmtoperatorfont 45\relax
\fi
\ifmst@noparen\mathcode `/ 47
\else
\mst@Umathcode `/ 0 \symmtoperatorfont 47\relax
\fi
}\%}
\let\mst@originalnewmcodes@\newmcodes@
\fi
\fi
\fi % mst@XeOrLua
\fi % mst@basic
\let\mst@originalnewmcodes@\newmcodes@
\fi
\fi
\AtBeginDocument {%
\ifx\newmcodes@\@undefined\else
\edef\mst@newmcodes@{%
\mathcode ` \noexpand' \the\numexpr\symmtoperatorfont*\@cclvi+39\relax
\mathcode ` \noexpand* \the\numexpr\symmtoperatorfont*\@cclvi+42\relax
\ifmst@asterisk\mathcode ` \noexpand": "613A \mathcode ` \noexpand": "603A
\else
\mathcode ` \noexpand\- \the\numexpr\unless\ifmst@nominus\symmtoperatorfont*\@cclvi\fi+45\relax
\mathcode ` \noexpand/ \the\numexpr\unless\ifmst@noparen\symmtoperatorfont\@cclvi\fi+47\relax
\fi
\mathcode ` \noexpand\-\the\numexpr\unless\ifmst@nominus\symmtoperatorfont\@cclvi\fi+45\relax
\mathcode ` \noexpand/\the\numexpr\unless\ifmst@noparen\symmtoperatorfont\@cclvi\fi+47\relax
\fi
\let\mst@originalnewmcodes@\newmcodes@
\fi
\fi
\fi % end of second AtBeginDocument
\else
\AtBeginDocument {%
\ifx\newmcodes@\@undefined\else
\edef\mst@newmcodes@{%
\mathcode ` \noexpand' \the\numexpr\symmtoperatorfont*\@cclvi+39\relax
\mathcode ` \noexpand* \the\numexpr\symmtoperatorfont*\@cclvi+42\relax
\ifmst@asterisk\mathcode ` \noexpand": "613A \mathcode ` \noexpand": "603A
\else
\mathcode ` \noexpand\- \the\numexpr\unless\ifmst@nominus\symmtoperatorfont*\@cclvi\fi+45\relax
\mathcode ` \noexpand/ \the\numexpr\unless\ifmst@noparen\symmtoperatorfont\@cclvi\fi+47\relax
\fi
\mathcode ` \noexpand\-\the\numexpr\unless\ifmst@nominus\symmtoperatorfont\@cclvi\fi+45\relax
\mathcode ` \noexpand/\the\numexpr\unless\ifmst@noparen\symmtoperatorfont\@cclvi\fi+47\relax
\fi
\let\mst@originalnewmcodes@\newmcodes@
\fi
\fi
\fi % end of AtBeginDocument
\else
\AtBeginDocument {%
\ifx\newmcodes@\@undefined\else
\edef\mst@newmcodes@{%
\mathcode ` \noexpand' \the\numexpr\symmtoperatorfont*\@cclvi+39\relax
\mathcode ` \noexpand* \the\numexpr\symmtoperatorfont*\@cclvi+42\relax
\ifmst@asterisk\mathcode ` \noexpand": "613A \mathcode ` \noexpand": "603A
\else
\mathcode ` \noexpand\- \the\numexpr\unless\ifmst@nominus\symmtoperatorfont*\@cclvi\fi+45\relax
\mathcode ` \noexpand/ \the\numexpr\unless\ifmst@noparen\symmtoperatorfont\@cclvi\fi+47\relax
\fi
\mathcode ` \noexpand\-\the\numexpr\unless\ifmst@nominus\symmtoperatorfont\@cclvi\fi+45\relax
\mathcode ` \noexpand/\the\numexpr\unless\ifmst@noparen\symmtoperatorfont\@cclvi\fi+47\relax
\fi
\let\mst@originalnewmcodes@\newmcodes@
\fi
\fi
\fi % end of second AtBeginDocument
\fi % mst@XeOrLua
\fi % mst@basic
mtoperatorfont Declaration of the current default font as our math font. The characteristics of the used font can be changed by a user call to the macros \Mathastext or \Mathastextwilluse, which will be defined next. We will also make one internal call to \Mathastext to set up the normal and bold math versions, so we will also employ \SetSymbolFont later.

\DeclareSymbolFont{mtoperatorfont}{\mst@enc}{\mst@fam}{\mst@ser}{\mst@opsh}
\operator@font

We modify this LATEX internal variable in order for the predefined \cos, \sin, etc... to be typeset with the mathastext font. This will also work for things declared through the amsmath package command \DeclareMathOperator. The alternative would have been to redefine the 'operators' Math Symbol Font. Obviously people who expect that \operator@font will always refer to the 'operators' math font might be in for a surprise... well, we'll see.

\newcommand*{\MTmathoperatorsobeymathxx}{\def\operator@font{\mathgroup\ifnum\fam=\m@ne\symmtoperatorfont\else\fam\fi}}
\newcommand*{\MTmathoperatorsdonotobeymathxx}{\def\operator@font{\mathgroup\symmtoperatorfont}}

mtletterfont At version 1.1, we add the possibility to mimick the standard behavior, that is to have italic letters and upright digits. Thanks to Tariq \textsc{Perwez} and Kevin \textsc{Klement} who asked for such a feature.

\DeclareSymbolFont{mtletterfont}{\mst@enc}{\mst@fam}{\mst@ser}{\mst@ltsh}

There is a long-standing issue https://github.com/lualatex/luaotfload/issues/204 on Lua\TeX not applying OpenType features in math mode (this impacts \url macro too, as it uses math mode.) Lua\TeX has two modes for handling of OpenType fonts, the default in text being to use the node mode, and this mode is non-working in math, thus mathastext needs to force use of base mode. Else one sees old style figures where one does not expect them, or the opposite, depending on the default font feature.

Once we know the cause, the fix is relatively easy. I will go for the \everymath way, because I don’t want to dive into at all with the details of \TeX’s handling of math fonts, of size changes, of math versions etc... perhaps in the future \TeX will fix the issue upstream by modifying \DeclareSymbolFont under Lua\TeX + luaotfload regime, then the present patch by mathastext will be unneeded. Naturally, here we care only about the two maths fonts used by mathastext: mtoperatorfont and mtletterfont.

For the \url situation, I have posted online a patch.

Not all is resolved, as I comment online at https://github.com/lualatex/luaotfload/issues/204#issuecomment-216465680 that with \TeX \textsc{Gyre Termes} for example I can not get simultaneously Old Style and Tabular Figures to work in math mode, although the font name as constructed by my patch (which is like the code below, only simpler as we only have to consider \textfont0) is the correct one. Similarly with \textsc{Vollkorn}: I can then not get the two features \textit and \textbf to work simultaneously when specified with mode=base. It does work with mode=node but this mode “does not work in math mode.”
Done for 1.3o of 2016/05/03.
1.3p renames the macro to \texttt{MTfixmathfonts} for public access.

\begingroup
\catcode`N 12
\catcode`O 12
\catcode`D 12
\catcode`E 12
\lowercase{\gdef\mst@fixmathfonts@ #1=#2#3\relax #4\@empty #5}%
\lowercase{\gdef\MTfixmathfonts
\expandafter\mst@fixmathfonts@
\fontname\textfont\symmtoperatorfont\relax=NODE;%empty%empty
{\textfont\symmtoperatorfont}%
\expandafter\mst@fixmathfonts@
\fontname\scriptfont\symmtoperatorfont\relax=NODE;%empty%empty
{\scriptfont\symmtoperatorfont}%
\expandafter\mst@fixmathfonts@
\fontname\scriptscriptfont\symmtoperatorfont\relax=NODE;%empty%empty
{\scriptscriptfont\symmtoperatorfont}%
\expandafter\mst@fixmathfonts@
\fontname\textfont\symmtletterfont\relax=NODE;%empty%empty
{\textfont\symmtletterfont}%
\expandafter\mst@fixmathfonts@
\fontname\scriptfont\symmtletterfont\relax=NODE;%empty%empty
{\scriptfont\symmtletterfont}%
\expandafter\mst@fixmathfonts@
\fontname\scriptscriptfont\symmtletterfont\relax=NODE;%empty%empty
{\scriptscriptfont\symmtletterfont}%
}\endgroup
\ifmst@LuaTeX
\everymath\expandafter{\the\everymath\mst@fixmathfonts}%
\everydisplay\expandafter{\the\everydisplay\mst@fixmathfonts}%
\fi
\newcommand*{\MTfixfonts}{\let\mst@fixmathfonts\MTfixmathfonts}%
\newcommand*{\MTdonotfixfonts}{\let\mst@fixmathfonts\empty}%
\MTfixfonts
\Mathnormal We redefine the default normal, rm, bf, it, sf, and tt alphabets, but this will be done via
\Mathrm \renewcommand*{\mathrm}{\Mathrm} etc... (not anymore, see comment below).
\Mathbf We follow the standard L\TeX\ behavior for \mathbf, which is to pick up the bold series of the
\Mathit roman font (digits and operator names).
\Mathsf We will access (if no option is passed for Greek) the \texttt{omicron} via \texttt{mathnormal}. But un-
\Mathtt fortunately the \texttt{fourier} package with the upright option does not have an upright omicron
obtainable by simply typing \texttt{mathnormal{\texttt{o}}}. So if \texttt{fourier} is loaded we use \texttt{mathrm} and not
\texttt{mathnormal}.
\texttt{mathnormalbold} Actually math alphabet macros are created robust since L\TeX\ from 2005, so at 1.3v 2019/09/19
I decided to modify the old \texttt{mathastext} approach a bit. Indeed with the old approach a \texttt{mathtt}
in a moving argument translates ultimately into \texttt{but if for example the new context where it gets expanded is a subdued normal math version, this does not give the same as \texttt{mathtt} would have given there. This was a bug: imagine \texttt{section}\{$\texttt{mathtt}\{X\}$} issued in a math version, but the TOC is done in subdued normal version; the output in TOC will often differ (fontsize being put aside) both from out it looked at the section title and from what direct usage of \texttt{mathtt} in the TOC would have given. I have no strong preference between the two possibilities (to be as in section title, or to be as if \texttt{mathtt} gets executed in TOC and obeys its local regime), but it is a bug if the result is still a third one. Thus I decided to follow \LaTeXe and that \texttt{mathtt} had to remain \texttt{mathtt} when moving.

But a math alphabet command such as \texttt{Mathtt} redefines its unprotected meaning on first use as well as the one of the math version macro, hence a \texttt{letrobustmacro}\texttt{mathtt}\texttt{Mathtt} of sorts is no good at all. I thus opted to not hack into the math \LaTeXe font support across math versions and to simply use \texttt{protected}\texttt{def} in place of obeying strictly \LaTeXe robustness (except of course in the subdued math versions as there the math alphabets acquire back their original robust meanings.)

505 \let mst@alph@omicron\mathnormal
506 \@ifpackageloaded{fourier}{\ifsloped\else\let mst@alph@omicron\mathrm\fi}{}
507 \DeclareSymbolFontAlphabet{\Mathnormal}{mtletterfont}
508 \DeclareSymbolFontAlphabet{\Mathrm}{mtoperatorfont}
509 \ifmst@nonormalbold\else
510 \DeclareMathAlphabet{\mathnormalbold}{\mst@enc}{\mst@fam}{\mst@bold}{\mst@ltsh}
511 \fi
512 \ifmst@defaultbf\else
513 \DeclareMathAlphabet{\Mathbf}{\mst@enc}{\mst@fam}{\mst@bold}{\mst@opsh}
514 \fi
515 \ifmst@defaultit\else
516 \DeclareMathAlphabet{\Mathit}{\mst@enc}{\mst@fam}{\mst@ser}{\itdefault}
517 \fi
518 \ifmst@defaultsf\else
519 \DeclareMathAlphabet{\Mathsf}{\mst@enc}{\sfdefault}{\mst@ser}{\mst@opsh}
520 \fi
521 \ifmst@defaulttt\else
522 \DeclareMathAlphabet{\Mathtt}{\mst@enc}{\ttdefault}{\mst@ser}{\mst@opsh}
523 \fi

The \texttt{mathxx} macros being \LaTeXe robust, of course the meanings here are known, and «original» macros are sort of superfluous but well it works.

524 \let mst@original@normal\mathnormal
525 \let mst@original@rm\mathrm
526 \let mst@original@bf\mathbf
527 \let mst@original@it\mathit
528 \let mst@original@sf\mathsf
529 \let mst@original@tt\mathtt
530 \def mst@restorealphabets{\% for subdued
531 \let mathnormal\mst@original@normal
532 \let mathrm\mst@original@rm
533 \let mathbf\mst@original@bf
534 \let mathit\mst@original@it
535 \let mathsf\mst@original@sf

68
We can not move the \DeclareSymbolFont to the \Mathastext macro because it resets the font family in *all* math versions, and some could have been defined by the user with previous calls to \Mathastext. So we have to have them here. The problem is that at this stage it is impossible to know if we really need (in the case of LGRgreek) two separate shapes for upper and lowercase, and (in the case of selfGreek) a shape distinct from the one used in mtoperatorfont. So I opted in the end for declaring possibly one too many font. To achieve more economy the only way would be to keep cumulative track of all previously declared math versions and to redeclare appropriately the LGR or self greek fonts at each call to \Mathastext (with no optional argument): a bit painful, and as I am possibly the sole user in the world of this possibility of multiple math versions with this package. Also the advantage to systematically allocate a font for the selfGreek option is that we can force the use of the OT1 encoding.

