Abstract

This is the reference documentation for the expl3 programming environment. The expl3 modules set up an experimental naming scheme for \LaTeX{} commands, which allow the \LaTeX{} programmer to systematically name functions and variables, and specify the argument types of functions.

The \TeX{} and \epsilon-\TeX{} primitives are all given a new name according to these conventions. However, in the main direct use of the primitives is not required or encouraged: the expl3 modules define an independent low-level \LaTeX{}3 programming language.

At present, the expl3 modules are designed to be loaded on top of \LaTeX{}2ε. In time, a \LaTeX{}X3 format will be produced based on this code. This allows the code to be used in \LaTeX{}X2ε packages now while a stand-alone \LaTeX{}X3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly stable. The syntax conventions and functions provided are now ready for wider use. There may still be changes to some functions, but these will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they reach maturity.

*E-mail: latex-team@latex-project.org
Contents

I Introduction to expl3 and this document
1. Naming functions and variables
 1.1 Terminological inexactitude
2. Documentation conventions
3. Formal language conventions which apply generally
4. \TeX{} concepts not supported by \L\TeX{}3

II The l3bootstrap package: Bootstrap code
1. Using the \L\TeX{}3 modules

III The l3names package: Namespace for primitives
1. Setting up the \L\TeX{}3 programming language

IV The l3basics package: Basic definitions
1. No operation functions
2. Grouping material
3. Control sequences and functions
 3.1 Defining functions
 3.2 Defining new functions using parameter text
 3.3 Defining new functions using the signature
 3.4 Copying control sequences
 3.5 Deleting control sequences
 3.6 Showing control sequences
 3.7 Converting to and from control sequences
4. Analysing control sequences
5. Using or removing tokens and arguments
 5.1 Selecting tokens from delimited arguments
6. Predicates and conditionals
 6.1 Tests on control sequences
 6.2 Primitive conditionals
7. Starting a paragraph
 7.1 Debugging support
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Building strings</td>
<td>55</td>
</tr>
<tr>
<td>2 Adding data to string variables</td>
<td>56</td>
</tr>
<tr>
<td>3 Modifying string variables</td>
<td>57</td>
</tr>
<tr>
<td>4 String conditionals</td>
<td>58</td>
</tr>
<tr>
<td>5 Mapping to strings</td>
<td>59</td>
</tr>
<tr>
<td>6 Working with the content of strings</td>
<td>61</td>
</tr>
<tr>
<td>7 String manipulation</td>
<td>64</td>
</tr>
<tr>
<td>8 Viewing strings</td>
<td>65</td>
</tr>
<tr>
<td>9 Constant token lists</td>
<td>66</td>
</tr>
<tr>
<td>10 Scratch strings</td>
<td>66</td>
</tr>
<tr>
<td>VIII The l3str-convert package: string encoding conversions</td>
<td>67</td>
</tr>
<tr>
<td>1 Encoding and escaping schemes</td>
<td>67</td>
</tr>
<tr>
<td>2 Conversion functions</td>
<td>67</td>
</tr>
<tr>
<td>3 Creating 8-bit mappings</td>
<td>69</td>
</tr>
<tr>
<td>4 Possibilities, and things to do</td>
<td>69</td>
</tr>
<tr>
<td>IX The l3quark package: Quarks</td>
<td>70</td>
</tr>
<tr>
<td>1 Quarks</td>
<td>70</td>
</tr>
<tr>
<td>2 Defining quarks</td>
<td>70</td>
</tr>
<tr>
<td>3 Quark tests</td>
<td>71</td>
</tr>
<tr>
<td>4 Recursion</td>
<td>71</td>
</tr>
<tr>
<td>5 An example of recursion with quarks</td>
<td>72</td>
</tr>
<tr>
<td>6 Scan marks</td>
<td>73</td>
</tr>
<tr>
<td>X The l3seq package: Sequences and stacks</td>
<td>75</td>
</tr>
<tr>
<td>1 Creating and initialising sequences</td>
<td>75</td>
</tr>
<tr>
<td>2 Appending data to sequences</td>
<td>76</td>
</tr>
<tr>
<td>3 Recovering items from sequences</td>
<td>76</td>
</tr>
</tbody>
</table>
5 Mapping to comma lists...
6 Using the content of comma lists directly...
7 Comma lists as stacks...
8 Using a single item...
9 Viewing comma lists...
10 Constant and scratch comma lists...

XVI The \texttt{l3token} package: Token manipulation...
1 Creating character tokens...
2 Manipulating and interrogating character tokens...
3 Generic tokens...
4 Converting tokens...
5 Token conditionals...
6 Peeking ahead at the next token...
7 Description of all possible tokens...

XVII The \texttt{l3prop} package: Property lists...
1 Creating and initialising property lists...
2 Adding entries to property lists...
3 Recovering values from property lists...
4 Modifying property lists...
5 Property list conditionals...
6 Recovering values from property lists with branching...
7 Mapping to property lists...
8 Viewing property lists...
9 Scratch property lists...
10 Constants...

XVIII The \texttt{l3msg} package: Messages...
16 Constant skips
17 Scratch skips
18 Inserting skips into the output
19 Creating and initialising muskip variables
20 Setting muskip variables
21 Using muskip expressions and variables
22 Viewing muskip variables
23 Constant muskips
24 Scratch muskips
25 Primitive conditional

XXI The l3keys package: Key–value interfaces
1 Creating keys
2 Sub-dividing keys
3 Choice and multiple choice keys
4 Setting keys
5 Handling of unknown keys
6 Selective key setting
7 Utility functions for keys
8 Low-level interface for parsing key–val lists

XXII The l3intarray package: fast global integer arrays
1 l3intarray documentation
 1.1 Implementation notes

XXIII The l3fp package: Floating points
1 Creating and initialising floating point variables
2 Setting floating point variables
3 Using floating points
4 Floating point conditionals 202
5 Floating point expression loops 203
6 Some useful constants, and scratch variables 205
7 Floating point exceptions 206
8 Viewing floating points 207
9 Floating point expressions 208
 9.1 Input of floating point numbers . 208
 9.2 Precedence of operators . 209
 9.3 Operations . 209
10 Disclaimer and roadmap 216

XXIV The \texttt{l3fparray} package: fast global floating point arrays 219
 1 \texttt{l3fparray} documentation 219

XXV The \texttt{l3sort} package: Sorting functions 220
 1 Controlling sorting 220

XXVI The \texttt{l3tl-analysis} package: Analysing token lists 221
 1 \texttt{l3tl-analysis} documentation 221

XXVII The \texttt{l3regex} package: Regular expressions in \TeX{} 222
 1 Syntax of regular expressions 222
 2 Syntax of the replacement text 227
 3 Pre-compiling regular expressions 229
 4 Matching 229
 5 Submatch extraction 230
 6 Replacement 231
 7 Constants and variables 231
 8 Bugs, misfeatures, future work, and other possibilities 232

XXVIII The \texttt{l3box} package: Boxes 235
1 Creating and initialising boxes 235
2 Using boxes 235
3 Measuring and setting box dimensions 236
4 Box conditionals 237
5 The last box inserted 237
6 Constant boxes 237
7 Scratch boxes 238
8 Viewing box contents 238
9 Boxes and color 238
10 Horizontal mode boxes 238
11 Vertical mode boxes 240
12 Using boxes efficiently 241
13 Affine transformations 242
14 Primitive box conditionals 245

XXIX The \texttt{l3coffins} package: Coffin code layer 246
1 Creating and initialising coffins 246
2 Setting coffin content and poles 246
3 Coffin affine transformations 248
4 Joining and using coffins 248
5 Measuring coffins 249
6 Coffin diagnostics 249
7 Constants and variables 250

XXX The \texttt{l3color-base} package: Color support 251
1 Color in boxes 251

XXXI The \texttt{l3luatex} package: Lua\TeX-specific functions 252
1 Breaking out to Lua 252
15 **l3sys implementation**
15.1 Kernel code .. 531
15.1.1 Detecting the engine .. 531
15.1.2 Randomness .. 532
15.1.3 Platform .. 533
15.1.4 Configurations .. 533
15.1.5 Access to the shell ... 534
15.2 Dynamic (every job) code .. 536
15.2.1 The name of the job .. 536
15.2.2 Time and date .. 537
15.2.3 Random numbers ... 537
15.2.4 Access to the shell ... 538
15.2.5 Held over from l3file ... 539
15.3 Last-minute code .. 539
15.3.1 Detecting the output .. 539
15.3.2 Configurations .. 540

16 **l3list implementation**
16.1 Removing spaces around items 541
16.2 Allocation and initialisation 543
16.3 Adding data to comma lists 545
16.4 Comma lists as stacks ... 546
16.5 Modifying comma lists .. 547
16.6 Comma list conditionals ... 550
16.7 Mapping to comma lists ... 551
16.8 Using comma lists ... 554
16.9 Using a single item ... 555
16.10 Viewing comma lists .. 557
16.11 Scratch comma lists .. 558

17 **l3token implementation**
17.1 Manipulating and interrogating character tokens 558
17.2 Creating character tokens 560
17.3 Generic tokens .. 569
17.4 Token conditionals ... 570
17.5 Peeking ahead at the next token 577

18 **l3prop implementation**
18.1 Allocation and initialisation 584
18.2 Accessing data in property lists 587
18.3 Property list conditionals 591
18.4 Recovering values from property lists with branching 592
18.5 Mapping to property lists 592
18.6 Viewing property lists .. 594
22
3keys Implementation
22.1 Low-level interface ... 675
22.2 Constants and variables ... 679
22.3 The key defining mechanism 682
22.4 Turning properties into actions 684
22.5 Creating key properties ... 690
22.6 Setting keys .. 694
22.7 Utilities .. 703
22.8 Messages .. 705

23
3intarray implementation .. 706
23.1 Allocating arrays .. 706
23.2 Array items .. 707
23.3 Working with contents of integer arrays 709
23.4 Random arrays .. 711

24
3fp implementation .. 712

25
3fp-aux implementation ... 712
25.1 Access to primitives .. 712
25.2 Internal representation .. 713
25.3 Using arguments and semicolons 714
25.4 Constants, and structure of floating points 715
25.5 Overflow, underflow, and exact zero 717
25.6 Expanding after a floating point number 717
25.7 Other floating point types 718
25.8 Packing digits .. 721
25.9 Decimate (dividing by a power of 10) 724
25.10 Functions for use within primitive conditional branches 726
25.11 Integer floating points .. 727
25.12 Small integer floating points 728
25.13 Fast string comparison .. 729
25.14 Name of a function from its **3fp-parse** name 729
25.15 Messages .. 729

26
3fp-traps Implementation ... 730
26.1 Flags ... 730
26.2 Traps ... 730
26.3 Errors ... 734
26.4 Messages .. 734

27
3fp-round implementation .. 735
27.1 Rounding tools ... 735
27.2 The **round** function ... 739
31 l3fp-basics Implementation
31.1 Addition and subtraction ... 801
 31.1.1 Sign, exponent, and special numbers 802
 31.1.2 Absolute addition .. 804
 31.1.3 Absolute subtraction .. 806
31.2 Multiplication ... 810
 31.2.1 Signs, and special numbers 810
 31.2.2 Absolute multiplication 811
31.3 Division .. 814
 31.3.1 Signs, and special numbers 814
 31.3.2 Work plan ... 815
 31.3.3 Implementing the significand division 817
31.4 Square root ... 822
31.5 About the sign and exponent 829
31.6 Operations on tuples ... 830

32 l3fp-extended implementation
32.1 Description of fixed point numbers 832
32.2 Helpers for numbers with extended precision 832
32.3 Multiplying a fixed point number by a short one 833
32.4 Dividing a fixed point number by a small integer 834
32.5 Adding and subtracting fixed points 835
32.6 Multiplying fixed points ... 836
32.7 Combining product and sum of fixed points 837
32.8 Extended-precision floating point numbers 839
32.9 Dividing extended-precision numbers 842
32.10 Inverse square root of extended precision numbers 845
32.11 Converting from fixed point to floating point 847

33 l3fp-expo implementation
33.1 Logarithm .. 849
 33.1.1 Work plan ... 849
 33.1.2 Some constants ... 850
 33.1.3 Sign, exponent, and special numbers 850
 33.1.4 Absolute ln .. 850
33.2 Exponential ... 858
 33.2.1 Sign, exponent, and special numbers 858
33.3 Power .. 862
33.4 Factorial .. 868
39 l3tl-analysis implementation

39.1 Internal functions ... 933
39.2 Internal format .. 933
39.3 Variables and helper functions 934
39.4 Plan of attack ... 936
39.5 Disabling active characters 937
39.6 First pass .. 937
39.7 Second pass .. 942
39.8 Mapping through the analysis 945
39.9 Showing the results 946
39.10 Messages ... 948

40 l3regex implementation

40.1 Plan of attack ... 948
40.2 Helpers ... 950
 40.2.1 Constants and variables 951
 40.2.2 Testing characters 953
 40.2.3 Character property tests 956
 40.2.4 Simple character escape 958
40.3 Compiling .. 963
 40.3.1 Variables used when compiling 964
 40.3.2 Generic helpers used when compiling 965
 40.3.3 Mode .. 966
 40.3.4 Framework .. 969
 40.3.5 Quantifiers ... 972
 40.3.6 Raw characters 974
 40.3.7 Character properties 976
 40.3.8 Anchoring and simple assertions 977
 40.3.9 Character classes 978
 40.3.10 Groups and alternations 981
 40.3.11 Catcodes and csnames 984
 40.3.12 Raw token lists with \u 987
 40.3.13 Other ... 989
 40.3.14 Showing regexes 990
40.4 Building .. 994
 40.4.1 Variables used while building 994
 40.4.2 Framework .. 994
 40.4.3 Helpers for building an NFA 996
 40.4.4 Building classes 997
 40.4.5 Building groups 999
 40.4.6 Others .. 1003
40.5 Matching ... 1005
 40.5.1 Variables used when matching 1005
 40.5.2 Matching: framework 1008
 40.5.3 Using states of the NFA 1011
 40.5.4 Actions when matching 1012
40.6 Replacement ... 1014
 40.6.1 Variables and helpers used in replacement .. 1014
 40.6.2 Query and brace balance 1015
 40.6.3 Framework ... 1017
46 l3text implementation 1102
 46.1 Utilities ... 1102
 46.2 Configuration variables 1105
 46.3 Expansion to formatted text 1107

47 l3text-case implementation 1114
 47.1 Case changing 1114
 47.2 Case changing data for 8-bit engines 1131

48 l3text implementation 1138
 48.1 Purifying text 1138
 48.2 Accent and letter-like data for purifying text 1143

49 l3legacy Implementation 1149

50 l3candidates Implementation 1150
 50.1 Additions to l3box 1150
 50.1.1 Viewing part of a box 1150
 50.2 Additions to l3flag 1152
 50.3 Additions to l3msg 1153
 50.4 Additions to l3prg 1154
 50.5 Additions to l3prop 1155
 50.6 Additions to l3seq 1156
 50.7 Additions to l3sys 1158
 50.8 Additions to l3file 1159
 50.8.1 Building a token list 1160
 50.8.2 Other additions to l3tl 1163
 50.9 Additions to l3token 1164

51 l3deprecation implementation 1166
 51.1 Helpers and variables 1166
 51.2 Patching definitions to deprecate 1167
 51.3 Removed functions 1170
 51.4 Deprecated primitives 1172
 51.5 Loading the patches 1173
 51.6 Deprecated l3box functions 1174
 51.7 Deprecated l3int functions 1174
 51.8 Deprecated l3luatex functions 1175
 51.9 Deprecated l3msg functions 1176
 51.10 Deprecated l3prg functions 1177
 51.11 Deprecated l3str functions 1178
 51.11.1 Deprecated l3tl functions 1178
 51.12 Deprecated l3tl-analysis functions 1180
 51.13 Deprecated l3token functions 1180
 51.14 Deprecated l3file functions 1180

Index 1181

xxiv
Part I

Introduction to expl3 and this document

This document is intended to act as a comprehensive reference manual for the expl3 language. A general guide to the \LaTeX3 programming language is found in expl3.pdf.

1 Naming functions and variables

\LaTeX3 does not use \@ as a “letter” for defining internal macros. Instead, the symbols _ and : are used in internal macro names to provide structure. The name of each function is divided into logical units using _, while : separates the name of the function from the argument specifier (“arg-spec”). This describes the arguments expected by the function. In most cases, each argument is represented by a single letter. The complete list of arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a small number of very basic functions, all expl3 function names contain at least one underscore to divide the module name from the descriptive name of the function. For example, all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no arguments, this will be blank and the function name will end :. Most functions take one or more arguments, and use the following argument specifiers:

\textbf{N and n} These mean no manipulation, of a single token for N and of a set of tokens given in braces for n. Both pass the argument through exactly as given. Usually, if you use a single token for an n argument, all will be well.

\textbf{c} This means csname, and indicates that the argument will be turned into a csname before being used. So \texttt{\foo:c \{ArgumentOne\}} will act in the same way as \texttt{\foo:N \{ArgumentOne\}}.

\textbf{V and v} These mean value of variable. The V and v specifiers are used to get the content of a variable without needing to worry about the underlying \TeX structure containing the data. A V argument will be a single token (similar to N), for example \texttt{\foo:V \{MyVariable\}}; on the other hand, using v a csname is constructed first, and then the value is recovered, for example \texttt{\foo:v \{MyVariable\}}.

\textbf{o} This means expansion once. In general, the V and v specifiers are favoured over o for recovering stored information. However, o is useful for correctly processing information with delimited arguments.

\textbf{x} The x specifier stands for exhaustive expansion: every token in the argument is fully expanded until only unexpandable ones remain. The \TeX \texttt{\edef} primitive carries out this type of expansion. Functions which feature an x-type argument are not expandable.

\textbf{e} The e specifier is in many respects identical to x, but with a very different implementation. Functions which feature an e-type argument may be expandable. The drawback is that e is extremely slow (often more than 200 times slower) in older engines, more precisely in non-Lua\TeX engines older than 2019.
The \texttt{f} specifier stands for \textit{full expansion}, and in contrast to \texttt{x} stops at the first non-expandable token (reading the argument from left to right) without trying to expand it. If this token is a ⟨space token⟩, it is gobbled, and thus won’t be part of the resulting argument. For example, when setting a token list variable (a macro used for storage), the sequence

\begin{verbatim}
\tl_set:Nn \l_mya_tl { A }
\tl_set:Nn \l_myb_tl { B }
\tl_set:Nf \l_mya_tl { \l_mya_tl \l_myb_tl }
\end{verbatim}

will leave \texttt{\l_mya_tl} with the content \texttt{A\l_myb_tl}, as \texttt{A} cannot be expanded and so terminates expansion before \texttt{\l_myb_tl} is considered.

For logic tests, there are the branch specifiers \texttt{T} (true) and \texttt{F} (false). Both specifiers treat the input in the same way as \texttt{n} (no change), but make the logic much easier to see.

The letter \texttt{p} indicates \TeX{} \textit{parameters}. Normally this will be used for delimited functions as \texttt{expl3} provides better methods for creating simple sequential arguments.

Finally, there is the \texttt{w} specifier for \textit{weird} arguments. This covers everything else, but mainly applies to delimited values (where the argument must be terminated by some specified string).

The \texttt{D} specifier means \textit{do not use}. All of the \TeX{} primitives are initially \texttt{\let} to a \texttt{D} name, and some are then given a second name. Only the kernel team should use anything with a \texttt{D} specifier!

Notice that the argument specifier describes how the argument is processed prior to being passed to the underlying function. For example, \texttt{\foo:c} will take its argument, convert it to a control sequence and pass it to \texttt{\foo:N}.

Variables are named in a similar manner to functions, but begin with a single letter to define the type of variable:

- \texttt{c} Constant: global parameters whose value should not be changed.
- \texttt{g} Parameters whose value should only be set globally.
- \texttt{l} Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically starting with the module name and then a descriptive part. Variables end with a short identifier to show the variable type:

- \texttt{clist} Comma separated list.
- \texttt{dim} “Rigid” lengths.
- \texttt{fp} Floating-point values;
- \texttt{int} Integer-valued count register.

\footnote{The module names are not used in case of generic scratch registers defined in the data type modules, e.g., the \texttt{int} module contains some scratch variables called \texttt{\l_tmpa_int}, \texttt{\l_tmpb_int}, and so on. In such a case adding the module name up front to denote the module and in the back to indicate the type, as in \texttt{\l_int_tmpa_int} would be very unreadable.}
muskip “Rubber” lengths for use in mathematics.

seq "Sequence": a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.

str String variables: contain character data.

tl Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.

box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.

prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, \TeX\ is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.\footnote{\TeX\ initially, functions with no arguments are \texttt{\textbackslash long} while token list variables are not.} On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
\TeX’s stomach” (if you are familiar with the \TeX\book parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.
2 Documentation conventions

This document is typeset with the experimental \l3doc class; several conventions are used to help describe the features of the code. A number of conventions are used here to make the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name, this might read:

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of the function is shown in mono-spaced text to the right of the box. In this example, the function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few additional conventions: If two related functions are given with identical names but different argument specifiers, these are termed variants of each other, and the latter functions are printed in grey to show this more clearly. They will carry out the same function but will take different types of argument:

\seq_new:N \seq_new:c

When a number of variants are described, the arguments are usually illustrated only for the base function. Here, (sequence) indicates that \seq_new:N expects the name of a sequence. From the argument specifier, \seq_new:c also expects a sequence name, but as a name rather than as a control sequence. Each argument given in the illustration should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them to be used within an \texttt{x}-type or \texttt{e}-type argument (in plain \TeX{} terms, inside an \texttt{edef} or \texttt{expanded}), as well as within an \texttt{f}-type argument. These fully expandable functions are indicated in the documentation by a star:

\cs_to_str:N \cs_to_str:NN \cs_to_str:NC

As with other functions, some text should follow which explains how the function works. Usually, only the star will indicate that the function is expandable. In this case, the function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot be fully expanded within an \texttt{f}-type argument. In this case a hollow star is used to indicate this:

\seq_map_function:NN \seq_map_function:NN \seq_map_function:NN

Conditional functions Conditional (if) functions are normally defined in three variants, with T, F and TF argument specifiers. This allows them to be used for different “true”/“false” branches, depending on which outcome the conditional is being used to test. To indicate this without repetition, this information is given in a shortened form:
The underlining and italic of `TF` indicates that three functions are available:

- `\sys_if_engine_xetex:T`
- `\sys_if_engine_xetex:F`
- `\sys_if_engine_xetex:TF`

Usually, the illustration will use the `TF` variant, and so both `<true code>` and `<false code>` will be shown. The two variant forms `T` and `F` take only `<true code>` and `<false code>`, respectively. Here, the star also shows that this function is expandable. With some minor exceptions, all conditional functions in the `expl3` modules should be defined in this way.

Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in `LATEX2ε` or plain `TeX`. In these cases, the text will include an extra “`TeXhackers note`” section:

```
\token_to_str:N (token)
```

The normal description text.

`TeXhackers note`: Detail for the experienced `TeX` or `LATEX2ε` programmer. In this case, it would point out that this function is the `TeX` primitive `\string`.

Changes to behaviour When new functions are added to `expl3`, the date of first inclusion is given in the documentation. Where the documented behaviour of a function changes after it is first introduced, the date of the update will also be given. This means that the programmer can be sure that any release of `expl3` after the date given will contain the function of interest with expected behaviour as described. Note that changes to code internals, including bug fixes, are not recorded in this way unless they impact on the expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for `LATEX3` programming, the descriptions of functions are intended to be reasonably “complete”. However, there is also a need to avoid repetition. Formal ideas which apply to general classes of function are therefore summarised here.

For tests which have a `TF` argument specification, the test if evaluated to give a logically `TRUE` or `FALSE` result. Depending on this result, either the `<true code>` or the `<false code>` will be left in the input stream. In the case where the test is expandable, and a predicate (`_p`) variant is available, the logical value determined by the test is left in the input stream: this will typically be part of a larger logical construct.
4 \TeX{} concepts not supported by \LaTeX{}3

The \TeX{} concept of an “\texttt{\outer}” macro is \textit{not supported} at all by \LaTeX{}3. As such, the functions provided here may break when used on top of \LaTeX{}2\epsilon if \texttt{\outer} tokens are used in the arguments.
Part II

The \texttt{l3bootstrap} package

Bootstrap code

1 Using the \texttt{\LaTeX3} modules

The modules documented in \texttt{source3} are designed to be used on top of \texttt{\LaTeX2} and are loaded all as one with the usual \texttt{\usepackage{expl3}} or \texttt{\RequirePackage{expl3}} instructions. These modules will also form the basis of the \texttt{\LaTeX3} format, but work in this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard \texttt{\LaTeX2} it provides a few functions for setting it up.

\begin{verbatim}
\ExplSyntaxOn
⟨code⟩
\ExplSyntaxOff
\end{verbatim}

The \texttt{\ExplSyntaxOn} function switches to a category code régime in which spaces are ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus allowing access to the names of code functions and variables. Within this environment, \texttt{-} is used to input a space. The \texttt{\ExplSyntaxOff} reverts to the document category code régime.

\begin{verbatim}
\RequirePackage{expl3}
\ProvidesExplPackage{⟨package⟩}{⟨date⟩}{⟨version⟩}{⟨description⟩}
\end{verbatim}

These functions act broadly in the same way as the corresponding \texttt{\LaTeX2} kernel functions \texttt{\ProvidesPackage}, \texttt{\ProvidesClass} and \texttt{\ProvidesFile}. However, they also implicitly switch \texttt{\ExplSyntaxOn} for the remainder of the code with the file. At the end of the file, \texttt{\ExplSyntaxOff} will be called to reverse this. (This is the same concept as \texttt{\LaTeX2} provides in turning on \texttt{\makeatletter} within package and class code.) The \langle date\rangle should be given in the format \langle year\rangle/\langle month\rangle/\langle day\rangle. If the \langle version\rangle is given then it will be prefixed with \texttt{v} in the package identifier line.

\begin{verbatim}
\GetIdInfo $Id: ⟨SVN info field⟩$ {⟨description⟩}
\end{verbatim}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The information pieces are stored in separate control sequences with \texttt{\ExplFileName} for the part of the file name leading up to the period, \texttt{\ExplFileDate} for date, \texttt{\ExplFileVersion} for version and \texttt{\ExplFileDescription} for the description.

To summarize: Every single package using this syntax should identify itself using one of the above methods. Special care is taken so that every package or class file loaded with \texttt{\RequirePackage} or similar are loaded with usual \texttt{\LaTeX2} category codes and the \texttt{\LaTeX3} category code scheme is reloaded when needed afterwards. See implementation for details. If you use the \texttt{\GetIdInfo} command you can use the information when loading a package with

\begin{verbatim}
\ProvidesExplPackage{⟨ExplFileName⟩}
{⟨ExplFileDate⟩}{⟨ExplFileVersion⟩}{⟨ExplFileDescription⟩}
\end{verbatim}
Part III

The l3names package
Namespace for primitives

1 Setting up the \LaTeX3 programming language

This module is at the core of the \LaTeX3 programming language. It performs the following tasks:

- defines new names for all \TeX primitives;
- switches to the category code régime for programming;
- provides support settings for building the code as a \TeX format.

This module is entirely dedicated to primitives, which should not be used directly within \LaTeX3 code (outside of “kernel-level” code). As such, the primitives are not documented here: The \TeXbook, \TeX by Topic and the manuals for pdf\TeX, \Xe\TeX, Lua\TeX, \mup\TeX and up\TeX should be consulted for details of the primitives. These are named \texttt{\textunderscore\langle name\rangle}:D, typically based on the primitive’s \langle name\rangle in pdf\TeX and omitting a leading \texttt{pdf} when the primitive is not related to pdf output.
Part IV

The \texttt{13basics} package

Basic definitions

As the name suggest this package holds some basic definitions which are needed by most or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean functions dealing with the construction and testing of control sequences. Furthermore the basic parts of conditional processing are covered; conditional processing dealing with specific data types is described in the modules specific for the respective data types.

1 No operation functions

\begin{Verbatim}
\texttt{\textbackslash prg_do_nothing}: *
\texttt{\textbackslash prg_do_nothing}:
\end{Verbatim}

An expandable function which does nothing at all: leaves nothing in the input stream after a single expansion.

\begin{Verbatim}
\texttt{\textbackslash scan_stop}:
\texttt{\textbackslash scan_stop}:
\end{Verbatim}

A non-expandable function which does nothing. Does not vanish on expansion but produces no typeset output.

2 Grouping material

\begin{Verbatim}
\texttt{\textbackslash group_begin}:
\texttt{\textbackslash group_begin}:
\texttt{\textbackslash group_end}:
\texttt{\textbackslash group_end}:
\end{Verbatim}

These functions begin and end a group for definition purposes. Assignments are local to groups unless carried out in a global manner. (A small number of exceptions to this rule will be noted as necessary elsewhere in this document.) Each \texttt{\textbackslash group_begin} must be matched by a \texttt{\textbackslash group_end}, although this does not have to occur within the same function. Indeed, it is often necessary to start a group within one function and finish it within another, for example when seeking to use non-standard category codes.

\begin{Verbatim}
\texttt{\textbackslash group_insert_after:N} (\texttt{token})
\end{Verbatim}

Adds \texttt{\textbackslash (token)} to the list of \texttt{\textbackslash (tokens)} to be inserted when the current group level ends. The list of \texttt{\textbackslash (tokens)} to be inserted is empty at the beginning of a group: multiple applications of \texttt{\textbackslash group_insert_after:N} may be used to build the inserted list one \texttt{\textbackslash (token)} at a time. The current group level may be closed by a \texttt{\textbackslash group_end} function or by a token with category code 2 (close-group), namely a \texttt{\textbackslash)} if standard category codes apply.
3 Control sequences and functions

As \TeX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new... functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-

\begin{itemize}
 \item new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.
 \item set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current \TeX group and does not result in an error if the function
is already defined.
 \item gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.
\end{itemize}

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

\begin{itemize}
 \item nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.
 \item protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.
\end{itemize}

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

\begin{itemize}
 \item N and n No manipulation.
 \item T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).
 \item p and w These are special cases.
\end{itemize}

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.
3.2 Defining new functions using parameter text

\cs_new:Npn \cs_new:cpn \cs_new:Npx \cs_new:cpn

Creates \emph{function} to expand to \emph{(code)} as replacement text. Within the \emph{(code)}, the \emph{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The definition is global and an error results if the \emph{(function)} is already defined.

\cs_new_protected:Npn \cs_new_protected:cpn \cs_new_protected:Npx \cs_new_protected:cpn

Creates \emph{(function)} to expand to \emph{(code)} as replacement text. Within the \emph{(code)}, the \emph{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The \emph{(function)} is used the \emph{(parameters)} absorbed cannot contain \texttt{\textbackslash \par} tokens. The definition is global and an error results if the \emph{(function)} is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:cpn \cs_new_protected_nopar:Npx \cs_new_protected_nopar:cpn

Creates \emph{function} to expand to \emph{(code)} as replacement text. Within the \emph{(code)}, the \emph{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The \emph{(function)} will not expand within an \texttt{x}-type argument. The definition is global and an error results if the \emph{(function)} is already defined.

\cs_set:Npn \cs_set:cpn \cs_set:Npx \cs_set:cpn

Sets \emph{function} to expand to \emph{(code)} as replacement text. Within the \emph{(code)}, the \emph{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \emph{(function)} is restricted to the current \LaTeX{} group level.

\cs_set_nopar:Npn \cs_set_nopar:cpn \cs_set_nopar:Npx \cs_set_nopar:cpn

Sets \emph{function} to expand to \emph{(code)} as replacement text. Within the \emph{(code)}, the \emph{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. When the \emph{(function)} is used the \emph{(parameters)} absorbed cannot contain \texttt{\textbackslash \par} tokens. The assignment of a meaning to the \emph{(function)} is restricted to the current \LaTeX{} group level.