First we establish the cumulative effect of the greek related options.

1.15c introduces some possibilities to change the shapes of Greek letters in each math versions, and even the Greek font (in LGR encoding). The commands \MTitgreek etc... will be used in-between calls to \Mathastext and re-adjust the shapes. And the command \MTgreekfont changes the Greek font family.

\let\mathtt\mst@original@tt
\def\mst@setalphabets%
\ifmst@defaultnormal\else\protect\def\mathnormal{\Mathnormal}\fi
\ifmst@defaultrm\else\protect\def\mathrm{\Mathrm}\fi
\ifmst@defaultbf\else\protect\def\mathbf{\Mathbf}\fi
\ifmst@defaultit\else\protect\def\mathit{\Mathit}\fi
\ifmst@defaultsf\else\protect\def\mathsf{\Mathsf}\fi
\ifmst@defaulttt\else\protect\def\mathtt{\Mathtt}\fi}
\ifmst@subdued\else\mst@setalphabets\fi

\ifmst@LGRgreek
\DeclareFontEncoding{LGR}{}{}
\DeclareSymbolFont{mtlgrfontlower}{LGR}{\mst@fam}{\mst@ser}{\mst@greek@lsh}
\DeclareSymbolFont{mtlgrfontupper}{LGR}{\mst@fam}{\mst@ser}{\mst@greek@ush}
\fi

LGRgreek
selfGreek
mtlgrfontupper
mtlgrfontlower
mtselfGreekfont

\def\mst@update@greeksh{
\def\mst@greek@lsh{\mst@ltsh} %% default behavior
\def\mst@greek@ush{\mst@opsh}
\ifmst@itgreek\def\mst@greek@lsh{\itdefault}\fi
\ifmst@upgreek\def\mst@greek@lsh{\updefault}\fi
\ifmst@frenchmath
\ifmst@itgreek\else
\ifmst@upgreek\else
\def\mst@greek@lsh{\mst@opsh}\fi
\fi\fi
\fi
\ifcase\mst@greek@select
\or\def\mst@greek@lsh{\itdefault}\fi
\or\def\mst@greek@lsh{\updefault}\fi
\fi
\def\mst@update@greeksh{\def\mst@greek@lsh{\mst@ltsh} \% default behavior
\def\mst@greek@ush{\mst@opsh}
\ifmst@itgreek\def\mst@greek@lsh{\itdefault}\fi
\ifmst@upgreek\def\mst@greek@lsh{\updefault}\fi
\ifmst@frenchmath
\ifmst@itgreek\else
\ifmst@upgreek\else
\def\mst@greek@lsh{\mst@opsh}\fi
\fi\fi
\fi
\ifcase\mst@greek@select
\or\def\mst@greek@lsh{\itdefault}\fi
\or\def\mst@greek@lsh{\updefault}\fi
\fi
\def\mst@update@greeksh
\def\mst@LGRgreek
\DeclareFontEncoding{LGR}{}{}
\DeclareSymbolFont{mtlgrfontlower}{LGR}{\mst@fam}{\mst@ser}{\mst@greek@lsh}
\DeclareSymbolFont{mtlgrfontupper}{LGR}{\mst@fam}{\mst@ser}{\mst@greek@ush}
In case we need the Euler font, we declare it here. It will use \texttt{uzeur.fd} from the \texttt{eulervm} package of Walter Schmidt.

\begin{verbatim}
572 \ifmst@needeuler\typeout{** will use Euler font; command \string\MTEulerScale}
573 \DeclareSymbolFont{mteulervm}{U}{zeur}{m}{n}
574 \DeclareSymbolFontAlphabet{\MathEuler}{mteulervm}
575 \DeclareMathAlphabet{\MathEulerBold}{U}{zeur}{\mst@bold}{n}
576 \fi
577 \newcommand*{\MTEulerScale}[1]{\edef\zeu@Scale{#1}}
578 \let\MathastextEulerScale\MTEulerScale
\end{verbatim}

\textsc{LaTeX} 2\textsubscript{e} has a strange initial configuration where the capital Greek letters are of type \texttt{mathalpha}, but the lower Greek letters of type \texttt{mathord}, so that \texttt{\textbf{mathbf}} does not act on them, although lowercase Greek letters and Latin letters are from the same font. This is because \texttt{\textbf{mathbf}} is set up to be like a bold version of \texttt{\textbf{mathrm}}, and \texttt{\textbf{mathrm}} uses the ‘operators’ font, by default \texttt{cmr}, where there are NO lowercase greek letters. This set-up is ok for the Capital Greek letters which are together with the Latin letters in both \texttt{cmmi} and \texttt{cmr}.

The package \texttt{eulervm} sets the lowercase Greek letters to be of type \texttt{mathalpha}, the default \texttt{\textbf{mathbf}} and \texttt{\textbf{mathrm}} will act wildly on them, but a \texttt{\textbf{mathbold}} is defined which will use the bold series of the Euler roman font, it gives something coherent for Latin and Greek lowercase letters, and this is possible because the same font contains upright forms for them all.

Here in \texttt{mathastext}, Latin letters and Greek letters (lower and upper case) must be (generally) assumed to come from two different fonts, as a result the standard \texttt{\textbf{mathbf}} (and \texttt{\textbf{mathrm}}) will give weird results when used for Greek letters. We could coerce \texttt{\textbf{mathbf}} to do something reasonable (cf \url{http://tug.org/pipermail/texhax/2011-January/016605.html}) but at this time I decided I would not try to implement it here. I prefer to respect the default things.

I followed the simpler idea of the \texttt{eulervm} package and defined \texttt{\MathEuler} and \texttt{\MathEulerBold} alphabet commands (the \texttt{eulervm} package does this only for the bold font).

\begin{verbatim}
\let\MathastextEulerScale\MTEulerScale
\end{verbatim}

In case we need the Symbol font, we declare it here. The macro \texttt{\psyscale} will be used to scale the font (see at the very end of this file).

\begin{verbatim}
579 \ifmst@needsymbol\typeout{** will use Symbol font; command \string\MTSymbolScale}
580 \def\psyscale{1}
581 \DeclareSymbolFont{mtpsymbol}{U}{psy}{m}{n}
582 \DeclareSymbolFontAlphabet{\MathPSymbol}{mtpsymbol}
583 \AtBeginDocument{\%
584 \DeclareFontFamily{U}{psy}{\%
585 \DeclareFontShape{U}{psy}{m}{n}{<->s*[\psyscale] psyrr}{\%
586 }\%
587 \%
588 \newcommand*{\MTSymbolScale}[1]{\edef\psyscale{#1}}
589 \let\MathastextSymbolScale\MTSymbolScale
\end{verbatim}

I did not choose for name \texttt{\MathSymbol} as this may be defined somewhere for another thing. There is no bold for the postscript Symbol font distributed with the \texttt{\LaTeX} 2\textsubscript{e} \texttt{psnffs} core package.
Definition of a poor man version of the $\vec$ accent

\DeclareRobustCommand*{\pmvec}[1]{\mathord{\stackrel{\raisebox{-.5ex}{\tiny\boldmath{$\rightarrow$}}}{{}#1}}}

The glyph is taken from the Fourier font of Michel Bovani. Note: (oct 2012) I should not allocate an entire symbol font just for one glyph! But I have not given any serious thought to what one can do to simulate a math accent without doing such a wasteful thing.

\fouriervec

Some public macros to modify our private internals, and we will use them also ourself. In version 1.1 we add the possibility to have two distinct font shapes for letters and digits. So in fact we could as well have two really unrelated fonts but this is really not the spirit of the package.

\MTencoding
\MTfamily
\MTseries
\MTshape
\MTboldvariant
\MTlettershape

Note that using these macros in the preamble allows \Mathastext to set up math versions with a given font for math mode, and at the same time not modifying the \familydefault or \romandefault etc...

\MTitgreek
\MTupgreek
\MTitGreek
\MTupGreek

1.15c: These new macros can be used in-between calls to \Mathastext. They reset the shapes for Greek letters (applies to LGRgreek(s) and selfGreek(s) options). The \MTgreekfont presupposes either LGRgreek or selfGreek. \MTgreekfont{\familydefault} acts like turning on LGRgreesks or selfGreeks.

\MTgreekfont
\MTupgreek
\MTtitgreek

At (long...) last we now change the font for the letters of the latin alphabet. In version 1.1, Latin letters have their own font (shape).

1.2b initiated the use of mathematically active letters to insert the italic corrections. With version 1.3 the use of math active letters is also for extra muglue added before and after the letters. Use of \@for to shorten the code initiated with release 1.3.

\def\mst@DeclareMathLetter #1{%  
\DeclareMathSymbol {#1}{\mathalpha}{mtletterfont}{'#1}%  
\expandafter  
\DeclareMathSymbol \csname mst@#1\endcsname{\mathalpha}{mtletterfont}{'#1}%  
\expandafter\mst@addtodo@az\expandafter #1\csname mst@#1\endcsname  
\@tfor\mst@tmp:=abcdefghijklmnopqrstuvwxyz\do  
{\expandafter\mst@DeclareMathLetter\mst@tmp}%  
\ifmst@frenchmath \def\mst@font@tbu{mtoperatorfont}\fi  
\else \def\mst@font@tbu{mtletterfont}\fi

\def\mst@DeclareMathLetter #1{%  
\DeclareMathSymbol {#1}{\mathalpha}{\mst@font@tbu}{'#1}%  
\expandafter  
\DeclareMathSymbol \csname mst@#1\endcsname{\mathalpha}{\mst@font@tbu}{'#1}%  
\expandafter\mst@addtodo@AZ\expandafter #1\csname mst@#1\endcsname  
\@tfor\mst@tmp:=ABCDEFGHIJKLMNOPQRSTUVWXYZ\do  
{\expandafter\mst@DeclareMathLetter\mst@tmp}%  
\let\mst@DeclareMathLetter\relax  
\ifmst@symboldigits \def\mst@font@tbu{mtpsymbol}\fi  
\ifmst@eulerdigits \def\mst@font@tbu{mteulervm}\fi

\DeclareMathSymbol{0}{\mathalpha}{\mst@font@tbu}{'0}%  
\DeclareMathSymbol{1}{\mathalpha}{\mst@font@tbu}{'1}%  
\DeclareMathSymbol{2}{\mathalpha}{\mst@font@tbu}{'2}%  
\DeclareMathSymbol{3}{\mathalpha}{\mst@font@tbu}{'3}%  
\DeclareMathSymbol{4}{\mathalpha}{\mst@font@tbu}{'4}%  
\DeclareMathSymbol{5}{\mathalpha}{\mst@font@tbu}{'5}%  
\DeclareMathSymbol{6}{\mathalpha}{\mst@font@tbu}{'6}%  
\DeclareMathSymbol{7}{\mathalpha}{\mst@font@tbu}{'7}%  
\DeclareMathSymbol{8}{\mathalpha}{\mst@font@tbu}{'8}%  
\DeclareMathSymbol{9}{\mathalpha}{\mst@font@tbu}{'9}%

In version 1.1, we have now separated digits from letters, so paradoxically it is less problematic to give them the mathalpha type.

\def\mst@font@tbu{mtoperatorfont}\ifmst@symboldelimiters \def\mst@font@tbu{mtpsymbol}\fi

When symboldelimiters is passed as an option, we use the Symbol font for the printable characters other than letters and digits.
1.2 adds the tricks to let non letters/digits obey math alphabets. We have to double the definitions for easy switch on-off of the mechanism, via a token list which is put into `\everymath` and `\everydisplay`.

\ifmst@noexclam\else\typeout{** \string! and \string?}\fi
\DeclareMathSymbol{!}{\mathclose}{\mst@font@tbu}{"21}%
\DeclareMathSymbol{\mst@varfam@exclam}{\mathalpha}{\mst@font@tbu}{"21}%
\expandafter\mst@addtodo@nonletters\string!\mathclose\mst@varfam@exclam
\DeclareMathSymbol{?}{\mathclose}{\mst@font@tbu}{"3F}%
\DeclareMathSymbol{\mst@varfam@question}{\mathalpha}{\mst@font@tbu}{"3F}%
\expandafter\mst@addtodo@nonletters\string?\mathclose\mst@varfam@question
\fi

\MTlowerast
\mst@doasterisk
\mst@@doasterisk
\MTnormalasterisk
\MTactiveasterisk

\MTlowerast 1.12d The \ast or * is defined in `fontmath.ltx` as a binary operator from the `symbols` font. Usually the asterisk from the text font is in a raised position. Previous versions of `mathastext` did nothing with \ast but strangely defined * to be the one from the text font, with type `\mathalpha`. The package now leaves by default both \ast and * untouched, and if passed option `asterisk` replaces both of them with a lowered text asterisk (or the one from the Symbol font), and of type `\mathbin`. A trick is used to optionally get both \ast and * obey the math alphabets.

The user macro \MTlowerast sets the amount of lowering to be applied to the text asterisk.\MTlowerast 1.12e Somehow there was a big omission in 1.12d, the command \MTlowerast as described in the manual was missing!

nota bene: it is assumed that * is of type other when `mathastext` is loaded... it should neither be active, nor of type letter!

1.3i adds \MTnormalasterisk and \MTactiveasterisk. They do nothing without option `asterisk`.

\def\mst@@doasterisk{\let\ast\mst@ast\mst@mathactivate*{}\mst@ast}%
\newcommand*\MTnormalasterisk {\let\mst@doasterisk\relax}
\newcommand*\MTactiveasterisk {\let\mst@doasterisk\mst@@doasterisk}
\ifmst@asterisk\typeout{** asterisk: \string\ast\ space and *}\
\AtBeginDocument{%
\everymath\expandafter{	he\everymath \mst@doasterisk \MTnormalasterisk }%}
\everydisplay\expandafter{	he\everydisplay\mst@doasterisk \MTnormalasterisk }%
(2011) I renounced to try to do things with all the various dots, they are defined in many different ways, and there is the amsmath also. Dealing with this issue would mean a lot of time for a minuscule result. Better to leave the user use the mathdots package and accept that we can not avoid the default fonts in that case. So here I just treat . (in the hope to really lessen by 1 the number of fonts embedded at the end in the PDF).

[(Dec. 2012) should I reexamine these definitive sounding remarks?]
% spacing. No need to intervene.
\let\colon\undefined
% the reason is if some package has redefined \colon which then
% cannot be used in \cs{DeclareMathSymbol} anymore (we
% shamelessly overwrite...)
\DeclareMathSymbol{\colon}{\mathpunct}{\mst@font@tbu}{"3A}
\mst@do@nonletters\expandafter{\the\mst@do@nonletters
1.3v uses \protect for the (optional) \colon redefinition.
\protected\def\colon{\mathpunct{\mst@varfam@colon}}}
\DeclareMathSymbol{;}{\mathpunct}{\mst@font@tbu}{"3B}
\DeclareMathSymbol{\mst@varfam@pointvirgule}{\mathalpha}{\mst@font@tbu}{"3B}
\expandafter\mst@addtodo@nonletters\string;\mathpunct\mst@varfam@pointvirgule
\fi
\relbar
Due to the way = and - are used by \LaTeX{} in arrows, we will have to redefine \texttt{\Relbar} and
\texttt{\relbar} in order for them to preserve their original meanings.
1.15d: Oct 13, 2012. Belated amendment of the code to be compatible with Unicode engines
in case someone changed the mathcode of -. However, for the time being I can do it in an easy
way only for \TeX{}X, not for Lua\TeX{}. Also I do my modifications to \relbar{} in a manner
testing for the presence of amsmath.
1.3v 2019/09/19: \TeX{} of 2019-10-01 defines \leftarrowfill{} and \rightarrowfill{} as
robust macros, so we do the same.
I need to put amsmath under surveillance to check if it decides to robustify \texttt{\relbar} at some
point, now that the \TeX{} team has taken over maintenance.
2019/09/16 Use \protect for \texttt{\rightarrowfill} in the non \texttt{\DeclareRobustCommand}
branch?
\fi
\ifmst@nominus
\else
\ifmst@XeOrLua
\mst@Umathcharnumdef\mst@minus@sign=\mst@Umathcodenum`\relax
\percent I used this prior to the new \luatex\mst@Umathcodenum, as available since TL2013:
\percent A \mathchardef\mst@minus@sign=8704\relax
% "2200
\else
\mst@Umathchardef\mst@minus@sign=\mst@mathcode`\relax
\fi
\fi
\ifpackageloaded{amsmath}
\{\def\relbar{\mathrel{\mathpalette\mathsm@sh\mst@minus@sign}}\}
\{\DeclareRobustCommand\relbar{\mathrel{\smash\mst@minus@sign}}\}
\ifmst@robust@obsessed@LaTeX@era\expandafter\DeclareRobustCommand\else\def\fi
\rightarrowfill{\m@th\mathord{\relbar}\mkern-7mu%\cleaders\hbox{\mkern-2mu\relbar\mkern-2mu}\hfill\mkern-7mu\mathord{\relbar}}
\ifmst@robust@obsessed@LaTeX@era\expandafter\DeclareRobustCommand\else\def\fi
\leftarrowfill{\m@th\mathord{\leftarrow}\mkern-7mu%\cleaders\hbox{\mkern-2mu\relbar\mkern-2mu}\hfill\mkern-7mu\mathord{\relbar}}
\fi
Producing this next piece of code was not a piece of cake for a novice like myself!

1.11 2011/02/05: Compatibility with Unicode (via use of fontspec encodings EU1 and EU2)
1.12 2011/02/07: Improved dealing of Unicode possibility.
1.14b 2011/04/02: Corrected some very irresponsible bug in the Unicode part which caused a problem when 10 or more math families have been allocated.
1.15 2012/09/24: Added AtBeginDocument to circumvent some amsmath problem with unicode engines.

1.3l 2016/01/29: anticipating TL2016 fontspec’s switch to TU.

1.3t 2018/08/22: fix to very ancient (2012/12/20) bug with \DeclareMathSymbol lacking last argument if encoding not T1, OT1 or LY1 when setting up math mode to use the en-dash character as minus sign (PDFL\TeX engine).

1.3u improves the handling of the minus sign by letting it be compatible with math versions (and not only with the with subdued mechanism but all math versions) having varying font encodings, even possibly classic 8bit font encoding mixed with TU encoding for Unicode engines. For this it is needed to work around a feature of Xe\TeX/Lua\LaTeX, here is original comment:

afaict it is impossible to use straightforwardly in extended mathcode assignments a control sequence as created by \Umathchardef. This is counter-intuitive and breaks expectations.

But the 1.3u mechanism with \mst@UmathchardefWorkAround@i introduced a bug which showed under option noendash (hence also symboldelimiters) with Unicode engines. Fixed at 1.3w.
The above works only if the \texttt{\textbackslash mst@varfam@minus} was really defined via \texttt{\textbackslash Umathchardef}. If it was defined via \texttt{\textbackslash DeclareMathSymbol} then it is a \texttt{\textbackslash mathchar}, not a \texttt{\textbackslash Umathchar}. At least currently (2019). So we need to correct the definition of \texttt{\textbackslash mst@nonsubduedminus}.

I will need an \texttt{rlap} adapted to math mode, and this is provided by code from Alexander R. Perlis in his TugBoat article 22 (2001), 350–352, which I found by googling \texttt{rlap}. (as an aside, I am only now (April 2, 2011) aware that the package \texttt{mathtools} provides the \texttt{mathrlap} etc...)

1.31 2016/01/29: anticipating TL2016 fontspec’s switch to TU.
1.3u 2019/08/20: encoding (8bits) agnostic construct for hbar, using same method as for \texttt{mathaccents} option. I should add some way to adjust the vertical positioning.

On this occasion I replace \texttt{h} by \texttt{\mst@h} because the mechanism for before and after skips does not interact well with the \texttt{rlap} construct.

1.3v 2019/09/19 adapts to maintain the robustness of \texttt{\hbar} which now applies with \texttt{\LaTeX} 2019-10-01.

1.3v works around \url{https://github.com/latex3/latex2e/issues/216} via \texttt{\mst@DeclareMathAccent}. The upstream bug affected the definition of \texttt{\mst@ltbar@mvnormal} and broke usage of \texttt{\Mathaccent} in preamble.

1.3w also fixes oversight that \texttt{\hbar} may have been redefined via \texttt{\DeclareMathSymbol} by some package (e.g. \texttt{amsfonts}) and with \texttt{\LaTeX} 2019-10-01 this means \texttt{\hbar<space>} is now undefined. Modifying it changed nothing to \texttt{\hbar} behaviour in such circumstances. Finally we opt for a \texttt{protected} \texttt{\hbar} and choose to ignore completely if there is a \texttt{\hbar<space>} or not. To avoid extra steps we do not redefine it if it exists, because we would need to restore it in subdued math versions.

\begin{verbatim}
\let\mst@subduedhbar\@empty
\let\mst@nonsubduedhbar\@empty
\ifmst@nohbar
\else
\def\mst@subduedhbar{\let\hbar\mst@original@hbar}\
\def\mst@nonsubduedhbar{\expandafter\let\expandafter\hbar\csname mst@hbar@mv\math@version\endcsname}\
\fi
\def\mst@mathrlap{\mathpalette\mst@mathrlapinternal}
\def\mst@mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}}
\def\mst@dothe@hbarstuff#1#2#3{\
\edef\mst@tmp@enc{#3}\
\if1\mst@OneifUniEnc % Unicode engine and font
\mst@Umathchardef#1="7 \symmtletterfont "0127 \relax %% or 210F?
\else
\begingroup
\def\@text@composite##1\@text@composite##2{##2}\
\let\add@accent\@firstoftwo\mst@DeclareMathAccent{#2}{\mathalpha}{mtletterfont}\
{\csname\mst@tmp@enc\string\=\endcsname{}}\
\endgroup
\protected\def#1{\mst@mathrlap{#2{\ }}\mst@h}\
\fi
\fi
\end{verbatim}

1.15d: Oct 13, 2012. The \texttt{\mathcode} thing with = is (belatedly, sorry!) made Unicode compatible.
Activating $=$ (only in math mode actually) seems very bad but surprisingly works well. However I had a problem with eu2lmtt.fd which should not be loaded with an active $=$. Since then I had switched to only math activation. And in fact the problematic $=$ from eu2lmtt.fd end up in \csname...\endcsname and I have learnt since that \TeX does not look at the mathcode inside a \csname...\endcsname. Example:

\begin{verbatim}
\% \mathcode`x="8000
\% \begingroup
\% \catcode`x=\active
\% \global\everymath{\defx{Hello}}
\% \endgroup
\% \def\foox{World!}
\% $x \csname foox\endcsname$
\end{verbatim}

We need nevertheless to inactivate the $=$, for the following reason. Imagine someone did \catcode`\mathcodexy{"8000 \begingroup \catcode`x=\active \global\everymath{\defx{Hello}} \endgroup \def\foox{World!} $x \csname foox\endcsname$ %

\begin{verbatim}
\% \mathcode`x="8000
\% \begingroup
\% \catcode`x=\active
\% \global\everymath{\defx{Hello}}
\% \endgroup
\% \def\foox{World!}
\% $x \csname foox\endcsname$
\end{verbatim}

\noindent $x = $ will not be compatible with loading eu2lmtt.fd (for the first time) from math mode, as this re-definition can not be expanded inside a \csname...\endcsname. 2012/12/28: to be on the safe side, I add also ; and + and do it without discriminating between engines

\begin{verbatim}
\typeout{** adding \string= \string; and \string+ to \string
\end{verbatim}

|noparenthesis| ((,)[,]|/ \lbrack and \rbrack are defined in \TeX by \def\lbrack{[} \def\rbrack{]} so this fits well with what we do here. \\lparen and \rparen are similarly defined in \texttt{mathtools}. On the other hand in \TeX \lparen and \rparen are defined (in math mode) in terms of the control sequences \lbracket and \rbracket. Such control sequences can not be simultaneously math symbols and math delimiters, thus, this complicates things for the mathastextification.

```latex
\begin{verbatim}
\lbracket and \rbracket are defined in \TeX by \def\lbracket{[} \def\rbracket{]} so this fits well with what we do here. \lparen and \rparen are similarly defined in \texttt{mathtools}. On the other hand in \TeX \lparen and \rparen are defined (in math mode) in terms of the control sequences \lbracket and \rbracket. Such control sequences can not be simultaneously math symbols and math delimiters, thus, this complicates things for the mathastextification.
\end{verbatim}
```
Dec 18, 2012. We then want \let\backslash\mst@varfam@backslash to do nothing when the \backslash is used as a delimiter. So here the original definition from latex.ltx is copied, generally speaking when people use other math symbol fonts they do respect the encoding of the CM symbols and largesymbols, so this is 90% safe. But in truth I should extract from the meaning of \backslash the delcode.

\DeclareMathDelimiter{\mst@varfam@backslash}{\mathalpha}{mtoperatorfont}{"5C}{largesymbols}{"0F}
\DeclareMathSymbol{\backslash}{\mathord}{mtoperatorfont}{"5C}{largesymbols}{"0F}

There is no backslash in the Symbol font hence mtoperatorfont here.

\DeclareMathDelimiter{\mst@varfam@backslash}{\mathalpha}{mtoperatorfont}{"5C}{largesymbols}{"0F}
\DeclareMathSymbol{\mst@varfam@backslash}{\mathord}{mtoperatorfont}{"5C}{largesymbols}{"0F}

\expandafter\mst@addtodo@easynonletters\string<\mst@varfam@less
\expandafter\mst@addtodo@easynonletters\string>\mst@varfam@more
\expandafter\mst@addtodo@nonletters\string|\mst@varfam@mid
\expandafter\mst@addtodo@nonletters\string\setminus\mst@varfam@setminus
\expandafter\mst@addtodo@nonletters\string\backslash\mst@varfam@backslash
\expandafter\mst@addtodo@nonletters\string/\mst@varfam@slash
1.3v adds a \protected here for \setminus.