\cs_set_protected:Npn \cs_set_protected:cpn \cs_set_protected:Npx \cs_set_protected:cpn

Sets \emph{function} to expand to \emph{(code)} as replacement text. Within the \emph{(code)}, the \emph{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \emph{(function)} is restricted to the current \LaTeX{} group level. The \emph{(function)} will not expand within an \texttt{x}-type or \texttt{e}-type argument.
\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npx \cs_gset_protected_nopar:cpx

Globally sets \textit{(function)} to expand to \textit{(code)} as replacement text. Within the \textit{(code)}, the \textit{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \textit{(function)} is not restricted to the current \TeX{} group level: the assignment is global. The \textit{(function)} will not expand within an \texttt{x}-type or \texttt{e}-type argument.

\cs_gset:cpn
\cs_gset:Npx
\cs_gset:cpx

Globally sets \textit{(function)} to expand to \textit{(code)} as replacement text. Within the \textit{(code)}, the \textit{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \textit{(function)} is not restricted to the current \TeX{} group level: the assignment is global.

\cs_gset_protected:Npn \cs_gset_protected:cpn \cs_gset_protected:Npx \cs_gset_protected:cpx

Globally sets \textit{(function)} to expand to \textit{(code)} as replacement text. Within the \textit{(code)}, the \textit{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \textit{(function)} is not restricted to the current \TeX{} group level: the assignment is global. The \textit{(function)} will not expand within an \texttt{x}-type or \texttt{e}-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npx \cs_gset_protected_nopar:cpx

Globally sets \textit{(function)} to expand to \textit{(code)} as replacement text. Within the \textit{(code)}, the \textit{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. When the \textit{(function)} is used the \textit{(parameters)} absorbed cannot contain \texttt{par} tokens. The assignment of a meaning to the \textit{(function)} is restricted to the current \TeX{} group level: the assignment is global.

3.3 Defining new functions using the signature

\cs_new:Nn \cs_new:(cn|Nx|cx)

\cs_gset:cpn
\cs_gset:Npx
\cs_gset:cpx

Creates \textit{(function)} to expand to \textit{(code)} as replacement text. Within the \textit{(code)}, the number of \textit{(parameters)} is detected automatically from the function signature. These \textit{(parameters)} (#1, #2, etc.) will be replaced by those absorbed by the function. The definition is global and an error results if the \textit{(function)} is already defined.
\cs_new_protected:Nn
\cs_new_protected:(cn|Nx|cx)

Creates \textit{function} to expand to \textit{code} as replacement text. Within the \textit{code}, the number of \textit{parameters} is detected automatically from the function signature. These \textit{parameters} (\#1, \#2, etc.) will be replaced by those absorbed by the function. When the \textit{function} is used the \textit{parameters} absorbed cannot contain \texttt{par} tokens. The definition is global and an error results if the \textit{function} is already defined.

\cs_new_protected:Nn
\cs_new_protected:(cn|Nx|cx)

Creates \textit{function} to expand to \textit{code} as replacement text. Within the \textit{code}, the number of \textit{parameters} is detected automatically from the function signature. These \textit{parameters} (\#1, \#2, etc.) will be replaced by those absorbed by the function. The \textit{function} will not expand within an \texttt{x}-type argument. The definition is global and an error results if the \textit{function} is already defined.

\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:(cn|Nx|cx)

Creates \textit{function} to expand to \textit{code} as replacement text. Within the \textit{code}, the number of \textit{parameters} is detected automatically from the function signature. These \textit{parameters} (\#1, \#2, etc.) will be replaced by those absorbed by the function. When the \textit{function} is used the \textit{parameters} absorbed cannot contain \texttt{par} tokens. The definition is global and an error results if the \textit{function} is already defined.

\cs_set:Nn
\cs_set:(cn|Nx|cx)

Sets \textit{function} to expand to \textit{code} as replacement text. Within the \textit{code}, the number of \textit{parameters} is detected automatically from the function signature. These \textit{parameters} (\#1, \#2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \textit{function} is restricted to the current \TeX{} group level.

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Nx|cx)

Sets \textit{function} to expand to \textit{code} as replacement text. Within the \textit{code}, the number of \textit{parameters} is detected automatically from the function signature. These \textit{parameters} (\#1, \#2, etc.) will be replaced by those absorbed by the function. When the \textit{function} is used the \textit{parameters} absorbed cannot contain \texttt{par} tokens. The assignment of a meaning to the \textit{function} is restricted to the current \TeX{} group level.

\cs_set_protected:Nn
\cs_set_protected:(cn|Nx|cx)

Sets \textit{function} to expand to \textit{code} as replacement text. Within the \textit{code}, the number of \textit{parameters} is detected automatically from the function signature. These \textit{parameters} (\#1, \#2, etc.) will not expand within an \texttt{x}-type argument. The assignment of a meaning to the \textit{function} is restricted to the current \TeX{} group level.
Sets (function) to expand to (code) as replacement text. Within the (code), the number of parameters is detected automatically from the function signature. These parameters (#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is used the (parameters) absorbed cannot contain \par tokens. The (function) will not expand within an x-type or e-type argument. The assignment of a meaning to the (function) is restricted to the current \TeX group level.

Sets (function) to expand to (code) as replacement text. Within the (code), the number of parameters is detected automatically from the function signature. These parameters (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the (function) is global.

Sets (function) to expand to (code) as replacement text. Within the (code), the number of parameters is detected automatically from the function signature. These parameters (#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is used the (parameters) absorbed cannot contain \par tokens. The assignment of a meaning to the (function) is global.

Sets (function) to expand to (code) as replacement text. Within the (code), the number of parameters is detected automatically from the function signature. These parameters (#1, #2, etc.) will not expand within an x-type argument. The assignment of a meaning to the (function) is global.

Sets (function) to expand to (code) as replacement text. Within the (code), the number of parameters is detected automatically from the function signature. These parameters (#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is used the (parameters) absorbed cannot contain \par tokens. The (function) will not expand within an x-type or e-type argument. The assignment of a meaning to the (function) is global.

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn) to define a (function) which takes (number) arguments and has (code) as replacement text. The (number) of arguments is an integer expression, evaluated as detailed for \int_eval:n.
3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same meaning using the functions described here. Making two control sequences equivalent means that the second control sequence is a copy of the first (rather than a pointer to it). Thus the old and new control sequence are not tied together: changes to one are not reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN \cs_new_eq:Nn \cs_new_eq:Ncc
Globally creates \⟨control sequence1⟩ and sets it to have the same meaning as \⟨control sequence2⟩ or \langle token⟩. The second control sequence may subsequently be altered without affecting the copy.

\cs_set_eq:NN \cs_set_eq:Nn \cs_set_eq:Ncc
Sets \langle control sequence1⟩ to have the same meaning as \langle control sequence2⟩ (or \langle token⟩). The second control sequence may subsequently be altered without affecting the copy. The assignment of a meaning to the \langle control sequence1⟩ is restricted to the current \TeX group level.

\cs_gset_eq:NN \cs_gset_eq:Nn \cs_gset_eq:Ncc
Globally sets \langle control sequence1⟩ to have the same meaning as \langle control sequence2⟩ (or \langle token⟩). The second control sequence may subsequently be altered without affecting the copy. The assignment of a meaning to the \langle control sequence1⟩ is not restricted to the current \TeX group level: the assignment is global.

3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a very simple manner.

\cs_undefine:N \cs_undefine:C
Sets \langle control sequence⟩ to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N \cs_meaning:C
This function expands to the meaning of the \langle control sequence⟩ control sequence. For a macro, this includes the \langle replacement text⟩.

\TeXhackers note: This is \TeX’s \meaning primitive. For tokens that are not control sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports undefined arguments.
\cs_show:N \cs_show:c
Displays the definition of the \textit{control sequence} on the terminal.

\textbf{\textsc{\TeX}hackers note:} This is similar to the \TeX primitive \texttt{\show}, wrapped to a fixed number of characters per line.

\cs_log:N \cs_log:c
Writes the definition of the \textit{control sequence} in the log file. See also \texttt{\cs_show:N} which displays the result in the terminal.

\section{Converting to and from control sequences}

\texttt{\use:c \{\textit{control sequence name}\}}
Expands the \textit{control sequence name} until only characters remain, and then converts this into a control sequence. This process requires two expansions. As in other \texttt{c-type} arguments the \textit{control sequence name} must, when fully expanded, consist of character tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

\textbf{\textsc{\TeX}hackers note:} Protected macros that appear in a \texttt{c-type} argument are expanded despite being protected; \texttt{\exp_not:n} also has no effect. An internal error occurs if non-characters or active characters remain after full expansion, as the conversion to a control sequence is not possible.

As an example of the \texttt{\use:c} function, both

\begin{verbatim}
\use:c \{ a b c \}
\end{verbatim}

and

\begin{verbatim}
\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\use:c \{ \tl_use:N \l_my_tl \}
\end{verbatim}

would be equivalent to

\begin{verbatim}
\abc
\end{verbatim}

after two expansions of \texttt{\use:c}.

\texttt{\cs_if_exist_use:N \cs_if_exist_use:c \cs_if_exist_use:NTF \cs_if_exist_use:cTF}
Tests whether the \textit{control sequence} is currently defined according to the conditional \texttt{\cs_if_exist:NTF} (whether as a function or another control sequence type), and if it is inserts the \textit{control sequence} into the input stream followed by the \textit{true code}. Otherwise the \textit{false code} is used.
Converts the given \textit{control sequence name} into a single control sequence token. This process requires one expansion. The content for \textit{control sequence name} may be literal material or from other expandable functions. The \textit{control sequence name} must, when fully expanded, consist of character tokens which are not active: typically of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

\textbf{\LaTeX{}hackers note:} These are the \LaTeX{} primitives \texttt{\csname} and \texttt{\endcsname}.

As an example of the \texttt{\cs:w} and \texttt{\cs_end:} functions, both

\begin{verbatim}
\cs:w a b c \cs_end:
\end{verbatim}

and

\begin{verbatim}
\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\cs:w \tl_use:N \l_my_tl \lspace \cs_end:
\end{verbatim}

would be equivalent to

\begin{verbatim}
\abc
\end{verbatim}

after one expansion of \texttt{\cs:w}.

\begin{verbatim}
\cs_to_str:N * \cs_to_str:N \textit{control sequence}
\end{verbatim}

Converts the given \textit{control sequence} into a series of characters with category code 12 (other), except spaces, of category code 10. The result does not include the current escape token, contrarily to \texttt{token_to_str:N}. Full expansion of this function requires exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions are required to convert the \textit{control sequence} to a sequence of characters in the input stream. In most cases, an f-expansion is correct as well, but this loses a space at the start of the result.

\section{Analysing control sequences}

\begin{verbatim}
\cs_split_function:N * \cs_split_function:N \textit{function}
\end{verbatim}

Splits the \textit{function} into the \textit{name} (\textit{i.e.} the part before the colon) and the \textit{signature} (\textit{i.e.} after the colon). This information is then placed in the input stream in three parts: the \textit{name}, the \textit{signature} and a logic token indicating if a colon was found (to differentiate variables from function names). The \textit{name} does not include the escape character, and both the \textit{name} and \textit{signature} are made up of tokens with category code 12 (other).

The next three functions decompose \LaTeX{} macros into their constituent parts: if the \textit{token} passed is not a macro then no decomposition can occur. In the latter case, all three functions leave \texttt{\scan_stop:} in the input stream.
\cs_prefix_spec:N \cs_prefix_spec:N \langle \text{token} \rangle

If the \langle \text{token} \rangle is a macro, this function leaves the applicable \TeX\ prefixes in input stream as a string of tokens of category code 12 (with spaces having category code 10). Thus for example

\begin{verbatim}
\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn
\end{verbatim}

leaves \textbackslash long in the input stream. If the \langle \text{token} \rangle is not a macro then \texttt{\textbackslash scan_stop:} is left in the input stream.

\TeX\hackers note: The prefix can be empty, \textbackslash long, \textbackslash protected or \textbackslash protected\textbackslash long with backslash replaced by the current escape character.

\cs_argument_spec:N \cs_argument_spec:N \langle \text{token} \rangle

If the \langle \text{token} \rangle is a macro, this function leaves the primitive \TeX\ argument specification in input stream as a string of character tokens of category code 12 (with spaces having category code 10). Thus for example

\begin{verbatim}
\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_argument_spec:N \next:nn
\end{verbatim}

leaves \#1\#2 in the input stream. If the \langle \text{token} \rangle is not a macro then \texttt{\textbackslash scan_stop:} is left in the input stream.

\TeX\hackers note: If the argument specification contains the string ->, then the function produces incorrect results.

\cs_replacement_spec:N \cs_replacement_spec:N \langle \text{token} \rangle

If the \langle \text{token} \rangle is a macro, this function leaves the replacement text in input stream as a string of character tokens of category code 12 (with spaces having category code 10). Thus for example

\begin{verbatim}
\cs_set:Npn \next:nn #1#2 { x #1-y #2 }
\cs_replacement_spec:N \next:nn
\end{verbatim}

leaves \texttt{x#1,y#2} in the input stream. If the \langle \text{token} \rangle is not a macro then \texttt{\textbackslash scan_stop:} is left in the input stream.

\TeX\hackers note: If the argument specification contains the string ->, then the function produces incorrect results.

5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens are wrapped in braces then when absorbing them the outer set is removed. At the same time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n * \use:n \{(group_1)\}
\use:nn * \use:nn \{(group_1)\} \{(group_2)\}
\use:nnn * \use:nnn \{(group_1)\} \{(group_2)\} \{(group_3)\}
\use:nnnn * \use:nnnn \{(group_1)\} \{(group_2)\} \{(group_3)\} \{(group_4)\}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn \{ abc \} \{ \{ def \} \}

results in the input stream containing

abc \{ def \}

i.e. only the outer braces are removed.

\textbf{\TeXhackers note}: The \use:n function is equivalent to \LaTeX2ε’s \@firstofone.

\use:i:nn * \use:i:nn \{(arg_1)\} \{(arg_2)\}
\use:ii:nn * \use:ii:nn \{(arg_1)\} \{(arg_2)\}

These functions absorb two arguments from the input stream. The function \use:i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use:ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fix (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\textbf{\TeXhackers note}: These are equivalent to \LaTeX2ε’s \@firstoftwo and \@secondoftwo.

\use:i:nnn * \use:i:nnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\}
\use:ii:nnn * \use:ii:nnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\}
\use:iii:nnn * \use:iii:nnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\} \{(arg_4)\}

These functions absorb three arguments from the input stream. The function \use:i:nnn
discards the second and third arguments, and leaves the content of the first argument in the
input stream. \use:ii:nnn and \use:iii:nnn work similarly, leaving the content of
second or third arguments in the input stream, respectively. The category code of
these tokens is also fix (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use:i:nnnn * \use:i:nnnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\} \{(arg_4)\}
\use:ii:nnnn * \use:ii:nnnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\} \{(arg_4)\}
\use:iii:nnnn * \use:iii:nnnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\} \{(arg_4)\}
\use:iv:nnnn * \use:iv:nnnn \{(arg_1)\} \{(arg_2)\} \{(arg_3)\} \{(arg_4)\}

These functions absorb four arguments from the input stream. The function \use:ii:nnnn
discards the second, third and fourth arguments, and leaves the content of the first
argument in the input stream. \use:ii:nnnn, \use:iii:nnnn and \use:iv:nnnn work similarly, leaving the content of
second, third or fourth arguments in the input stream, respectively. The category code of
these tokens is also fix (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.
This function absorbs three arguments and leaves the content of the first and second in the input stream. The category code of these tokens is also fixed (if it has not already been by some other absorption). A single expansion is needed for the function to take effect. An example:

\use_i_ii:nnn \{ abc \} \{ \{ def \} \} \{ ghi \}

results in the input stream containing

abc \{ def \}

i.e. the outer braces are removed and the third group is removed.

This function absorbs two arguments and leaves the content of the second and first in the input stream. The category code of these tokens is also fixed (if it has not already been by some other absorption). A single expansion is needed for the function to take effect.

These functions absorb between one and nine groups from the input stream, leaving nothing on the resulting input stream. These functions work after a single expansion. One or more of the \(n \) arguments may be an unbraced single token (i.e. an \(N \) argument).

\textit{\LaTeX}hackers note: These are equivalent to \LaTeX2e’s \texttt{\@gobble}, \texttt{\@gobbletwo}, etc.

Fully expands the \texttt{\langle token list \rangle} in an \texttt{x}-type manner, but the function remains fully expandable, and parameter character (usually \#) need not be doubled.

\textit{\LaTeX}hackers note: \texttt{\use:e} is a wrapper around the primitive \texttt{\expanded} where it is available: it requires two expansions to complete its action. When \texttt{\expanded} is not available this function is very slow.

Fully expands the \texttt{\langle expandable tokens \rangle} and inserts the result into the input stream at the current location. Any hash characters (\#) in the argument must be doubled.

5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use delimited arguments.
Absorb the \textit{balanced text} from the input stream delimited by the marker given in the function name, leaving nothing in the input stream.

\begin{tabular}{ll}
\use_i_delimit_by_q_nil:nw & \use_i_delimit_by_q_stop:nw \\
\use_i_delimit_by_q_recursion_stop:nw & \use_i_delimit_by_q_recursion_stop:nw
\end{tabular}

Absorb the \textit{balanced text} from the input stream delimited by the marker given in the function name, leaving \textit{inserted tokens} in the input stream for further processing.

\section{Predicates and conditionals}

\textsc{B\TeX}3 has three concepts for conditional flow processing:

\textbf{Branching conditionals} Functions that carry out a test and then execute, depending on its result, either the code supplied as the \textit{true code} or the \textit{false code}. These arguments are denoted with \texttt{T} and \texttt{F}, respectively. An example would be

\begin{verbatim}
\cs_if_free:cTF {abc} {\langle true code\rangle} {\langle false code\rangle}
\end{verbatim}

a function that turns the first argument into a control sequence (since it’s marked as \texttt{c}) then checks whether this control sequence is still free and then depending on the result carries out the code in the second argument (true case) or in the third argument (false case).

These type of functions are known as “conditionals”: whenever a TF function is defined it is usually accompanied by \texttt{T} and \texttt{F} functions as well. These are provided for convenience when the branch only needs to go a single way. Package writers are free to choose which types to define but the kernel definitions always provide all three versions.

Important to note is that these branching conditionals with \textit{true code} and/or \textit{false code} are always defined in a way that the code of the chosen alternative can operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are expandable they are accompanied by a “predicate” for the same test as described below.

\textbf{Predicates} “Predicates” are functions that return a special type of boolean value which can be tested by the boolean expression parser. All functions of this type are expandable and have names that end with \texttt{p} in the description part. For example,

\begin{verbatim}
\cs_if_free_p:N
\end{verbatim}

would be a predicate function for the same type of test as the conditional described above. It would return “true” if its argument (a single token denoted by \texttt{N}) is still free for definition. It would be used in constructions like
For each predicate defined, a “branching conditional” also exists that behaves like a conditional described above.

Primitive conditionals

There is a third variety of conditional, which is the original concept used in plain TeX and\(\LaTeX_2 \varepsilon \). Their use is discouraged in expl3 (although still used in low-level definitions) because they are more fragile and in many cases require more expansion control (hence more code) than the two types of conditionals described above.

\begin{verbatim}
\bool_if:nTF { \cs_if_free_p:N \l_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl } { (true code) } { (false code) }
\end{verbatim}

Constants that represent \texttt{true} and \texttt{false}, respectively. Used to implement predicates.

6.1 Tests on control sequences

\begin{verbatim}
\cs_if_eq_p:NN \cs_if_eq:NNTF \cs_if_exist_p:N \cs_if_exist:NTF \cs_if_free_p:N \cs_if_free:NTF
\end{verbatim}

Compared the definition of two \texttt{(control sequences)} and is logically \texttt{true} if they are the same, \textit{i.e.} if they have exactly the same definition when examined with \texttt{\cs_show:N}.

Tests whether the \texttt{(control sequence)} is currently defined (whether as a function or another control sequence type). Any definition of \texttt{(control sequence)} other than \texttt{\relax} evaluates as \texttt{true}.

Tests whether the \texttt{(control sequence)} is currently free to be defined. This test is \texttt{false} if the \texttt{(control sequence)} currently exists (as defined by \texttt{\cs_if_exist:N}).

6.2 Primitive conditionals

The \(\varepsilon \)-\TeX engine itself provides many different conditionals. Some expand whatever comes after them and others don’t. Hence the names for these underlying functions often contains a \texttt{:w} part but higher level functions are often available. See for instance \texttt{\int_compare_p:nNn} which is a wrapper for \texttt{\if_int_compare:w}.

Certain conditionals deal with specific data types like boxes and fonts and are described there. The ones described below are either the universal conditionals or deal with control sequences. We prefix primitive conditionals with \texttt{\if_}.

\[\begin{align*}
\c_true_bool \\
\c_false_bool
\end{align*}\]
\if_true: * \if_true: (true code) \else: (false code) \fi:
\if_false: * \if_false: (true code) \else: (false code) \fi:
\else: * reverse_if:N (primitive conditional)
\fi: * \if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit the branches of the conditional. The function \or: is documented in \texttt{l3int} and used in case switches.

\TeXhackers note: These are equivalent to their corresponding \TeX primitive conditionals; reverse_if:N is \TeX's unless.

\if_meaning:w * \if_meaning:w \langle \texttt{arg}_1 \rangle \langle \texttt{arg}_2 \rangle (true code) \else: (false code) \fi:
\iffalse: (true code) when \langle \texttt{arg}_1 \rangle and \langle \texttt{arg}_2 \rangle are the same, otherwise it executes (false code). \langle \texttt{arg}_1 \rangle and \langle \texttt{arg}_2 \rangle could be functions, variables, tokens; in all cases the unexpanded definitions are compared.

\TeXhackers note: This is \TeX's \texttt{if}.

\if:w * \if:w \langle \texttt{token}_1 \rangle \langle \texttt{token}_2 \rangle (true code) \else: (false code) \fi:
\if_charcode:w * \if_charcode:w \langle \texttt{token}_1 \rangle \langle \texttt{token}_2 \rangle (true code) \else: (false code) \fi:
\if_catcode:w * \if_catcode:w \langle \texttt{token}_1 \rangle \langle \texttt{token}_2 \rangle (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left. If you wish to prevent this expansion, prefix the token in question with \texttt{exp_not:N}. \if_catcode:w tests if the category codes of the two tokens are the same whereas \if:w tests if the character codes are identical. \if_charcode:w is an alternative name for \if:w.

\if_cs_exist:N * \if_cs_exist:N \langle \texttt{cs} \rangle (true code) \else: (false code) \fi:
\if_cs_exist:w * \if_cs_exist:w \langle \texttt{tokens} \rangle \cs_end: (true code) \else: (false code) \fi:

Check if \langle \texttt{cs} \rangle appears in the hash table or if the control sequence that can be formed from \langle \texttt{tokens} \rangle appears in the hash table. The latter function does not turn the control sequence in question into \texttt{\textbackslash scan_stop}! This can be useful when dealing with control sequences which cannot be entered as a single token.

\if_mode_horizontal: * \if_mode_horizontal: (true code) \else: (false code) \fi:
\if_mode_vertical: * \if_mode_vertical: (true code) \else: (false code) \fi:
\if_mode_math: * \if_mode_math: (true code) \else: (false code) \fi:
\if_mode_inner: * \if_mode_inner: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Similar for the other functions.
7 Starting a paragraph

\mode_leave_vertical: Ensures that \TeX is not in vertical (inter-paragraph) mode. In horizontal or math mode this command has no effect, in vertical mode it switches to horizontal mode, and inserts a box of width \parindent, followed by the \everypar token list.

\TeXhackers note: This results in the contents of the \everypar token register being inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the \LaTeX2ε \leavevmode approach, no box is used by the method implemented here.

7.1 Debugging support

\debug_on:n \debug_off:n \debug_suspend: \debug_resume:

Turn on and off within a group various debugging code, some of which is also available as expl3 load-time options. The items that can be used in the ⟨list⟩ are

- check-declarations that checks all expl3 variables used were previously declared and that local/global variables (based on their name or on their first assignment) are only locally/globally assigned;
- check-expressions that checks integer, dimension, skip, and muskip expressions are not terminated prematurely;
- deprecation that makes soon-to-be-deprecated commands produce errors;
- log-functions that logs function definitions;
- all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on other packages: load all other packages, call \debug_on:n, and load the code that one is interested in testing. These functions can only be used in \LaTeX2ε package mode loaded with enable-debug or another option implying it.

\debug_suspend: \debug_resume: Suppress (locally) errors and logging from debug commands, except for the deprecation errors or warnings. These pairs of commands can be nested. This can be used around pieces of code that are known to fail checks, if such failures should be ignored. See for instance \l3coffins.
Part V

The \texttt{l3expan} package

Argument expansion

This module provides generic methods for expanding \TeX\ arguments in a systematic manner. The functions in this module all have prefix \texttt{exp}.

Not all possible variations are implemented for every base function. Instead only those that are used within the \LaTeX3 kernel or otherwise seem to be of general interest are implemented. Consult the module description to find out which functions are actually defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new functions or when applying a kernel function in a situation that we haven’t thought of before.

Internally preprocessing of arguments is done with functions of the form \texttt{\expargs\ldots}. They all look alike, an example would be \texttt{\expargs{\No}}. This function has three arguments, the first and the second are a single tokens, while the third argument should be given in braces. Applying \texttt{\expargs{\No}} expands the content of third argument once before any expansion of the first and second arguments. If \texttt{\seq_gpush:No} was not defined it could be coded in the following way:

\begin{verbatim}
\expargs{\No} \seq_gpush:No
\seq_push_name_stack
{ \l_tmpa_tl }
\end{verbatim}

In other words, the first argument to \texttt{\expargs{\No}} is the base function and the other arguments are preprocessed and then passed to this base function. In the example the first argument to the base function should be a single token which is left unchanged while the second argument is expanded once. From this example we can also see how the variants are defined. They just expand into the appropriate \texttt{\exp_} function followed by the desired base function, e.g.

\begin{verbatim}
\cs_generate_variant{\No} \seq_gpush:No \{ \No \}
\end{verbatim}

results in the definition of \texttt{\seq_gpush:No}

\begin{verbatim}
\cs_new{\Nn} \seq_gpush:No \{ \exp_args{\NNo} \seq_gpush:No \}
\end{verbatim}

Providing variants in this way in style files is safe as the \texttt{\cs_generate_variant{\Nn}} function will only create new definitions if there is not already one available. Therefore adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \texttt{\cs_generate_variant{\Nn}}, described next.
2 Methods for defining variants

We recall the set of available argument specifiers.

• \(\text{N} \) is used for single-token arguments while \(\text{c} \) constructs a control sequence from its name and passes it to a parent function as an \(\text{N} \)-type argument.

• Many argument types extract or expand some tokens and provide it as an \(\text{n} \)-type argument, namely a braced multiple-token argument: \(\text{V} \) extracts the value of a variable, \(\text{v} \) extracts the value from the name of a variable, \(\text{n} \) uses the argument as it is, \(\text{o} \) expands once, \(\text{f} \) expands fully the front of the token list, \(\text{e} \) and \(\text{x} \) expand fully all tokens (differences are explained later).

• A few odd argument types remain: \(\text{T} \) and \(\text{F} \) for conditional processing, otherwise identical to \(\text{n} \)-type arguments, \(\text{p} \) for the parameter text in definitions, \(\text{w} \) for arguments with a specific syntax, and \(\text{D} \) to denote primitives that should not be used directly.
\cs_generate_variant:Nn \cs_generate_variant:cn

This function is used to define argument-specifier variants of the \textit{parent control sequence} for \TeX{}3 code-level macros. The \textit{parent control sequence} is first separated into the \textit{base name} and \textit{original argument specifier}. The comma-separated list of \textit{variant argument specifiers} is then used to define variants of the \textit{original argument specifier} if these are not already defined. For each \textit{variant} given, a function is created that expands its arguments as detailed and passes them to the \textit{parent control sequence}. So for example

\begin{verbatim}
\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }
\end{verbatim}

creates a new function \texttt{\foo:cn} which expands its first argument into a control sequence name and passes the result to \texttt{\foo:Nn}. Similarly

\begin{verbatim}
\cs_generate_variant:Nn \foo:Nn \foo:Nn { NV , cV }
\end{verbatim}

generates the functions \texttt{\foo:NV} and \texttt{\foo:cV} in the same way. The \texttt{\cs_generate_variant:Nn} function can only be applied if the \textit{parent control sequence} is already defined. If the \textit{parent control sequence} is protected or if the \textit{variant} involves any \texttt{x} argument, then the \textit{variant control sequence} is also protected. The \textit{variant} is created globally, as is any \texttt{\exp_args:N(variant)} function needed to carry out the expansion.

Only \texttt{n} and \texttt{N} arguments can be changed to other types. The only allowed changes are

- \texttt{c} variant of an \texttt{N} parent;
- \texttt{o}, \texttt{V}, \texttt{v}, \texttt{f}, \texttt{e}, or \texttt{x} variant of an \texttt{n} parent;
- \texttt{N}, \texttt{n}, \texttt{T}, \texttt{F}, or \texttt{p} argument unchanged.

This means the \textit{parent} of a \textit{variant} form is always unambiguous, even in cases where both an \texttt{n}-type parent and an \texttt{N}-type parent exist, such as for \texttt{\tl_count:n} and \texttt{\tl_count:N}.

For backward compatibility it is currently possible to make \texttt{n}, \texttt{o}, \texttt{V}, \texttt{v}, \texttt{f}, \texttt{e}, or \texttt{x}-type variants of an \texttt{N}-type argument or \texttt{N} or \texttt{c}-type variants of an \texttt{n}-type argument. Both are deprecated. The first because passing more than one token to an \texttt{N}-type argument will typically break the parent function’s code. The second because programmers who use that most often want to access the value of a variable given its name, hence should use a \texttt{V}-type or \texttt{v}-type variant instead of \texttt{c}-type. In those cases, using the lower-level \texttt{\exp_args:No} or \texttt{\exp_args:Nc} functions explicitly is preferred to defining confusing variants.

3 Introducing the variants

The \texttt{V} type returns the value of a register, which can be one of \texttt{tl}, \texttt{clist}, \texttt{int}, \texttt{skip}, \texttt{dim}, \texttt{muskip}, or built-in \TeX{} registers. The \texttt{v} type is the same except it first creates a control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control. When simply using the content of a variable, functions with a \texttt{V} specifier should be used. For those referred to by \texttt{(cs)name}, the \texttt{v} specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the expansion is identical to that of \TeX{}’s `\message` (in particular # needs not be doubled). It was added in May 2018. In recent enough engines (starting around 2019) it relies on the primitive `\expanded` hence is fast. In older engines it is very much slower. As a result it should only be used in performance critical code if typical users will have a recent installation of the \TeX{} ecosystem.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro parameter characters # must be doubled, and omitting this leads to low-level errors. In addition this type of expansion is not expandable, namely functions that have x in their signature do not themselves expand when appearing inside x or e expansion.

The f type is so special that it deserves an example. It is typically used in contexts where only expandable commands are allowed. Then x-expansion cannot be used, and f-expansion provides an alternative that expands the front of the token list as much as can be done in such contexts. For instance, say that we want to evaluate the integer expression 3 + 4 and pass the result 7 as an argument to an expandable function `\example:n`. For this, one should define a variant using `\cs_generate_variant:Nn \example:n { f }`, then do

\begin{verbatim}
\example:f { \int_eval:n { 3 + 4 } }
\end{verbatim}

Note that x-expansion would also expand `\int_eval:n` fully to its result 7, but the variant `\example:x` cannot be expandable. Note also that o-expansion would not expand `\int_eval:n` fully to its result since that function requires several expansions. Besides the fact that x-expansion is protected rather than expandable, another difference between f-expansion and x-expansion is that f-expansion expands tokens from the beginning and stops as soon as a non-expandable token is encountered, while x-expansion continues expanding further tokens. Thus, for instance

\begin{verbatim}
\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
\end{verbatim}

results in the call

\begin{verbatim}
\example:n { 3 , \int_eval:n { 3 + 4 } }
\end{verbatim}

while using `\example:x` or `\example:e` instead results in

\begin{verbatim}
\example:n { 3 , 7 }
\end{verbatim}

at the cost of being protected (for x type) or very much slower in old engines (for e type).

If you use f type expansion in conditional processing then you should stick to using TF type functions only as the expansion does not finish any `\if\ldots\fi`: itself!

It is important to note that both f- and o-type expansion are concerned with the expansion of tokens from left to right in their arguments. In particular, o-type expansion applies to the first token in the argument it receives: it is conceptually similar to

\begin{verbatim}
\exp_after:wN <base function> \exp_after:wN { <argument> }
\end{verbatim}

At the same time, f-type expansion stops at the first non-expandable token. This means for example that both

\begin{verbatim}
\tl_set:Nn \l_tmpa_tl { { \g_tmpb_tl } }
\end{verbatim}

\begin{verbatim}
\tl_set:Nn \l_tmpa_tl { \{ \g_tmpb_tl } }
\end{verbatim}

\begin{verbatim}
\tl_set:Nn \l_tmpa_tl { \{ \g_tmpb_tl } }
\end{verbatim}
and

\tl_set:Nf \l_tmpa_tl \ { \{ \g_tmpb_tl \} }

leave \g_tmpb_tl unchanged: \{ is the first token in the argument and is non-expandable.

It is usually best to keep the following in mind when using variant forms.

- Variants with \textit{x}-type arguments (that are fully expanded before being passed to
the \textit{n}-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using \textit{f} or \textit{e} expansion.

- In contrast, \textit{e} expansion (full expansion, almost like \textit{x} except for the treatment of \#)
does not prevent variants from being expandable (if the base function is). The draw-
back is that \textit{e} expansion is very much slower in old engines (before 2019). Consider
using \textit{f} expansion if that type of expansion is sufficient to perform the required
expansion, or \textit{x} expansion if the variant will not itself need to be expandable.

- Finally \textit{f} expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

- Arguments that might need expansion should come first in the list of arguments.

- Arguments that should consist of single tokens \textit{N}, \textit{c}, \textit{V}, or \textit{v} should come first among
these.

- Arguments that appear after the first multi-token argument \textit{n}, \textit{f}, \textit{e}, or \textit{o} require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only \textit{N}, \textit{c}, \textit{V}, and \textit{v}, and, in the last
position, \textit{o}, \textit{f}, \textit{e}, with possible trailing \textit{N} or \textit{n} or \textit{T} or \textit{F}, which are not expanded.
Any \textit{x}-type argument causes slightly slower processing.

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\begin{verbatim}
\exp_args:Nc \exp_args:cc
\end{verbatim}

This function absorbs two arguments (the \textit{function} name and the \textit{tokens}). The
\textit{tokens} are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the \textit{function}.
Thus the \textit{function} may take more than one argument: all others are left unchanged.
The :\textit{cc} variant constructs the \textit{function} name in the same manner as described for
the \textit{tokens}.

\begin{verbatim}
\exp_not:n
\end{verbatim}

\textbf{TL\textit{X} hackers note:} Protected macros that appear in a \textit{c}-type argument are expanded
despite being protected; \texttt{\exp_not:n} also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.
This function absorbs two arguments (the \emph{function} name and the \emph{tokens}). The \emph{tokens} are expanded once, and the result is inserted in braces into the input stream \emph{after} reinsertion of the \emph{function}. Thus the \emph{function} may take more than one argument: all others are left unchanged.

This function absorbs two arguments (the names of the \emph{function} and the \emph{variable}). The content of the \emph{variable} are recovered and placed inside braces into the input stream \emph{after} reinsertion of the \emph{function}. Thus the \emph{function} may take more than one argument: all others are left unchanged.

\TeXhackers note: Protected macros that appear in a \emph{v}-type argument are expanded despite being protected; \texttt{\exp_not:n} also has no effect. An internal error occurs if non-characters or active characters remain after full expansion, as the conversion to a control sequence is not possible.

This function absorbs two arguments (the \emph{function} name and the \emph{tokens}) and exhaustively expands the \emph{tokens}. The result is inserted in braces into the input stream \emph{after} reinsertion of the \emph{function}. Thus the \emph{function} may take more than one argument: all others are left unchanged.

\TeXhackers note: This relies on the \texttt{\expanded} primitive when available (in Lua\TeX{} and starting around 2019 in other engines). Otherwise it uses some fall-back code that is very much slower. As a result it should only be used in performance-critical code if typical users have a recent installation of the \TeX{} ecosystem.

This function absorbs two arguments (the \emph{function} name and the \emph{tokens}). The \emph{tokens} are fully expanded until the first non-expandable token is found (if that is a space it is removed), and the result is inserted in braces into the input stream \emph{after} reinsertion of the \emph{function}. Thus the \emph{function} may take more than one argument: all others are left unchanged.
This function absorbs two arguments (the \textit{function} name and the \textit{tokens}) and exhaustively expands the \textit{tokens}. The result is inserted in braces into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.

5 Manipulating two arguments

These optimized functions absorb three arguments and expand the second and third as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments.

These functions absorb three arguments and expand the second and third as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments. These functions need slower processing.

These functions absorb three arguments and expand the second and third as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments. These functions are not expandable due to their \texttt{x}-type argument.
6 Manipulating three arguments

\exp_args:NNNo \langle token_1 \rangle \langle token_2 \rangle \langle token_3 \rangle \{ \langle tokens \rangle \}

These optimized functions absorb four arguments and expand the second, third and fourth as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second argument, \textit{etc.}

\exp_args:NNcf \star \exp_args:NNno \star \exp_args:NNnV \star \exp_args:NNoo \star \exp_args:NNVV \star \exp_args:Ncno \star \exp_args:NcnV \star \exp_args:Ncco \star \exp_args:NcVV \star \exp_args:Nnnc \star \exp_args:Nnno \star \exp_args:Nnff \star \exp_args:Nnoo \star \exp_args:Nnfo \star \exp_args:Nfso \star \exp_args:Neee \star

\exp_args:NNx \langle token_1 \rangle \langle token_2 \rangle \{ \langle tokens_1 \rangle \} \{ \langle tokens_2 \rangle \}

These functions absorb four arguments and expand the second, third and fourth as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second argument, \textit{etc.}

\exp_args:NNNx \exp_args:NNnx \exp_args:NNox \exp_args:Nccx \exp_args:NcNx \exp_args:Nnmx \exp_args:Nnox \exp_args:Noox

New: 2015-08-12

New: 2015-08-12
7 Unbraced expansion

\exp_last_unbraced:No * \exp_last_unbraced:Nno \langle \text{token} \rangle \{ \langle \text{tokens}_1 \rangle \} \{ \langle \text{tokens}_2 \rangle \}
These functions absorb the number of arguments given by their specification, carry out the expansion indicated and leave the results in the input stream, with the last argument not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants need slower processing.

\TeXhackers note: As an optimization, the last argument is unbraced by some of those functions before expansion. This can cause problems if the argument is empty: for instance, \exp_last_unbraced:Nf \foo_bar:w \{ \} \q_stop leads to an infinite loop, as the quark is f-expanded.

\exp_last_unbraced:Nx \exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo \langle \text{tokens} \rangle
This function fully expands the \langle \text{tokens} \rangle and leaves the result in the input stream after reinsertion of the \langle \text{function} \rangle. This function is not expandable.

\exp_last_unbraced:Nx \langle \text{function} \rangle \{ \langle \text{tokens} \rangle \}
This function absorbs three arguments and expands the second and third once. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments, which are not wrapped in braces. This function needs special (slower) processing.

\exp_after:wN * \exp_after:wN \langle \text{token}_1 \rangle \langle \text{token}_2 \rangle
Carries out a single expansion of \langle \text{token}_2 \rangle (which may consume arguments) prior to the expansion of \langle \text{token}_1 \rangle. If \langle \text{token}_2 \rangle has no expansion (for example, if it is a character) then it is left unchanged. It is important to notice that \langle \text{token}_1 \rangle may be any single token, including group-opening and -closing tokens \{ or \} assuming normal \TeX category codes. Unless specifically required this should be avoided: expansion should be carried out using an appropriate argument specifier variant or the appropriate \exp_after:wN function.

\TeXhackers note: This is the \TeX primitive \expandafter renamed.

8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N \exp_not:N \langle \text{token} \rangle

Prevents expansion of the \langle \text{token} \rangle in a context where it would otherwise be expanded, for example an x-type argument or the first token in an o or e or f argument.

TeXhackers note: This is the \TeX \texttt{noexpand} primitive. It only prevents expansion. At the beginning of an f-type argument, a space \langle \text{token} \rangle is removed even if it appears as \exp_not:N \c_space_token. In an x-expanding definition (\cs_new:Npx), a macro parameter introduces an argument even if it appears as \exp_not:N \# 1. This differs from \exp_not:n.

\exp_not:c \exp_not:c \lbrace \langle \text{tokens} \rangle \rbrace

Expands the \langle \text{tokens} \rangle until only characters remain, and then converts this into a control sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

TeXhackers note: Protected macros that appear in a c-type argument are expanded despite being protected; \exp_not:n also has no effect. An internal error occurs if non-characters or active characters remain after full expansion, as the conversion to a control sequence is not possible.

\exp_not:n \exp_not:n \lbrace \langle \text{tokens} \rangle \rbrace

Prevents expansion of the \langle \text{tokens} \rangle in an e or x-type argument. In all other cases the \langle \text{tokens} \rangle continue to be expanded, for example in the input stream or in other types of arguments such as c, f, v. The argument of \exp_not:n must be surrounded by braces.

TeXhackers note: This is the \texttt{\unexpanded} \texttt{\TeX} primitive. In an x-expanding definition (\cs_new:Npx), \exp_not:n \lbrace \# \rbrace is equivalent to \#\#1 rather than to \#\1, namely it inserts the two characters \# and 1. In an e-type argument \exp_not:n \lbrace \# \rbrace is equivalent to \#, namely it inserts the character \#.

\exp_not:o \exp_not:o \lbrace \langle \text{tokens} \rangle \rbrace

Expands the \langle \text{tokens} \rangle once, then prevents any further expansion in x-type or e-type arguments using \exp_not:n.

\exp_not:V \exp_not:V \langle \text{variable} \rangle

Recover the content of the \langle \text{variable} \rangle, then prevents expansion of this material in x-type or e-type arguments using \exp_not:n.
\exp_not:v \{\textit{tokens}\}
Expands the \textit{tokens} until only characters remains, and then converts this into a control sequence which should be a \textit{variable} name. The content of the \textit{variable} is recovered, and further expansion in \textit{x}-type or \textit{e}-type arguments is prevented using \exp_not:n.

\textbf{\textsc{TeX}hackers note:} Protected macros that appear in a \textit{v}-type argument are expanded despite being protected; \exp_not:n also has no effect. An internal error occurs if non-characters or active characters remain after full expansion, as the conversion to a control sequence is not possible.

\exp_not:e \{\textit{tokens}\}
Expands \textit{tokens} exhaustively, then protects the result of the expansion (including any tokens which were not expanded) from further expansion in \textit{e} or \textit{x}-type arguments using \exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f \{\textit{tokens}\}
Expands \textit{tokens} fully until the first unexpandable token is found (if it is a space it is removed). Expansion then stops, and the result of the expansion (including any tokens which were not expanded) is protected from further expansion in \textit{x}-type or \textit{e}-type arguments using \exp_not:n.

\exp_stop_f: \{\textit{tokens}\} \exp_stop_f: \{more \textit{tokens}\}
This function terminates an \textit{f}-type expansion. Thus if a function \texttt{\textbackslash foo_bar:f} starts an \textit{f}-type expansion and all of \textit{tokens} are expandable \exp_stop_f: terminates the expansion of tokens even if \textit{more \textsc{tokens}} are also expandable. The function itself is an implicit space token. Inside an \textit{x}-type expansion, it retains its form, but when typeset it produces the underlying space (\texttt{\textbackslash uni2423}).

9 Controlled expansion

The \expl language makes all efforts to hide the complexity of \TeX expansion from the programmer by providing concepts that evaluate/expand arguments of functions prior to calling the “base” functions. Thus, instead of using many \texttt{\expandafter} calls and other trickery it is usually a matter of choosing the right variant of a function to achieve a desired result.

Of course, deep down \TeX is using expansion as always and there are cases where a programmer needs to control that expansion directly; typical situations are basic data manipulation tools. This section documents the functions for that level. These commands are used throughout the kernel code, but we hope that outside the kernel there will be little need to resort to them. Instead the argument manipulation methods document above should usually be sufficient.

While \texttt{\exp_after:wN} expands one token (out of order) it is sometimes necessary to expand several tokens in one go. The next set of commands provide this functionality. Be aware that it is absolutely required that the programmer has full control over the tokens to be expanded, i.e., it is not possible to use these functions to expand unknown input as part of \textit{expandable-tokens} as that will break badly if unexpandable tokens are encountered in that place!
\exp:w \\exp_end: \exp_after:wN { \exp:w \exp_end_continue_f:w #2 } \exp_stop_f:

The full expansion of \langle expandable-tokens \rangle has to be empty. If any token in \langle expandable-tokens \rangle or any token generated by expanding the tokens therein is not expandable the expansion will end prematurely and as a result \exp_end: will be misinterpreted later on.\footnote{Due to the implementation you might get the character in position 0 in the current font (typically ’) in the output without any error message!}

In typical use cases the \exp_end: is hidden somewhere in the replacement text of \langle expandable-tokens \rangle rather than being on the same expansion level than \exp:w, e.g., you may see code such as

\exp:w \@@_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

\TeXhackers\ note: The current implementation uses \romannumeral hence ignores space tokens and explicit signs + and - in the expansion of \langle expandable-tokens \rangle, but this should not be relied upon.

\exp:w \exp_end_continue_f:w \exp_after:wN \exp:w \exp_end_continue_f:w \langle further-tokens \rangle

Expands \langle expandable-tokens \rangle until reaching \exp_end_continue_f:w at which point expansion continues as an f-type expansion expanding \langle further-tokens \rangle until an unexpandable token is encountered (or the f-type expansion is explicitly terminated by \exp_stop_f:). As with all f-type expansions a space ending the expansion gets removed.

The full expansion of \langle expandable-tokens \rangle has to be empty. If any token in \langle expandable-tokens \rangle or any token generated by expanding the tokens therein is not expandable the expansion will end prematurely and as a result \exp_end_continue_f:w will be misinterpreted later on.\footnote{In this particular case you may get a character into the output as well as an error message.}

In typical use cases \langle expandable-tokens \rangle contains no tokens at all, e.g., you will see code such as

\exp_after:wN \exp:w \exp_end_continue_f:w #2

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical reasons this has to happen using two tokens (if they would be hidden inside another command \exp_after:wN would only expand the command but not trigger any additional f-expansion).

You might wonder why there are two different approaches available, after all the effect of

\exp:w \exp_end:

can be alternatively achieved through an f-type expansion by using \exp_stop:f:, i.e.

\exp:w \exp_end_continue_f:w \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and less expansion internally) so in places where such performance really matters and where we want to explicitly stop the expansion at a defined point the first form is preferable.
The difference to \texttt{\exp_end_continue_f:w} is that we first we pick up an argument which is then returned to the input stream. If \texttt{(further_tokens)} starts with space tokens then these space tokens are removed while searching for the argument. If it starts with a brace group then the braces are removed. Thus such spaces or braces will not terminate the \texttt{f}-type expansion.

10 Internal functions

\begin{verbatim}
\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: } \cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }
\end{verbatim}

Internal forms for the base expansion types. These names do \textit{not} conform to the general \LaTeX{}3 approach as this makes them more readily visible in the log and so forth. They should not be used outside this module.

\begin{verbatim}
\::o_unbraced \cs_new:Npn \exp_last_unbraced:No { \::n \::o_unbraced \::: }
\end{verbatim}

Internal forms for the expansion types which leave the terminal argument unbraced. These names do \textit{not} conform to the general \LaTeX{}3 approach as this makes them more readily visible in the log and so forth. They should not be used outside this module.
Part VI

The l3tl package

Token lists

\TeX works with tokens, and \LaTeX3 therefore provides a number of functions to deal with lists of tokens. Token lists may be present directly in the argument to a function:

\begin{verbatim}
\foo:n { a collection of \tokens }
\end{verbatim}

or may be stored in a so-called “token list variable”, which have the suffix tl: a token list variable can also be used as the argument to a function, for example

\begin{verbatim}
\foo:N \l_some_tl
\end{verbatim}

In both cases, functions are available to test and manipulate the lists of tokens, and these have the module prefix tl. In many cases, functions which can be applied to token list variables are paired with similar functions for application to explicit lists of tokens: the two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”, or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single non-space token or a brace group, with optional leading explicit space characters (each item is thus itself a token list). A token is either a normal N argument, or {, or } (assuming normal \TeX category codes). Thus for example

\begin{verbatim}
{ Hello } \text{-} \text{world}
\end{verbatim}

contains six items (Hello, w, o, r, l and d), but thirteen tokens (\{, H, e, l, o, \}, \text{-}, w, o, r, l and d). Functions which act on items are often faster than their analogue acting directly on tokens.

1 Creating and initialising token list variables

\begin{verbatim}
\tl_new:N \tl_new:c
\tl_const:Nn \tl_const:c
\tl_clear:N \tl_clear:c
\tl_gclear:N \tl_gclear:c
\end{verbatim}

\textbf{\tl_new:N (tl var)}

\textbf{\tl_new:c (tl var)}

Creates a new (tl var) or raises an error if the name is already taken. The declaration is global. The (tl var) is initially empty.

\textbf{\tl_const:Nn (tl var) \{\langle \text{token list} \rangle\}}

\textbf{\tl_const:c (tl var) \{\langle \text{token list} \rangle\}}

Creates a new constant (tl var) or raises an error if the name is already taken. The value of the (tl var) is set globally to the (token list).

\textbf{\tl_clear:N (tl var)}

\textbf{\tl_clear:c (tl var)}

\textbf{\tl_gclear:N (tl var)}

\textbf{\tl_gclear:c (tl var)}

Clears all entries from the (tl var).
\tl_clear_new:N \tl_new:N \tl_gclear_new:N
Ensures that the \langle tl var \rangle exists globally by applying \tl_new:N if necessary, then applies \tl_gclear:N to leave the \langle tl var \rangle empty.

\tl_concat:NNN \tl_concat:ccc \tl_gconcat:NNN \tl_gconcat:ccc
Concatenates the content of \langle tl var_2 \rangle and \langle tl var_3 \rangle together and saves the result in \langle tl var_1 \rangle. The \langle tl var_2 \rangle is placed at the left side of the new token list.

\tl_set_eq:NN \tl_set_eq:(cN|Nc|cc) \tl_gset_eq:NN \tl_gset_eq:(cN|Nc|cc)
Sets the content of \langle tl var_1 \rangle equal to that of \langle tl var_2 \rangle.

\tl_if_exist_p:N * \tl_if_exist_p:cc * \tl_if_exist:N * \tl_if_exist:cc *
Tests whether the \langle tl var \rangle is currently defined. This does not check that the \langle tl var \rangle really is a token list variable.

2 Adding data to token list variables

\tl_set:Nn \tl_set:(NV|V|N|Nf|N|N|X|cn|cV|cv|co|cf|cx) \tl_gset:Nn \tl_gset:(NV|V|N|Nf|N|N|X|cn|cV|cv|co|cf|cx)
Sets \langle tl var \rangle to contain \langle tokens \rangle, removing any previous content from the variable.

\tl_put_left:Nn \tl_put_left:(NV|V|N|Nf|N|N|X|cn|cV|cv|co|cf|cx) \tl_gput_left:Nn \tl_gput_left:(NV|V|N|Nf|N|N|X|cn|cV|cv|co|cf|cx)
Appends \langle tokens \rangle to the left side of the current content of \langle tl var \rangle.

\tl_put_right:Nn \tl_put_right:(NV|V|N|Nf|N|N|X|cn|cV|cv|co|cf|cx) \tl_gput_right:Nn \tl_gput_right:(NV|V|N|Nf|N|N|X|cn|cV|cv|co|cf|cx)
Appends \langle tokens \rangle to the right side of the current content of \langle tl var \rangle.
3 Modifying token list variables

\tl_replace_once:Nnn \tl_greplace_once:Nnn
\tl_replace_once:cnn \tl_greplace_once:cnn

\tl_replace_once:Nnn \tl_greplace_once:Nnn
\tl_replace_once:cnn \tl_greplace_once:cnn

\tl_replace_all:Nnn \tl_greplace_all:Nnn
\tl_replace_all:cnn \tl_greplace_all:cnn

\tl_remove_once:Nn \tl_gremove_once:Nn
\tl_remove_once:cn \tl_gremove_once:cn

\tl_remove_all:Nn \tl_gremove_all:Nn
\tl_remove_all:cn \tl_gremove_all:cn

\tl_set:Nn \l_tmpa_tl \tl_remove_all:Nn \l_tmpa_tl \tl_remove_all:Nn \l_tmpa_tl \tl_remove_all:Nn

\tl_replace_once:Nnn \langle \text{tl var} \rangle \{\langle \text{old tokens} \rangle \} \{\langle \text{new tokens} \rangle \}

Replaces the first (leftmost) occurrence of \langle \text{old tokens} \rangle in the \langle \text{tl var} \rangle with \langle \text{new tokens} \rangle.

\langle \text{Old tokens} \rangle cannot contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn \langle \text{tl var} \rangle \{\langle \text{old tokens} \rangle \} \{\langle \text{new tokens} \rangle \}

Replaces all occurrences of \langle \text{old tokens} \rangle in the \langle \text{tl var} \rangle with \langle \text{new tokens} \rangle.

\langle \text{Old tokens} \rangle cannot contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function operates from left to right, the pattern \langle \text{old tokens} \rangle may remain after the replacement (see \tl_remove_all:Nn for an example).

\tl_remove_once:Nn \langle \text{tl var} \rangle \{\langle \text{tokens} \rangle \}

Removes the first (leftmost) occurrence of \langle \text{tokens} \rangle from the \langle \text{tl var} \rangle.

\langle \text{Tokens} \rangle cannot contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn \langle \text{tl var} \rangle \{\langle \text{tokens} \rangle \}

Removes all occurrences of \langle \text{tokens} \rangle from the \langle \text{tl var} \rangle.

\langle \text{Tokens} \rangle cannot contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function operates from left to right, the pattern \langle \text{tokens} \rangle may remain after the removal, for instance,

\tl_set:Nn \l_tmpa_tl \l_tmpa_tl \tl_remove_all:Nn \l_tmpa_tl \tl_remove_all:Nn \l_tmpa_tl \tl_remove_all:Nn

results in \l_tmpa_tl containing abcd.

4 Reassigning token list category codes

These functions allow the rescanning of tokens: re-apply \TeX{}'s tokenization process to apply category codes different from those in force when the tokens were absorbed. Whilst this functionality is supported, it is often preferable to find alternative approaches to achieving outcomes rather than rescanning tokens (for example construction of token lists token-by-token with intervening category code changes or using \char_generate:nn).
\texttt{\textbackslash tl_set_rescan:NNn}
\texttt{\textbackslash tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)}
\texttt{\textbackslash tl_gset_rescan:Nnn}
\texttt{\textbackslash tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)}

Sets \texttt{\langle tl\ var\ \rangle} to contain \texttt{\langle tokens\ \rangle}, applying the category code régime specified in the \texttt{\langle setup\ \rangle} before carrying out the assignment. (Category codes applied to tokens not explicitly covered by the \texttt{\langle setup\ \rangle} are those in force at the point of use of \texttt{\tl_set_rescan:NNn}.) This allows the \texttt{\langle tl\ var\ \rangle} to contain material with category codes other than those that apply when \texttt{\langle tokens\ \rangle} are absorbed. The \texttt{\langle setup\ \rangle} is run within a group and may contain any valid input, although only changes in category codes are relevant. See also \texttt{\tl_rescan:nn}.

\textbf{\TeX\ Hackers note:} The \texttt{\langle tokens\ \rangle} are first turned into a string (using \texttt{\tl_to_str:n}). If the string contains one or more characters with character code \texttt{\newlinechar} (set equal to \texttt{\endlinechar} unless that is equal to 32, before the user \texttt{\langle setup\ \rangle}), then it is split into lines at these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise, spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the middle of a line read from a file.

\texttt{\textbackslash tl_rescan:nn}
\texttt{\textbackslash tl_rescan:nn \{\langle setup\ \rangle\} \{\langle tokens\ \rangle\}}

Rescans \texttt{\langle tokens\ \rangle} applying the category code régime specified in the \texttt{\langle setup\ \rangle}, and leaves the resulting tokens in the input stream. (Category codes applied to tokens not explicitly covered by the \texttt{\langle setup\ \rangle} are those in force at the point of use of \texttt{\tl_rescan:nn}.) The \texttt{\langle setup\ \rangle} is run within a group and may contain any valid input, although only changes in category codes are relevant. See also \texttt{\tl_set_rescan:NNn}, which is more robust than using \texttt{\tl_set:NN} in the \texttt{\langle tokens\ \rangle} argument of \texttt{\tl_rescan:nn}.

\textbf{\TeX\ Hackers note:} The \texttt{\langle tokens\ \rangle} are first turned into a string (using \texttt{\tl_to_str:n}). If the string contains one or more characters with character code \texttt{\newlinechar} (set equal to \texttt{\endlinechar} unless that is equal to 32, before the user \texttt{\langle setup\ \rangle}), then it is split into lines at these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise, spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the middle of a line read from a file.

\texttt{\textbackslash tl_if_blank:p:n}
\texttt{\textbackslash tl_if_blank:p:\{e\}|\{o\} \textbackslash tl_if_blank:nTF \textbackslash tl_if_blank:\{e\}|\{o\}nTF}

Tests if the \texttt{\langle token\ list\ \rangle} consists only of blank spaces (\textit{i.e.} contains no item). The test is \texttt{true} if \texttt{\langle token\ list\ \rangle} is zero or more explicit space characters (explicit tokens with character code 32 and category code 10), and is \texttt{false} otherwise.

\textbf{5 Token list conditionals}
\texttt{tl_if_empty_p:N} * \texttt{tl_if_empty:p} \{\texttt{tl var}\} \texttt{tl_if_empty:NTF} \{\texttt{tl var}\} \{\texttt{true code}\} \{\texttt{false code}\}

Tests if the \langle token list variable \rangle is entirely empty (i.e. contains no tokens at all).

\texttt{tl_if_empty_p:n} * \texttt{tl_if_empty:nTF} \{\texttt{token list}\} \texttt{tl_if_empty:n} \{\texttt{token list}\} \{\texttt{true code}\} \{\texttt{false code}\}

Tests if the \langle token list \rangle is entirely empty (i.e. contains no tokens at all).

\texttt{tl_if_eq_p:NN} * \texttt{tl_if_eq:NN} \{\texttt{tl var}\} \{\texttt{tl var}\} \{\texttt{true code}\} \{\texttt{false code}\}

Compares the content of two \langle token list variables \rangle and is logically \texttt{true} if the two contain the same list of tokens (i.e. identical in both the list of characters they contain and the category codes of those characters). Thus for example

\texttt{tl_set:Nn} \l_tmpa_tl { abc } \texttt{tl_set:Nx} \l_tmpb_tl { \texttt{tl_to_str:n} { abc } } \texttt{tl_if_eq:NNTF} \l_tmpa_tl \l_tmpb_tl \{ true \} \{ false \}

yields \texttt{false}.

\texttt{tl_if_eq:nnTF} \{\texttt{token list1}\} \{\texttt{token list2}\} \{\texttt{true code}\} \{\texttt{false code}\}

Tests if \langle token list1 \rangle and \langle token list2 \rangle contain the same list of tokens, both in respect of character codes and category codes.

\texttt{tl_if_in:NnTF} \{\texttt{token list}\} \langle \texttt{tl var} \rangle \{\texttt{true code}\} \{\texttt{false code}\}

Tests if the \langle token list \rangle is found in the content of the \langle tl var \rangle. The \langle token list \rangle cannot contain the tokens \{, \} or \# (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\texttt{tl_if_in:nnTF} \{\texttt{token list1}\} \{\texttt{token list2}\} \{\texttt{true code}\} \{\texttt{false code}\}

Tests if \langle token list2 \rangle is found inside \langle token list1 \rangle. The \langle token list2 \rangle cannot contain the tokens \{, \} or \# (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\texttt{tl_if_novalue_p:n} * \texttt{tl_if_novalue:nTF} \{\texttt{token list}\}

Tests if the \langle token list \rangle is exactly equal to the special \texttt{c_novalue_tl} marker. This function is intended to allow construction of flexible document interface structures in which missing optional arguments are detected.

\texttt{New: 2017-11-14}\texttt{Updated: 2012-06-05}
Tests if the content of the \(tl \) var consists of a single item, i.e. is a single normal token (neither an explicit space character nor a begin-group character) or a single brace group, surrounded by optional spaces on both sides. In other words, such a token list has token count 1 according to \(\text{tl_count:N} \).

Tests if the \(\langle \text{token list} \rangle \) has exactly one item, i.e. is a single normal token (neither an explicit space character nor a begin-group character) or a single brace group, surrounded by optional spaces on both sides. In other words, such a token list has token count 1 according to \(\text{tl_count:n} \).

Tests if the token list consists of exactly one token, i.e. is either a single space character or a single “normal” token. Token groups (\{...\}) are not single tokens.

This function compares the \(\langle \text{test token list variable} \rangle \) in turn with each of the \(\langle \text{token list variable cases} \rangle \). If the two are equal (as described for \(\text{tl_if_eq:NNTF} \)) then the associated \(\langle \text{code} \rangle \) is left in the input stream and other cases are discarded. If any of the cases are matched, the \(\langle \text{true code} \rangle \) is also inserted into the input stream (after the code for the appropriate case), while if none match then the \(\langle \text{false code} \rangle \) is inserted. The function \(\text{tl_case:Nn} \), which does nothing if there is no match, is also available.

6 Mapping to token lists

All mappings are done at the current group level, i.e. any local assignments made by the \(\langle \text{function} \rangle \) or \(\langle \text{code} \rangle \) discussed below remain in effect after the loop.

Applies \(\langle \text{function} \rangle \) to every \(\langle \text{item} \rangle \) in the \(\langle \text{tl var} \rangle \). The \(\langle \text{function} \rangle \) receives one argument for each iteration. This may be a number of tokens if the \(\langle \text{item} \rangle \) was stored within braces. Hence the \(\langle \text{function} \rangle \) should anticipate receiving n-type arguments. See also \(\text{tl_map_function:n} \).
\tl_map_function:NN \{ \langle \text{token list} \rangle \} \{ \text{function} \}

Applies \textit{\langle \text{function} \rangle} to every \textit{\langle \text{item} \rangle} in the \textit{\langle \text{token list} \rangle}. The \textit{\langle \text{function} \rangle} receives one argument for each iteration. This may be a number of tokens if the \textit{\langle \text{item} \rangle} was stored within braces. Hence the \textit{\langle \text{function} \rangle} should anticipate receiving \texttt{n}-type arguments. See also \tl_map_function:NN.

\tl_map_inline:Nn \tl_map_inline:cn

\{ \langle \text{inline function} \rangle \}

Applies the \textit{\langle \text{inline function} \rangle} to every \textit{\langle \text{item} \rangle} stored within the \textit{\langle \text{tl var} \rangle}. The \textit{\langle \text{inline function} \rangle} should consist of code which receives the \textit{\langle \text{item} \rangle} as \#1. See also \tl_map_function:NN.

\tl_map_tokens:Nn \tl_map_tokens:cn \tl_map_tokens:nn

\{ \langle \text{token list} \rangle \} \{ \langle \text{inline function} \rangle \}

Analogue of \tl_map_function:NN which maps several tokens instead of a single function. The \textit{\langle \text{code} \rangle} receives each item in the \langle \text{tl var} \rangle \langle \text{tokens} \rangle as two trailing brace groups. For instance,
\begin{verbatim}
\tl_map_tokens:Nn \l_my_tl \{ \prg_replicate:nn \{ 2 \} \}
\end{verbatim}

expands to twice each item in the \langle \text{sequence} \rangle: for each item in \l_my_tl the function \prg_replicate:nn receives 2 and \langle \text{item} \rangle as its two arguments. The function \tl_map_inline:Nn is typically faster but is not expandable.