\models 1.15d: 13 oct 2012. Before modifying | we must preserve \models.

1.3v 2019/09/19: I discover this rather radical legacy \def\vert{|}, which is done here once in the preamble, but I leave it unmodified apart from prefixing it with \protected. I also add a \protected for the definition of \mid (which applies only under \MTnonlettersobeymathxx regime).

1.3e suppresses under option nosmalldelims the definitions of \lbrace and \rbrace as math symbols as this made \left\brace cause an error, it was a bug.

LaTeX2e defines \{ and \} as robust commands for a long time (I don't know since when). The \mathastext redefinition is done only if user has executed \MTexplicitbracesobeymathxx, and it is done only when entering math mode, but there could be some \hbox inside math, hence it has to be careful to be valid in text too.
1.3v maintains strict \( \LaTeX \) robustness for \{ and \}. This assumes no one fiddled with \{ \} proper (without space in the name).

\[ \text{\ifmst@nosmalldelims} \]
\[ \text{\else} \]
\[ \text{\let\lbrace\undefined \let\rbrace\undefined} \]
\[ \text{\DeclareMathDelimiter{\lbrace}{\mathopen}{\mst@font@tbu}{123}{largesymbols}{\"08}} \]
\[ \text{\DeclareMathDelimiter{\rbrace}{\mathclose}{\mst@font@tbu}{125}{largesymbols}{\"09}} \]
\[ \text{\fi} \]
\[ \text{\fi % end of \ifmst@alldelims} \]
\[ \text{\newcommand*{\MTexplicitbracesobeymathxx}{\let\mst@dobraces\@firstofone}} \]
\[ \text{\newcommand*{\MTexplicitbracesdonotobeymathxx}{\let\mst@dobraces\@gobble}} \]
\[ \text{\MTexplicitbracesdonotobeymathxx} \]

specials 1.14b 2011/04/02: the redefinitions of \#, \$, \% and \& were buggy (this showed up when 10 or more math families had been created).

1.15f 2012/10/23: the code, although working, was perhaps a bit insane and had definitions which could surprise other packages. For example, it did:
\[ \text{\renewcommand{\%}{\ifmmode\mt@mmode@percent\else\char37\relax\fi}} \]
But it seems this provokes a problem with \texttt{microtype}. Perhaps the problem was that the command was not declared robust? For the dollar \( \LaTeX \) itself does
\[ \text{\DeclareRobustCommand{\$}{\ifmmode\mathdollar\else\textdollar\fi}} \]
So here I just modify \texttt{\mathdollar}. Then we have in \texttt{latex.ltx} the same definitions as in \texttt{plain.tex}: \texttt{\chardef\%=\char37\&, \chardef\%=\char37\&, and \chardef\%=\char37\&}. It turns out that we can just adjust the mathcodes of these characters and achieve exactly what is wanted for the corresponding one char control sequences. In math mode the control sequence will use the specified mathcode. So here it is not a redefinition of the control sequences, purely an adjustment of mathcodes.

1.2d 2013/01/01: previous versions imposed the variable family type. I hereby make it possible to de-activate this feature with the macro \texttt{\Teasyonlettersdonotobeymathxx}. Besides, I have absolutely no idea why I had different looking code depending on the engine \texttt{Xe\TeX}, \texttt{Lua\TeX} or default. Removed.

1.3c 2013/12/14: I have absolutely no idea why I removed the \texttt{Xe\TeX} and \texttt{Lua\TeX} code at the time of 1.2d! the code for \texttt{tex/pdftex} engine could not accomodate more than 16 math families. Code for \texttt{Xe\TeX} and \texttt{Lua\TeX} again added. (and since TL2013 no more problems with \texttt{luatexmathcode}.)

\[ \text{\ifmst@nospecials} \]
symbolmisc We construct (with some effort) some long arrows from the Symbol glyphs, of almost the same lengths as the standard ones. By the way, I always found the \iff to be too wide, but I follow here the default. Also, although there is a \longmapsto in standard \LaTeX, if I am not mistaken, there is no \longto. So I define one here. I could not construct in the same manner \Longrightarrow etc... as the = sign from Symbol does not combine easily with the logical arrows, well, I could
have done some box manipulations, but well, life is finite.

1.13b: I correct the brutal re-definitions of \prod and \sum from the earlier versions of the package; most of the time the Symbol glyphs do appear to be too small in display mode. The new redefinitions do have some defects: $\displaystyle\prod_1^2$ changes the position of limits but not the glyph itself, and $\textstyle\prod_1^2$ change the limits but switches to the CM inline math glyph. So I tried \renewcommand{\prod}{\mathchoice{\mst@prod}{\prodpsy}{\prodpsy}{\prodpsy}}

but this did not go well with subscripts and exponents.

October 2012: maybe I should re-examine what I did?

1.3c (2013/12/14) renames \defaultprod to \MToriginalprod and \defaultsum to \MToriginalsum.

1.3v hesitates about making robust here \prod and \sum. Finally I use \protected for them.

1003 \ifmst@symbolmisc\typeout{** symbolmisc: miscellaneous math symbols from Symbol font}
1004 \let\mst@prod\prod
1005 \let\MToriginalprod\prod
1006 \DeclareMathSymbol{\prodpsy}{\mathop}{mtpsymbol}{213}
1007 \protected\def\prod{\ifinner\prodpsy\else\mst@prod\fi}
1008 \let\mst@sum\sum
1009 \let\MToriginalsum\sum
1010 \DeclareMathSymbol{\sumpsy}{\mathop}{mtpsymbol}{229}
1011 \protected\def\sum{\ifinner\sumpsy\else\mst@sum\fi}
1012 \DeclareMathSymbol{\mst@implies}{\mathrel}{mtpsymbol}{222}
1013 \DeclareRobustCommand*{\implies}{\;\mst@implies\;}
1014 \DeclareMathSymbol{\mst@impliedby}{\mathrel}{mtpsymbol}{220}
1015 \DeclareRobustCommand*{\impliedby}{\;\mst@impliedby\;}
1016 \DeclareMathSymbol{\mst@iff}{\mathrel}{mtpsymbol}{219}
1017 \DeclareRobustCommand*{\shortiff}{\;\mst@iff\;}
1018 \DeclareMathSymbol{\mst@to}{\mathrel}{mtpsymbol}{174}
1019 \DeclareRobustCommand*{\to}{\mst@to}
1020 \DeclareRobustCommand*{\longto}{\mkern2mu\mst@trait\mathrel{\mkern-10mu}\mst@to}
1021 \DeclareRobustCommand*{\mapsto}{\mapstochar\mathrel{\mkern0.2mu}\mst@to}
1022 \DeclareRobustCommand*{\longmapsto}{\mapstochar\mathrel{\mkern2mu}\mst@trait\mathrel{\mkern-10mu}\mst@to}
1023 \DeclareMathSymbol{\aleph}{\mathord}{mtpsymbol}{192}
1024 \DeclareMathSymbol{\infty}{\mathord}{mtpsymbol}{165}
1025 \DeclareMathSymbol{\emptyset}{\mathord}{mtpsymbol}{198}
1026 \let\varnothing\emptyset
1027 \DeclareMathSymbol{\nabla}{\mathord}{mtpsymbol}{209}
1028 \let\angle\undefined
1029 \DeclareMathSymbol{\forall}{\mathord}{mtpsymbol}{187}
1030 \DeclareMathSymbol{\exists}{\mathord}{mtpsymbol}{189}
1031 \DeclareMathSymbol{\neg}{\mathord}{mtpsymbol}{216}
1032 \let\angle\undefined
1033 \DeclareMathSymbol{\clubsuit}{\mathord}{mtpsymbol}{167}
1034 \DeclareMathSymbol{\diamondsuit}{\mathord}{mtpsymbol}{168}
1035 \DeclareMathSymbol{\heartsuit}{\mathord}{mtpsymbol}{169}
1036 \DeclareMathSymbol{\mst@trait}{\mathrel}{mtpsymbol}{190}
I like the \( \Re \) and \( \Im \) from Symbol, so I overwrite the CM ones.

\[ \text{symbolre I like the \( \Re \) and \( \Im \) from Symbol, so I overwrite the CM ones.} \]

** symbolre: \string\Re\space and \string\Im\space from Symbol font**

Greek letters LGR\greek > self\greek > euler\greek > symbol\greek

1.11 I correct some bugs on how euler\greek and symbol\greek interacted.

1.12b more bug fixes.

1.13

* Option LGR\greek.

* Also, a behavior has been changed: it regards the self\greek case, the default shape is now the one for letters, not for operator-names and digits. This complies to the ISO standard.
* bugfix: version 1.12b did not define the \omicron in the case when no Greek-related option was passed to the package.

1.13d has new macros \MTstandardgreek and \MTcustomgreek. And in the subdued case \MTstandardgreek is done when switching to the normal or bold math versions (previously something like this was only done in case of LGRgreek option.)

\let\mst@mathord=\mathalpha
\mst@goaheadtrue
\ifmst@selfGreek
  \def\mst@font@tbu{mstselfGreekfont}
\else
  \ifmst@eulergreek
    \def\mst@font@tbu{mteulervm}
  \else
    \ifmst@symbolgreek
      \def\mst@font@tbu{mtpsymbol}
      \let\mst@mathord=\mathord
    \else
      \ifmst@LGRgreek
        \mst@goaheadfalse
      \else
        The \omicron requires special treatment. By default we use the o from the (original) normal alphabet, if eulergreek or symbolgreek we adapt. There is also a special adjustment if the package fourier was loaded in its upright variant: we then take \omicron from the (original) rm alphabet.
        \mst@goaheadfalse
        \def\mst@omicron{\mst@alph@omicron{o}}
      \fi
    \fi
  \fi
\fi
\fi
\mst@goaheadfalse
\def\mst@omicron{\mst@alph@omicron{o}}
\fi
\fi
\fi
\ifmst@goahead
  \DeclareMathSymbol{\mst@Alpha}{\mst@mathord}{\mst@font@tbu}{"41}
  \DeclareMathSymbol{\mst@Beta}{\mst@mathord}{\mst@font@tbu}{"42}
  \DeclareMathSymbol{\mst@Epsilon}{\mst@mathord}{\mst@font@tbu}{"45}
  \DeclareMathSymbol{\mst@Zeta}{\mst@mathord}{\mst@font@tbu}{"5A}
  \DeclareMathSymbol{\mst@Eta}{\mst@mathord}{\mst@font@tbu}{"48}
  \DeclareMathSymbol{\mst@Iota}{\mst@mathord}{\mst@font@tbu}{"49}
  \DeclareMathSymbol{\mst@Kappa}{\mst@mathord}{\mst@font@tbu}{"4B}
  \DeclareMathSymbol{\mst@Mu}{\mst@mathord}{\mst@font@tbu}{"4D}
  \DeclareMathSymbol{\mst@Nu}{\mst@mathord}{\mst@font@tbu}{"4E}
  \DeclareMathSymbol{\mst@Omicron}{\mst@mathord}{\mst@font@tbu}{"4F}
  \DeclareMathSymbol{\mst@Rho}{\mst@mathord}{\mst@font@tbu}{"50}
  \DeclareMathSymbol{\mst@Tau}{\mst@mathord}{\mst@font@tbu}{"54}
  \DeclareMathSymbol{\mst@Chi}{\mst@mathord}{\mst@font@tbu}{"58}
\fi
\ifx\mst@mathord=\mathord
  symbolgreek but neither eulergreek nor selfGreek
\begin{verbatim}
1115  %% attention le P de Symbol est un \Pi pas un \Rho
1116  \DeclareMathSymbol{\mst@Rho}{\mathord}{mtpsymbol}{"52}
1117  %% attention le X de Symbol est un \Xi pas un \Chi
1118  \DeclareMathSymbol{\mst@Chi}{\mathord}{mtpsymbol}{"43}
1119  %% attention le F de Symbol est un \Phi. Il n'y a pas de \Digamma
1120  \DeclareMathSymbol{\mst@Gamma}{\mathord}{mtpsymbol}{"47}
1121  \DeclareMathSymbol{\mst@Delta}{\mathord}{mtpsymbol}{"44}
1122  \DeclareMathSymbol{\mst@Theta}{\mathord}{mtpsymbol}{"51}
1123  \DeclareMathSymbol{\mst@Lambda}{\mathord}{mtpsymbol}{"4C}
1124  \DeclareMathSymbol{\mst@Xi}{\mathord}{mtpsymbol}{"58}
1125  \DeclareMathSymbol{\mst@Pi}{\mathord}{mtpsymbol}{"50}
1126  \DeclareMathSymbol{\mst@Sigma}{\mathord}{mtpsymbol}{"53}
1127  \DeclareMathSymbol{\mst@Upsilon}{\mathord}{mtpsymbol}{"A1}
1128  \DeclareMathSymbol{\mst@Phi}{\mathord}{mtpsymbol}{"46}
1129  \DeclareMathSymbol{\mst@Psi}{\mathord}{mtpsymbol}{"59}
1130  \DeclareMathSymbol{\mst@Omega}{\mathord}{mtpsymbol}{"57}
1131  \else % de \mst@mathord=\mathord
1132  \not symbolgreek but eulergreek or selfGreek. Note 2015/10/31 : apparemment à un moment
1133  dans le passé je considérais eulergreek et selfGreek comme pouvant être utilisés simultanément
1134  car j'avais ici "or both". Mais je laisse tomber tout effort réel de m'en préoccuper.
1135  \fi % de \mst@goahead
1136  \fi % fin de goahead
1137  \ifmst@goahead
1138  \fi % de \mst@mathord=\mathord
1139  \else % de \mst@mathord=\mathord
1140  There are differences regarding Euler and Symbol with respect to the available var-letters. We
1141  include one or two things like the \texttt{wp} and the \texttt{partial}.
1142  The lower case Greek letters in default \LaTeX{} are of type \texttt{mathord}. If we use the Euler font it
1143  is perhaps better to have them be of type \texttt{mathalpha}
1144  \fi % fin de goahead
1145 \end{verbatim}
\MTstandardgreek 1.3d 2014/05/23 defines the commands \MTstandardgreek and \MTcustomgreek for package and user. I leave \MTrecordstandardgreek undocumented as I don’t want to encourage people to load math packages after mathastext.