\tl_map_variable:NNn \tl_map_variable:cn \tl_map_variable:nn

\{ \langle \text{tl var} \rangle \langle \text{variable} \rangle \} \{ \langle \text{code} \rangle \}

Stores each \langle \text{item} \rangle of the \langle \text{tl var} \rangle in turn in the \langle \text{token list} \rangle \langle \text{variable} \rangle and applies the \langle \text{code} \rangle. The \textit{\langle \text{code} \rangle} will usually make use of the \langle \text{variable} \rangle, but this is not enforced. The assignments to the \langle \text{variable} \rangle are local. Its value after the loop is the last \langle \text{item} \rangle in the \langle \text{tl var} \rangle, or its original value if the \langle \text{tl var} \rangle is blank. See also \tl_map_inline:Nn.

\tl_map_variable:nn

\{ \langle \text{token list} \rangle \} \{ \langle \text{variable} \rangle \} \{ \langle \text{code} \rangle \}

Stores each \langle \text{item} \rangle of the \langle \text{token list} \rangle in turn in the \langle \text{token list} \rangle \langle \text{variable} \rangle and applies the \langle \text{code} \rangle. The \textit{\langle \text{code} \rangle} will usually make use of the \langle \text{variable} \rangle, but this is not enforced. The assignments to the \langle \text{variable} \rangle are local. Its value after the loop is the last \langle \text{item} \rangle in the \langle \text{tl var} \rangle, or its original value if the \langle \text{tl var} \rangle is blank. See also \tl_map_inline:nn.
\tl_map_break:

Used to terminate a \tl_map_{...} function before all entries in the \langle token list variable \rangle have been processed. This normally takes place within a conditional statement, for example

\begin{verbatim}
\tl_map_inline:Nn \l_my_tl
{ \str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
 % Do something useful
}
\end{verbatim}

See also \tl_map_break:n. Use outside of a \tl_map_{...} scenario leads to low level \TeX{} errors.

\TeX{}hackers note: When the mapping is broken, additional tokens may be inserted before the \langle tokens \rangle are inserted into the input stream. This depends on the design of the mapping function.

\tl_map_break:n

Used to terminate a \tl_map_{...} function before all entries in the \langle token list variable \rangle have been processed, inserting the \langle code \rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\begin{verbatim}
\tl_map_inline:Nn \l_my_tl
{ \str_if_eq:nnT { #1 } { bingo }
 { \tl_map_break:n { <code> } }
 % Do something useful
}
\end{verbatim}

Use outside of a \tl_map_{...} scenario leads to low level \TeX{} errors.

\TeX{}hackers note: When the mapping is broken, additional tokens may be inserted before the \langle code \rangle is inserted into the input stream. This depends on the design of the mapping function.
7 Using token lists

\texttt{\tl_to_str:n} \star \texttt{\tl_to_str:n \{token list\}}
\begin{itemize}
\item \texttt{\tl_to_str:n} \star \texttt{\tl_to_str:V} \star \texttt{\tl_to_str:N}
\end{itemize}

Converts the \texttt{(token list)} to a \texttt{(string)}, leaving the resulting character tokens in the input stream. A \texttt{(string)} is a series of tokens with category code 12 (other) with the exception of spaces, which retain category code 10 (space). This function requires only a single expansion. Its argument \textbf{must} be braced.

\textbf{\TeX hackers note:} This is the ε-\TeX primitive \texttt{\detokenize}. Converting a \texttt{(token list)} to a \texttt{(string)} yields a concatenation of the string representations of every token in the \texttt{(token list)}. The string representation of a control sequence is
\begin{itemize}
\item an escape character, whose character code is given by the internal parameter \texttt{\escapechar}, absent if the \texttt{\escapechar} is negative or greater than the largest character code;
\item the control sequence name, as defined by \texttt{\cs_to_str:N};
\item a space, unless the control sequence name is a single character whose category at the time of expansion of \texttt{\tl_to_str:n} is not “letter”.
\end{itemize}
The string representation of an explicit character token is that character, doubled in the case of (explicit) macro parameter characters (normally \#). In particular, the string representation of a token list may depend on the category codes in effect when it is evaluated, and the value of the \texttt{\escapechar}: for instance \texttt{\tl_to_str:n \{a\}} normally produces the three character “backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the escape character is negative and a is currently not a letter.

\texttt{\tl_to_str:N} \star \texttt{\tl_to_str:V} \star \texttt{\tl_to_str:N} \tl var
\begin{itemize}
\item \texttt{\tl_to_str:N} \star \texttt{\tl_to_str:c} \star \texttt{\tl_use:N} \tl var
\end{itemize}

Converts the content of the \texttt{(tl var)} into a series of characters with category code 12 (other) with the exception of spaces, which retain category code 10 (space). This \texttt{(string)} is then left in the input stream. For low-level details, see the notes given for \texttt{\tl_to_str:n}.

\texttt{\tl_use:N} \star \texttt{\tl_use:c} \star \texttt{\tl_use:N} \tl var

Recover the content of a \texttt{(tl var)} and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Note that it is possible to use a \texttt{(tl var)} directly without an accessor function.

8 Working with the content of token lists

\texttt{\tl_count:n} \star \texttt{\tl_count:n \{tokens\}}
\begin{itemize}
\item \texttt{\tl_count:n} \star \texttt{\tl_count:V} \star \texttt{\tl_count:o} \star \texttt{\tl_count:N}
\end{itemize}

Counts the number of \texttt{(items)} in \texttt{(tokens)} and leaves this information in the input stream. Unbraced tokens count as one element as do each token group \{\ldots\}. This process ignores any unprotected spaces within \texttt{(tokens)}. See also \texttt{\tl_count:N}. This function requires three expansions, giving an \texttt{(integer denotation)}.
\texttt{tl_count} \texttt{N} \texttt{(tl var)}

Counts the number of token groups in the \texttt{(tl var)} and leaves this information in the input stream. Unbraced tokens count as one element as do each token group \{\ldots\}. This process ignores any unprotected spaces within the \texttt{(tl var)}. See also \texttt{tl_count:n}. This function requires three expansions, giving an \texttt{(integer denotation)}.

\texttt{tl_count_tokens} \texttt{N} \texttt{(token list)}

Counts the number of \TeX{} tokens in the \texttt{(token list)} and leaves this information in the input stream. Every token, including spaces and braces, contributes one to the total; thus for instance, the token count of \texttt{a~{bc}} is 6.

\texttt{tl_reverse_n} \texttt{(token list)}

Reverses the order of the \texttt{(items)} in the \texttt{(token list)}, so that \texttt{\{item\}_1\{item\}_2\{item\}_3 \ldots \{item\}_n} becomes \texttt{\{item\}_n\ldots\{item\}_3\{item\}_2\{item\}_1}. This process preserves unprotected space within the \texttt{(token list)}. Tokens are not reversed within braced token groups, which keep their outer set of braces. In situations where performance is important, consider \texttt{tl_reverse_items:n}. See also \texttt{tl_reverse:O}.

\texttt{\texttt{TeX}hackers note:} The result is returned within \texttt{\unexpanded}, which means that the token list does not expand further when appearing in an \texttt{x}-type argument expansion.

\texttt{tl_reverse_items_n} \texttt{(token list)}

Reverses the order of the \texttt{(items)} stored in \texttt{(tl var)}, so that \texttt{\{item\}_1\{item\}_2\{item\}_3 \ldots \{item\}_n} becomes \texttt{\{item\}_n\ldots\{item\}_3\{item\}_2\{item\}_1}. This process preserves unprotected spaces within the \texttt{(token list variable)}. Braced token groups are copied without reversing the order of tokens, but keep the outer set of braces. See also \texttt{tl_reverse_n}, and, for improved performance, \texttt{tl_reverse_items:n}. \texttt{\texttt{TeX}hackers note:} The result is returned within \texttt{\unexpanded}, which means that the token list does not expand further when appearing in an \texttt{x}-type argument expansion.

\texttt{tl_trim_spaces_n} \texttt{(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character code 32 and category code 10) from the \texttt{(token list)} and leaves the result in the input stream.

\texttt{\texttt{TeX}hackers note:} The result is returned within \texttt{\unexpanded}, which means that the token list does not expand further when appearing in an \texttt{x}-type argument expansion.
\tl_trim_spaces_apply:nN \tl_trim_spaces_apply:oN \n
Removes any leading and trailing explicit space characters (explicit tokens with character code 32 and category code 10) from the \langle token list \rangle and passes the result to the \langle function \rangle as an n-type argument.

\tl_trim_spaces:N \tl_trim_spaces:c \tl_gtrim_spaces:N \tl_gtrim_spaces:c

New: 2011-07-09

Removes any leading and trailing explicit space characters (explicit tokens with character code 32 and category code 10) from the content of the \langle tl var \rangle. Note that this therefore resets the content of the variable.

\tl_sort:Nn \tl_sort:cn \tl_gsort:Nn \tl_gsort:cn

New: 2017-02-06

Sorts the items in the \langle tl var \rangle according to the \langle comparison code \rangle, and assigns the result to \langle tl var \rangle. The details of sorting comparison are described in Section 1.

\tl_sort:nN \tl_sort:cn \tl_gsort:nN \tl_gsort:cn

New: 2017-02-06

Sorts the items in the \langle token list \rangle, using the \langle conditional \rangle to compare items, and leaves the result in the input stream. The \langle conditional \rangle should have signature :nnTF, and return true if the two items being compared should be left in the same order, and false if the items should be swapped. The details of sorting comparison are described in Section 1.

\textbf{\TeXhackers note:} The result is returned within \exp_not:n, which means that the token list does not expand further when appearing in an x-type or e-type argument expansion.

9 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal token) in a token list, or the remaining tokens.
Leaves in the input stream the first ⟨item⟩ in the ⟨token list⟩, discarding the rest of the ⟨token list⟩. All leading explicit space characters (explicit tokens with character code 32 and category code 10) are discarded; for example

\tl_head:n { abc }

and

\tl_head:n { - abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single token, the braces are removed, and so

\tl_head:n { - { - ab } c }

yields ab. A blank ⟨token list⟩ (see \tl_if_blank:nTF) results in \tl_head:n leaving nothing in the input stream.

TeXhackers note: The result is returned within \exp_not:n, which means that the token list does not expand further when appearing in an x-type argument expansion.

Discards all leading explicit space characters (explicit tokens with character code 32 and category code 10) and the first ⟨item⟩ in the ⟨token list⟩, and leaves the remaining tokens in the input stream. Thus for example

\tl_tail:n { a - {bc} d }

and

\tl_tail:n { - a - {bc} d }

both leave ⟨bc⟩d in the input stream. A blank ⟨token list⟩ (see \tl_if_blank:nTF) results in \tl_tail:n leaving nothing in the input stream.

TeXhackers note: The result is returned within \exp_not:n, which means that the token list does not expand further when appearing in an x-type argument expansion.
<table>
<thead>
<tr>
<th>Token Comparison Function</th>
<th>Code for Empty Token List</th>
<th>Code for Non-Empty Token List</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tl_if_head_eq_catcode_p:nN</td>
<td>\tl_if_head_eq_catcode_p:nN {\text{token list}} {\text{test token}} \langle \text{token list} \rangle \langle \text{test token} \rangle {\text{true code}} {\text{false code}}</td>
<td>\tl_if_head_eq_catcode<nTTF> {\text{token list}} {\text{test token}} \langle \text{token list} \rangle \langle \text{test token} \rangle {\text{true code}} {\text{false code}}</td>
</tr>
<tr>
<td>\tl_if_head_eq_charcode_p:nN</td>
<td>\tl_if_head_eq_charcode_p:nN {\text{token list}} {\text{test token}} \langle \text{token list} \rangle \langle \text{test token} \rangle {\text{true code}} {\text{false code}}</td>
<td>\tl_if_head_eq_charcode<nTTF> {\text{token list}} {\text{test token}} \langle \text{token list} \rangle \langle \text{test token} \rangle {\text{true code}} {\text{false code}}</td>
</tr>
<tr>
<td>\tl_if_head_eq_meaning_p:nN</td>
<td>\tl_if_head_eq_meaning_p:nN {\text{token list}} {\text{test token}} \langle \text{token list} \rangle \langle \text{test token} \rangle {\text{true code}} {\text{false code}}</td>
<td>\tl_if_head_eq_meaning<nNTF> {\text{token list}} {\text{test token}} \langle \text{token list} \rangle \langle \text{test token} \rangle {\text{true code}} {\text{false code}}</td>
</tr>
<tr>
<td>\tl_if_head_is_group_p:n</td>
<td>\tl_if_head_is_group_p:n {\text{token list}} {\text{true code}} {\text{false code}}</td>
<td>\tl_if_head_is_group<nNTF> {\text{token list}} {\text{true code}} {\text{false code}}</td>
</tr>
<tr>
<td>\tl_if_head_is_N_type_p:n</td>
<td>\tl_if_head_is_N_type_p:n {\text{token list}} {\text{true code}} {\text{false code}}</td>
<td>\tl_if_head_is_N_type<nNTF> {\text{token list}} {\text{true code}} {\text{false code}}</td>
</tr>
<tr>
<td>\tl_if_head_is_space_p:n</td>
<td>\tl_if_head_is_space_p:n {\text{token list}} {\text{true code}} {\text{false code}}</td>
<td>\tl_if_head_is_space<nNTF> {\text{token list}} {\text{true code}} {\text{false code}}</td>
</tr>
</tbody>
</table>

Tests if the first \textit{token} in the \textit{token list} has the same category code as the \textit{test token}. In the case where the \textit{token list} is empty, the test is always \textit{false}.

Tests if the first \textit{token} in the \textit{token list} has the same character code as the \textit{test token}. In the case where the \textit{token list} is empty, the test is always \textit{false}.

Tests if the first \textit{token} in the \textit{token list} has the same meaning as the \textit{test token}. In the case where \textit{token list} is empty, the test is always \textit{false}.

Tests if the first \textit{token} in the \textit{token list} is an explicit begin-group character (with category code 1 and any character code), in other words, if the \textit{token list} starts with a brace group. In particular, the test is \textit{false} if the \textit{token list} starts with an implicit token such as \texttt{v_c_group_begin_token}, or if it is empty. This function is useful to implement actions on token lists on a token by token basis.

Tests if the first \textit{token} in the \textit{token list} is a normal N-type argument. In other words, it is neither an explicit space character (explicit token with character code 32 and category code 10) nor an explicit begin-group character (with category code 1 and any character code). An empty argument yields \textit{false}, as it does not have a “normal” first token. This function is useful to implement actions on token lists on a token by token basis.

Tests if the first \textit{token} in the \textit{token list} is an explicit space character (explicit token with character code 12 and category code 10). In particular, the test is \textit{false} if the \textit{token list} starts with an implicit token such as \texttt{v_c_space_token}, or if it is empty. This function is useful to implement actions on token lists on a token by token basis.
10 Using a single item

\texttt{\textbackslash tl_item:nn}⋆\texttt{\textbackslash tl_item:Nn}⋆\texttt{\textbackslash tl_item:cn}⋆\texttt{New: 2014-07-17}

\texttt{\textbackslash tl_item:nn \{}\texttt{\token\ list}\} \{\texttt{\integer\ expression}\}\}

Indexing items in the \texttt{\token\ list} from 1 on the left, this function evaluates the \texttt{\integer\ expression} and leaves the appropriate item from the \texttt{\token\ list} in the input stream. If the \texttt{\integer\ expression} is negative, indexing occurs from the right of the token list, starting at −1 for the right-most item. If the index is out of bounds, then the function expands to nothing.

\textbf{\TeXhackers note}: The result is returned within the \texttt{\unexpanded primitive (\textbackslash exp_not:n)}, which means that the \texttt{\item} does not expand further when appearing in an x-type argument expansion.

\texttt{\textbackslash tl_rand_item:N} ⋆ \texttt{\textbackslash tl_rand_item:c} ⋆ \texttt{\textbackslash tl_rand_item:n} ⋆ \texttt{New: 2016-12-06}

\texttt{\textbackslash tl_rand_item:N \{\texttt{tl\ var}\}}
\texttt{\textbackslash tl_rand_item:n \{\texttt{\token\ list\}\}}

Selects a pseudo-random item of the \texttt{\token\ list}. If the \texttt{\token\ list} is blank, the result is empty. This is not available in older versions of \TeX.

\textbf{\TeXhackers note}: The result is returned within the \texttt{\unexpanded primitive (\textbackslash exp_not:n)}, which means that the \texttt{\item} does not expand further when appearing in an x-type argument expansion.
Leaves in the input stream the items from the \langle start index \rangle to the \langle end index \rangle inclusive. Spaces and braces are preserved between the items returned (but never at either end of the list). Here \langle start index \rangle and \langle end index \rangle should be \langle integer expressions \rangle. For describing in detail the functions’ behavior, let \(m \) and \(n \) be the start and end index respectively. If either is 0, the result is empty. A positive index means ‘start counting from the left end’, and a negative index means ‘from the right end’. Let \(l \) be the count of the token list.

The actual start point is determined as \(M = m \) if \(m > 0 \) and as \(M = l + m + 1 \) if \(m < 0 \). Similarly the actual end point is \(N = n \) if \(n > 0 \) and \(N = l + n + 1 \) if \(n < 0 \). If \(M > N \), the result is empty. Otherwise it consists of all items from position \(M \) to position \(N \) inclusive; for the purpose of this rule, we can imagine that the token list extends at infinity on either side, with void items at positions \(s \) for \(s \leq 0 \) or \(s > l \).

Spaces in between items in the actual range are preserved. Spaces at either end of the token list will be removed anyway (think to the token list being passed to \texttt{\tl_trim_spaces:n} to begin with.

Thus, with \(l = 7 \) as in the examples below, all of the following are equivalent and result in the whole token list

\begin{verbatim}
\tl_range:nnn { abcd-{e{}}fg } { 1 } { 7 }
\tl_range:nnn { abcd-{e{}}fg } { 1 } { 12 }
\tl_range:nnn { abcd-{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd-{e{}}fg } { -12 } { 7 }
\end{verbatim}

Here are some more interesting examples. The calls

\begin{verbatim}
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { 2 } { 5 } }
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { 2 } { -3 } }
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { -6 } { 5 } }
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { -6 } { -3 } }
\end{verbatim}

are all equivalent and will print \texttt{bcd{e{}}} on the terminal; similarly

\begin{verbatim}
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { 2 } { 5 } }
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { 2 } { -3 } }
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { -6 } { 5 } }
\io_term:x { \tl_range:nnn { abcd-{e{}}fg } { -6 } { -3 } }
\end{verbatim}

are all equivalent and will print \texttt{bcd \{e{}}} on the terminal (note the space in the middle). To the contrary,

\begin{verbatim}
\tl_range:nnn { abcd-{e{}}f } { 2 } { 4 }
\end{verbatim}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list \texttt{<tl>}, the call is \texttt{\tl_range:nnn { <tl> } { 3 } { -1 }}. Similarly, for discarding the last item, we can do \texttt{\tl_range:nnn { <tl> } { 1 } { -2 } }.

For better performance, see \texttt{\tl_range_braced:nnn} and \texttt{\tl_range_unbraced:nnn}.

\textit{\TeX hackers note}: The result is returned within the \texttt{\unexpanded} primitive (\texttt{\exp_not:n}), which means that the \langle item \rangle does not expand further when appearing in an x-type argument expansion.
11 Viewing token lists

\texttt{\tl_show:N} \langle \texttt{tl var} \rangle

Displays the content of the \langle \texttt{tl var} \rangle on the terminal.

\textbf{TeXhackers note:} This is similar to the \TeX\ primitive \texttt{\show}, wrapped to a fixed number of characters per line.

\texttt{\tl_show:c}

Updated: 2015-08-01

\texttt{\tl_show:n \{\langle\texttt{token list}\rangle\}}

Displays the \langle \texttt{token list} \rangle on the terminal.

\textbf{TeXhackers note:} This is similar to the \\texttt{\epsilon-\TeX} primitive \texttt{\showtokens}, wrapped to a fixed number of characters per line.

\texttt{\tl_log:N} \langle \texttt{tl var} \rangle

\texttt{\tl_log:c}

New: 2014-08-22

Updated: 2015-08-01

\texttt{\tl_log:n \{\langle\texttt{token list}\rangle\}}

Writes the \langle \texttt{token list} \rangle in the log file. See also \texttt{\tl_show:N} which displays the result in the terminal.

\texttt{\tl_log:n}

New: 2014-08-22

Updated: 2015-08-07

12 Constant token lists

\texttt{\c_empty_tl}

Constant that is always empty.

\texttt{\c_novalue_tl}

New: 2017-11-14

A marker for the absence of an argument. This constant \texttt{tl} can safely be typeset (\textit{cf.} \texttt{\q-nil}), with the result being \texttt{-NoValue-}. It is important to note that \texttt{\c_novalue_tl} is constructed such that it will \textit{not} match the simple text input \texttt{-NoValue-}, \textit{i.e.} that

\texttt{\tl_if_eq:VnTF \c_novalue_tl \{ -NoValue- \}}

is logically \texttt{false}. The \texttt{\c_novalue_tl} marker is intended for use in creating document-level interfaces, where it serves as an indicator that an (optional) argument was omitted. In particular, it is distinct from a simple empty \texttt{tl}.

\texttt{\c_space_tl}

An explicit space character contained in a token list (compare this with \texttt{\c_space_token}). For use where an explicit space is required.
13 Scratch token lists

\l_tmpa_tl Scratch token lists for local assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
\l_tmpb_tl

\g_tmpa_tl Scratch token lists for global assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
\g_tmpb_tl
Part VII
The \texttt{l3str} package: Strings

\TeX{} associates each character with a category code: as such, there is no concept of a “string” as commonly understood in many other programming languages. However, there are places where we wish to manipulate token lists while in some sense “ignoring” category codes: this is done by treating token lists as strings in a \TeX{} sense.

A \TeX{} string (and thus an \texttt{expl3} string) is a series of characters which have category code 12 (“other”) with the exception of space characters which have category code 10 (“space”). Thus at a technical level, a \TeX{} string is a token list with the appropriate category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named with the suffix \texttt{...str}. Such variables should contain characters with category code 12 (other), except spaces, which have category code 10 (blank space). All the functions in this module which accept a token list argument first convert it to a string using \texttt{\tl_to_str:n} for internal processing, and do not treat a token list or the corresponding string representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when one should be used over the other. Use a string variable for data that isn’t primarily intended for typesetting and for which a level of protection from unwanted expansion is suitable. This data type simplifies comparison of variables since there are no concerns about expansion of their contents.

The functions \texttt{\cs_to_str:N}, \texttt{\tl_to_str:n}, \texttt{\tl_to_str:N} and \texttt{\token_to_str:N} (and variants) generate strings from the appropriate input: these are documented in \texttt{l3basics}, \texttt{l3tl} and \texttt{l3token}, respectively.

Most expandable functions in this module come in three flavours:

\begin{itemize}
 \item \texttt{\str_.:.N}, which expect a token list or string variable as their argument;
 \item \texttt{\str_.:.n}, taking any token list (or string) as an argument;
 \item \texttt{\str_.:.ignore_spaces:n}, which ignores any space encountered during the operation: these functions are typically faster than those which take care of escaping spaces appropriately.
\end{itemize}

1 Building strings

\begin{description}
 \item[\texttt{\str_new:N}]\quad \texttt{\str_new:N \langle str var \rangle}
 \noindent Creates a new \langle str var \rangle or raises an error if the name is already taken. The declaration is global. The \langle str var \rangle is initially empty.

 \item[\texttt{\str_const:Nn}]\quad \texttt{\str_const:Nn \langle str var \rangle \{ \langle token list \rangle \}}
 \noindent Creates a new constant \langle str var \rangle or raises an error if the name is already taken. The value of the \langle str var \rangle is set globally to the \langle token list \rangle, converted to a string.
\end{description}
\str_clear:N \str_clear:c \str_gclear:N \str_gclear:c
\new:2015-09-18

\str_clear_new:N \str_clear_new:c
\new:2015-09-18

\str_set_eq:NN \str_set_eq: (cN|Nc|cn|cV|cx) \str_gset_eq:NN \str_gset_eq: (cN|Nc|cn|cV|cx)
\new:2015-09-18 Updated:2018-07-28

\str_concat:NNN \str_concat:ccc \str_gconcat:NNN \str_gconcat:ccc
\new:2017-10-08

2 Adding data to string variables

\str_set:Nn \str_set: (NV|Nx|cn|cV|cx) \str_gset:Nn \str_gset: (NV|Nx|cn|cV|cx)
\new:2015-09-18 Updated:2018-07-28

\str_put_left:Nn \str_put_left: (NV|Nx|cn|cV|cx) \str_gput_left:Nn \str_gput_left: (NV|Nx|cn|cV|cx)
\new:2015-09-18 Updated:2018-07-28

Clears the content of the \strvar.

Ensures that the \strvar exists globally by applying \str_new:N if necessary, then applies \str_(g)clear:N to leave the \strvar empty.

Sets the content of \strvar_1 equal to that of \strvar_2.

Concatenates the content of \strvar_2 and \strvar_3 together and saves the result in \strvar_1. The \strvar_2 is placed at the left side of the new string variable. The \strvar_2 and \strvar_3 must indeed be strings, as this function does not convert their contents to a string.

Converts the \tokenlist to a \string, and stores the result in \strvar.

Converts the \tokenlist to a \string, and prepends the result to \strvar. The current contents of the \strvar are not automatically converted to a string.
Converts the \langle token list \rangle to a \langle string \rangle, and appends the result to \langle str var \rangle. The current contents of the \langle str var \rangle are not automatically converted to a string.

3 Modifying string variables

\texttt{\textbackslash str_put_right:Nn \str_put_right:Nn \langle str var \rangle \{\langle token list \rangle\}}

\texttt{\textbackslash str_put_right:Nn \str_put_right:(NV|Nx|cn|cV|cx)}

\texttt{\str_put_right:Nn \str_put_right:(NV|Nx|cn|cV|cx)}

\texttt{New: 2015-09-18 Updated: 2018-07-28}

\texttt{\textbackslash str_replace_once:Nnn \str_replace_once:Nnn \langle str var \rangle \{\langle old \rangle\} \{\langle new \rangle\}}

\texttt{\textbackslash str_replace_once:cn \str_replace_once:cnn}

\texttt{\str_greplace_once:Nnn \str_greplace_once:cn}

\texttt{\str_greplace_once:cnn}

\texttt{New: 2017-10-08}

\texttt{\textbackslash str_replace_all:Nnn \str_replace_all:Nnn \langle str var \rangle \{\langle old \rangle\} \{\langle new \rangle\}}

\texttt{\textbackslash str_replace_all:cn \str_replace_all:cnn}

\texttt{\str_greplace_all:Nnn \str_greplace_all:cn}

\texttt{\str_greplace_all:cnn}

\texttt{New: 2017-10-08}

\texttt{\textbackslash str_remove_once:Nn \str_remove_once:Nn \langle str var \rangle \{\langle token list \rangle\}}

\texttt{\textbackslash str_remove_once:cn \str_remove_once:cn}

\texttt{\str_gremove_once:Nn \str_gremove_once:cn}

\texttt{\str_gremove_once:cn}

\texttt{New: 2017-10-08}

\texttt{\textbackslash str_remove_all:Nn \str_remove_all:Nn \langle str var \rangle \{\langle token list \rangle\}}

\texttt{\textbackslash str_remove_all:cn \str_remove_all:cn}

\texttt{\str_gremove_all:Nn \str_gremove_all:cn}

\texttt{\str_gremove_all:cn}

\texttt{New: 2017-10-08}

\texttt{\textbackslash str_set:Nn \l_tmpa_str \{abbccd\} \str_remove_all:Nn \l_tmpa_str \{bc\}}

\texttt{results in \l_tmpa_str containing abcd.}
4 String conditionals

\str_if_exist_p:N
\str_if_exist_p:C
\str_if_exist:NTF
\str_if_exist:CTF

Tests whether the \langle str var \rangle is currently defined. This does not check that the \langle str var \rangle really is a string.

\str_if_exist_p:N ⋆ \str_if_exist_p:c ⋆ \str_if_exist:N ⋆ \str_if_exist:c ⋆ New: 2015-09-18

\str_if_empty_p:N
\str_if_empty_p:C
\str_if_empty:N
\str_if_empty:c

Tests if the \langle string variable \rangle is entirely empty (i.e. contains no characters at all).

\str_if_empty_p:N ⋆ \str_if_empty_p:c ⋆ \str_if_empty:N ⋆ \str_if_empty:c ⋆ New: 2015-09-18

\str_if_eq_p:NN
\str_if_eq_p:(Nc|cN|cc)
\str_if_eq:NN
\str_if_eq:(Nc|cN|cc)

Compares the content of two \langle str variables \rangle and is logically true if the two contain the same characters in the same order.

\str_if_eq_p:nn
\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|ee)
\str_if_eq:nn
\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)

Updated: 2018-06-18

Compares the two \langle token lists \rangle on a character by character basis (namely after converting them to strings), and is true if the two \langle strings \rangle contain the same characters in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true.

\str_if_in:NnTF
\str_if_in:cnTF
\str_if_in:nnTF

Converts the \langle token list \rangle to a \langle string \rangle and tests if that \langle string \rangle is found in the content of the \langle str var \rangle.

\str_if_in:NnTF {str var} {\langle token list \rangle} {\langle true code \rangle} {\langle false code \rangle}

\str_if_in:cnTF
\str_if_in:nnTF

Converts both \langle token lists \rangle to \langle strings \rangle and tests whether \langle string2 \rangle is found inside \langle string1 \rangle.
Compares the ⟨test string⟩ in turn with each of the ⟨string cases⟩ (all token lists are converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then the associated ⟨code⟩ is left in the input stream and other cases are discarded. If any of the cases are matched, the ⟨true code⟩ is also inserted into the input stream (after the code for the appropriate case), while if none match then the ⟨false code⟩ is inserted. The function \str_case:nn, which does nothing if there is no match, is also available.

5 Mapping to strings

All mappings are done at the current group level, i.e. any local assignments made by the ⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.
\str_map_inline:Nn \str_map_inline:cn
\textit{New: 2017-11-14}

Applies the \langle inline function \rangle to every \langle character \rangle in the \langle str var \rangle including spaces. The \langle inline function \rangle should consist of code which receives the \langle character \rangle as \#1. See also \str_map_function:NN.

\str_map_inline:nn
\textit{New: 2017-11-14}

Converts the \langle token list \rangle to a \langle string \rangle then applies the \langle inline function \rangle to every \langle character \rangle in the \langle string \rangle including spaces. The \langle inline function \rangle should consist of code which receives the \langle character \rangle as \#1. See also \str_map_function:NN.

\str_map_variable:NNn \str_map_variable:cNn
\textit{New: 2017-11-14}

Stores each \langle character \rangle of the \langle string \rangle (including spaces) in turn in the (string or token list) \langle variable \rangle and applies the \langle code \rangle. The \langle code \rangle will usually make use of the \langle variable \rangle, but this is not enforced. The assignments to the \langle variable \rangle are local. Its value after the loop is the last \langle character \rangle in the \langle string \rangle, or its original value if the \langle string \rangle is empty. See also \str_map_inline:Nn.

\str_map_variable:nNn
\textit{New: 2017-11-14}

Converts the \langle token list \rangle to a \langle string \rangle then stores each \langle character \rangle in the \langle string \rangle (including spaces) in turn in the (string or token list) \langle variable \rangle and applies the \langle code \rangle. The \langle code \rangle will usually make use of the \langle variable \rangle, but this is not enforced. The assignments to the \langle variable \rangle are local. Its value after the loop is the last \langle character \rangle in the \langle string \rangle, or its original value if the \langle string \rangle is empty. See also \str_map_inline:Nn.

\str_map_break: \star
\textit{New: 2017-10-08}

Used to terminate a \str_map\ldots function before all characters in the \langle string \rangle have been processed. This normally takes place within a conditional statement, for example

\begin{verbatim}
\str_map_inline:Nn _my_str
{ \str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
\hspace{1em} % Do something useful}
\end{verbatim}

See also \str_map_break:n. Use outside of a \str_map\ldots scenario leads to low level \TeX errors.

\textbf{\TeX hackers note:} When the mapping is broken, additional tokens may be inserted before continuing with the code that follows the loop. This depends on the design of the mapping function.
\str_map_break:n \{\langle code\rangle\}

Used to terminate a \str_map... function before all characters in the \langle string\rangle have been processed, inserting the \langle code\rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \l_my_str
{\str_if_eq:nnT { #1 } { bingo }\{
{ \str_map_break:n { \langle code \rangle \} }
% Do something useful
}

Use outside of a \str_map... scenario leads to low level TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before the \langle code\rangle is inserted into the input stream. This depends on the design of the mapping function.

6 Working with the content of strings

\str_use:N \str_use:c
\{ \langle str var \rangle \}

Recovers the content of a \langle str var \rangle and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Note that it is possible to use a \langle str \rangle directly without an accessor function.

\str_count:n \str_count:n \str_count:c \str_count:n \str_count:n
\{ \langle token list \rangle \}

Leaves in the input stream the number of characters in the string representation of \langle token list \rangle, as an integer denotation. The functions differ in their treatment of spaces. In the case of \str_count:N and \str_count:n, all characters including spaces are counted. The \str_count_ignore_spaces:n function leaves the number of non-space characters in the input stream.

\str_count_spaces:n \str_count_spaces:n \str_count_spaces:n
\{ \langle token list \rangle \}

Leaves in the input stream the number of space characters in the string representation of \langle token list \rangle, as an integer denotation. Of course, this function has no _ignore_spaces variant.
Converts the ⟨token list⟩ into a ⟨string⟩. The first character in the ⟨string⟩ is then left in the input stream, with category code “other”. The functions differ if the first character is a space: \texttt{\strhead{}N} and \texttt{\strhead{}n} return a space token with category code 10 (blank space), while the \texttt{\strhead{}ignore_spaces{}n} function ignores this space character and leaves the first non-space character in the input stream. If the ⟨string⟩ is empty (or only contains spaces in the case of the \texttt{_ignore_spaces} function), then nothing is left on the input stream.

Converts the ⟨token list⟩ to a ⟨string⟩, removes the first character, and leaves the remaining characters (if any) in the input stream, with category codes 12 and 10 (for spaces). The functions differ in the case where the first character is a space: \texttt{\strtail{}N} and \texttt{\strtail{}n} only trim that space, while \texttt{\strtail{}ignore_spaces{}n} removes the first non-space character and any space before it. If the ⟨token list⟩ is empty (or blank in the case of the \texttt{_ignore_spaces} variant), then nothing is left on the input stream.

Converts the ⟨token list⟩ to a ⟨string⟩, and leaves in the input stream the character in position ⟨integer expression⟩ of the ⟨string⟩, starting at 1 for the first (left-most) character. In the case of \texttt{\stritem{}N} and \texttt{\stritem{}n}, all characters including spaces are taken into account. The \texttt{\stritem{}ignore_spaces{}nn} function skips spaces when counting characters. If the ⟨integer expression⟩ is negative, characters are counted from the end of the ⟨string⟩. Hence, −1 is the right-most character, etc.
\str_range:Nnn \str_range:nnn \{token list\} \{start index\} \{end index\}
\str_range:nnn *
\str_range:nnn *
\str_range:nnn *
\str_range_ignore_spaces:nnn *

Converting the \{token list\} to a \{string\}, and leaves in the input stream the characters
from the \{start index\} to the \{end index\} inclusive. Spaces are preserved and counted as
items (contrast this with \tl_range:nnn where spaces are not counted as items and are
possibly discarded from the output).

Here \{start index\} and \{end index\} should be integer denotations. For describing in
detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
a negative index means ‘start counting from the right end’. Let l be the count of the
token list.

The actual start point is determined as $M = m$ if $m > 0$ and as $M = l + m + 1$
if $m < 0$. Similarly the actual end point is $N = n$ if $n > 0$ and $N = l + n + 1$ if $n < 0$.
If $M > N$, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for $s \leq 0$ or $s > l$. For
instance,

\begin{verbatim}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdef \} \{ 2 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdef \} \{ -4 \} \{ -1 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdef \} \{ -2 \} \{ -1 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdef \} \{ 0 \} \{ -1 \} \}}
\end{verbatim}

prints bcde, cdef, ef, and an empty line to the terminal. The \{start index\} must always
be smaller than or equal to the \{end index\}: if this is not the case then no output is
generated. Thus

\begin{verbatim}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdef \} \{ 5 \} \{ 2 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdef \} \{ -1 \} \{ -4 \} \}}
\end{verbatim}

both yield empty strings.

The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed
before starting the job. The input

\begin{verbatim}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdefg \} \{ 2 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdefg \} \{ 2 \} \{ -3 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdefg \} \{ -6 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abcdefg \} \{ -6 \} \{ -3 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abc-efg \} \{ 2 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abc-efg \} \{ 2 \} \{ -3 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abc-efg \} \{ -6 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range:nnn \{ abc-efg \} \{ -6 \} \{ -3 \} \}}
\texttt{iow_term:x \{ \str_range_ignore_spaces:nnn \{ abcdefg \} \{ 2 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range_ignore_spaces:nnn \{ abcdefg \} \{ 2 \} \{ -3 \} \}}
\texttt{iow_term:x \{ \str_range_ignore_spaces:nnn \{ abcdefg \} \{ -6 \} \{ 5 \} \}}
\texttt{iow_term:x \{ \str_range_ignore_spaces:nnn \{ abcdefg \} \{ -6 \} \{ -3 \} \}}
\end{verbatim}

63
will print four instances of `bcde`, four instances of `bc e` and eight instances of `bcde`.

7 String manipulation

<table>
<thead>
<tr>
<th><code>\str_lowercase:n</code></th>
<th><code>\str_lowercase:f</code></th>
<th><code>\str_uppercase:n</code></th>
<th><code>\str_uppercase:f</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{\langle tokens\rangle}</code></td>
<td><code>{\langle tokens\rangle}</code></td>
<td><code>{\langle tokens\rangle}</code></td>
<td><code>{\langle tokens\rangle}</code></td>
</tr>
</tbody>
</table>

Converts the input (tokens) to their string representation, as described for `\tl_to_str:n`, and then to the lower or upper case representation using a one-to-one mapping as described by the Unicode Consortium file `UnicodeData.txt`.

These functions are intended for case changing programmatic data in places where upper/lower case distinctions are meaningful. One example would be automatically generating a function name from user input where some case changing is needed. In this situation the input is programmatic, not textual, case does have meaning and a language-independent one-to-one mapping is appropriate. For example

\begin{verbatim}
\cs_new_protected:Npn \myfunc:nn #1#2
{\cs_set_protected:cpn
 {user
 \str_uppercase:f { \tl_head:n {#1} }
 \str_lowercase:f { \tl_tail:n {#1} }
}
{ #2 }
}
\end{verbatim}

would be used to generate a function with an auto-generated name consisting of the upper case equivalent of the supplied name followed by the lower case equivalent of the rest of the input.

These functions should not be used for

- Caseless comparisons: use `\str_foldcase:n` for this situation (case folding is distinct from lower casing).
- Case changing text for typesetting: see the `\text_lowercase:n(n)`, `\text_uppercase:n(n)` and `\text_titlecase:n(n)` functions which correctly deal with context-dependence and other factors appropriate to text case changing.

\TeX{}hackers note: As with all `expl3` functions, the input supported by `\str_foldcase:n` is engine-native characters which are or interoperate with UTF-8. As such, when used with pdf\TeX\ only the Latin alphabet characters A–Z are case-folded (i.e. the ASCII range which coincides with UTF-8). Full UTF-8 support is available with both Xe\TeX{} and Lua\TeX{}.
\strfoldcase:n \{\langle tokens\rangle\}

Converts the input \langle tokens\rangle to their string representation, as described for \tltostr:n, and then folds the case of the resulting \langle string\rangle to remove case information. The result of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”. The folding provided by \strfoldcase:n follows the mappings provided by the Unicode Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as identifiers in a computer program, rather than actual text transformation. Case folding in Unicode is based on the lowercase mapping, but includes additional changes to the source text to help make it language-insensitive and consistent. As a result, case-folded text should be used solely for internal processing and generally should not be stored or displayed to the end user.

The folding approach implemented by \strfoldcase:n follows the “full” scheme defined by the Unicode Consortium (e.g. \SSfolds to \SS). As case-folding is a language-insensitive process, there is no special treatment of Turkic input (i.e. \I always folds to \i and not to \ı).

\texttt{\textup{T}eX\texttt{h}ackers note:} As with all \expl functions, the input supported by \strfoldcase:n is engine-native characters which are or interoperate with \texttt{UTF-8}. As such, when used with \texttt{pdf\TeX} only the Latin alphabet characters A–Z are case-folded (i.e. the ASCII range which coincides with \texttt{UTF-8}). Full \texttt{UTF-8} support is available with both \texttt{Xe\TeX} and \texttt{Lua\TeX}, subject only to the fact that \texttt{Xe\TeX} in particular has issues with characters of code above hexadecimal \texttt{0xFFFF} when interacting with \tltostr:n.

8 Viewing strings

\strshow:n \langle str var\rangle

Displays the content of the \langle str var\rangle on the terminal.

\strlog:n \langle str var\rangle

Writes the content of the \langle str var\rangle in the log file.
9 Constant token lists

Constant strings, containing a single character token, with category code 12.
\c_\texttt{ampersand}_str
\c_\texttt{at-sign}_str
\c_\texttt{backslash}_str
\c_\texttt{left-brace}_str
\c_\texttt{right-brace}_str
\c_\texttt{circumflex}_str
\c_\texttt{colon}_str
\c_\texttt{dollar}_str
\c_\texttt{hash}_str
\c_\texttt{percent}_str
\c_\texttt{tilde}_str
\c_\texttt{underscore}_str

New: 2015-09-19

10 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
\l_\texttt{tmpa}_str
\l_\texttt{tmpb}_str

Scratch strings for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
\g_\texttt{tmpa}_str
\g_\texttt{tmpb}_str
Part VIII
The l3str-convert package: string encoding conversions

1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as bytes. However, the resulting lists of bytes are often to be used in contexts where only a restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing a string of characters is done in two steps.

- The code points (“character codes”) are expressed as bytes following a given “encoding”. This can be UTF-16, ISO 8859-1, etc. See Table 1 for a list of supported encodings.\(^5\)
- Bytes are translated to \LaTeX{} tokens through a given “escaping”. Those are defined for the most part by the pdf file format. See Table 2 for a list of escaping methods supported.\(^5\)

2 Conversion functions

\begin{verbatim}
\str_set_convert:Nnnn \str_set_convert:Nnnn \str_gset_convert:Nnnn
\end{verbatim}

This function converts the \(\langle\text{string}\rangle\) from the encoding given by \(\langle\text{name 1}\rangle\) to the encoding given by \(\langle\text{name 2}\rangle\), and stores the result in the \(\langle\text{str var}\rangle\). Each \(\langle\text{name}\rangle\) can have the form \(\langle\text{encoding}\rangle\) or \(\langle\text{encoding}\rangle/\langle\text{escaping}\rangle\), where the possible values of \(\langle\text{encoding}\rangle\) and \(\langle\text{escaping}\rangle\) are given in Tables 1 and 2, respectively. The default escaping is to input and output bytes directly. The special case of an empty \(\langle\text{name}\rangle\) indicates the use of “native” strings, 8-bit for pdf\TeX, and Unicode strings for the other two engines.

For example,

\begin{verbatim}
\str_set_convert:Nnnn \l_foo_str { Hello! } { } { utf16/hex }
\end{verbatim}

results in the variable \texttt{\l_foo_str} holding the string \texttt{FEFF00480065006C006C006F0021}. This is obtained by converting each character in the (native) string \texttt{Hello!} to the UTF-16 encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding \texttt{utf16be/hex}.

An error is raised if the \(\langle\text{string}\rangle\) is not valid according to the \(\langle\text{escaping 1}\rangle\) and \(\langle\text{encoding 1}\rangle\), or if it cannot be reencoded in the \(\langle\text{encoding 2}\rangle\) and \(\langle\text{escaping 2}\rangle\) (for instance, if a character does not exist in the \(\langle\text{encoding 2}\rangle\)). Erroneous input is replaced by the Unicode replacement character "FFFD, and characters which cannot be reencoded are replaced by either the replacement character "FFFD if it exists in the \(\langle\text{encoding 2}\rangle\), or an encoding-specific replacement character, or the question mark character.

\(^5\)Encodings and escapings will be added as they are requested.
Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital letters are lower-cased before searching for the encoding in this list.

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>utf8</td>
<td>UTF-8</td>
</tr>
<tr>
<td>utf16</td>
<td>UTF-16, with byte-order mark</td>
</tr>
<tr>
<td>utf16be</td>
<td>UTF-16, big-endian</td>
</tr>
<tr>
<td>utf16le</td>
<td>UTF-16, little-endian</td>
</tr>
<tr>
<td>utf32</td>
<td>UTF-32, with byte-order mark</td>
</tr>
<tr>
<td>utf32be</td>
<td>UTF-32, big-endian</td>
</tr>
<tr>
<td>utf32le</td>
<td>UTF-32, little-endian</td>
</tr>
<tr>
<td>iso88591, latin1</td>
<td>ISO 8859-1</td>
</tr>
<tr>
<td>iso88592, latin2</td>
<td>ISO 8859-2</td>
</tr>
<tr>
<td>iso88593, latin3</td>
<td>ISO 8859-3</td>
</tr>
<tr>
<td>iso88594, latin4</td>
<td>ISO 8859-4</td>
</tr>
<tr>
<td>iso88595</td>
<td>ISO 8859-5</td>
</tr>
<tr>
<td>iso88596</td>
<td>ISO 8859-6</td>
</tr>
<tr>
<td>iso88597</td>
<td>ISO 8859-7</td>
</tr>
<tr>
<td>iso88598</td>
<td>ISO 8859-8</td>
</tr>
<tr>
<td>iso88599, latin5</td>
<td>ISO 8859-9</td>
</tr>
<tr>
<td>iso885910, latin6</td>
<td>ISO 8859-10</td>
</tr>
<tr>
<td>iso885911</td>
<td>ISO 8859-11</td>
</tr>
<tr>
<td>iso885913, latin7</td>
<td>ISO 8859-13</td>
</tr>
<tr>
<td>iso885914, latin8</td>
<td>ISO 8859-14</td>
</tr>
<tr>
<td>iso885915, latin9</td>
<td>ISO 8859-15</td>
</tr>
<tr>
<td>iso885916, latin10</td>
<td>ISO 8859-16</td>
</tr>
<tr>
<td>clist</td>
<td>comma-list of integers</td>
</tr>
<tr>
<td>⟨empty⟩</td>
<td>native (Unicode) string</td>
</tr>
</tbody>
</table>

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital letters are lower-cased before searching for the escaping in this list.

<table>
<thead>
<tr>
<th>Escaping</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes, or empty</td>
<td>arbitrary bytes</td>
</tr>
<tr>
<td>hex, hexadecimal</td>
<td>byte = two hexadecimal digits</td>
</tr>
<tr>
<td>name</td>
<td>see \pdffiescapename</td>
</tr>
<tr>
<td>string</td>
<td>see \pdffiescapestring</td>
</tr>
<tr>
<td>url</td>
<td>encoding used in URLs</td>
</tr>
</tbody>
</table>
\str_set_convert:Nnnn \str_gset_convert:Nnnn
\str_set_convert:Nnnn \{str var\} \{(string)\} \{(name 1)\} \{(name 2)\} \{(true code)\} \{(false code)\}

As \str_set_convert:Nnnn, converts the \langle string\rangle from the encoding given by \langle name 1\rangle to the encoding given by \langle name 2\rangle, and assigns the result to \langle str var\rangle. Contrarily to \str_set_convert:Nnnn, the conditional variant does not raise errors in case the \langle string\rangle is not valid according to the \langle name 1\rangle encoding, or cannot be expressed in the \langle name 2\rangle encoding. Instead, the \langle false code\rangle is performed.

3 Creating 8-bit mappings

\str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \{\langle name\rangle\} \{\langle mapping\rangle\} \{\langle missing\rangle\}

Declares the encoding \langle name\rangle to map bytes to Unicode characters according to the \langle mapping\rangle, and map those bytes which are not mentioned in the \langle mapping\rangle either to the replacement character (if they appear in \langle missing\rangle), or to themselves.

4 Possibilities, and things to do

Encoding/escaping-related tasks.

- In Xe\TeX/Lua\TeX, would it be better to use the ^^^^.... approach to build a string from a given list of character codes? Namely, within a group, assign 0–9a–f and all characters we want to category “other”, then assign ~ the category superscript, and use \scantokens.
- Change \str_set_convert:Nnnn to expand its last two arguments.
- Describe the internal format in the code comments. Refuse code points in \[\texttt{D800, DFFF} \]\ in the internal representation?
- Add documentation about each encoding and escaping method, and add examples.
- The \texttt{hex} unescaping should raise an error for odd-token count strings.
- Decide what bytes should be escaped in the \texttt{url} escaping. Perhaps the characters !\^*+-./0123456789_ are safe, and all other characters should be escaped?
- Automate generation of 8-bit mapping files.
- Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use 256 integer registers; for encoding, use a tree-box.
- More encodings (see Heiko’s \texttt{stringenc}). CESU?
- More escapings: ascii85, shell escapes, lua escapes, etc.?
Part IX

The l3quark package

Quarks

Two special types of constants in l3TEX3 are “quarks” and “scan marks”. By convention all constants of type quark start out with \q_, and scan marks start with \s_.

1 Quarks

Quarks are control sequences that expand to themselves and should therefore never be executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, the most common use case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse a user-defined date

\date_parse:n {19/June/1981}

one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive erroneous input. For example, in the function \prop_get:NnN to retrieve a value stored in some key of a property list, if the key does not exist then the return value is the quark \q_no_value. As mentioned above, such quarks are extremely fragile and it is imperative when using such functions that code is carefully written to check for pathological cases to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you pick up a token in a temporary variable and you want to know whether you have picked up a particular quark, all you have to do is compare the temporary variable to the quark using \tl_if_eq:NNTF. A set of special quark testing functions is set up below. All the quark testing functions are expandable although the ones testing only single tokens are much faster. An example of the quark testing functions and their use in recursion can be seen in the implementation of \clist_map_function:NN.

2 Defining quarks

\quark_new:N \quark_new:N \langle quark \rangle

Creates a new \langle quark \rangle which expands only to \langle quark \rangle. The \langle quark \rangle is defined globally, and an error message is raised if the name was already taken.

\q_stop

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop \#1
\texttt{\textbackslash q_mark} Used as a marker for delimited arguments when \texttt{\textbackslash q_stop} is already in use.

\texttt{\textbackslash q_nil} Quark to mark a null value in structured variables or functions. Used as an end delimiter when this may itself need to be tested (in contrast to \texttt{\textbackslash q_stop}, which is only ever used as a delimiter).

\texttt{\textbackslash q_no_value} A canonical value for a missing value, when one is requested from a data structure. This is therefore used as a “return” value by functions such as \texttt{\prop_get__Nn_N} if there is no data to return.

3 \textbf{Quark tests}

The method used to define quarks means that the single token (N) tests are faster than the multi-token (n) tests. The latter should therefore only be used when the argument can definitely take more than a single token.

\begin{verbatim}
\texttt{\textbackslash quark_if_nil_p_N} \star \texttt{\textbackslash quark_if_nil_N_T_F} \star
\end{verbatim}

Tests if the \texttt{\textbackslash token} is equal to \texttt{\textbackslash q_nil}.

\begin{verbatim}
\texttt{\textbackslash quark_if_nil_p_n} \star \texttt{\textbackslash quark_if_nil_p_o_V} \star \texttt{\textbackslash quark_if_nil_n_T_F} \star \texttt{\textbackslash quark_if_nil_o_V_T_F} \star
\end{verbatim}

Tests if the \texttt{\textbackslash token_list} contains only \texttt{\textbackslash q_nil} (distinct from \texttt{\textbackslash token_list} being empty or containing \texttt{\textbackslash q_nil} plus one or more other tokens).

\begin{verbatim}
\texttt{\textbackslash quark_if_no_value_p_N} \star \texttt{\textbackslash quark_if_no_value_p_c} \star \texttt{\textbackslash quark_if_no_value_N_T_F} \star \texttt{\textbackslash quark_if_no_value_c_T_F} \star
\end{verbatim}

Tests if the \texttt{\textbackslash token} is equal to \texttt{\textbackslash q_no_value}.

\begin{verbatim}
\texttt{\textbackslash quark_if_no_value_p_n} \star \texttt{\textbackslash quark_if_no_value_p_n_T_F} \star
\end{verbatim}

Tests if the \texttt{\textbackslash token_list} contains only \texttt{\textbackslash q_no_value} (distinct from \texttt{\textbackslash token_list} being empty or containing \texttt{\textbackslash q_no_value} plus one or more other tokens).

4 \textbf{Recursion}

This module provides a uniform interface to intercepting and terminating loops as when one is doing tail recursion. The building blocks follow below and an example is shown in Section 5.

\texttt{\textbackslash q_recursion_tail} This quark is appended to the data structure in question and appears as a real element there. This means it gets any list separators around it.

71
This quark is added after the data structure. Its purpose is to make it possible to terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N \langle \token \rangle

Tests if \langle \token \rangle contains only the marker \q_recursion_tail, and if so uses \use_i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to. The recursion input must include the marker tokens \q_recursion_tail and \q_recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:o

Tests if the \langle \token list \rangle contains only \q_recursion_tail, and if so uses \use_i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to. The recursion input must include the marker tokens \q_recursion_tail and \q_recursion_stop as the last two items. The \langle \insertion \rangle code is then added to the input stream after the recursion has ended.

\quark_if_recursion_tail_break:nN \quark_if_recursion_tail_break:nN \langle \token list \rangle

Tests if \langle \token list \rangle contains only \q_recursion_tail, and if so terminates the recursion using \langle \type \rangle_map_break:. The recursion end should be marked by \prg_break_point:Nn \langle \type \rangle_map_break:.

5 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \texttt{\textbackslash my_map_dbl:nn} which takes a token list and applies an operation to every pair of tokens. For example, \texttt{\my_map_dbl:nn {abcd} {[-#1--#2--]-}} would produce “[-a-b-] [-c-d-] “. Using quarks to define such functions simplifies their logic and ensures robustness in many cases.

Here’s the definition of \texttt{\my_map_dbl:nn}. First of all, define the function that does the processing based on the inline function argument \texttt{#2}. Then initiate the recursion using an internal function. The token list \texttt{#1} is terminated using \texttt{\q_recursion_tail}, with delimiters according to the type of recursion (here a pair of \texttt{\q_recursion_tail}), concluding with \texttt{\q_recursion_stop}. These quarks are used to mark the end of the token list being operated upon.

\begin{verbatim}
\cs_new:Npn \my_map_dbl:nn #1#2
 {
 \cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
 __my_map_dbl:nn #1 \q_recursion_tail \q_recursion_tail \q_recursion_stop
 }
\end{verbatim}

The definition of the internal recursion function follows. First check if either of the input tokens are the termination quarks. Then, if not, apply the inline function to the two arguments.

\begin{verbatim}
\cs_new:Nn __my_map_dbl:nn
 {
 \quark_if_recursion_tail_stop:n {#1}
 \quark_if_recursion_tail_stop:n {#2}
 __my_map_dbl_fn:nn {#1} {#2}
 }
\end{verbatim}

Finally, recurse:

\begin{verbatim}
__my_map_dbl:nn
\end{verbatim}

Note that contrarily to \LaTeX{}3 built-in mapping functions, this mapping function cannot be nested, since the second map would overwrite the definition of \texttt{__my_map_dbl_fn:nn}.

\section{Scan marks}

Scan marks are control sequences set equal to \texttt{\scan_stop:}, hence never expand in an expansion context and are (largely) invisible if they are encountered in a typesetting context.

Like quarks, they can be used as delimiters in weird functions and are often safer to use for this purpose. Since they are harmless when executed by \TeX{} in non-expandable contexts, they can be used to mark the end of a set of instructions. This allows to skip to that point if the end of the instructions should not be performed (see \l3regex{}).

\begin{verbatim}
\scan_new:N \scan_stop
\end{verbatim}

Creates a new \texttt{(scan mark)} which is set equal to \texttt{\scan_stop:}. The \texttt{(scan mark)} is defined globally, and an error message is raised if the name was already taken by another scan mark.
\s_stop

Used at the end of a set of instructions, as a marker that can be jumped to using \use_none_delimit_by_s_stop\:w.

\use_none_delimit_by_s_stop\:w * \use_none_delimit_by_s_stop\:w \{tokens\} \s_stop

Removes the \{tokens\} and \s_stop from the input stream. This leads to a low-level \TeX{} error if \s_stop is absent.
Part X
The \texttt{l3seq} package
Sequences and stacks

\LaTeX{}X3 implements a “sequence” data type, which contain an ordered list of entries which may contain any \emph{(balanced text)}. It is possible to map functions to sequences such that the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in \TeX{}X3. This is achieved using a number of dedicated stack functions.

1 Creating and initialising sequences

\begin{verbatim}
\seq_new:N \seq_new:N \seq_new:c
\seq_set_from_clist:NN \seq_set_from_clist:Nn \seq_from_clist:Nn
\seq_gset_from_clist:NN \seq_gset_from_clist:Nn \seq_gset_from_clist:cn
\seq_gset_eq:NN \seq_gset_eq:c \seq_gset_eq:N \seq_gset_eq:cn
\seq_gclear:N \seq_gclear:c \seq_gclear:N \seq_gclear:c
\seq_clear:N \seq_clear:c \seq_clear:N \seq_clear:c
\seq_set_eq:NN \seq_set_eq:cn \seq_set_eq:N \seq_set_eq:cn
\new: 2014-07-17
\end{verbatim}

Creates a new \emph{(sequence)} or raises an error if the name is already taken. The declaration is global. The \emph{(sequence)} initially contains no items.

Clears all items from the \emph{(sequence)}.

Ensures that the \emph{(sequence)} exists globally by applying \texttt{\seq_new:N} if necessary, then applies \texttt{\seq_(g)clear:N} to leave the \emph{(sequence)} empty.

Sets the content of \emph{(sequence$_1$)} equal to that of \emph{(sequence$_2$)}.

Converts the data in the \emph{(comma list)} into a \emph{(sequence)}: the original \emph{(comma list)} is unchanged.
\seq_const_from_clist:Nn \seq_const_from_clist:cn

Create a new constant \langle seq var \rangle or raises an error if the name is already taken. The \langle seq var \rangle is set globally to contain the items in the \langle comma list \rangle.

\seq_set_split:Nnn \seq_set_split:NnV \seq_gset_split:Nnn \seq_gset_split:NnV

Splits the \langle token list \rangle into \langle items \rangle separated by \langle delimiter \rangle, and assigns the result to the \langle sequence \rangle. Spaces on both sides of each \langle item \rangle are ignored, then one set of outer braces is removed (if any); this space trimming behaviour is identical to that of \l3clist functions. Empty \langle items \rangle are preserved by \seq_set_split:Nnn, and can be removed afterwards using \seq_remove_all:Nn \langle sequence \rangle \{()\}. The \langle delimiter \rangle may not contain {, } or # (assuming \TeX’s normal category code régime). If the \langle delimiter \rangle is empty, the \langle token list \rangle is split into \langle items \rangle as a \langle token list \rangle.

\seq_concat:NNN \seq_concat:ccc \seq_gconcat:NNN \seq_gconcat:ccc

Concatenates the content of \langle sequence2 \rangle and \langle sequence3 \rangle together and saves the result in \langle sequence1 \rangle. The items in \langle sequence2 \rangle are placed at the left side of the new sequence.

\seq_if_exist_p:N \seq_if_exist:NTF \seq_if_exist:CTF \seq_if_exist:c

Tests whether the \langle sequence \rangle is currently defined. This does not check that the \langle sequence \rangle really is a sequence variable.

2 Appending data to sequences

\seq_put_left:Nn \seq_put_left:NnV \seq_gput_left:Nn \seq_gput_left:NnV

Appends the \langle item \rangle to the left of the \langle sequence \rangle.

\seq_put_right:Nn \seq_put_right:NnV \seq_gput_right:Nn \seq_gput_right:NnV

Appends the \langle item \rangle to the right of the \langle sequence \rangle.

3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementation reasons, the actions at the left of the sequence are faster than those acting on the right. These functions all assign the recovered material locally, \textit{i.e.} setting the \langle token list variable \rangle used with \tl_set:Nn and \textit{never} \tl_gset:Nn.
\seq_get_left:NN \seq_get_left:cN
Stores the left-most item from a \langle sequence \rangle in the \langle token list variable \rangle without removing it from the \langle sequence \rangle. The \langle token list variable \rangle is assigned locally. If \langle sequence \rangle is empty the \langle token list variable \rangle is set to the special marker \texttt{\q_no_value}.

\seq_get_right:NN \seq_get_right:cN
Stores the right-most item from a \langle sequence \rangle in the \langle token list variable \rangle without removing it from the \langle sequence \rangle. The \langle token list variable \rangle is assigned locally. If \langle sequence \rangle is empty the \langle token list variable \rangle is set to the special marker \texttt{\q_no_value}.

\seq_pop_left:NN \seq_pop_left:cN
Pops the left-most item from a \langle sequence \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. Both of the variables are assigned locally. If \langle sequence \rangle is empty the \langle token list variable \rangle is set to the special marker \texttt{\q_no_value}.

\seq_gpop_left:NN \seq_gpop_left:cN
Pops the left-most item from a \langle sequence \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. The \langle sequence \rangle is modified globally, while the assignment of the \langle token list variable \rangle is local. If \langle sequence \rangle is empty the \langle token list variable \rangle is set to the special marker \texttt{\q_no_value}.

\seq_pop_right:NN \seq_pop_right:cN
Pops the right-most item from a \langle sequence \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. Both of the variables are assigned locally. If \langle sequence \rangle is empty the \langle token list variable \rangle is set to the special marker \texttt{\q_no_value}.

\seq_gpop_right:NN \seq_gpop_right:cN
Pops the right-most item from a \langle sequence \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. The \langle sequence \rangle is modified globally, while the assignment of the \langle token list variable \rangle is local. If \langle sequence \rangle is empty the \langle token list variable \rangle is set to the special marker \texttt{\q_no_value}.

\seq_item:Nn \seq_item:cn
Indexing items in the \langle sequence \rangle from 1 at the top (left), this function evaluates the \langle integer expression \rangle and leaves the appropriate item from the sequence in the input stream. If the \langle integer expression \rangle is negative, indexing occurs from the bottom (right) of the sequence. If the \langle integer expression \rangle is larger than the number of items in the \langle sequence \rangle (as calculated by \seq_count:N) then the function expands to nothing.

\textbf{\TeX\ hackers note:} The result is returned within the \texttt{\unexpanded} primitive \texttt{\exp_not:n}, which means that the \langle item \rangle does not expand further when appearing in an \texttt{x}-type argument expansion.

77
\seq_rand_item:N \seq_rand_item:C * *
New: 2016-12-06

\seq_rand_item:N \seq_rand_item:C * *
New: 2016-12-06

Selects a pseudo-random item of the \⟨sequence⟩. If the \⟨sequence⟩ is empty the result is empty. This is not available in older versions of Xe\TeX.

\textbf{TeXhackers note:} The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \langle item \rangle does not expand further when appearing in an \texttt{\&}-type argument expansion.

4 Recovering values from sequences with branching

The functions in this section combine tests for non-empty sequences with recovery of an item from the sequence. They offer increased readability and performance over separate testing and recovery phases.

\seq_get_left:NNTF \seq_get_left:cNTF
New: 2012-05-14
Updated: 2012-05-19

If the \langle sequence \rangle is empty, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle sequence \rangle is non-empty, stores the left-most item from the \langle sequence \rangle in the \langle token list variable \rangle without removing it from the \langle sequence \rangle, then leaves the \langle true code \rangle in the input stream. The \langle token list variable \rangle is assigned locally.