\MTcustomgreek 1.3h 2015/10/31: corrected \MTcustomgreek as it caused \ell to become undefined under option symbolgreek and, much more catastrophic, caused \alpha, etc., to become undefined under option selfGreek!

\newcommand*{\MTstandardgreek}{}
\newcommand*{\MTcustomgreek}{}
\newcommand*{\MTrecordstandardgreek}{}
\ifmst@customgreek
\renewcommand*{\MTrecordstandardgreek}{%}
\let\mst@origAlpha\Alpha
\let\mst@origBeta\Beta
\let\mst@origGamma\Gamma
\let\mst@origDelta\Delta
\let\mst@origEpsilon\Epsilon
\let\mst@origZeta\Zeta
\let\mst@origEta\Eta
\let\mst@origTheta\Theta
\let\mst@origIota\Iota
\let\mst@origKappa\Kappa
\let\mst@origLambda\Lambda
\let\mst@origOmicron\Omicron
\let\mst@origPi\Pi
\let\mst@origRho\Rho
\let\mst@origSigma\Sigma
\let\mst@origTheta\Theta
\let\mst@origUpsilon\Upsilon
\let\mst@origPhi\Phi
\let\mst@origPsi\Psi
\let\mst@origOmega\Omega
\let\mst@origDigamma\Digamma
\let\mst@origEpsilon\Epsilon
\let\mst@origZeta\Zeta
\let\mst@origEta\Eta
\let\mst@origTheta\Theta
\let\mst@origIota\Iota
\let\mst@origKappa\Kappa
\let\mst@origLambda\Lambda
\let\mst@origOmicron\Omicron
\let\mst@origPi\Pi
\let\mst@origRho\Rho
\let\mst@origSigma\Sigma
\let\mst@origTheta\Theta
\let\mst@origUpsilon\Upsilon
\let\mst@origPhi\Phi
\let\mst@origPsi\Psi
\let\mst@origOmega\Omega
\let\mst@origDigamma\Digamma
\let\mst@origEpsilon\Epsilon
\let\mst@origZeta\Zeta
\let\mst@origEta\Eta
\let\mst@origTheta\Theta
\let\mst@origIota\Iota
\let\mst@origKappa\Kappa
\let\mst@origLambda\Lambda
\let\mst@origOmicron\Omicron
\let\mst@origPi\Pi
\let\mst@origRho\Rho
\let\mst@origSigma\Sigma
\let\mst@origTheta\Theta
\let\mst@origUpsilon\Upsilon
\let\mst@origPhi\Phi
\let\mst@origPsi\Psi
\let\mst@origOmega\Omega
\let\mst@origDigamma\Digamma
\let\mst@origEpsilon\Epsilon
\let\mst@origZeta\Zeta
\let\mst@origEta\Eta
\let\mst@origTheta\Theta
\let\mst@origIota\Iota
\let\mst@origKappa\Kappa
\let\mst@origLambda\Lambda
\let\sigma\mst@origsigma
\let\varsigma\mst@origvarsigma
\let\tau\mst@origtau
\let\upsilon\mst@origupsilon
\let\phi\mst@origphi
\let\varphi\mst@origvarphi
\let\chi\mst@origchi
\let\psi\mst@origpsi
\let\omega\mst@origomega
\let\Digamma\mst@origDigamma
\let\digamma\mst@origdigamma
\let\partial\mst@origpartial
\let\wp\mst@origwp
\let\ell\mst@origell
\renewcommand*{\MTstandardgreek}{% 
\let\Alpha\mst@Alpha
\let\Beta\mst@Beta
\let\Epsilon\mst@Epsilon
\let\Zeta\mst@Zeta
\let\Eta\mst@Eta
\let\Iota\mst@Iota
\let\Kappa\mst@Kappa
\let\Mu\mst@Mu
\let\Nu\mst@Nu
\let\Omicron\mst@Omicron
\let\Rho\mst@Rho
\let\Tau\mst@Tau
\let\Chi\mst@Chi
% 1.3h: \mst@Digamma not defined if symbolgreek option
\ifmst@symbolgreek\else\let\Digamma\mst@Digamma\fi
\let\Gamma\mst@Gamma
\let\Delta\mst@Delta
\let\Theta\mst@Theta
\let\Lambda\mst@Lambda
\let\Xi\mst@Xi
\let\Pi\mst@Pi
\let\Sigma\mst@Sigma
\let\Upsilon\mst@Upsilon
\let\Phi\mst@Phi
\let\Psi\mst@Psi
\let\Omega\mst@Omega
\ifmst@selfGreek\else
\let\alpha\mst@alpha
\let\beta\mst@beta
\fi
\let\gamma@mst@gamma
\let\delta@mst@delta
\let\epsilon@mst@epsilon
\let\zeta@mst@zeta
\let\eta@mst@eta
\let\theta@mst@theta
\let\iota@mst@iota
\let\kappa@mst@kappa
\let\lambda@mst@lambda
\let\mu@mst@mu
\let\nu@mst@nu
\let\xi@mst@xi
\let\omicron@mst@omicron
\let\pi@mst@pi
\let\rho@mst@rho
\let\sigma@mst@sigma
\let\tau@mst@tau
\let\upsilon@mst@upsilon
\let\phi@mst@phi
\let\chi@mst@chi
\let\psi@mst@psi
\let\omega@mst@omega
\let\varsigma@mst@varsigma
\let\varpi@mst@varpi
\let\varrho@mst@varrho
\let\varphi@mst@varphi
\let\partial@mst@partial
\let\wp@mst@wp
% 1.3h: digamma only defined with option LGRgreek:
\ifmst@LGRgreek\let\digamma@mst@digamma\fi
\ifmst@symbolgreek\else\let\ell@mst@ell\fi
\inodot\jnodot

In 1.0, I had them of type mathord, here I choose mathalpha. If I used \i and \j from the text font the problem would be with the fontsize, if in scriptstyle. The amsmath \text would do the trick.
1.14b 2011/04/02: again this bug in the EU1/EU2 encoding part, as in the code redefining $ etc in math mode (see above). Fixed.
1.3l 2016/01/29: anticipating TL2016 fontspec's switch to TU.
1.3t 2018/08/22 removes the definitions done of \i and \j since 1.12 (as robust commands usable both in text and math mode).
1.3u lets the \imath and \jmath react to the font encoding at each math version.
1.3v lets the redefined \imath and \jmath be \protected.

\def\mst@subduedinodot{%
\let\inodot\mst@original@imath
\let\jnodot\mst@original@jmath
}%
\def\mst@nonsubduedinodot{%
\expandafter\let\expandafter\inodot
\csname mst@inodot@mv\math@version\endcsname
\expandafter\let\expandafter\jnodot
\csname mst@jnodot@mv\math@version\endcsname
}%
\def\mst@dothe@inodotstuff#1#2#3{%
\edef\mst@tmp@enc{#3}\
\if1\mst@OneifUniEnc
% Unicode engine and font
\mst@Umathchardef#1="7 \symmtletterfont "0131 \relax
\mst@Umathchardef#2="7 \symmtletterfont "0237 \relax
\else
\DeclareMathSymbol{#1}{\mathalpha}{mtletterfont}{\csname\mst@tmp@enc\string\i\endcsname}
\DeclareMathSymbol{#2}{\mathalpha}{mtletterfont}{\csname\mst@tmp@enc\string\j\endcsname}
\fi}% \mst@dothe@inodotstuff
\ifmst@defaultimath\else\typeout{** \string\imath\space and \string\jmath\space}
\AtEndOfPackage{\AtBeginDocument{%
\protected\def\imath{\inodot}\
\protected\def\jmath{\jnodot}\
}%
}}%}
\fi

math accents  Obsolete comments relative to the 2011 code:

I don’t know how to get from the encoding to the slot positions of the accents (apart from going to look at all possible encodings definition files and putting this info here). In standard \LaTeX, the math accents are taken from the ‘operators’ font. So we do the same here. Of course there is the problem that the user can define math versions with different encodings. Here I take T1 if it was the default at the time of loading the package, else OT1. 1.12b: I add LY1 which is quasi like OT1.

At 1.3u 2019/08/20 I decide to remove the hard-coded slot positions for OT1, T1 and LY1, and replace them with some hack which assumes \LaTeX2e way of handling text accents got executed by the encoding definition file. If not, some breakage on package loading could occur, but this whole thing is conditional on the mathaccents option anyway, which per default is not executed.
The \textbf{vec} accent is not considered here because it has no suitable available glyph in a standard 8bits text font encodings.

Also at 1.3u the math accents adapt to the font encoding at each math version. 1.3v adapts to \LaTeX{} 2019-10-01 which now comes with robust math accent macros. The «original»-named macros are without the robustifying space (NOT true anymore, see 1.3w next), as they only serve as meaning holders.

On the other hand the macros indexed by math version names are (in the pdflatex branch) always defined via \texttt{\DeclareMathAccent} hence they will be robust with 2019-10-01 or later and we must use the \texttt{\mst@robustifying} with them to access their real meaning (this thus differs from the situation with \texttt{\textbar}).

1.3w The above was a bit optimistic as \texttt{amsmath} for example modifies \LaTeX{} internals and handles math accents differently.

We thus needed to double our \texttt{\let}'s as, if \texttt{amsmath} is loaded, the cs with space will exist but not be paired in expected way with the original cs. This breaks things by the way if some math accent is written to an external file under a certain context and executed in another context. The new context will be probably ignored if \texttt{amsmath} is loaded, as the external file will have an already expanded-once meaning.

Some macros with space in name might thus be created as \texttt{\relax}. Should I rather create \texttt{\protected} macros for the math accents with Unicode engines? Anyway, the construct does give good result with the few OpenType text fonts I tested.

\begin{verbatim}
1514 \let\mst@subduedmathaccents@empty
1515 \let\mst@nonsubduedmathaccents@empty
1516 \ifmst@mathaccents
1517 \def\mst@subduedmathaccents{%
1518 \@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
1519 \{dot}\{ddot}\{mathring}\{hat}\{tilde}%
1520 \do
1521 {\expandafter\let\csname\@tempa\expandafter\endcsname
1522 \csname mst@original@\@tempa\endcsname
1523 \expandafter\let\csname\@tempa\space\expandafter\endcsname
1524 \csname mst@original@\@tempa\space\endcsname
1525 }%
1526 %}
1527 \def\mst@nonsubduedmathaccents{%
1528 \@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
1529 \{dot}\{ddot}\{mathring}\{hat}\{tilde}%
1530 \do
1531 {\expandafter\let\csname\@tempa\expandafter\endcsname
1532 \csname mst@mv\math@version\@tempa\endcsname
1533 \expandafter\let\csname\@tempa\space\expandafter\endcsname
1534 \csname mst@mv\math@version\space\@tempa\endcsname
1535 }%
1536 %}
1537 \def\mst@dothe@mathaccentsstuff#1#2{%
1538 \begingroup
1539 \edef\mst@tmp@enc{#2}%
1540 \def\@text@composite##1\@text@composite##2{##2}%
1541 \let\add@accent\@firstoftwo
1542 \let\add@unicode@accent\@firstoftwo
1543 \endgroup
1544 \end{verbatim}
1.3u used some \def but this made the accent macro meanings look slightly different depending on whether the math version being set-up was with an 8bit encoding or TU encoding.

For the sake of uniform treatment we modify this at 1.3v, but this is a bit complicated regarding timing: we need, in absence of unimathaccents option, in math versions with an OpenType font, to let the \acute etc... acquire back some prior non-mathastext meanings. To allow maximal flexibility, these original meaning get stored at begin document only. But \mst@nonsubduedmathaccents assigns to \acute etc... (in the robust sense with \LaTeX{} 2019-10-01 or later) the meaning stored in the macros with the math version in their names. Such \mst@acute@mvnormal etc... must thus be ready before \mst@nonsubduedmathaccents (or at least before the last such) execution: the code here must get executed after the definition of the «original»-named macros but prior to the (last one, if multiple) \mst@nonsubduedmathaccents.

Hence 1.3v delayed a bit the initial execution of this macro (see further down in the code) compared to what happened in 1.3u.

We are in a group but \AtEndOfPackage does the right thing.