\seq_get_right:NNTF \seq_get_right:cNTF
New: 2012-05-19

If the \langle sequence \rangle is empty, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle sequence \rangle is non-empty, stores the right-most item from the \langle sequence \rangle in the \langle token list variable \rangle without removing it from the \langle sequence \rangle, then leaves the \langle true code \rangle in the input stream. The \langle token list variable \rangle is assigned locally.

\seq_pop_left:NNTF \seq_pop_left:cNTF
New: 2012-05-14
Updated: 2012-05-19

If the \langle sequence \rangle is empty, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle sequence \rangle is non-empty, pops the left-most item from the \langle sequence \rangle in the \langle token list variable \rangle, i.e. removes the item from the \langle sequence \rangle, then leaves the \langle true code \rangle in the input stream. Both the \langle sequence \rangle and the \langle token list variable \rangle are assigned locally.

\seq_gpop_left:NNTF \seq_gpop_left:cNTF
New: 2012-05-14
Updated: 2012-05-19

If the \langle sequence \rangle is empty, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle sequence \rangle is non-empty, pops the left-most item from the \langle sequence \rangle in the \langle token list variable \rangle, i.e. removes the item from the \langle sequence \rangle, then leaves the \langle true code \rangle in the input stream. The \langle sequence \rangle is modified globally, while the \langle token list variable \rangle is assigned locally.

78
If the \langle sequence \rangle is empty, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle sequence \rangle is non-empty, pops the right-most item from the \langle sequence \rangle in the \langle token list variable \rangle, i.e. removes the item from the \langle sequence \rangle, then leaves the \langle true code \rangle in the input stream. Both the \langle sequence \rangle and the \langle token list variable \rangle are assigned locally.

5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the content. The functions here may be used to update sequences, while retaining the order of the unaffected entries.

\seq_remove_duplicates:N \langle sequence \rangle
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

Removes duplicate items from the \langle sequence \rangle, leaving the left most copy of each item in the \langle sequence \rangle. The \langle item \rangle comparison takes place on a token basis, as for \tl_if_eq:nnTF.

\LaTeX{}hackers note: This function iterates through every item in the \langle sequence \rangle and does a comparison with the \langle items \rangle already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn \langle sequence \rangle \{ \langle item \rangle \}
\seq_remove_all:cn
\seq_gremove_all:Nn
\seq_gremove_all:cn

Removes every occurrence of \langle item \rangle from the \langle sequence \rangle. The \langle item \rangle comparison takes place on a token basis, as for \tl_if_eq:nnTF.

\seq_reverse:N \langle sequence \rangle
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

Reverses the order of the items stored in the \langle sequence \rangle.

\seq_sort:Nn \langle sequence \rangle \{ \langle comparison code \rangle \}
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

Sorts the items in the \langle sequence \rangle according to the \langle comparison code \rangle, and assigns the result to \langle sequence \rangle. The details of sorting comparison are described in Section 1.
\seq_shuffle:N \seq_shuffle:c \seq_gshuffle:N \seq_gshuffle:c

\seq_shuffle:N \seq var
Sets the \seq var to the result of placing the items of the \seq var in a random order. Each item is (roughly) as likely to end up in any given position.

\textbf{\TeXhackers note:} For sequences with more than 13 items or so, only a small proportion of all possible permutations can be reached, because the random seed \sys_rand_seed: only has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535 items (depending on the engine) cannot be shuffled.

6 Sequence conditionals

\seq_if_empty_p:N \seq_if_empty_p:c \seq_if_empty:NTF \seq_if_empty:cTF
\seq_if_empty:N TF \seq_if_empty:c TF
\seq_if_in:NnTF \seq_if_in:N \seq_if_in:(NV|Nv|Nn|cn|cV|cv|co|cx)TF

Tests if the \sequence is empty (containing no items).

\seq_if_in:nTF \sequence \item \true code \false code
Tests if the \item is present in the \sequence.

7 Mapping to sequences

All mappings are done at the current group level, \textit{i.e.} any local assignments made by the \langle function\rangle or \langle code\rangle discussed below remain in effect after the loop.

\seq_map_function:NN \seq_map_function:cN \seq_map_function:NN \sequence \langle function\rangle
Applies \langle function\rangle to every \item stored in the \sequence. The \langle function\rangle will receive one argument for each iteration. The \langle items\rangle are returned from left to right. To pass further arguments to the \langle function\rangle, see \seq_map_tokens:Nn. The function \seq_mapinline:N is faster than \seq_map_function:NN for sequences with more than about 10 items.

\seq_map_inline:Nn \seq_map_inline:cn
Applies \langle inline function\rangle to every \item stored within the \sequence. The \langle inline function\rangle should consist of code which will receive the \item as \#1. The \langle items\rangle are returned from left to right.
\seq_map_tokens:Nn \l_my_seq \{ \prg_replicate:nn \{ 2 \} \}

expands to twice each item in the \texttt{sequence}: for each item in \texttt{\l_my_seq} the function \texttt{\prg_replicate:nn} receives \texttt{2} and \texttt{\texttt{item}} as its two arguments. The function \texttt{\seq_map_inline:Nn} is typically faster but is not expandable.

\seq_map_variable:NNn \seq_map_variable:(Ncn|cNn|ccn)

Stores each \texttt{\texttt{item}} of the \texttt{\texttt{sequence}} in turn in the (token list) \texttt{\texttt{variable}} and applies the \texttt{\texttt{code}}. The \texttt{\texttt{code}} will usually make use of the \texttt{\texttt{variable}}, but this is not enforced. The assignments to the \texttt{\texttt{variable}} are local. Its value after the loop is the last \texttt{\texttt{item}} in the \texttt{\texttt{sequence}}, or its original value if the \texttt{\texttt{sequence}} is empty. The \texttt{\texttt{items}} are returned from left to right.

\seq_map_break:

Used to terminate a \texttt{\seq_map...} function before all entries in the \texttt{\texttt{sequence}} have been processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
 \str_if_eq:nTF \{ \#1 \} \{ bingo \}
 \{ \seq_map_break: \}
 \%
 Do something useful
}

Use outside of a \texttt{\seq_map...} scenario leads to low level \TeX\ errors.

\textbf{\TeX\hackers note:} When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.
\seq_map_break:n \seq_map_break:n \langle code \rangle

Used to terminate a \seq_map\ldots function before all entries in the \langle sequence \rangle have been processed, inserting the \langle code \rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{\
 \str_if_eq:nnTF { #1 } { bingo }\
 { \seq_map_break:n \langle code \rangle }\
 {\
 \% Do something useful\
 }\
}

Use outside of a \seq_map\ldots scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before the \langle code \rangle is inserted into the input stream. This depends on the design of the mapping function.

\seq_count:N \seq_count:c

Leaves the number of items in the \langle sequence \rangle in the input stream as an \langle integer denotation \rangle. The total number of items in a \langle sequence \rangle includes those which are empty and duplicates, i.e. every item in a \langle sequence \rangle is unique.

8 Using the content of sequences directly

\seq_use:Nnnn \seq_use:Nnnn \langle seq var \rangle \langle separator between two \rangle\langle separator between more than two \rangle\langle separator between final two \rangle

Places the contents of the \langle seq var \rangle in the input stream, with the appropriate \langle separator \rangle between the items. Namely, if the sequence has more than two items, the \langle separator between more than two \rangle is placed between each pair of items except the last, for which the \langle separator between final two \rangle is used. If the sequence has exactly two items, then they are placed in the input stream separated by the \langle separator between two \rangle. If the sequence has a single item, it is placed in the input stream, and an empty sequence produces no output. An error is raised if the variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }\seq_use:Nnnn \l_tmpa_seq { -and- } { , - } { , -and- }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not used in this case because the sequence has more than 2 items.

\TeXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \langle items \rangle do not expand further when appearing in an x-type argument expansion.

82
\seq_use:Nn \seq_use:cn *
\seq_get:NN \seq_get:cN
\seq_pop:NN \seq_pop:cN
\seq_gpop:NN \seq_gpop:cN
\seq_get:NNTF \seq_get:CN

9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of the sequence. (The left of a sequence is the top, for performance reasons.) The stack functions for sequences are not intended to be mixed with the general ordered data functions detailed in the previous section: a sequence should either be used as an ordered data type or as a stack, but not in both ways.

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nn \l_tmpa_seq { ~and~ }

inserts “a and b and c and de and f” in the input stream.

TeXhacker: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \textit{items} do not expand further when appearing in an x-type argument expansion.
If the ⟨sequence⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨sequence⟩ is non-empty, pops the top item from the ⟨sequence⟩ in the ⟨token list variable⟩, i.e. removes the item from the ⟨sequence⟩. Both the ⟨sequence⟩ and the ⟨token list variable⟩ are assigned locally.

If the ⟨sequence⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨sequence⟩ is non-empty, pops the top item from the ⟨sequence⟩ in the ⟨token list variable⟩, i.e. removes the item from the ⟨sequence⟩. The ⟨sequence⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

Adds the ⟨item⟩ to the top of the ⟨sequence⟩.

10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of sequences as sets is not currently widespread, hence no specific set function is provided. Instead, it is explained here how common set operations can be performed by combining several functions described in earlier sections. When using sequences to implement sets, one should be careful not to rely on the order of items in the sequence representing the set.

Sets should not contain several occurrences of a given item. To make sure that a ⟨sequence variable⟩ only has distinct items, use \seq_remove_duplicates:N ⟨sequence variable⟩. This function is relatively slow, and to avoid performance issues one should only use it when necessary.

Some operations on a set ⟨seq var⟩ are straightforward. For instance, \seq_count:N ⟨seq var⟩ expands to the number of items, while \seq_if_in:NnTF ⟨seq var⟩ ⟨⟨item⟩⟩ tests if the ⟨item⟩ is in the set.

Adding an ⟨item⟩ to a set ⟨seq var⟩ can be done by appending it to the ⟨seq var⟩ if it is not already in the ⟨seq var⟩:

\seq_if_in:NnF ⟨seq var⟩ ⟨⟨item⟩⟩
{ \seq_put_right:Nn ⟨seq var⟩ ⟨⟨item⟩⟩ }

Removing an ⟨item⟩ from a set ⟨seq var⟩ can be done using \seq_remove_all:Nn,

\seq_remove_all:Nn ⟨seq var⟩ ⟨⟨item⟩⟩

The intersection of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into ⟨seq var3⟩ by collecting items of ⟨seq var1⟩ which are in ⟨seq var2⟩.
\seq_clear:N \seq_var_3
\seq_map_inline:Nn \seq_var_1
{
\seq_if_in:NnT \seq_var_2 \{#1\}
\seq_put_right:Nn \seq_var_3 \{#1\}
}

The code as written here only works if \seq_var_3 is different from the other two sequence variables. To cover all cases, items should first be collected in a sequence \seq INTERNAL_SEQ, then \seq_var_3 should be set equal to this internal sequence. The same remark applies to other set functions.

The union of two sets \seq_var_1 and \seq_var_2 can be stored into \seq_var_3 through
\seq_concat:NNN \seq_var_3 \seq_var_1 \seq_var_2
\seq_remove_duplicates:N \seq_var_3

or by adding items to (a copy of) \seq_var_1 one by one
\seq_set_eq:NN \seq_var_3 \seq_var_1
\seq_map_inline:Nn \seq_var_2
{ \seq_if_in:NnF \seq_var_3 \{#1\}
\seq_put_right:Nn \seq_var_3 \{#1\} }

The second approach is faster than the first when the \seq_var_2 is short compared to \seq_var_1.

The difference of two sets \seq_var_1 and \seq_var_2 can be stored into \seq_var_3 by removing items of the \seq_var_2 from (a copy of) the \seq_var_1 one by one.
\seq_set_eq:NN \seq_var_3 \seq_var_1
\seq_map_inline:Nn \seq_var_2
{ \seq_remove_all:Nn \seq_var_3 \{#1\} }

The symmetric difference of two sets \seq_var_1 and \seq_var_2 can be stored into \seq_var_3 by computing the difference between \seq_var_1 and \seq_var_2 and storing the result as \seq INTERNAL_SEQ, then the difference between \seq_var_2 and \seq_var_1, and finally concatenating the two differences to get the symmetric differences.
\seq_set_eq:NN \seq_var_3 \seq INTERNAL_SEQ \seq_var_1
\seq_map_inline:Nn \seq_var_2
{ \seq_remove_all:Nn \seq INTERNAL_SEQ \{#1\} }
\seq_set_eq:NN \seq_var_3 \seq_var_2
\seq_map_inline:Nn \seq_var_1
{ \seq_remove_all:Nn \seq_var_3 \{#1\} }
\seq_concat:NNN \seq_var_3 \seq_var_3 \seq INTERNAL_SEQ

11 Constant and scratch sequences

\c_empty_seq Constant that is always empty.

See: 2012-07-02
Scratch sequences for local assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_seq
\l_tmpb_seq

New: 2012-04-26

Scratch sequences for global assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\section{Viewing sequences}

\seq_show:N \seq_show:N \langle sequence \rangle
\seq_show:c

Displays the entries in the \langle sequence \rangle in the terminal.

\seq_log:N \seq_log:N \langle sequence \rangle
\seq_log:c

Writes the entries in the \langle sequence \rangle in the log file.
Part XI

The l3int package

Integers

Calculation and comparison of integer values can be carried out using literal numbers, int registers, constants and integers stored in token list variables. The standard operators +, -, / and * and parentheses can be used within such expressions to carry arithmetic operations. This module carries out these functions on integer expressions (“intexpr”).
1 Integer expressions

\texttt{\int_eval:n} * \texttt{\int_eval:n \{(integer expression)\}}

Evaluates the \textit{(integer expression)} and leaves the result in the input stream as an integer denotation: for positive results an explicit sequence of decimal digits not starting with 0, for negative results \texttt{\textendash} followed by such a sequence, and 0 for zero. The \textit{(integer expression)} should consist, after expansion, of \texttt{\textasteriskcentered}, \texttt{\textdagger}, \texttt{\textasciiddot}, \texttt{\textbar}, \texttt{\textparentheses} and of course integer operands. The result is calculated by applying standard mathematical rules with the following peculiarities:

- \texttt{\textasciiddot} denotes division rounded to the closest integer with ties rounded away from zero;
- there is an error and the overall expression evaluates to zero whenever the absolute value of any intermediate result exceeds \textit{2}^{31} \texttt{\texthyphen} 1, except in the case of scaling operations \texttt{\textasteriskcentered}\texttt{\textdagger} / \texttt{\textparentheses}, for which \texttt{\textasteriskcentered}\texttt{\textdagger} may be arbitrarily large;
- parentheses may not appear after unary \texttt{\textdagger} or \texttt{\texthyphen}, namely placing \texttt{\textasciiddot\textparentheses} or \texttt{\texthyphen\textparentheses} at the start of an expression or after \texttt{\textdagger}, \texttt{\texthyphen}, \texttt{\textasteriskcentered}, \texttt{\textasciiddot} or \texttt{\textparentheses} leads to an error.

Each integer operand can be either an integer variable (with no need for \texttt{\int_use:N}) or an integer denotation. For example both

\[
\texttt{\int_eval:n \{ 5 + 4 \times 3 - (3 + 4 \times 5) \}}
\]

and

\[
\texttt{tl_new:N \ l_my_tl} \\
\texttt{tl_set:Nn \ l_my_tl \ { 5 } } \\
\texttt{int_new:N \ l_my_int} \\
\texttt{int_set:Nn \ l_my_int \ { 4 } } \\
\texttt{int_eval:n \{ \l_my_tl + \ l_my_int * 3 - (3 + 4 \times 5) \}}
\]

evaluate to \texttt{\textendash}6 because \texttt{\l_my_tl} expands to the integer denotation \texttt{5}. As the \textit{(integer expression)} is fully expanded from left to right during evaluation, fully expandable and restricted-expandable functions can both be used, and \texttt{\exp_not:n} and its variants have no effect while \texttt{\exp_not:N} may incorrectly interrupt the expression.

\textbf{\TeX}\texttt{hackers note}: Exactly two expansions are needed to evaluate \texttt{\int_eval:n}. The result is not an \textit{(internal integer)}, and therefore requires suitable termination if used in a \TeX\-style integer assignment.

As all \TeX\ integers, integer operands can also be dimension or skip variables, converted to integers in \texttt{sp}, or octal numbers given as \texttt{\textendash} followed by digits other than \texttt{8} and \texttt{9}, or hexadecimal numbers given as \texttt{\textendash} followed by digits or upper case letters from \texttt{A} to \texttt{F}, or the character code of some character or one-character control sequence, given as \texttt{\textasciigrave\textless \texttt{char}}.
\texttt{\textbackslash int_eval:w \{integer expression\}}

Evaluates the \texttt{\{integer expression\}} as described for \texttt{\int_eval:n}. The end of the expression is the first token encountered that cannot form part of such an expression. If that token is \texttt{\scan_stop}: it is removed, otherwise not. Spaces do not terminate the expression. However, spaces terminate explicit integers, and this may terminate the expression: for instance, \texttt{\int_eval:w 1_{u+1_{u}9}} expands to 29 since the digit 9 is not part of the expression.

\texttt{\int_sign:n \{\texttt{\{intexpr\}}\}}

Evaluates the \texttt{\{integer expression\}} then leaves 1 or 0 or −1 in the input stream according to the sign of the result.

\texttt{\int_abs:n \{\texttt{\{intexpr\}}\}}

Evaluates the \texttt{\{integer expression\}} as described for \texttt{\int_eval:n} and leaves the absolute value of the result in the input stream as an \texttt{\langle integer denotation \rangle} after two expansions.

\texttt{\int_div_round:nn \{\texttt{\{intexpr\}}\} \{\texttt{\{intexpr\}}\}}

Evaluates the two \texttt{\{integer expressions\}} as described earlier, then divides the first value by the second, and rounds the result to the closest integer. Ties are rounded away from zero. Note that this is identical to using \texttt{/} directly in an \texttt{\langle integer expression \rangle}. The result is left in the input stream as an \texttt{\langle integer denotation \rangle} after two expansions.

\texttt{\int_div_truncate:nn \{\texttt{\{intexpr\}}\} \{\texttt{\{intexpr\}}\}}

Evaluates the two \texttt{\{integer expressions\}} as described earlier, then divides the first value by the second, and rounds the result towards zero. Note that division using \texttt{/} rounds to the closest integer instead. The result is left in the input stream as an \texttt{\langle integer denotation \rangle} after two expansions.

\texttt{\int_max:nn \{\texttt{\{intexpr\}}\} \{\texttt{\{intexpr\}}\}}

\texttt{\int_min:nn \{\texttt{\{intexpr\}}\} \{\texttt{\{intexpr\}}\}}

Evaluates the \texttt{\{integer expressions\}} as described for \texttt{\int_eval:n} and leaves either the larger or smaller value in the input stream as an \texttt{\langle integer denotation \rangle} after two expansions.

\texttt{\int_mod:nn \{\texttt{\{intexpr\}}\} \{\texttt{\{intexpr\}}\}}

Evaluates the two \texttt{\{integer expressions\}} as described earlier, then calculates the integer remainder of dividing the first expression by the second. This is obtained by subtracting \texttt{\int_div_truncate:nn \{\texttt{\{intexpr\}}\} \{\texttt{\{intexpr\}}\}} times \texttt{\{intexpr\}} from \texttt{\{intexpr\}}. Thus, the result has the same sign as \texttt{\{intexpr\}} and its absolute value is strictly less than that of \texttt{\{intexpr\}}. The result is left in the input stream as an \texttt{\langle integer denotation \rangle} after two expansions.

2 Creating and initialising integers

\texttt{\int_new:N \{integer\}}

Creates a new \texttt{\{integer\}} or raises an error if the name is already taken. The declaration is global. The \texttt{\{integer\}} is initially equal to 0.
\int\text{const}:N \{\text{integer expression}\} \n
Creates a new constant \(\text{integer}\) or raises an error if the name is already taken. The value of the \(\text{integer}\) is set globally to the \(\text{integer expression}\).

\int\text{zero}:N \{\text{integer}\} \n
Sets \(\text{integer}\) to 0.

\int\text{zero}\text{new}:N \{\text{integer}\} \n
Ensures that the \(\text{integer}\) exists globally by applying \int\text{new}:N if necessary, then applies \int\text{(g)zero}:N to leave the \(\text{integer}\) set to zero.

\int\text{set}\text{eq}:NN \{\text{integer}_1\} \{\text{integer}_2\} \n
Sets the content of \(\text{integer}_1\) equal to that of \(\text{integer}_2\).

\int\text{if}\text{exist}_p:N \{\text{int}\} \n
\int\text{if}\text{exist}:NTF \{\text{true code}\} \{\text{false code}\} \n
Tests whether the \(\text{int}\) is currently defined. This does not check that the \(\text{int}\) really is an integer variable.

3 Setting and incrementing integers

\int\text{add}:N \{\text{integer}\} \{\text{integer expression}\} \n
Adds the result of the \(\text{integer expression}\) to the current content of the \(\text{integer}\).

\int\text{decr}:N \{\text{integer}\} \n
Decreases the value stored in \(\text{integer}\) by 1.

\int\text{incr}:N \{\text{integer}\} \n
Increases the value stored in \(\text{integer}\) by 1.
\set:Nn \set:cn \gset:Nn \gset:cn
Sets \texttt{integer} to the value of \texttt{integer expression}, which must evaluate to an integer (as described for \texttt{int_eval:n}).

\set:Nn \set:cn \gset:Nn \gset:cn
Updated: 2011-10-22

\sub:Nn \sub:cn \gsub:Nn \gsub:cn
Subtracts the result of the \texttt{integer expression} from the current content of the \texttt{integer}.

\sub:Nn \sub:cn \gsub:Nn \gsub:cn
Updated: 2011-10-22

4 Using integers

\use:N \use:cn
Recovers the content of an \texttt{integer} and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where an \texttt{integer} is required (such as in the first and third arguments of \texttt{int_compare:nNnTF}).

\TeXHackersNote: \texttt{int_use:N} is the \TeX primitive \texttt{the}: this is one of several \LATEX names for this primitive.

5 Integer expression conditionals

\compare_p:nNn \compare:nNnTF
\compare:nNnTF
This function first evaluates each of the \texttt{integer expressions} as described for \texttt{int_eval:n}. The two results are then compared using the \texttt{relation}:

\begin{itemize}
 \item Equal =
 \item Greater than >
 \item Less than <
\end{itemize}

This function is less flexible than \texttt{int_compare:nTF} but around 5 times faster.
This function evaluates the (integer expressions) as described for \texttt{\int_eval:n} and compares consecutive result using the corresponding (relation), namely it compares (\texttt{intexpr}) and (\texttt{intexpr}_2) using the (\texttt{relation}_1), then (\texttt{intexpr}_2) and (\texttt{intexpr}_3) using the (\texttt{relation}_2), until finally comparing (\texttt{intexpr}_N) and (\texttt{intexpr}_{N+1}) using the (\texttt{relation}_N). The test yields \texttt{true} if all comparisons are \texttt{true}. Each (integer expression) is evaluated only once, and the evaluation is lazy, in the sense that if one comparison is \texttt{false}, then no other (integer expression) is evaluated and no other comparison is performed. The (relations) can be any of the following:

- Equal \quad = \text{ or } ==
- Greater than or equal to \quad >=
- Greater than \quad >
- Less than or equal to \quad <=
- Less than \quad <
- Not equal \quad !=

This function is more flexible than \texttt{\int_compare:nNnTF} but around 5 times slower.
This function evaluates the \(test\ integer\ expression\) and compares this in turn to each of the \(integer\ expression\ cases\). If the two are equal then the associated \(code\) is left in the input stream and other cases are discarded. If any of the cases are matched, the \(true\ code\) is also inserted into the input stream (after the code for the appropriate case), while if none match then the \(false\ code\) is inserted. The function \\texttt{\int_case:nn}, which does nothing if there is no match, is also available. For example

\[
\texttt{\int_case:nnF}\{ \, 2 \times 5 \, \} \{ \, 5 \, \} \{ \text{Small} \} \{ \, 4 + 6 \, \} \{ \text{Medium} \} \{ \, -2 \times 10 \, \} \{ \text{Negative} \} \{ \, \text{No idea!} \, \}
\]

leaves “Medium” in the input stream.

This function first evaluates the \(integer\ expression\) as described for \texttt{\int_eval:n}. It then evaluates if this is odd or even, as appropriate.

6 Integer expression loops

\[
\texttt{\int_if_even_p:n} \quad \texttt{\int_if_odd_p:n} \quad \texttt{\int_if_even:n} \quad \texttt{\int_if_odd:n} \quad \texttt{\int_if_even:nTF} \quad \texttt{\int_if_odd:nTF}
\]

Places the \(code\) in the input stream for \TeX to process, and then evaluates the relationship between the two \(integer\ expressions\) as described for \texttt{\int_compare:nNnTF}. If the test is \texttt{false} then the \(code\) is inserted into the input stream again and a loop occurs until the \(relation\) is \texttt{true}.

Places the \(code\) in the input stream for \TeX to process, and then evaluates the relationship between the two \(integer\ expressions\) as described for \texttt{\int_compare:nNnTF}. If the test is \texttt{true} then the \(code\) is inserted into the input stream again and a loop occurs until the \(relation\) is \texttt{false}.

93
\texttt{\textbackslash int_until_do:nn} \hspace{1em} \texttt{\textbackslash int_until_do:nn \{(intexpr_1\}} \ \texttt{(relation)} \ \texttt{\{(intexpr_2\}} \ \texttt{\{(code\}}

Evaluates the relationship between the two \textit{integer expressions} as described for \texttt{\textbackslash int_compare:nTF}, and then places the \texttt{(code)} in the input stream if the \texttt{(relation)} is \texttt{false}. After the \texttt{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \texttt{true}.

\texttt{\textbackslash int_while_do:nn} \hspace{1em} \texttt{\textbackslash int_while_do:nn \{(intexpr_1\}} \ \texttt{(relation)} \ \texttt{\{(intexpr_2\}} \ \texttt{\{(code\}}

Evaluates the relationship between the two \textit{integer expressions} as described for \texttt{\textbackslash int_compare:nTF}, and then places the \texttt{(code)} in the input stream if the \texttt{(relation)} is \texttt{true}. After the \texttt{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \texttt{false}.

\texttt{\textbackslash int_do_until:nn} \hspace{1em} \texttt{\textbackslash int_do_until:nn \{(integer relation\}} \ \texttt{\{(code\}}

Places the \texttt{(code)} in the input stream for \TeX{} to process, and then evaluates the \texttt{(integer relation)} as described for \texttt{\textbackslash int_compare:nTF}. If the test is \texttt{false} then the \texttt{(code)} is inserted into the input stream again and a loop occurs until the \texttt{(relation)} is \texttt{true}.

\texttt{\textbackslash int_do_while:nn} \hspace{1em} \texttt{\textbackslash int_do_while:nn \{(integer relation\}} \ \texttt{\{(code\}}

Places the \texttt{(code)} in the input stream for \TeX{} to process, and then evaluates the \texttt{(integer relation)} as described for \texttt{\textbackslash int_compare:nTF}. If the test is \texttt{true} then the \texttt{(code)} is inserted into the input stream again and a loop occurs until the \texttt{(relation)} is \texttt{false}.

\texttt{\textbackslash int_until_do:nn} \hspace{1em} \texttt{\textbackslash int_until_do:nn \{(integer relation\}} \ \texttt{\{(code\}}

Evaluates the \texttt{(integer relation)} as described for \texttt{\textbackslash int_compare:nTF}, and then places the \texttt{(code)} in the input stream if the \texttt{(relation)} is \texttt{false}. After the \texttt{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \texttt{true}.

\texttt{\textbackslash int_while_do:nn} \hspace{1em} \texttt{\textbackslash int_while_do:nn \{(integer relation\}} \ \texttt{\{(code\}}

Evaluates the \texttt{(integer relation)} as described for \texttt{\textbackslash int_compare:nTF}, and then places the \texttt{(code)} in the input stream if the \texttt{(relation)} is \texttt{true}. After the \texttt{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \texttt{false}.
7 Integer step functions

\texttt{\int_step_function:nN \{final value\} \{function\}} \hfill \texttt{\int_step_function:nnN \{initial value\} \{final value\} \{function\}} \hfill \texttt{\int_step_function:nnnN \{initial value\} \{step\} \{final value\} \{function\}}

This function first evaluates the \{initial value\}, \{step\} and \{final value\}, all of which should be integer expressions. The \{function\} is then placed in front of each \{value\} from the \{initial value\} to the \{final value\} in turn (using \{step\} between each \{value\}). The \{step\} must be non-zero. If the \{step\} is positive, the loop stops when the \{value\} becomes larger than the \{final value\}. If the \{step\} is negative, the loop stops when the \{value\} becomes smaller than the \{final value\}. The \{function\} should absorb one numerical argument. For example

\texttt{\cs_set:Npn \my_func:n \#1 \{ I-saw-\#1 \} \quad \int_step_function:nnnN \{ initial value \} \{ 1 \} \{ 5 \} \my_func:n}

would print

[I saw 1] [I saw 2] [I saw 3] [I saw 4] [I saw 5]

The functions \texttt{\int_step_function:nN} and \texttt{\int_step_function:nnN} both use a fixed \{step\} of 1, and in the case of \texttt{\int_step_function:nN} the \{initial value\} is also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\texttt{\int_step_inline:nn \{final value\} \{code\}} \hfill \texttt{\int_step_inline:nn \{initial value\} \{final value\} \{code\}} \hfill \texttt{\int_step_inline:nn \{initial value\} \{step\} \{final value\} \{code\}}

This function first evaluates the \{initial value\}, \{step\} and \{final value\}, all of which should be integer expressions. Then for each \{value\} from the \{initial value\} to the \{final value\} in turn (using \{step\} between each \{value\}), the \{code\} is inserted into the input stream with \#1 replaced by the current \{value\}. Thus the \{code\} should define a function of one argument (\#1).

The functions \texttt{\int_step_inline:nn} and \texttt{\int_step_inline:nnn} both use a fixed \{step\} of 1, and in the case of \texttt{\int_step_inline:nn} the \{initial value\} is also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\texttt{\int_step_variable:nN \{final value\} \{tl var\} \{code\}} \hfill \texttt{\int_step_variable:nnN \{initial value\} \{final value\} \{tl var\} \{code\}} \hfill \texttt{\int_step_variable:nnN \{initial value\} \{step\} \{final value\} \{tl var\} \{code\}}

This function first evaluates the \{initial value\}, \{step\} and \{final value\}, all of which should be integer expressions. Then for each \{value\} from the \{initial value\} to the \{final value\} in turn (using \{step\} between each \{value\}), the \{code\} is inserted into the input stream, with the \{tl var\} defined as the current \{value\}. Thus the \{code\} should make use of the \{tl var\}.

The functions \texttt{\int_step_variable:nN} and \texttt{\int_step_variable:nnN} both use a fixed \{step\} of 1, and in the case of \texttt{\int_step_variable:nN} the \{initial value\} is also fixed as 1. These functions are provided as simple short-cuts for code clarity.
8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply to any integer expressions.

\texttt{\textbackslash int\textunderscore to\textunderscore arabic:n} \{\textit{integer expression}\}\texttt{*

Places the value of the \textit{integer expression} in the input stream as digits, with category code 12 (other).

\texttt{\textbackslash int\textunderscore to\textunderscore alph:n} \{\textit{integer expression}\} \texttt{*

\texttt{\textbackslash int\textunderscore to\textunderscore Alph:n} \texttt{*

Evaluates the \textit{integer expression} and converts the result into a series of letters, which are then left in the input stream. The conversion rule uses the 26 letters of the English alphabet, in order, adding letters when necessary to increase the total possible range of representable numbers. Thus

\texttt{\textbackslash int\textunderscore to\textunderscore alph:n} \{ 1 \}

places a in the input stream,

\texttt{\textbackslash int\textunderscore to\textunderscore alph:n} \{ 26 \}

is represented as z and

\texttt{\textbackslash int\textunderscore to\textunderscore alph:n} \{ 27 \}

is converted to aa. For conversions using other alphabets, use \texttt{\textbackslash int\textunderscore to\textunderscore symbols:nnn} to define an alphabet-specific function. The basic \texttt{\textbackslash int\textunderscore to\textunderscore alph:n} and \texttt{\textbackslash int\textunderscore to\textunderscore Alph:n} functions should not be modified. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\texttt{\textbackslash int\textunderscore symbols:nnn} \{\textit{integer expression}\} \{\textit{total symbols}\} \{\textit{value to symbol mapping}\}

This is the low-level function for conversion of an \textit{integer expression} into a symbolic form (often letters). The \textit{total symbols} available should be given as an integer expression. Values are actually converted to symbols according to the \textit{value to symbol mapping}. This should be given as \textit{total symbols} pairs of entries, a number and the appropriate symbol. Thus the \texttt{\textbackslash int\textunderscore to\textunderscore alph:n} function is defined as

\texttt{\cs\textunderscore new:Npn \textbackslash int\textunderscore to\textunderscore alph:n \#1}

\{\texttt{\textbackslash int\textunderscore symbols:nnn \#1} \{ 26 \}

\{ \{ 1 \} \{ a \}

\{ 2 \} \{ b \}

\ldots

\{ 26 \} \{ z \}

\}
\int_to_bin:n \{\textit{integer expression}\} * New: 2014-02-11
Calculates the value of the \textit{integer expression} and places the binary representation of the result in the input stream.

\int_to_hex:n \{\textit{integer expression}\} * New: 2014-02-11
Calculates the value of the \textit{integer expression} and places the hexadecimal (base 16) representation of the result in the input stream. Letters are used for digits beyond 9: lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_oct:n \{\textit{integer expression}\} * New: 2014-02-11
Calculates the value of the \textit{integer expression} and places the octal (base 8) representation of the result in the input stream. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_base:nn \{\textit{integer expression}\} \{\textit{base}\} \int_to_Base:nn Updated: 2014-02-11
Calculates the value of the \textit{integer expression} and converts it into the appropriate representation in the \textit{base}; the later may be given as an integer expression. For bases greater than 10 the higher “digits” are represented by letters from the English alphabet: lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The maximum \textit{base} value is 36. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\textbf{\texttt{\TeX}hackers note:} This is a generic version of \int_to_bin:n, \textit{etc}. \\
\int_to_roman:n \{\textit{integer expression}\} \int_to_Roman:n Updated: 2011-10-22
Places the value of the \textit{integer expression} in the input stream as Roman numerals, either lower case (\texttt{\int_to_roman:n}) or upper case (\texttt{\int_to_Roman:n}). If the value is negative or zero, the output is empty. The Roman numerals are letters with category code 11 (letter). The letters used are \texttt{mdclxvi}, repeated as needed: the notation with bars (such as \texttt{\textbar v} for 5000) is not used. For instance \texttt{\int_to_roman:n \{8249\}} expands to \texttt{mmmmmmmmccxlix}.

\textbf{9 Converting from other formats to integers}

\int_from_alph:n \{\textit{letters}\} Updated: 2014-08-25
Converts the \textit{letters} into the integer (base 10) representation and leaves this in the input stream. The \textit{letters} are first converted to a string, with no expansion. Lower and upper case letters from the English alphabet may be used, with “a” equal to 1 through to “z” equal to 26. The function also accepts a leading sign, made of + and - . This is the inverse function of \texttt{\int_to_alph:n} and \texttt{\int_to_Alph:n}.
\int_from_bin:n \star
\text{Converts the }\langle\text{binary number}\rangle\text{ into the integer (base 10) representation and leaves this in the input stream. The }\langle\text{binary number}\rangle\text{ is first converted to a string, with no expansion. The function accepts a leading sign, made of }+\text{ and }-,\text{ followed by binary digits. This is the inverse function of }\int_to_bin:n.}

\int_from_hex:n \star
\text{Converts the }\langle\text{hexadecimal number}\rangle\text{ into the integer (base 10) representation and leaves this in the input stream. Digits greater than 9 may be represented in the }\langle\text{hexadecimal number}\rangle\text{ by upper or lower case letters. The }\langle\text{hexadecimal number}\rangle\text{ is first converted to a string, with no expansion. The function also accepts a leading sign, made of }+\text{ and }-.\text{ This is the inverse function of }\int_to_hex:n\text{ and }\int_to_Hex:n.}

\int_from_oct:n \star
\text{Converts the }\langle\text{octal number}\rangle\text{ into the integer (base 10) representation and leaves this in the input stream. The }\langle\text{octal number}\rangle\text{ is first converted to a string, with no expansion. The function accepts a leading sign, made of }+\text{ and }-,\text{ followed by octal digits. This is the inverse function of }\int_to_oct:n.}

\int_from_roman:n \star
\text{Converts the }\langle\text{roman numeral}\rangle\text{ into the integer (base 10) representation and leaves this in the input stream. The }\langle\text{roman numeral}\rangle\text{ is first converted to a string, with no expansion. The }\langle\text{roman numeral}\rangle\text{ may be in upper or lower case; if the numeral contains characters besides mdcclxvi or MDCLXVI then the resulting value is }-1.\text{ This is the inverse function of }\int_to_roman:n\text{ and }\int_to_Roman:n.}

\int_from_base:nn \star
\text{Converts the }\langle\text{number}\rangle\text{ expressed in }\langle\text{base}\rangle\text{ into the appropriate value in base }10.\text{ The }\langle\text{number}\rangle\text{ is first converted to a string, with no expansion. The }\langle\text{number}\rangle\text{ should consist of digits and letters (either lower or upper case), plus optionally a leading sign. The maximum }\langle\text{base}\rangle\text{ value is }36.\text{ This is the inverse function of }\int_to_base:nn\text{ and }\int_to_Base:nn.}

10 Random integers
\int_rand:n \star
\text{Evaluates the }\langle\text{integer expression}\rangle\text{ then produces a pseudo-random number between }1\text{ and the }\langle\text{integer expression}\rangle\text{ (included). This is not available in older versions of Xe\TeX.}

\int_rand:nn \star
\text{Evaluates the two }\langle\text{integer expressions}\rangle\text{ and produces a pseudo-random number between the two (with bounds included). This is not available in older versions of Xe\TeX.}
11 Viewing integers

\int_show:N \int_show:c
\int_show:n \langle integer \rangle
Displays the value of the \langle integer \rangle on the terminal.

\int_log:N \int_log:c
\int_log:n \langle integer expression \rangle
Displays the result of evaluating the \langle integer expression \rangle on the terminal.

12 Constant integers

\c_zero_int \c_one_int
\c_max_int
Integer values used with primitive tests and assignments: their self-terminating nature makes these more convenient and faster than literal numbers.

The maximum value that can be stored as an integer.

\c_max_register_int
Maximum number of registers.

\c_max_char_int
Maximum character code completely supported by the engine.

13 Scratch integers

\l_tmpa_int \l_tmpb_int
Scratch integer for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_int \g_tmpb_int
Scratch integer for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
13.1 Direct number expansion

\texttt{\int_value:w * \int_value:w \langle integer \rangle \\
\int_value:w \langle integer denotation \rangle \langle optional space \rangle}

<table>
<thead>
<tr>
<th>New: 2018-03-27</th>
</tr>
</thead>
</table>

Expands the following tokens until an \langle integer \rangle is formed, and leaves a normalized form (no leading sign except for negative numbers, no leading digit 0 except for zero) in the input stream as category code 12 (other) characters. The \langle integer \rangle can consist of any number of signs (with intervening spaces) followed by

- an integer variable (in fact, any \TeX register except \texttt{\toks}) or
- explicit digits (or by \texttt{\langle octal digits \rangle} or \texttt{\langle hexadecimal digits \rangle} or \texttt{\langle character \rangle}).

In this last case expansion stops once a non-digit is found; if that is a space it is removed as in \texttt{f-expansion}, and so \texttt{\exp_stop_f:} may be employed as an end marker. Note that protected functions are expanded by this process.

This function requires exactly one expansion to produce a value, and so is suitable for use in cases where a number is required “directly”. In general, \texttt{\int_eval:n} is the preferred approach to generating numbers.

\textbf{\TeXHackers note:} This is the \TeX primitive \texttt{\number}.

14 Primitive conditionals

\texttt{\if_int_compare:w \if_int_compare:w \langle integer_1 \rangle \langle relation \rangle \langle integer_2 \rangle \\
\langle true code \rangle \\
\else: \\
\langle false code \rangle \\
\fi:}

Compare two integers using \langle relation \rangle, which must be one of =, < or > with category code 12. The \texttt{\else:} branch is optional.

\textbf{\TeXHackers note:} These are both names for the \TeX primitive \texttt{\ifnum}.

\texttt{\if_case:w \or: \langle integer \rangle \langle case_0 \rangle \\
\or: \langle case_1 \rangle \\
\or: ... \\
\else: \langle default \rangle \\
\fi:}

Selects a case to execute based on the value of the \langle integer \rangle. The first case (\langle case_0 \rangle) is executed if \langle integer \rangle is 0, the second (\langle case_1 \rangle) if the \langle integer \rangle is 1, etc. The \langle integer \rangle may be a literal, a constant or an integer expression (\textit{e.g.} using \texttt{\int_eval:n}).

\textbf{\TeXHackers note:} These are the \TeX primitives \texttt{\ifcase} and \texttt{\or}.
\if_int_odd:w * \if_int_odd:w \langle tokens \rangle \langle optional space \rangle
\langle true code \rangle
\else:
\langle true code \rangle
\fi:

Expands \langle tokens \rangle until a non-numeric token or a space is found, and tests whether the resulting \langle integer \rangle is odd. If so, \langle true code \rangle is executed. The \else: branch is optional.

\TeXhackers note: This is the \TeX primitive \ifodd.
Part XII
The l3flag package: Expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This module is meant mostly for kernel use: in almost all cases, booleans or integers should be preferred to flags because they are very significantly faster.

A flag can hold any non-negative value, which we call its \emph{height}. In expansion-only contexts, a flag can only be “raised”: this increases the \emph{height} by 1. The \emph{height} can also be queried expandably. However, decreasing it, or setting it to zero requires non-expandable assignments.

Flag variables are always local. They are referenced by a \emph{(flag name)} such as \texttt{str_missing}. The \emph{(flag name)} is used as part of \texttt{\use{c}} constructions hence is expanded at point of use. It must expand to character tokens only, with no spaces.

A typical use case of flags would be to keep track of whether an exceptional condition has occurred during expandable processing, and produce a meaningful (non-expandable) message after the end of the expandable processing. This is exemplified by \texttt{l3str_convert}, which for performance reasons performs conversions of individual characters expandably and for readability reasons produces a single error message describing incorrect inputs that were encountered.

Flags should not be used without carefully considering the fact that raising a flag takes a time and memory proportional to its height. Flags should not be used unless unavoidable.

1 Setting up flags

\begin{verbatim}
\flag_new:n \flag_new:n \{\langle flag name\rangle}\}
\end{verbatim}

Creates a new flag with a name given by \emph{(flag name)}, or raises an error if the name is already taken. The \emph{(flag name)} may not contain spaces. The declaration is global, but flags are always local variables. The \emph{(flag)} initially has zero height.

\begin{verbatim}
\flag_clear:n \flag_clear:n \{\langle flag name\rangle}\}
\end{verbatim}

The \emph{(flag)}’s height is set to zero. The assignment is local.

\begin{verbatim}
\flag_clear_new:n \flag_clear_new:n \{\langle flag name\rangle}\}
\end{verbatim}

Ensures that the \emph{(flag)} exists globally by applying \\texttt{\flag_new:n} if necessary, then applies \\texttt{\flag_clear:n}, setting the height to zero locally.

\begin{verbatim}
\flag_show:n \flag_show:n \{\langle flag name\rangle}\}
\end{verbatim}

Displays the \emph{(flag)}’s height in the terminal.

\begin{verbatim}
\flag_log:n \flag_log:n \{\langle flag name\rangle}\}
\end{verbatim}

Writes the \emph{(flag)}’s height to the log file.
2 Expandable flag commands

\flag_if_exist:n \{⟨flag name⟩\}
\flag_if_exist:nTF
This function returns true if the ⟨flag name⟩ references a flag that has been defined previously, and false otherwise.

\flag_if_raised:n \{⟨flag name⟩\}
\flag_if_raised:nTF
This function returns true if the ⟨flag⟩ has non-zero height, and false if the ⟨flag⟩ has zero height.

\flag_height:n \{⟨flag name⟩\}
Expands to the height of the ⟨flag⟩ as an integer denotation.

\flag_raise:n \{⟨flag name⟩\}
The ⟨flag⟩’s height is increased by 1 locally.
Part XIII
The \texttt{l3prg} package
Control structures

Conditional processing in \LaTeXX is defined as something that performs a series of tests, possibly involving assignments and calling other functions that do not read further ahead in the input stream. After processing the input, a \textit{state} is returned. The states returned are \texttt{(true)} and \texttt{(false)}.

\LaTeXX has two forms of conditional flow processing based on these states. The first form is predicate functions that turn the returned state into a boolean \texttt{(true)} or \texttt{(false)}. For example, the function \texttt{\textbackslash cs_if_free_p:N} checks whether the control sequence given as its argument is free and then returns the boolean \texttt{(true)} or \texttt{(false)} values to be used in testing with \texttt{\textbackslash if_predicate:w} or in functions to be described below. The second form is the kind of functions choosing a particular argument from the input stream based on the result of the testing as in \texttt{\textbackslash cs_if_free_nTF} which also takes one argument (the \texttt{N}) and then executes either \texttt{true} or \texttt{false} depending on the result.

\texttt{\textbackslash if...\textbackslash fi:}TEXhackers note: The arguments are executed after exiting the underlying \texttt{\textbackslash if...\textbackslash fi:} structure.

1 Defining a set of conditional functions

\begin{verbatim}
\prg_new_conditional:Npnn \name \argspec \parameters \conditions \code
\prg_new_conditional:Nnn \name \argspec \conditions \code
\prg_new_protected_conditional:Npnn \name \argspec \parameters \conditions \code
\prg_new_protected_conditional:Nnn \name \argspec \conditions \code
\end{verbatim}

These functions create a family of conditionals using the same \texttt{\{code\}} to perform the test created. Those conditionals are expandable if \texttt{\{code\}} is. The \texttt{\textbackslash new} versions check for existing definitions and perform assignments globally (\texttt{cf. \textbackslash cs_new:Npnn}) whereas the \texttt{\textbackslash set} versions do no check and perform assignments locally (\texttt{cf. \textbackslash cs_set:Npnn}). The conditionals created are dependent on the comma-separated list of \texttt{\{conditions\}}, which should be one or more of \texttt{T}, \texttt{F} and \texttt{TF}.

\begin{verbatim}
\prg_new_protected_conditional:Npnn \name \argspec \parameters \conditions \code
\prg_new_protected_conditional:Nnn \name \argspec \conditions \code
\end{verbatim}

These functions create a family of protected conditionals using the same \texttt{\{code\}} to perform the test created. The \texttt{\{code\}} does not need to be expandable. The \texttt{\textbackslash new} version check for existing definitions and perform assignments globally (\texttt{cf. \textbackslash cs_new:Npnn}) whereas the \texttt{\textbackslash set} version do not (\texttt{cf. \textbackslash cs_set:Npnn}). The conditionals created are dependent on the comma-separated list of \texttt{\{conditions\}}, which should be one or more of \texttt{T}, \texttt{F} and \texttt{TF} (not \texttt{p}).

The conditionals are defined by \texttt{\prg_new_conditional:Npnn} and friends as:
• \(\langle \text{name} \rangle_p : \langle \text{arg spec} \rangle \) — a predicate function which will supply either a logical true or logical false. This function is intended for use in cases where one or more logical tests are combined to lead to a final outcome. This function cannot be defined for protected conditionals.

• \(\langle \text{name} \rangle : \langle \text{arg spec} \rangle T \) — a function with one more argument than the original \(\langle \text{arg spec} \rangle \) demands. The \(\langle \text{true branch} \rangle \) code in this additional argument will be left on the input stream only if the test is true.

• \(\langle \text{name} \rangle : \langle \text{arg spec} \rangle F \) — a function with one more argument than the original \(\langle \text{arg spec} \rangle \) demands. The \(\langle \text{false branch} \rangle \) code in this additional argument will be left on the input stream only if the test is false.

• \(\langle \text{name} \rangle : \langle \text{arg spec} \rangle TF \) — a function with two more argument than the original \(\langle \text{arg spec} \rangle \) demands. The \(\langle \text{true branch} \rangle \) code in the first additional argument will be left on the input stream if the test is true, while the \(\langle \text{false branch} \rangle \) code in the second argument will be left on the input stream if the test is false.

The \(\langle \text{code} \rangle \) of the test may use \(\langle \text{parameters} \rangle \) as specified by the second argument to \text{prg_set_conditional:Npnn}: this should match the \(\langle \text{argument specification} \rangle \) but this is not enforced. The Nnn versions infer the number of arguments from the argument specification given (cf. \text{cs_new:Nn}, etc.). Within the \(\langle \text{code} \rangle \), the functions \text{prg_return_true:} and \text{prg_return_false:} are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\[
\text{prg_set_conditional:Npnn} \ \text{foo_if_bar}:NN \ #1#2 \ { \ p , T , TF } \\
\{ \\
\text{if_meaning:w} \ \l_tmpa_tl \ #1 \\
\text{prg_return_true:} \\
\text{else:} \\
\text{if_meaning:w} \ \l_tmpa_tl \ #2 \\
\text{prg_return_true:} \\
\text{else:} \\
\text{prg_return_false:} \\
\text{fi:} \\
\text{fi:} \\
\}
\]

This defines the function \text{foo_if_bar}_p:NN, \text{foo_if_bar}_NNTF and \text{foo_if_bar}_NNT but not \text{foo_if_bar}_NNF (because F is missing from the \(\langle \text{conditions} \rangle \) list). The return statements take care of resolving the remaining \text{else:} and \text{fi:} before returning the state. There must be a return statement for each branch; failing to do so will result in erroneous output if that branch is executed.

\[
\text{prg_new_eq_conditional:Nnn} \ \text{prg_new_eq_conditional:Nnn} \ \text{prg_set_eq_conditional:Nnn} \ \{ \langle \text{conditions} \rangle \}
\]

These functions copy a family of conditionals. The new version checks for existing definitions (cf. \text{cs_new_eq:NN}) whereas the set version does not (cf. \text{cs_set_eq:NN}). The conditionals copied are depended on the comma-separated list of \(\langle \text{conditions} \rangle \), which should be one or more of p, T, F and TF.
These "return" functions define the logical state of a conditional statement. They appear within the code for a conditional function generated by \prg_set_conditional:Npnn, etc., to indicate when a true or false branch should be taken. While they may appear multiple times each within the code of such conditionals, the execution of the conditional must result in the expansion of one of these two functions exactly once.

The return functions trigger what is internally an \textit{f}-expansion process to complete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_return_false: there must be no non-expandable material in the input stream for the remainder of the expansion of the conditional code. This includes other instances of either of these functions.

\begin{verbatim}
\prg_generate_conditional_variant:Nnn \prg_generate_conditional_variant:Nnn
\end{verbatim}

Defines argument-specifier variants of conditionals. This is equivalent to running \texttt{\cs_generate_variant:Nn \langle conditional \rangle \{ \langle variant argument specifiers \rangle \} \langle condition specifiers \rangle} on each \langle conditional \rangle described by the \langle condition specifiers \rangle. These base-form \langle conditionals \rangle are obtained from the \langle name \rangle and \langle arg spec \rangle as described for \prg_new_conditional:Npnn, and they should be defined.

\section{The boolean data type}

This section describes a boolean data type which is closely connected to conditional processing as sometimes you want to execute some code depending on the value of a switch (\textit{e.g.}, draft/final) and other times you perhaps want to use it as a predicate function in an \texttt{if predicate:w} test. The problem of the primitive \texttt{if_false:} and \texttt{if_true:} tokens is that it is not always safe to pass them around as they may interfere with scanning for termination of primitive conditional processing. Therefore, we employ two canonical booleans: \texttt{c_true_bool} or \texttt{c_false_bool}. Besides preventing problems as described above, it also allows us to implement a simple boolean parser supporting the logical operations And, Or, Not, \textit{etc.} which can then be used on both the boolean type and predicate functions.

All conditional \texttt{bool_} functions except assignments are expandable and expect the input to also be fully expandable (which generally means being constructed from predicate functions and booleans, possibly nested).

\textbf{\TeX{e}hackers note:} The \texttt{bool} data type is not implemented using the \texttt{iffalse/ifttrue} primitives, in contrast to \texttt{newif, etc.}, in plain \TeX, \LaTeX\ and so on. Programmers should not base use of \texttt{bool} switches on any particular expectation of the implementation.

\begin{verbatim}
\bool_new:N \bool_new:c
\end{verbatim}

Creates a new \langle boolean \rangle or raises an error if the name is already taken. The declaration is global. The \langle boolean \rangle is initially \texttt{false}.

106
\bool_const:Nn
\bool_const:cn
New: 2017-11-28
Creates a new constant \langle boolean \rangle or raises an error if the name is already taken. The value of the \langle boolean \rangle is set globally to the result of evaluating the \langle boolexpr \rangle.

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c
Sets \langle boolean \rangle logically false.

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c
Sets \langle boolean \rangle logically true.

\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)
Sets \langle boolean_1 \rangle to the current value of \langle boolean_2 \rangle.

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn
Updated: 2017-07-15
Evaluates the \langle boolean expression \rangle as described for \bool_if:nTF, and sets the \langle boolean \rangle variable to the logical truth of this evaluation.

\bool_if_p:N
\bool_if:p:c *
\bool_if:NTF *
\bool_if:cFF *
Updated: 2017-07-15
Tests the current truth of \langle boolean \rangle, and continues expansion based on this result.

\bool_show:N
\bool_show:c
New: 2012-02-09
Updated: 2015-08-01
Displays the logical truth of the \langle boolean \rangle on the terminal.

\bool_show:n
New: 2012-02-09
Updated: 2017-07-15
Displays the logical truth of the \langle boolean expression \rangle on the terminal.

\bool_log:N
\bool_log:c
New: 2014-08-22
Updated: 2015-08-03
Writes the logical truth of the \langle boolean \rangle in the log file.
\bool_log:n ⟨boolean expression⟩

Writes the logical truth of the ⟨boolean expression⟩ in the log file.

\bool_if_exist_p:N ⟨boolean⟩
\bool_if_exist:NTF ⟨boolean⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨boolean⟩ is currently defined. This does not check that the ⟨boolean⟩ really is a boolean variable.

\l_tmpa_bool
\l_tmpb_bool

A scratch boolean for local assignment. It is never used by the kernel code, and so is safe for use with any \LaTeX3-defined function. However, it may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_bool
\g_tmpb_bool

A scratch boolean for global assignment. It is never used by the kernel code, and so is safe for use with any \LaTeX3-defined function. However, it may be overwritten by other non-kernel code and so should only be used for short-term storage.

3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean ⟨true⟩ or ⟨false⟩ values, it seems only fitting that we also provide a parser for ⟨boolean expressions⟩.

A boolean expression is an expression which given input in the form of predicate functions and boolean variables, return boolean ⟨true⟩ or ⟨false⟩. It supports the logical operations And, Or and Not as the well-known infix operators && and || and prefix ! with their usual precedences (namely, && binds more tightly than ||). In addition to this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
 \int_compare_p:n { 2 = 3 } ||
 \int_compare_p:n { 4 <= 4 } ||
 \str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and || evaluate both operands in all cases, even when the first operand is enough to determine the result. This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_- ... functions.

\LaTeXhackers note: The eager evaluation of boolean expressions is unfortunately necessary in \LaTeX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced) arguments of some predicates. For instance, the innocuous-looking expression below would break (in a lazy parser) if #1 were a closing parenthesis and \l_tmpa_bool were true.

(\l_tmpa_bool || \token_if_eq_meaning_p:NN X #1)
Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which only evaluate their boolean expression arguments when they are needed to determine the resulting truth value. For example, when evaluating the boolean expression

\def\bool_lazy_and_p{nn}{
 \{ \bool_lazy_any_p{n}{
 \{ \int_compare_p{n}{2 = 3} \}
 \{ \int_compare_p{n}{4 <= 4} \}
 \{ \int_compare_p{n}{1 = \error} \} % skipped
 \}
 \{ ! \int_compare_p{n}{2 = 4} \}
}

the line marked with \texttt{skipped} is not expanded because the result of \bool_lazy_and_p {%}

\def\bool_if_p{n}{\langle boolean expression\rangle}
\def\bool_if:nTF{\langle boolean expression\rangle \{ \langle true code\rangle \} \{ \langle false code\rangle \}}

Tests the current truth of \langle boolean expression\rangle, and continues expansion based on this result. The \langle boolean expression\rangle should consist of a series of predicates or boolean variables with the logical relationship between these defined using && ("And"), || ("Or"), ! ("Not") and parentheses. The logical Not applies to the next predicate or group.

\def\bool_lazy_all_p{n}{\{ \langle boolean expression\rangle \} \{ \langle boolean expression\rangle \} \{ \langle boolean expression\rangle \} \{ \langle true code\rangle \} \{ \langle false code\rangle \}}
\def\bool_lazy_all:nTF{\{ \langle boolean expression\rangle \} \{ \langle boolean expression\rangle \} \{ \langle boolean expression\rangle \} \{ \langle true code\rangle \} \{ \langle false code\rangle \}}

Implements the “And” operation on the \langle boolean expressions\rangle, hence is \texttt{true} if all of them are \texttt{true} and \texttt{false} if any of them is \texttt{false}. Contrarily to the infix operator &&, only the \langle boolean expressions\rangle which are needed to determine the result of \bool_lazy_all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two \langle boolean expressions\rangle.

\def\bool_lazy_and_p{nn}{\langle boolean expression\rangle \{ \langle boolean expression\rangle \}}
\def\bool_lazy_and:nnTF{\langle boolean expression\rangle \{ \langle boolean expression\rangle \} \{ \langle true code\rangle \} \{ \langle false code\rangle \}}

Implements the “And” operation between two boolean expressions, hence is \texttt{true} if both are \texttt{true}. Contrarily to the infix operator &&, the \langle boolean expression\rangle is only evaluated if it is needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF when there are more than two \langle boolean expressions\rangle.
4 Logical loops

Loops using either boolean expressions or stored boolean values.

\texttt{\textbackslash bool_until_do:Nn} \hspace{1cm} \texttt{\textbackslash bool_until_do:cn} \\
\texttt{Updated: 2017-07-15}

Places the \langle boolean \rangle in the input stream for \LaTeX to process, and then checks the logical value of the \langle boolean \rangle. If it is \texttt{false} then the \langle code \rangle is inserted into the input stream again and the process loops until the \langle boolean \rangle is \texttt{true}.

\texttt{\textbackslash bool_while_do:Nn} \hspace{1cm} \texttt{\textbackslash bool_while_do:cn} \\
\texttt{Updated: 2017-07-15}

This function firsts checks the logical value of the \langle boolean \rangle. If it is \texttt{false} the \langle code \rangle is placed in the input stream and expanded. After the completion of the \langle code \rangle the truth of the \langle boolean \rangle is re-evaluated. The process then loops until the \langle boolean \rangle is \texttt{true}.

\texttt{\textbackslash bool_do_until_do:Nn} \hspace{1cm} \texttt{\textbackslash bool_do_until:cn} \\
\texttt{Updated: 2017-07-15}

This function firsts checks the logical value of the \langle boolean \rangle. If it is \texttt{true} the \langle code \rangle is placed in the input stream and expanded. After the completion of the \langle code \rangle the truth of the \langle boolean \rangle is re-evaluated. The process then loops until the \langle boolean \rangle is \texttt{false}.
\texttt{\textbackslash bool_do_until:nn} \hspace{1em} \texttt{\textbackslash bool_do_until:nn \{boolean expression\} \{code\}}

Places the \langle code \rangle in the input stream for \TeX to process, and then checks the logical value of the \langle boolean expression \rangle as described for \texttt{\textbackslash bool_if:nTF}. If it is \texttt{false} then the \langle code \rangle is inserted into the input stream again and the process loops until the \langle boolean expression \rangle evaluates to \texttt{true}.

\texttt{\textbackslash bool_do_while:nn} \hspace{1em} \texttt{\textbackslash bool_do_while:nn \{boolean expression\} \{code\}}

Places the \langle code \rangle in the input stream for \TeX to process, and then checks the logical value of the \langle boolean expression \rangle as described for \texttt{\textbackslash bool_if:nTF}. If it is \texttt{true} then the \langle code \rangle is inserted into the input stream again and the process loops until the \langle boolean expression \rangle evaluates to \texttt{false}.

\texttt{\textbackslash bool_until_do:nn} \hspace{1em} \texttt{\textbackslash bool_until_do:nn \{boolean expression\} \{code\}}

This function firsts checks the logical value of the \langle boolean expression \rangle (as described for \texttt{\textbackslash bool_if:nTF}). If it is \texttt{false} the \langle code \rangle is placed in the input stream and expanded. After the completion of the \langle code \rangle the truth of the \langle boolean expression \rangle is re-evaluated. The process then loops until the \langle boolean expression \rangle is \texttt{true}.

\texttt{\textbackslash bool_while_do:nn} \hspace{1em} \texttt{\textbackslash bool_while_do:nn \{boolean expression\} \{code\}}

This function firsts checks the logical value of the \langle boolean expression \rangle (as described for \texttt{\textbackslash bool_if:nTF}). If it is \texttt{true} the \langle code \rangle is placed in the input stream and expanded. After the completion of the \langle code \rangle the truth of the \langle boolean expression \rangle is re-evaluated. The process then loops until the \langle boolean expression \rangle is \texttt{false}.

5 Producing multiple copies

\texttt{\prg_replicate:nn} \hspace{1em} \texttt{\prg_replicate:nn \{integer expression\} \{tokens\}}

Evaluates the \langle integer expression \rangle (which should be zero or positive) and creates the resulting number of copies of the \langle tokens \rangle. The function is both expandable and safe for nesting. It yields its result after two expansion steps.

6 Detecting \TeX’s mode

\texttt{\mode_if_horizontal_p:} \hspace{1em} \texttt{\mode_if_horizontal_p:}

\texttt{\mode_if_horizontal:TF} \hspace{1em} \texttt{\mode_if_horizontal:TF \{(true code\} \{(false code\}}

Detects if \TeX is currently in horizontal mode.

\texttt{\mode_if_inner_p:} \hspace{1em} \texttt{\mode_if_inner_p:}

\texttt{\mode_if_inner:TF} \hspace{1em} \texttt{\mode_if_inner:TF \{(true code\} \{(false code\}}

Detects if \TeX is currently in inner mode.

\texttt{\mode_if_math_p:} \hspace{1em} \texttt{\mode_if_math_p:}

\texttt{\mode_if_math:TF} \hspace{1em} \texttt{\mode_if_math:TF \{(true code\} \{(false code\}}

Detects if \TeX is currently in maths mode.
\texttt{\textbackslash mode_if_vertical_p:} \texttt{⋆} \texttt{\textbackslash mode_if_vertical_TF:} \texttt{⋆}

\texttt{\textbackslash mode_if_vertical_p:} \texttt{\textbackslash mode_if_vertical_TF} \texttt{\{\{true code\}\} \{\{false code\}\}}

Detects if \TeX\ is currently in vertical mode.

7 \hspace{1em} \textbf{Primitive conditionals}

\texttt{\textbackslash if_predicate:w \textbackslash if_predicate:w} \texttt{\{predicate\} \{true code\} \textbackslash else: \{false code\} \textbackslash fi:}

This function takes a predicate function and branches according to the result. (In practice this function would also accept a single boolean variable in place of the \{predicate\} but to make the coding clearer this should be done through \texttt{\textbackslash if_bool:N}.)

\texttt{\textbackslash if_bool:N \{boolean\} \{true code\} \textbackslash else: \{false code\} \textbackslash fi:}

This function takes a boolean variable and branches according to the result.