This is needed because the pdflatex engine branch will use \DeclareMathAccent and it creates robust macros with \LaTeX{} 2019-10-01 or later. As we want elsewhere in the package code not to have to check if under Unicode engine or not, we need to handle here also some definition of robust macros.

But wouldn’t it be simpler to manage \protected macros?
\DeclareMathAccent \grave \global \mstDeclareMathAccent \expandafter
{% grave
% \csname mst@grave@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \acute
\expandafter\mstDeclareMathAccent \expandafter
{% acute
% \csname mst@acute@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \check
\expandafter\mstDeclareMathAccent \expandafter
{% check
% \csname mst@check@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \breve
\expandafter\mstDeclareMathAccent \expandafter
{% breve
% \csname mst@breve@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \bar
\expandafter\mstDeclareMathAccent \expandafter
{% bar
% \csname mst@bar@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \dot
\expandafter\mstDeclareMathAccent \expandafter
{% dot
% \csname mst@dot@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \ddot
\expandafter\mstDeclareMathAccent \expandafter
{% ddot
% \csname mst@ddot@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \mathring
\expandafter\mstDeclareMathAccent \expandafter
{% mathring
% \csname mst@mathring@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \hat
\expandafter\mstDeclareMathAccent \expandafter
{% hat
% \csname mst@hat@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
% \tilde
\expandafter\mstDeclareMathAccent \expandafter
{% tilde
% \csname mst@tilde@mv#1\endcsname
% \csname mtoperatorfont\endcsname
% \csname#2\endcsname{}
}
\MTDeclareVersion The \MTDeclareVersion command is to be used in the preamble to declare a math version. A more complicated variant would also specify a choice of series for the Euler and Symbol font: anyhow Symbol only has the medium series, and Euler has medium and bold, so what is lacking is the possibility to create a version with a bold Euler. There is already one such version: the default bold one. And there is always the possibility to add to the preamble \SetSymbolFont{mteulervm}{versionname}{U}{zeur}{bx}{n} if one wants to have a math version with bold Euler characters.

For version 1.1 we add an optional parameter specifying the shape to be used for letters.

Note: (2012/10/24) I really should check whether the user attempts to redefine the ‘normal’ and ‘bold’ versions and issue a warning in that case! Finally done at 1.3w 2019/11/16! Better late than never...

1.3c (2013/12/14) adds an extra optional parameter after all previous ones, to inherit the settings from another version. Typically to be used with [bold]. I take this opportunity to sanitize a bit some line endings to avoid generating (in the preamble, document macros were already careful of course) too many space tokens, at least inside macros. And I modify (correct? perhaps it was on purpose) the strange way I used \@onlypreamble in earlier version.

1.3u adds storage of macros holding the needed meanings for \imath, \hbar, math accents, and the minus symbol, version wise.

1.3w adds the check to forbid normal and bold as version names.
In the case of option LGRgreeks (selfGreeks), it is expected that the fonts used in each math versions exist in LGR (OT1) encoding. We first recalculate the shapes to be used for lowercase and uppercase Greek letters depending on the frenchmath and [it/up][g/G]reek options as well as on the (local to this version) shapes for letters and digits.

```latex
\ifmst@itgreek
\def\mst@greek@lsh@loc\itdefault\fi
\ifmst@upgreek
\def\mst@greek@lsh@loc\updefault\fi
\ifmst@frenchmath
\ifmst@itgreek\else
\ifmst@upgreek\else
\def\mst@greek@lsh@loc\csname mst@ltshape@mst@version\endcsname\fi\fi
\fi\fi
\typeout{** Greek letters (\mst@greek@lsh@loc/\mst@greek@ush@loc) will use LGR font \mst@greekfont (in non subdued versions)\fi}%
\else
\ifmst@selfGreeks
\typeout{** Capital Greek letters (\mst@greek@lsh@loc/\mst@greek@ush@loc) will use OT1 font #4\fi}%
\else
\ifmst@LGRgreek
\typeout{** Greek letters (\mst@greek@lsh@loc/\mst@greek@ush@loc) will use LGR font \mst@greekfont (in non subdued versions)\fi}%
\else
```

```
LGRgreeks
selfGreeks
```
This is a wrapper around \texttt{\LaTeX}'s \texttt{mathversion}: here we have an optional argument allowing a quick and easy change of the text fonts additionally to the math fonts. Present already in the initial version of the package (January 2011.)

1.15: some modifications for the subdued option vs LGRgreek and for the math muskips after \exists and \forall.

1.2: with the subdued option sets the math alphabets in the normal and bold math versions do not apply to operator names and non-alphabetical symbols. The switch for braces is left as it is.

1.2b: with the subdued option, the italic corrections are not added. Else, we check the shape of letters in this version. Also, there was a bug since 1.15: the values of the math skips were taken not from the settings for the math version (#2) but from those of the optional argument (#1), if present...

1.3: activation of italic corrections is now separated from actual math activation of letters.

1.3c: a starred variant is added which does not modify the text fonts, only the math setup.

1.3d: replaced in \texttt{MTversion@ things like \edef\mst@encoding{...} and \renewcommand{\encodingdefault}{...} by \edef\encodingdefault{...} etc... All those \texttt{\mst@... things were useless. I also redefine \seriesdefault rather than \mddefault.
1.3d: mechanism of restoration of Greek in subdued normal and bold versions has been to all cases, and not only for the `LGRgreek` option.

1.3u: version savvy (i.e. font-encoding savvy) minus sign, \( \hbar \), \( \imath \), math accents.

```
\newcommand*{\MTversion}{\ifstar\MTversion@s\MTversion@}
\newcommand*{\MTversion@s}[1]{\mathversion{#1}\MTversion@@}
\newcommand*{\MTversion@}[2][\{}{%  
  \mathversion{#2}\% defines \texttt{\mathversion} as expanded #2
  \edef\mst@tmp{#1}\%  
  \ifx\mst@tmp\empty
    \let\mst@tmp\math@version\%  
  \else
    \let\mst@tmp\mst@tmp\%
  \fi
  \edef\encodingdefault{\csname mst@encoding@\mst@tmp\endcsname}\%
  \edef\familydefault{\csname mst@family@\mst@tmp\endcsname}\%
  \edef\seriesdefault{\csname mst@series@\mst@tmp\endcsname}\%
  \edef\shapedefault{\csname mst@shape@\mst@tmp\endcsname}\%
  \edef\bfdefault{\csname mst@boldvariant@\mst@tmp\endcsname}\%
  \edef\itdefault{\csname mst@default@\mst@tmp\endcsname}\%
  \edef\rmdefault{\csname mst@rmdefault@\mst@tmp\endcsname}\%
  \edef\sfdefault{\csname mst@sfdefault@\mst@tmp\endcsname}\%
  \edef\ttdefault{\csname mst@ttdefault@\mst@tmp\endcsname}\%
  \usefont{\encodingdefault}{\familydefault}{\seriesdefault}{\shapedefault}\%
  \MTversion@@\%
}\MTversion@@\%
```

1.3j has a stronger subdued which does `\MTnormalprime`, `\MTnormalexists`, `\MTnormalforall` rather than setting the skips to `0mu`. Hence `\MTversion` by default should do `\MTprimedoesskip`, `\MTexistsdoesskip`, `\MTforalldoesskip`.

1.3u drops the argument, as the info is in `\mathversion` from \TeX\ to \LaTeX\ code.

```
\newcommand*{\MTversion@@}{\MTexistsdoesskip\MTforalldoesskip\MTprimedoesskip}
```

1.3v: muskips.

```
\edef\encodingdefault{\csname mst@encoding@\mst@tmp\endcsname}\%
\edef\familydefault{\csname mst@family@\mst@tmp\endcsname}\%
\edef\seriesdefault{\csname mst@series@\mst@tmp\endcsname}\%
\edef\shapedefault{\csname mst@shape@\mst@tmp\endcsname}\%
\edef\bfdefault{\csname mst@boldvariant@\mst@tmp\endcsname}\%
\edef\itdefault{\csname mst@default@\mst@tmp\endcsname}\%
\edef\rmdefault{\csname mst@rmdefault@\mst@tmp\endcsname}\%
\edef\sfdefault{\csname mst@sfdefault@\mst@tmp\endcsname}\%
\edef\ttdefault{\csname mst@ttdefault@\mst@tmp\endcsname}\%
```

v1.15e: extending subdued to `LGRgreek`.

v1.15f: subduing math alphabets in a simpler way than in 1.15e.

v1.2b: italic corrections except for italic/slanted (sic) letters, and of course except in the subdued normal and bold math versions.

v1.3: by default, letters are made mathematically active, even if italic corrections are not used, to allow the action of `\MTsetmathskips`.

v1.15c: extending subdued to `LGRgreek`.

v1.15d: subduing math alphabets in a simpler way than in 1.15e.
v1.2d: special treatment of the asterisk.
v1.3d: extended LGRe#ek mechanism of activation/restoration of Greek to all cases.
v1.3j: use of \texttt{\MTeverymathdefault}, which includes \texttt{\MTicinmath}, but must be corrected then according to shape of letters and presence or absence of option \texttt{frenchmath}. We do only \texttt{\def\mst@ITcorr{\ifnum\fam=\m@ne\slash\fi}} and not \texttt{\MTICinmath} to not overwrite some user-defined \texttt{\MTeverymathdefault}. Code for italic corrections or not according to letter shape is executed after \texttt{\MTeverymathdefault} which limits a bit user customizing possibilities, but if I moved it later, I would possibly have to put inside the \texttt{\MTicinmath} the check for \texttt{it} or \texttt{sl}. Similarly the \texttt{\MTcustomgreek} always executed (if not subdued).

\begin{verbatim}
1847 \MTmathoperatorsobeymathxx
1848 \MTeverymathdefault
1849 \MTcustomizenewmcodes
1850 \@for\mst@tmpc:=it,sl\do{\ifx\mst@tmpc\mst@tmpa\MTnoicinmath\fi}\%
1851 \ifmst@frenchmath
1852 \def\mst@ITcorr{\ifnum\fam=\m@ne\slash\fi}\%
1853 \@for\mst@tmpc:=it,sl\do{\ifx\mst@tmpc\mst@tmpb\MTnoICinmath\fi}\%
1854 \fi

1.3j has a stronger subdued which does \texttt{\MTnormalprime}, \texttt{\MTnormalexists}, \texttt{\MTnormalforall} rather than simply setting the skips to 0mu. Note: \texttt{\MTnormalprime} is done as part of \texttt{\MTeverymathoff}.

\begin{verbatim}
1855 \ifmst@subdued
1856 \ifx\math@version\mst@normalversionname\mst@restorealphabets
1857 \MTstandardgreek
1858 \MTmathoperatorsobeymathxx
1859 \MTnormalexists
1860 \MTnormalforall
1861 \MTeverymathoff
1862 \MTresetnewmcodes
1863 \else
1864 \ifx\math@version\mst@boldversionname\mst@restorealphabets
1865 \MTstandardgreek
1866 \MTmathoperatorsobeymathxx
1867 \MTnormalexists
1868 \MTnormalforall
1869 \MTeverymathoff
1870 \MTresetnewmcodes
1871 \else
1872 \mst@subdueddabar
1873 \mst@subduednodot
1874 \mst@subduedmathaccents
1875 \mst@subduedminus
1876 \ifx\math@version\mst@boldversionname
1877 \mst@restorealphabets
1878 \MTstandardgreek
1879 \MTmathoperatorsobeymathxx
1880 \MTnormalexists
1881 \MTnormalforall
1882 \MTeverymathoff
1883 \MTresetnewmcodes
1884 \mst@subdueddabar
1885 \mst@subduednodot
1886 \mst@subduedmathaccents
1887 \mst@subduedminus
1888 \else
1889 \mst@subdueddabar
1890 \mst@subduednodot
1891 \mst@subduedmathaccents
1892 \mst@subduedminus
\end{verbatim}

1.3t adds better compatibility with \texttt{subdued} mode for \texttt{\imath}/\texttt{\jmath} and perfect compatibility for the minus sign.

1.3u extends this further to allow per-math-version meanings for them.
\MTWillUse This is a preamble-only command, which can be used more than once, only the latest one counts.
Sets up the math fonts in the normal and bold versions, as does \Mathastext.
\newcommand*{\MTWillUse}[5][]{
  \MTencoding{#2}
  \MTfamily{#3}
  \MTseries{#4}
  \MTshape{#5}
  \ifmst@italic{\MTlettershape{\itdefault}}\fi % was missing in v 1.14 and prior
  \edef{\mst@tmp{#1}}
  \ifx{\mst@tmp}{\empty}{\MTlettershape{#1}}\fi
\Mathastext WillUse}{\MTWillUse}
\let{\MathastextWillUse}{\MTWillUse}
\let{\Mathastextwilluse}{\MTWillUse}
\Mathastext The command \Mathastext can be used anywhere in the preamble and any number of time, the
last one is the one that counts.
In version 1.1 we have two fonts: they only differ in shape. The mtletterfont is for letters, and the
mtoperatorfont for digits and log-like operator names. The default is that both are
upright.
Starting with version 1.12, an optional argument makes \Mathastext act as the declaration
of a math version, to be later used in the document.
Versions 1.15x brought some adaptations related to the subdued option.
1.3c adds a second optional parameter to inherit previous settings from another version;
m mostly done to inherit the bold version fonts for symbols and large symbols. This is done in
\MTDeclareVersion.
1.3j moves the code related to \MTicinmath from \Mathastext to \AtBeginDocument (code
depending on whether \texttt{subdued} option in use). But we omit for this from \texttt{\textbackslash MTicinmath} the \texttt{\textbackslash MThmathactiveletters} and issue the latter during loading of package, hence allowing \texttt{\textbackslash MTmathstandardletters} to be effective in the preamble.

I forgot to document that under \texttt{subdued} option the \texttt{\textbackslash Mathastext} command without optional parameter does not any \texttt{\textbackslash SetSymbolFont} etc... but it has a few other tasks to complete nevertheless.

1.3u fixes some long-standing bug that \texttt{\textbackslash Mathastext} did not repeat some font-encoding dependent things: they got done only once during package loading (things regarding the \texttt{\textbackslash hbar}, \texttt{\textbackslash imath}, the math accents and the minus sign). They are now part of the contents of \texttt{\textbackslash Mathastext} macro itself (which is executed during package loading).

1913 \texttt{\textbackslash def\textbackslash Mathastext \{\textbackslash ifnextchar \textbackslash Mathastext@declare\textbackslash Mathastext\}}
1914 \texttt{\textbackslash def\textbackslash Mathastext@declare \[\textbackslash #1\]\{
1915 \texttt{\textbackslash def\textbackslash mst@tmp\{\textbackslash #1\}\}}
1916 \texttt{\textbackslash ifx\textbackslash mst@tmp\textbackslash empty
1917 \textbackslash expandafter\textbackslash \textbackslash firstoftwo
1918 \textbackslash else\textbackslash expandafter\textbackslash \textbackslash secondoftwo
1919 \texttt{\textbackslash fi
1920 \textbackslash Mathastext\}
1921 \texttt{\textbackslash \textbackslash MThDeclareVersion\{\textbackslash mst@ltsh\}\{\textbackslash #1\}\{\textbackslash mst@enc\}\{\textbackslash mst@fam\}\{\textbackslash mst@ser\}\{\textbackslash mst@opsh\}\%
1922 \textbackslash Mathastext@declare
1923 \texttt{\textbackslash def\textbackslash Mathastext\%
1924 \texttt{\textbackslash mst@update@greeksh
1925 \texttt{\textbackslash def\textbackslash mst@encoding@normal\{\textbackslash mst@enc\\%
1926 \texttt{\textbackslash def\textbackslash mst@family@normal\{\textbackslash mst@fam\\%
1927 \texttt{\textbackslash def\textbackslash mst@series@normal\{\textbackslash mst@ser\\%
1928 \texttt{\textbackslash def\textbackslash mst@shape@normal\{\textbackslash mst@opsh\\%
1929 \texttt{\textbackslash def\textbackslash mst@ltshape@normal\{\textbackslash mst@ltsh\\%
1930 \texttt{\textbackslash def\textbackslash mst@itdefault@normal\{\textbackslash itdefault\\%
1931 \texttt{\textbackslash def\textbackslash mst@rmdefault@normal\{\textbackslash rmdefault\\%
1932 \texttt{\textbackslash def\textbackslash mst@sfdefault@normal\{\textbackslash sfdefault\%
1933 \texttt{\textbackslash def\textbackslash mst@ttdefault@normal\{\textbackslash ttdefault\%
1934 \texttt{\textbackslash def\textbackslash mst@boldvariant@normal\{\textbackslash mst@bold\%
1935 \texttt{\textbackslash def\textbackslash mst@exists@skip@normal\{\textbackslash mst@exists@skip\%
1936 \texttt{\textbackslash def\textbackslash mst@forall@skip@normal\{\textbackslash forall@skip\%
1937 \texttt{\textbackslash def\textbackslash mst@prime@skip@normal\{\textbackslash prime@skip\%
1938 \texttt{\textbackslash def\textbackslash mst@encoding@bold\{\textbackslash mst@enc\%
1939 \texttt{\textbackslash def\textbackslash mst@family@bold\{\textbackslash mst@fam\%
1940 \texttt{\textbackslash def\textbackslash mst@series@bold\{\textbackslash mst@ser\%
1941 \texttt{\textbackslash def\textbackslash mst@shape@bold\{\textbackslash mst@opsh\%
1942 \texttt{\textbackslash def\textbackslash mst@ltshape@bold\{\textbackslash mst@ltsh\%
1943 \texttt{\textbackslash def\textbackslash mst@boldvariant@bold\{\textbackslash mst@bold\%
1944 \texttt{\textbackslash def\textbackslash mst@itdefault@bold\{\textbackslash itdefault\%
1945 \texttt{\textbackslash def\textbackslash mst@rmdefault@bold\{\textbackslash rmdefault\%
1946 \texttt{\textbackslash def\textbackslash mst@sfdefault@bold\{\textbackslash sfdefault\%
1947 \texttt{\textbackslash def\textbackslash mst@ttdefault@bold\{\textbackslash ttdefault\%
1948 \texttt{\textbackslash def\textbackslash mst@exists@skip@bold\{\textbackslash mst@exists@skip\%
1949 \texttt{\textbackslash def\textbackslash mst@forall@skip@bold\{\textbackslash forall@skip\%
1950 \texttt{\textbackslash def\textbackslash mst@prime@skip@bold\{\textbackslash prime@skip\%
1951 \texttt{\textbackslash ifmst@subdued

107
Since 1.3j this branch is actually almost superfluous, as entering normal or bold with \MTversion does \MTnormalexists, \MTnormalforall, and \MTnormalprime. But some default values are needed if the user insists on issuing \MTexistsdoesnotskip, etc... nevertheless.

```
1952 \def\mst@exists@skip@normal{0mu}\
1953 \def\mst@forall@skip@normal{0mu}\
1954 \def\mst@prime@skip@normal{0mu}\
1955 \def\mst@exists@skip@bold{0mu}\
1956 \def\mst@forall@skip@bold{0mu}\
1957 \def\mst@prime@skip@bold{0mu}\
1958 \else % not subdued
1959 \ifmst@italic
1960 \ifmst@frenchmath
1961 \mst@exists@muskip\mst@exists@skip\relax
1962 \mst@forall@muskip\mst@forall@skip\relax
1963 \mst@prime@muskip\mst@prime@skip\relax
1964 \else
1965 \def\mst@exists@skip@normal{0mu}\
1966 \def\mst@forall@skip@normal{0mu}\
1967 \def\mst@prime@skip@normal{0mu}\
1968 \def\mst@exists@skip@bold{0mu}\
1969 \def\mst@forall@skip@bold{0mu}\
1970 \def\mst@prime@skip@bold{0mu}\
1971 \fi
1972 \else
1973 \def\mst@exists@muskip\mst@exists@skip\relax
1974 \mst@forall@muskip\mst@forall@skip\relax
1975 \mst@prime@muskip\mst@prime@skip\relax
1976 \fi
1977 \fi
1978 \else % v1.15f
1979 \ifmst@nonormalbold\else
1980 \SetMathAlphabet{\mathnormalbold}{normal}{\mst@encoding@normal}\
1981 {\mst@family@normal}\
1982 {\mst@boldvariant@normal}\
1983 {\mst@ltshape@normal}\
1984 \SetMathAlphabet{\mathnormalbold}{bold}{\mst@encoding@bold}\
1985 {\mst@family@bold}\
1986 {\mst@boldvariant@bold}\
1987 {\mst@ltshape@bold}\
1988 \fi
1989 \else % v1.15f adds \ifmst@default.. checks
1990 \ifmst@subdued\else
1991 \SetSymbolFont{mtletterfont}{normal}{\mst@encoding@normal}\
1992 {\mst@family@normal}\
1993 {\mst@series@normal}\
1994 {\mst@ltshape@normal}\
1995 \SetSymbolFont{mtletterfont}{bold} {\mst@encoding@bold}\
1996 {\mst@family@bold}\
1997 {\mst@series@bold}\
```
1.14c: We reset \texttt{mteulervm} and \texttt{MathEulerBold} here as the variant for bold may have been changed by the user via \texttt{Mathastextboldvariant(\texttt{m})}; and we should keep this local to math versions.

\[ \ifmst@subdued
\\fi \% \texttt{de \texttt{ifmst@subdued}} \]

\texttt{MathEulerBold} \hspace{1em} \texttt{1.14c: We reset mteulervm and MathEulerBold here as the variant for bold may have been changed by the user via Mathastextboldvariant(m); and we should keep this local to math versions.}

\[ \ifmst@subdued
\SetSymbolFont{mteulervm}{bold}{U}{zeur}{\mst@boldvariant@normal}{n}\% \]
\[ \SetMathAlphabet{\MathEulerBold}{normal}\%
\{U\}{zeur}\{\mst@boldvariant@normal\}{n}\%
\]
\[ \SetMathAlphabet{\MathEulerBold}{bold}\%
\{U\}{zeur}\{\mst@boldvariant@normal\}{n}\%
\]
\[ \fi \]

\[ \ifmst@needsymbol\SetSymbolFont{mtsymbol}{bold}\%
\{U\}{psy}\{\mst@boldvariant@normal\}{n}\%
\]
\[ \fi \]

\texttt{LGRgreek* LGRgreek, LGRgreeks, selfGreek, and selfGreeks options.}

\[ \ifmst@subdued\else
\ifmst@LGRgreek
\SetSymbolFont{mtlgrfontlower}{normal}{LGR}\%
\{\mst@greekfont\}{\mst@series@normal}\{\mst@greek@lsh\}%
\]
\[ \SetSymbolFont{mtlgrfontlower}{bold}{LGR}\%
\{\mst@greekfont\}{\mst@boldvariant@normal}\{\mst@greek@lsh\}%
\]
\[ \SetSymbolFont{mtlgrfontupper}{normal}{LGR}\%
\{\mst@greekfont\}{\mst@series@normal}\{\mst@greek@ush\}%
\]
\[ \SetSymbolFont{mtlgrfontupper}{bold}{LGR}\%
\{\mst@greekfont\}{\mst@boldvariant@bold}\{\mst@greek@ush\}%
\]
\[ \else
\ifmst@selfGreek
\SetSymbolFont{mtselfGreekfont}{normal}{OT1}\%
\{\mst@greekfont\}{\mst@series@normal}\{\mst@greek@ush\}%
\]
\[ \SetSymbolFont{mtselfGreekfont}{bold}{OT1}\%
\{\mst@greekfont\}{\mst@boldvariant@bold}\{\mst@greek@ush\}%
\]
\[ \fi
\]
\[ \fi
\]
\[ \fi
\]

\[ \ifmst@subdued
\typeout{** subdued mode will be activated for the normal and bold math versions}\\%\]
\[ \else
\typeout{** Latin letters in the normal (resp. bold) math versions are now ~J}\\%
\quad ** set up to use the fonts
\]
\[ \mst@encoding@normal/\mst@family@normal/\mst@series@normal\%
\{\mst@boldvariant@normal\}/\mst@ltshape@normal\%
\]
\[ \ifmst@LGRgreek\typeout{** Greek letters (\mst@greek@lsh/\mst@greek@ush)
will use LGR/\mst@greekfont}\\%
\]
\[ \fi
\]

110
\ifmst@nodigits\else
\typeout{** Other characters (digits, ...) and \protect\log-like names will be^^J%
** typeset with the \mst@shape@normal\space shape.}\
\fi
\fi
\ifmst@nohbar\else
\typeout{** \string\hbar}\
\mst@dothe@hbarstuff
\mst@hbar@mvnormal\mst@ltbar@mvnormal\mst@encoding@normal
\let\mst@hbar@mvbold\mst@hbar@mvnormal
\fi
\mst@dothe@inodotstuff\inodot\jnodot\mst@encoding@normal
\let\mst@inodot@mvnormal\inodot
\let\mst@inodot@mvbold\inodot
\let\mst@jnodot@mvnormal\jnodot
\let\mst@jnodot@mvbold\jnodot
\ifmst@mathaccents
\typeout{** math accents}\
\mst@dothe@mathaccentsstuff{normal}\mst@encoding@normal
\fi
\ifmst@nominus\else
\typeout{** minus as endash}\
\ifmst@endash\mst@dothe@endashstuff\mst@minus@mvnormal\mst@varfam@minus@mvnormal
\mst@encoding@normal
\mst@dothe@endashstuff\mst@minus@mvbold\mst@varfam@minus@mvbold
\mst@encoding@normal
\else
\ifmst@emdash\mst@dothe@emdashstuff\mst@minus@mvnormal\mst@varfam@minus@mvnormal
\mst@encoding@normal
\mst@dothe@emdashstuff\mst@minus@mvbold\mst@varfam@minus@mvbold
\mst@encoding@normal
\else
\mst@dothe@hyphenstuff\mst@minus@mvnormal\mst@varfam@minus@mvnormal
\let\mst@minus@mvbold\mst@minus@mvnormal
\let\mst@varfam@minus@mvbold\mst@varfam@minus@mvnormal
\fi
\fi\fi
\ifmst@eulergreek
\typeout{** Greek letters will use the Euler font. Use \protect\MathastextEulerScale{<factor>} to scale the
font.}\
\ifmst@subdued\typeout{** (subdued mode: normal and bold math
111
version with default Greek letters.)}}\fi
\else
\ifmst@symbolgreek
\typeout{** Greek letters will use the PostScript Symbol font. Use \protect\MathastextSymbolScale{<factor>} to scale the font.}%
\fi
\fi
}}\fi

Math sizes
I took the code for \Huge and \HUGE from the moresize package of Christian CORNELSSEN.

\ifmst@defaultsizes\else
\providecommand\@xxxpt{29.86}
\providecommand\@xxxvipt{35.83}
\ifmst@twelve
\def\Huge{\@setfontsize\Huge\@xxxpt{36}}
\def\HUGE{\@setfontsize\HUGE\@xxxvipt{43}}
\typeout{** \protect\Huge\space and \protect\HUGE\space have been (re)-defined.}%
\else
\def\HUGE{\@setfontsize\HUGE\@xxxpt{36}}
\typeout{** \protect\HUGE\space has been (re)-defined.}%
\fi
I choose rather big subscripts.
\def\defaultscriptratio{.8333}
\def\defaultscriptscriptratio{.7}
\DeclareMathSizes{9}{9}{7}{5}
\DeclareMathSizes{\@xpt}{\@xpt}{8}{6}
\DeclareMathSizes{\@xipt}{\@xipt}{9}{7}
\DeclareMathSizes{\@xiipt}{\@xiipt}{10}{8}
\DeclareMathSizes{\@xiipt}{\@xiipt}{10}{10}
\DeclareMathSizes{\@xviipt}{\@xviipt}{\@xiipt}{10}
\DeclareMathSizes{\@xxipt}{\@xxipt}{\@xxipt}{\@xipt}
\DeclareMathSizes{\@xxxipt}{\@xxxipt}{\@xxxipt}{\@xxipt}
\DeclareMathSizes{\@xxvipt}{\@xxvipt}{\@xxvipt}{\@xxipt}
\typeout{** mathastext has declared larger sizes for subscripts.~J%}
\fi

\MTeverymathoff
1.3i 2016/01/06 Compatibility patch with \url from url.sty and \url/\nolinkurl from hyperref.sty.
1.3j 2016/01/15 renamed the macro from \MTactivemathoff to \MTeverymathoff, as it is not exclusively a matter of math active characters due to \MTeasynonlettersdonotobeymathxx.
1.3o 2016/05/03 adds \MTdonotfixfonts. Operant with LuaTEX only.
\newcommand*\MTeverymathoff {%
\MTnormalasterisk
\MTnormalprime
\MTnonlettersdonotobeymathxx
\MTeasynonlettersdonotobeymathxx
\MTmathstandardletters

112
Customizable command which gets executed by \MTversion except when switching to normal/bold if option subdued. The included \MTicinmath does \MTmathactiveletters which will also activate the math skips around letters.

The \MTeverymathdefault does not include \MTmathoperatorsobeymathxx as the latter does not correspond to something done during execution of \the\everymath.

Should I put \let\newmcodes@\mst@newmcodes@ here too? No, it is not done at everymath.

During the loading, the (non subdued) package does \MTactiveasterisk (if option asterisk), \MTprimedoesskip, \MTeasynonlettersobeymathxx and \MTmathactiveletters. There is some code at begin document for decisions about italic corrections, this code does not emit again \MTmathactiveletters, hence a \MTmathstandardletters in the preamble is not overruled. Furthermore the at begin document code will not overrule user emitted \MTnoicinmath etc... commands in the preamble.

And user can employ \MTnormalexists, etc..., from inside the preamble, it will not be overruled (as it is delayed at begin document to after mathastext dealings).

1.3o 2016/05/03 adds \MTfixfonts. Operant with Lua\TeX only.

\newcommand*{\MTeverymathdefault}{%}
\MTactiveasterisk
\MTprimedoesskip
\MTeasynonlettersobeymathxx
\MTicinmath
\MTfixfonts
% Things to do last "at begin document"
\AtBeginDocument{%
\everymath\expandafter{\the\everymath
\mst@the\mst@do@nonletters \let\mst@the\@gobble
\mst@theeasy\mst@do@easynonletters \let\mst@theeasy\@gobble
\mst@the\mst@do@az \let\mst@the\@gobble
\mst@theF\mst@do@AZ \let\mst@theF\@gobble
\everydisplay\expandafter{\the\everydisplay
\mst@the\mst@do@nonletters \let\mst@the\@gobble
\mst@theeasy\mst@do@easynonletters \let\mst@theeasy\@gobble
\mst@the\mst@do@az \let\mst@the\@gobble
\mst@theF\mst@do@AZ \let\mst@theF\@gobble}%
1.3j: moved here to be executed at begin document (and not from inside \Mathastext@.) The \MTeverymathoff does: \MTnormalasterisk, \MTnormalprime, \MTnonlettersdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTmathstandardletters.

1.3m: doing \MTmathactiveletters in subdued mode immediately after \begin{document} resulted in errors because \mst@itcorr had been left undefined. We thus add \MTnoicinmath to the subdued initialization.
Since 1.3n there is \MTresetnewmcodes which needs \mst@originalnewmcodes, itself defined at begin document. Thus we have wrapped the whole thing in \AtEndOfPackage (at 1.3u whole code directly moved at end of package).

And 1.3p adds here \MTcustomizenewmcodes which had been regrettably forgotten by 1.3n.

1.3t adds some extras to handle correctly the minus sign and dotless i and j in subdued mode, even in case of usage with fontspec.

1.3u similarly lets math accents be correctly subdued.

1.3v adapts to $\hbar$ and math accents now being robust with \LaTeX\ 2019-10-01 or later.

1.3w pays attention to the fact that $\hbar$ may well be a \mathchar and not a robust macro!

And no need to worry about $\hbar<\mathrm{space}$ finally in revised code.

\begin{verbatim}
\MTcustomizenewmcodes
\let\mst@original@hbar\hbar
\let\mst@original@imath\imath
\let\mst@original@jmath\jmath
\@tfor\@tempa:={grave}{acute}{check}{breve}{bar}\
{dot}{ddot}{mathring}{hat}{tilde}\
\do\{
\expandafter\let\csname mst@original@\@tempa\expandafter\endcsname
\csname \@tempa\endcsname
\expandafter\let\csname mst@original@\@tempa\space\expandafter\endcsname
\csname \@tempa\space\endcsname
\}\
\ifmst@XeOrLua
\edef\mst@subduedminus{\mst@Umathcodenum`\noexpand-\the\mst@Umathcodenum`-\relax}\
\else
\edef\mst@subduedminus{\mathcode`\noexpand-\the\mathcode`-\relax}\
\fi
\ifmst@subdued
\MTeverymathoff
\MTresetnewmcodes
\MTnoicinmath
\MTmathoperatorsdonotobeymathxx\
%\mst@subduedhbar
%\let\inodot\imath
%\let\jnodot\jmath
%\mst@subduedmathaccents
\mst@subduedminus
\else
\mst@nonsubduedhbar
\\MTmathoperatorsdonotobeymathxx
%\mst@nonsubduedmathaccents to get executed later (see code comments for \mst@dothe@mathaccentsstuff).
% \mst@nonsubduedmathaccents % will get executed later
\fi
\end{verbatim}
desired from inside the preamble.

\texttt{AtBeginDocument}{\AtBeginDocument{\ifmst@subdued\else\mst@nonsubduedmathaccents\fi}}%  

subdued 1.15: The subdued code was initiated in May 2011. I returned to \texttt{mathastext} on Sep 24, 2012, and decided to complete what I had started then, but in the mean time I had forgotten almost all of the little I knew about \LaTeX\ macro programming.

The point was to extract the data about how are ‘letters’ and ‘operators’ in the normal and bold versions, through obtaining the math families of ‘a’ and ‘1’, respectively\footnote{but the \texttt{euler} package for example assigns the digits to the \texttt{letters} symbol font...}. Due to the reassignments done for characters by \texttt{mathastext} I also had decided in 2011 that the OT1 encoding, if detected, should be replaced by T1 but the \texttt{euler} package for example assigns the digits to the \texttt{letters} symbol font...

1.15d: Oct 13, 2012. The \texttt{\mathcode} thing has to be used with care under Unicode engines. Unfortunately the \texttt{\luatexMathCode} macro is helpless as it is not possible to know if it will return a legacy mathcode or a Unicode mathcode. On the other hand the much saner \texttt{\XeTeXMathCode} always return a Unicode mathcode.

UPDATE for \texttt{mathastext 1.3} (2013/09/02): since the release of lualatex as included in TL2013, \texttt{\luatexMathCode} behaves as \texttt{\XeTeXMathCode} so \texttt{mathastext} 1.3 treats identically under both unicode engines the equal and minus signs (and the vertical bar).

1.15e: Oct 22, 2012. I add the necessary things to also subdue the \texttt{\mathbf, \mathit, \mathsf} and \texttt{\mathtt} macros (previous version only took care of the symbol alphabets \texttt{\mathnormal} and \texttt{\mathrm}) \texttt{[update: 1.15f does that in a completely different and much simpler way]} Notice that the package defines a \texttt{\mathnormalbold} macro, but it will not be subdued in the normal and bold math versions.

1.15f: Oct 23, 2012. The previous version of the code queried the math family of a, respectively 1, to guess and then extract the fonts to be reassigned to \texttt{mletterfont} and \texttt{moperatorfont} (which is done at the end of this \texttt{.sty} file). The present code simply directly uses letters and operators (so mathastext could not subdue itself... if it was somehow cloned), but obtains indeed the corresponding font specifications in normal and bold in a cleaner manner. But it is so much shorter (and avoids the Lua\LaTeX\ problem with \texttt{\luatexMathCode}). Anyhow, for example the euler package puts the digits in the letters math family! so the previous method was also error prone. In fact there is no way to do this subdued mechanism on the basis of the legacy code of mathastext. The only way is to rewrite entirely the package to query all mathcodes of things it changes in order to be able to revert these changes (and one would have to do even more hacking for \texttt{\mathversion{normal}} and not only \texttt{\MTversion{normal}} to work).
1.15f: and also I take this opportunity to do the subdued math alphabets things in a much much easier way, see below.

1.3s 2018/08/21: I have half-forgotten the reasons for modifying the font encoding to current \encodingdefault, but at any rate this should not be done in a fontspec context, encoding default being (now) TU it is very unlikely modifying from TU or to TU from something else will do any good. I add workaround here for case of fontspec being detected via the \encodingdefault setting.

1.3t 2018/08/22: the 1.3s fix erroneously removed the OT1->T1 replacement in TU context.

1.3u: the whole thing will only get executed At Begin Document.

\ifmst@subdued
\AtBeginDocument{%
\def\mst@reserved#1\getanddefine@fonts\symletters#2#3\@nil{%\def\mst@normalmv@letter{#2}}%
\expandafter\mst@reserved\mv@normal\@nil
\def\mst@reserved#1\getanddefine@fonts\symletters#2#3\@nil{%\def\mst@boldmv@letter{#2}}%
\expandafter\mst@reserved\mv@bold\@nil
\def\mst@reserved#1\getanddefine@fonts\symoperators#2#3\@nil{%\def\mst@normalmv@operator{#2}}%
\expandafter\mst@reserved\mv@normal\@nil
\def\mst@reserved#1\getanddefine@fonts\symoperators#2#3\@nil{%\def\mst@boldmv@operator{#2}}%
\expandafter\mst@reserved\mv@bold\@nil
\edef\mst@tmp@enc{\mst@encoding@normal}%
\def\mst@reserved#1/#2/#3/#4/{\gdef\mst@debut{#1}\gdef\mst@reste{#2/#3/#4}}%
\begingroup\escapechar\m@ne
\xdef\mst@funnyoti{\expandafter\string\csname OT1\endcsname}%
\expandafter\expandafter\expandafter\mst@reserved\expandafter\string\mst@normalmv@operator/%
\ifx\mst@debut\mst@funnyoti\ifx\mst@tmp@enc\mst@oti\def\mst@tmp@enc{T1}\fi\fi
\edef\mst@normalmv@operator{%\if1\mst@OneifUniEnc\ifx\mst@debut\mst@funnyoti T1\else\mst@debut\fi\
\else\message{\mst@debut}\
\mst@tmp@enc\if\mst@reste\endcsname\else\mst@debut\fi\fi
}}}
“Only preamble” restrictions. I was way too much obedient back in 2011, particularly taking into account how much of a pain it has been and still is that things such as \DeclareMathSymbol or \DeclareMathAccent are preamble-only. But keeping this for time being, however not using \@onlypreamble which breaks one’s heart when tracing to see how much place it takes, so we do it in one go.

\expandafter\gdef\expandafter\@preamblecmds\expandafter{\@preamblecmds
\do\MTitgreek
\do\MTupgreek
\do\MTitGreek
\do\MTitGreek
\do\Mathastextitgreek
\do\Mathastextupgreek
\do\MathastextitGreek
\do\MathastextitGreek
\do\MTgreekfont
\do\Mathastextgreekfont
\do\MTDeclareVersion
\do\MathastextDeclareVersion
\do\MTWillUse
\do\MathastextWillUse
\do\Mathastextwilluse
\do\Mathastext
\do\mathastext}

\endinput