8 \hspace{1em} \textbf{Nestable recursions and mappings}

There are a number of places where recursion or mapping constructs are used in \texttt{expl3}. At a low-level, these typically require insertion of tokens at the end of the content to allow “clean up”. To support such mappings in a nestable form, the following functions are provided.

\texttt{\textbackslash prg_break_point:Nn \textbackslash prg_break_point:Nn} \texttt{\{code\}}

Used to mark the end of a recursion or mapping: the functions \texttt{\{type\}_map_break:} and \texttt{\{type\}_map_break:n} use this to break out of the loop (see \texttt{\textbackslash prg_map_break:Nn} for how to set these up). After the loop ends, the \{code\} is inserted into the input stream. This occurs even if the break functions are not applied: \texttt{\textbackslash prg_break_point:Nn} is functionally-equivalent in these cases to \texttt{\use_ii:nn}.

\texttt{\textbackslash prg_map_break:Nn \textbackslash prg_map_break:Nn} \texttt{\{user code\}}

... \texttt{\textbackslash prg_break_point:Nn \textbackslash prg_map_break: \{ending code\}}

Breaks a recursion in mapping contexts, inserting in the input stream the \{user code\} after the \{ending code\} for the loop. The function breaks loops, inserting their \{ending code\}, until reaching a loop with the same \{type\} as its first argument. This \texttt{\{type\}_map_break:} argument must be defined; it is simply used as a recognizable marker for the \{type\}.

For types with mappings defined in the kernel, \texttt{\{type\}_map_break:} and \texttt{\{type\}_map_break:n} are defined as \texttt{\textbackslash prg_map_break:Nn \{type\}_map_break: \{} and the same with \{} omitted.

8.1 \hspace{1em} \textbf{Simple mappings}

In addition to the more complex mappings above, non-nestable mappings are used in a number of locations and support is provided for these.
This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion: the function \prg_break:n uses this to break out of the loop.

\prg_break:n \{\langle code\rangle\} \ldots \prg_break_point:

Breaks a recursion which has no \textit{(ending code)} and which is not a user-breakable mapping (see for instance \prop_get:Nn), and inserts the \langle code\rangle in the input stream.

\section{Internal programming functions}

\begin{verbatim}
\group_align_safe_begin: \star \group_align_safe_end: \star
\end{verbatim}

These functions are used to enclose material in a \TeX alignment environment within a specially-constructed group. This group is designed in such a way that it does not add brace groups to the output but does act as a group for the \texttt{&} token inside \texttt{\halign}. This is necessary to allow grabbing of tokens for testing purposes, as \TeX uses group level to determine the effect of alignment tokens. Without the special grouping, the use of a function such as \texttt{\peek_after:Nw} would result in a forbidden comparison of the internal \texttt{\endtemplate} token, yielding a fatal error. Each \texttt{\group_align_safe_begin:} must be matched by a \texttt{\group_align_safe_end:}; although this does not have to occur within the same function.
Part XIV
The l3sys package: System/runtime functions

1 The name of the job

\texttt{\c_sys_jobname_str}

Constant that gets the “job name” assigned when \TeX \ starts.

\textbf{\TeXhackers note:} This copies the contents of the primitive \jobname. For technical
reasons, the string here is not of the same internal form as other, but may be manipulated using
normal string functions.

2 Date and time

\texttt{\c_sys_minute_int}
\texttt{\c_sys_hour_int}
\texttt{\c_sys_day_int}
\texttt{\c_sys_month_int}
\texttt{\c_sys_year_int}

The date and time at which the current job was started: these are all reported as integers.

\textbf{\TeXhackers note:} Whilst the underlying primitives can be altered by the user, this
interface to the time and date is intended to be the “real” values.

3 Engine

\texttt{\sys_if_engine_luatex_p: \star}
\texttt{\sys_if_engine_luatex: \texttt{TF} \star}
\texttt{\sys_if_engine_pdftex_p: \star}
\texttt{\sys_if_engine_pdftex: \texttt{TF} \star}
\texttt{\sys_if_engine_ptex_p: \star}
\texttt{\sys_if_engine_ptex: \texttt{TF} \star}
\texttt{\sys_if_engine_uptex_p: \star}
\texttt{\sys_if_engine_uptex: \texttt{TF} \star}
\texttt{\sys_if_engine_xetex_p: \star}
\texttt{\sys_if_engine_xetex: \texttt{TF} \star}

New: 2015-09-07

The current engine given as a lower case string: one of \texttt{luatex}, \texttt{pdftex}, \texttt{ptex}, \texttt{uptex} or
\texttt{xetex}.

New: 2015-09-19

Updated: 2019-10-27
4 Output format

\sys_if_output_dvi_p: * \sys_if_output_dvi:TF \{\langle true code \rangle\} \{\langle false code \rangle\}

Conditionals which give the current output mode the \TeX{} run is operating in. This is always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are thus complementary and are both provided to allow the programmer to emphasise the most appropriate case.

\c_sys_output_str

The current output mode given as a lower case string: one of dvi or pdf.

5 Platform

\sys_if_platform_unix_p: \sys_if_platform_unix:TF \{\langle true code \rangle\} \{\langle false code \rangle\}

\sys_if_platform_windows_p: \sys_if_platform_windows:TF

Conditionals which allow platform-specific code to be used. The names follow the Lua os.type() function, i.e. all Unix-like systems are unix (including Linux and MacOS).

\c_sys_platform_str

The current platform given as a lower case string: one of unix, windows or unknown.

6 Random numbers

\sys_rand_seed: *

\sys_gset_rand_seed:n \{\langle integer expression \rangle\}

Expands to the current value of the engine’s random seed, a non-negative integer. In engines without random number support this expands to 0.

\sys_gset_rand_seed:n \{\langle integer \rangle\}

Globally sets the seed for the engine’s pseudo-random number generator to the \langle integer expression \rangle. This random seed affects all \ldots_rand functions (such as \int_rand:nn or \clist_rand_item:n) as well as other packages relying on the engine’s random number generator. In engines without random number support this produces an error.

\TeX{}hackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute value is used and any number beyond \(2^{28}\) is divided by an appropriate power of 2. We recommend using an integer in \([0,2^{28} - 1]\).
7 Access to the shell

\sys_get_shell:nnN {⟨shell command⟩} {⟨setup⟩} ⟨tl var⟩
\sys_get_shell:nnNTF {⟨shell command⟩} {⟨setup⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Defines (tl) to the text returned by the ⟨shell command⟩. The ⟨shell command⟩ is converted to a string using \tl_to_str:n. Category codes may need to be set appropriately via the ⟨setup⟩ argument, which is run just before running the ⟨shell command⟩ (in a group). If shell escape is disabled, the ⟨tl var⟩ will be set to \q_no_value in the non-branching version. Note that quote characters (") cannot be used inside the ⟨shell command⟩. The \sys_get_shell:nnNTF conditional returns true if the shell is available and no quote is detected, and false otherwise.

\c_sys_shell_escape_int
New: 2017-05-27

This variable exposes the internal triple of the shell escape status. The possible values are:

0 Shell escape is disabled
1 Unrestricted shell escape is enabled
2 Restricted shell escape is enabled

\sys_if_shell_p:
\sys_if_shell:TF *
\sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF *
\sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF *

Performs a check for whether shell escape is enabled. This returns true if either of restricted or unrestricted shell escape is enabled.

Performs a check for whether unrestricted shell escape is enabled.

Performs a check for whether restricted shell escape is enabled. This returns false if unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset of restricted shell escape in this case. To find whether any shell escape is enabled use \sys_if_shell:.

\sys_shell_now:n
\sys_shell_now:x
New: 2017-05-27

Execute ⟨tokens⟩ through shell escape immediately.

\sys_shell_shipout:n
\sys_shell_shipout:x
New: 2017-05-27

Execute ⟨tokens⟩ through shell escape at shipout.
7.1 Loading configuration data

\sys_load_backend:n \{\langle\text{backend}\rangle}\}

Loads the additional configuration file needed for backend support. If the \langle\text{backend}\rangle is empty, the standard backend for the engine in use will be loaded. This command may only be used once.

\c_sys_backend_str

Set to the name of the backend in use by \sys_load_backend:n when issued.

\sys_load_debug: \sys_load_deprecation:

Load the additional configuration files for debugging support and rolling back deprecations, respectively.

7.2 Final settings

\sys_finalise:

Finalises all system-dependent functionality: required before loading a backend.
Part XV

The \texttt{l3clist} package

Comma separated lists

Comma lists contain ordered data where items can be added to the left or right end of the list. This data type allows basic list manipulations such as adding/removing items, applying a function to every item, removing duplicate items, extracting a given item, using the comma list with specified separators, and so on. Sequences (defined in \texttt{l3seq}) are safer, faster, and provide more features, so they should often be preferred to comma lists. Comma lists are mostly useful when interfacing with \LaTeX{} or other code that expects or provides comma list data.

Several items can be added at once. To ease input of comma lists from data provided by a user outside an \texttt{\ExplSyntaxOn} ... \texttt{\ExplSyntaxOff} block, spaces are removed from both sides of each comma-delimited argument upon input. Blank arguments are ignored, to allow for trailing commas or repeated commas (which may otherwise arise when concatenating comma lists “by hand”). In addition, a set of braces is removed if the result of space-trimming is braced: this allows the storage of any item in a comma list. For instance,

\begin{verbatim}
\clist_new:N \l_my_clist
\clist_put_left:Nn \l_my_clist { -a- , -{b}- , c\{-d\} }
\clist_put_right:Nn \l_my_clist { -{e} , , {f} , }
\end{verbatim}

results in \texttt{\l_my_clist} containing \texttt{a}, \texttt{b}, \texttt{c-\{d\}}, \texttt{e-}, \texttt{f} namely the five items \texttt{a}, \texttt{b}, \texttt{c-\{d\}}, \texttt{e-} and \texttt{f}. Comma lists normally do not contain empty items so the following gives an empty comma list:

\begin{verbatim}
\clist_clear_new:N \l_my_clist
\clist_put_right:Nn \l_my_clist { , - , , }
\clist_if_empty:NTF \l_my_clist { true } { false }
\end{verbatim}

and it leaves \texttt{true} in the input stream. To include an “unsafe” item (empty, or one that contains a comma, or starts or ends with a space, or is a single brace group), surround it with braces.

Almost all operations on comma lists are noticeably slower than those on sequences so converting the data to sequences using \texttt{\seq_set_from_clist:Nn} (see \texttt{l3seq}) may be advisable if speed is important. The exception is that \texttt{\clist_if_in:NnTF} and \texttt{\clist_remove_duplicates:N} may be faster than their sequence analogues for large lists. However, these functions work slowly for “unsafe” items that must be braced, and may produce errors when their argument contains \{, \} or \# (assuming the usual \TeX{} category codes apply). In addition, comma lists cannot store quarks \texttt{\q_mark} or \texttt{\q_stop}. The sequence data type should thus certainly be preferred to comma lists to store such items.

1 Creating and initialising comma lists

\begin{verbatim}
\clist_new:N \clist_new:N (comma list)
\clist_new:c
\end{verbatim}

Creates a new \texttt{(comma list)} or raises an error if the name is already taken. The declaration is global. The \texttt{(comma list)} initially contains no items.
\clist_const:Nn \clist_const:(N|c|cn|cx) \new:2014-07-05
\clist_clear:N \clist_clear:c \clist_gclear:N \clist_gclear:c
\clist_clear_new:N \clist_clear_new:c \clist_gclear_new:N \clist_gclear_new:c \new:2014-07-17
\clist_set_eq:NN \clist_set_eq:(cN|Nc|cc) \clist_gset_eq:NN \clist_gset_eq:(cN|Nc|cc) \new:2014-07-17
\clist_set_from_seq:NN \clist_set_from_seq:(cN|Nc|cc) \clist_gset_from_seq:NN \clist_gset_from_seq:(cN|Nc|cc) \new:2014-07-17
\clist_concat:NNN \clist_concat:ccc \clist_gconcat:NNN \clist_gconcat:ccc \new:2014-07-05
\clist_if_exist_p:N \clist_if_exist_p:c \clist_if_exist:NTF \clist_if_exist:c TF \new:2012-03-03

\clist_const:Nn \clist_var \{\comma\ list\}\ creates\ a\ new\ constant \clist_var or\ raises\ an\ error\ if\ the\ name\ is\ already\ taken.\ The\ value\ of\ the\ \clist_var\ is\ set\ globally\ to\ the\ \comma\ list.\
\clist_clear:N \comma\ list\ clears\ all\ items\ from\ the\ \comma\ list.\
\clist_clear_new:N \comma\ list\ ensures\ that\ the\ \comma\ list\ exists\ globally\ by\ applying\ \clist_new:N\ if\ necessary,\ then\ applies\ \clist_(g)clear:N\ to\ leave\ the\ list\ empty.\
\clist_set_eq:NN \comma\ list_1\ \comma\ list_2\ sets\ the\ content\ of\ \comma\ list_1\ equal\ to\ that\ of\ \comma\ list_2.\
\clist_set_from_seq:NN \comma\ list\ \sequence\ converts\ the\ data\ in\ the\ \sequence\ into\ a\ \comma\ list: the original \sequence\ is unchanged. Items which contain either spaces or commas are surrounded by braces.\
\clist_concat:NNN \comma\ list_1\ \comma\ list_2\ \comma\ list_3\ concatenates\ the\ content\ of\ \comma\ list_2\ and\ \comma\ list_3\ together\ and\ saves\ the\ result\ in\ \comma\ list_1. The items in \comma\ list_2\ are placed at the left side of the new comma list.\
\clist_if_exist_p:N \comma\ list\ tests\ whether\ the\ \comma\ list\ is\ currently\ defined. This\ does\ not\ check\ that\ the\ \comma\ list\ really\ is\ a\ comma\ list.
2 Adding data to comma lists

Sets ⟨comma list⟩ to contain the ⟨items⟩, removing any previous content from the variable. Blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. To store some ⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩ contain commas or spaces, add a set of braces: \clist_set:Nn ⟨comma list⟩ { ⟨tokens⟩ }.

Appends the ⟨items⟩ to the left of the ⟨comma list⟩. Blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. To append some ⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩ contain commas or spaces, add a set of braces: \clist_put_left:Nn ⟨comma list⟩ { ⟨tokens⟩ }.

Appends the ⟨items⟩ to the right of the ⟨comma list⟩. Blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. To append some ⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩ contain commas or spaces, add a set of braces: \clist_put_right:Nn ⟨comma list⟩ { ⟨tokens⟩ }.

3 Modifying comma lists

While comma lists are normally used as ordered lists, it may be necessary to modify the content. The functions here may be used to update comma lists, while retaining the order of the unaffected entries.
\clist_remove_duplicates:N \clist_remove_duplicates:c
\clist_gremove_duplicates:N \clist_gremove_duplicates:c

Removes duplicate items from the \textit{comma list}, leaving the left most copy of each item in the \textit{comma list}. The \textit{item} comparison takes place on a token basis, as for \texttt{\tl_if_eq:nn(TF)}.

\textbf{\TeXhackers note}: This function iterates through every item in the \textit{comma list} and does a comparison with the \textit{items} already checked. It is therefore relatively slow with large comma lists. Furthermore, it may fail if any of the items in the \textit{comma list} contains \{, \}, or \# (assuming the usual \TeX{} category codes apply).

\clist_remove_all:Nn \clist_remove_all:cn
\clist_gremove_all:Nn \clist_gremove_all:cn

Updated: 2011-09-06

Removes every occurrence of \textit{item} from the \textit{comma list}. The \textit{item} comparison takes place on a token basis, as for \texttt{\tl_if_eq:nn(TF)}.

\textbf{\TeXhackers note}: The function may fail if the \textit{item} contains \{, \}, or \# (assuming the usual \TeX{} category codes apply).

\clist_reverse:N \clist_reverse:c
\clist_greverse:N \clist_greverse:c

New: 2014-07-18

Reverses the order of items stored in the \textit{comma list}.

\clist_reverse:n

New: 2014-07-18

Leaves the items in the \textit{comma list} in the input stream in reverse order. Contrarily to other what is done for other \texttt{n}-type \textit{comma list} arguments, braces and spaces are preserved by this process.

\textbf{\TeXhackers note}: The result is returned within \texttt{\unexpanded}, which means that the comma list does not expand further when appearing in an \texttt{x}-type or \texttt{e}-type argument expansion.

\clist_sort:Nn \clist_sort:cn
\clist_gsort:Nn \clist_gsort:cn

New: 2017-02-06

Sorts the items in the \textit{clist var} according to the \textit{comparison code}, and assigns the result to \textit{clist var}. The details of sorting comparison are described in Section 1.
4 Comma list conditionals

\clist_if_empty_p:N ⋆ \clist_if_empty_p:N (comma list) ⋆ \clist_if_empty:p:N \langle (true code) \rangle \langle (false code) \rangle

Tests if the ⟨comma list⟩ is empty (containing no items).

\clist_if_empty_p:c ⋆ \clist_if_empty:NTF ⟨comma list⟩ {
\langle true code \rangle \rangle
\langle false code \rangle
\rangle

Tests if the ⟨comma list⟩ is empty (containing no items). The rules for space trimming are as for other n-type comma-list functions, hence the comma list {~,~,~,~} (without outer braces) is empty, while {~,{},~} (without outer braces) contains one element, which happens to be empty: the comma-list is not empty.

\clist_if_empty_p:n ⋆ \clist_if_empty:nTF ⟨comma list⟩ {
\langle true code \rangle \rangle
\langle false code \rangle
\rangle

Tests if the ⟨comma list⟩ is empty (containing no items). In the case of an n-type ⟨comma list⟩, the usual rules of space trimming and brace stripping apply. Hence,

\clist_if_in:nnTF { a , {b}/uni2423 , {b} , c } { b } {true} {false}

yields true.

\textbf{TexHacker note:} The function may fail if the ⟨item⟩ contains {, }, or # (assuming the usual \TeX{} category codes apply).

5 Mapping to comma lists

The functions described in this section apply a specified function to each item of a comma list. All mappings are done at the current group level, i.e. any local assignments made by the ⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed around each item. If the result of trimming spaces is empty, the item is ignored. Otherwise, if the item is surrounded by braces, one set is removed, and the result is passed to the mapped function. Thus, if the comma list that is being mapped is \{{a}_{\mathbb{U}},\{b\}_{\mathbb{U}},\{c\}_{\mathbb{U}}\}, then the arguments passed to the mapped function are ‘a’, ‘{b}_{\mathbb{U}}’, an empty argument, and ‘c’.

When the comma list is given as an N-type argument, spaces have already been trimmed on input, and items are simply stripped of one set of braces if any. This case is more efficient than using n-type comma lists.

\clist_map_function:NN ⋆ \clist_map_function:cN ⋆ \clist_map_function:nN

Applies ⟨function⟩ to every ⟨item⟩ stored in the ⟨comma list⟩. The ⟨function⟩ receives one argument for each iteration. The ⟨items⟩ are returned from left to right. The function \clist_map_inline:Nn is in general more efficient than \clist_map_function:NN.
\clist_map_inline:Nn \clist_map_inline:cn \clist_map_inline:nn
Applies \textit{inline function} to every \textit{item} stored within the \textit{comma list}. The \textit{inline function} should consist of code which receives the \textit{item} as \#1. The \textit{items} are returned from left to right.

\clist_map_variable:NNn \clist_map_variable:cn \clist_map_variable:nn
Stores each \textit{item} of the \textit{comma list} in turn in the (token list) \textit{variable} and applies the \textit{code}. The \textit{code} will usually make use of the \textit{variable}, but this is not enforced. The assignments to the \textit{variable} are local. Its value after the loop is the last \textit{item} in the \textit{comma list}, or its original value if there were no \textit{item}. The \textit{items} are returned from left to right.

\clist_map_break:
Used to terminate a \texttt{\clist_map...} function before all entries in the \textit{comma list} have been processed. This normally takes place within a conditional statement, for example

\begin{verbatim}
\clist_map_inline:Nn \l_my_clist
{ \str_if_eq:nTF { #1 } { bingo } { \clist_map_break: }
{ % Do something useful}
}
\end{verbatim}

Use outside of a \texttt{\clist_map...} scenario leads to low level \TeX{} errors.

\textbf{\TeX{}hackers note:} When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.
\clist_map_break:n \clist_map_break:n \langle\textit{code}\rangle

Used to terminate a \clist_map\textunderscore\textit{function} before all entries in the \langle\textit{comma list}\rangle have been processed, inserting the \langle\textit{code}\rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\begin{verbatim}
\clist_map_inline:Nn \l_my_clist
 { \str_if_eq:nnTF { #1 } { bingo } { \clist_map_break:n \langle\textit{code}\rangle } }
 { % Do something useful }
}\end{verbatim}

Use outside of a \clist_map\textunderscore\textit{function} scenario leads to low level \TeX\ errors.

\textbf{\TeX\hackers note:} When the mapping is broken, additional tokens may be inserted before the \langle\textit{code}\rangle is inserted into the input stream. This depends on the design of the mapping function.

\begin{verbatim}
\clist_use:Nnnn \clist_use:Nnnn \langle\textit{clist var}\rangle \langle\textit{separator between two}\rangle
\langle\textit{separator between more than two}\rangle \langle\textit{separator between final two}\rangle
\end{verbatim}

Places the contents of the \langle\textit{clist var}\rangle in the input stream, with the appropriate \langle\textit{separator}\rangle between the items. Namely, if the comma list has more than two items, the \langle\textit{separator between more than two}\rangle is placed between each pair of items except the last, for which the \langle\textit{separator between final two}\rangle is used. If the comma list has exactly two items, then they are placed in the input stream separated by the \langle\textit{separator between two}\rangle. If the comma list has a single item, it is placed in the input stream, and a comma list with no items produces no output. An error is raised if the variable does not exist or if it is invalid.

For example,

\begin{verbatim}
\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nnnn \l_tmpa_clist { ,and~ } { ,~ } { ,~and~ }
\end{verbatim}

inserts “\textit{a, b, c, de, and f}” in the input stream. The first separator argument is not used in this case because the comma list has more than 2 items.

\textbf{\TeX\hackers note:} The result is returned within the \langle\textit{unexpanded}\rangle primitive (\langle\texttt{\exp_not:n}\rangle), which means that the \langle\textit{items}\rangle do not expand further when appearing in an \textit{x}-type argument expansion.
\clist_use:Nn \clist_use:cn *

Places the contents of the \clist var in the input stream, with the \separator between the items. If the comma list has a single item, it is placed in the input stream, and a comma list with no items produces no output. An error is raised if the variable does not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nn \l_tmpa_clist { -and- }

inserts “a and b and c and de and f” in the input stream.

\TeX{} hackers note: The result is returned within the \texttt{\unexpanded} primitive (\exp_not:n), which means that the \items do not expand further when appearing in an \texttt{x}-type argument expansion.

7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top of the comma list. (The left of a comma list is the top, for performance reasons.) The stack functions for comma lists are not intended to be mixed with the general ordered data functions detailed in the previous section: a comma list should either be used as an ordered data type or as a stack, but not in both ways.

\clist_get:NN \clist_get:cn

Stores the left-most item from a \comma list in the \token list variable without removing it from the \comma list. The \token list variable is assigned locally. In the non-branching version, if the \comma list is empty the \token list variable is set to the marker value \texttt{\q_no_value}.

\clist_pop:NN \clist_pop:cn

Pops the left-most item from a \comma list into the \token list variable, i.e. removes the item from the comma list and stores it in the \token list variable. Both of the variables are assigned locally.

\clist_gpop:NN \clist_gpop:cn

Pops the left-most item from a \comma list into the \token list variable, i.e. removes the item from the comma list and stores it in the \token list variable. The \comma list is modified globally, while the assignment of the \token list variable is local.

\clist_pop:NNTF \clist_pop:cn

If the \comma list is empty, leaves the \false code in the input stream. The value of the \token list variable is not defined in this case and should not be relied upon. If the \comma list is non-empty, pops the top item from the \comma list in the \token list variable, i.e. removes the item from the \comma list. Both the \comma list and the \token list variable are assigned locally.
\clist_gpop:NNTF ⟨comma list⟩ ⟨token list variable⟩ \{⟨true code⟩\} \{⟨false code⟩\}

If the ⟨comma list⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨comma list⟩ is non-empty, pops the top item from the ⟨comma list⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨comma list⟩. The ⟨comma list⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\clist_gpop:NN \clist_gpop:cN

New: 2012-05-14

\clist_push:Nn ⟨comma list⟩ \{⟨items⟩\}
\clist_push:Nn \clist_push:(NV|No|Nx|cn|cV|co|cx)
\clist_gpush:Nn \clist_gpush:(NV|No|Nx|cn|cV|co|cx)

Adds the ⟨items⟩ to the top of the ⟨comma list⟩. Spaces are removed from both sides of each item as for any n-type comma list.

8 Using a single item

\clist_item:Nn ⟨comma list⟩ \{⟨integer expression⟩\}
\clist_item:cn \clist_item:nn

Indexing items in the ⟨comma list⟩ from 1 at the top (left), this function evaluates the ⟨integer expression⟩ and leaves the appropriate item from the comma list in the input stream. If the ⟨integer expression⟩ is negative, indexing occurs from the bottom (right) of the comma list. When the ⟨integer expression⟩ is larger than the number of items in the ⟨comma list⟩ (as calculated by \clist_count:N) then the function expands to nothing.

\TeXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the ⟨item⟩ does not expand further when appearing in an x-type argument expansion.

\clist_rand_item:N ⟨clist var⟩ \clist_rand_item:c \clist_rand_item:n

Selects a pseudo-random item of the ⟨comma list⟩. If the ⟨comma list⟩ has no item, the result is empty.

\TeXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the ⟨item⟩ does not expand further when appearing in an x-type argument expansion.

9 Viewing comma lists

\clist_show:N ⟨comma list⟩
\clist_show:c

Displays the entries in the ⟨comma list⟩ in the terminal.
\clist_show:n \clist_show:n \{\textit{tokens}\}
Displays the entries in the comma list in the terminal.

\clist_log:N \clist_log:N \langle \textit{comma list} \rangle
Writes the entries in the \langle \textit{comma list} \rangle in the log file. See also \clist_show:N which displays the result in the terminal.

\clist_log:n \clist_log:n \{\textit{tokens}\}
Writes the entries in the comma list in the log file. See also \clist_show:n which displays the result in the terminal.

\section{Constant and scratch comma lists}

\c_empty_clist
Constant that is always empty.

\l_tmpa_clist \l_tmpb_clist
Scratch comma lists for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_clist \g_tmpb_clist
Scratch comma lists for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
Part XVI
The \texttt{l3token} package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so let’s try with a better description: When programming in \TeX{}, it is often desirable to know just what a certain token is: is it a control sequence or something else. Similarly one often needs to know if a control sequence is expandable or not, a macro or a primitive, how many arguments it takes etc. Another thing of great importance (especially when it comes to document commands) is looking ahead in the token stream to see if a certain character is present and maybe even remove it or disregard other tokens while scanning. This module provides functions for both and as such has two primary function categories: \texttt{\token_} for anything that deals with tokens and \texttt{\peek_} for looking ahead in the token stream.

Most functions we describe here can be used on control sequences, as those are tokens as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better word), which affects the matching of delimited arguments and the comparison of token lists containing this token, and its “meaning”, which affects whether the token expands or what operation it performs. One can have tokens of different shapes with the same meaning, but not the converse.

For instance, \texttt{\if:w}, \texttt{\if_charcode:w}, and \texttt{\tex_if:D} are three names for the same internal operation of \TeX{}, namely the primitive testing the next two characters for equality of their character code. They have the same meaning hence behave identically in many situations. However, \TeX{} distinguishes them when searching for a delimited argument. Namely, the example function \texttt{\show_until_if:w} defined below takes everything until \texttt{\if:w} as an argument, despite the presence of other copies of \texttt{\if:w} under different names.

\begin{verbatim}
\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w
\end{verbatim}

A list of all possible shapes and a list of all possible meanings are given in section 7.

1 Creating character tokens

\begin{verbatim}
\char_set_active_eq:NN \char_set_active_eq:Nc \char_gset_active_eq:NN \char_gset_active_eq:Nc
\end{verbatim}

Updated: 2015-11-12

\begin{verbatim}
\char_set_active_eq:nN \char_set_active_eq:nc \char_gset_active_eq:nN \char_gset_active_eq:nc
\end{verbatim}

New: 2015-11-12

\begin{verbatim}
\char_set_active_eq:NN \char_set_active_eq:Nc \char_gset_active_eq:NN \char_gset_active_eq:Nc
\end{verbatim}

128
\char_generate:nn {\charcode} {\catcode}

Generates a character token of the given \charcode and \catcode (both of which may be integer expressions). The \catcode may be one of

- 1 (begin group)
- 2 (end group)
- 3 (math toggle)
- 4 (alignment)
- 6 (parameter)
- 7 (math superscript)
- 8 (math subscript)
- 11 (letter)
- 12 (other)
- 13 (active)

and other values raise an error. The \charcode may be any one valid for the engine in use. Active characters cannot be generated in older versions of \TeX.

TeXhackers note: Exactly two expansions are needed to produce the character.

\char_lowercase:N \char

Converts the \char to the equivalent case-changed character as detailed by the function name (see \str_foldcase:n and \text_titlecase:n for details of these terms). The case mapping is carried out with no context-dependence (cf. \text_uppercase:n, etc.) The \str versions always generate “other” (category code 12) characters, whilst the standard versions generate characters with the category code of the \char (i.e. only the character code changes).

\c_catcode_other_space_tl

Token list containing one character with category code 12, (“other”), and character code 32 (space).
2 Manipulating and interrogating character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N \langle \text{character} \rangle
\char_set_catcode_group_begin:N \char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N \char_set_catcode_alignment:N
\char_set_catcode_end_line:N \char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N \char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N \char_set_catcode_space:N
\char_set_catcode_letter:n \langle \text{integer expression} \rangle
\char_set_catcode_other:N
\char_set_catcode_comment:N \char_set_catcode_invalid:N

Sets the category code of the \langle \text{character} \rangle to that indicated in the function name. Depending on the current category code of the \langle \text{token} \rangle the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

\char_set_catcode_escape:n \char_set_catcode_letter:n \langle \text{integer expression} \rangle
\char_set_catcode_group_begin:n \char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n \char_set_catcode_alignment:n
\char_set_catcode_end_line:n \char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n \char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n \char_set_catcode_space:n
\char_set_catcode_letter:n \char_set_catcode_other:n
\char_set_catcode_active:n \char_set_catcode_comment:n \char_set_catcode_invalid:n

Sets the category code of the \langle \text{character} \rangle which has character code as given by the \langle \text{integer expression} \rangle. This version can be used to set up characters which cannot otherwise be given (\textit{cf.} the \texttt{N}-type variants). The assignment is local.
These functions set the category code of the \textit{character} which has character code as given by the \textit{integer expression}. The first \textit{integer expression} is the character code and the second is the category code to apply. The setting applies within the current \TeX{} group. In general, the symbolic functions $\texttt{\textbackslash char_set_catcode_}\langle\textit{type}\rangle$ should be preferred, but there are cases where these lower-level functions may be useful.

\begin{verbatim}
\char_set_catcode:nn \char_set_catcode:nn \{(intexpr_1)\} \{(intexpr_2)\}
\end{verbatim}

Updated: 2015-11-11

Expands to the current category code of the \textit{character} with character code given by the \textit{integer expression}.

\begin{verbatim}
\char_value_catcode:n \char_value_catcode:n \{(integer expression)\}
\end{verbatim}

Displays the current category code of the \textit{character} with character code given by the \textit{integer expression} on the terminal.

\begin{verbatim}
\char_set_lccode:nn \char_set_lccode:nn \{(intexpr_1)\} \{(intexpr_2)\}
\end{verbatim}

Sets up the behaviour of the \textit{character} when found inside \texttt{\text_\lowercase_n}, such that \textit{character$_1$} will be converted into \textit{character$_2$}. The two \textit{characters} may be specified using an \textit{integer expression} for the character code concerned. This may include the \TeX{} \langle\textit{character}\rangle method for converting a single character into its character code:

\begin{verbatim}
\char_set_lccode:nn \{ \char \text{A} \} \{ \char \text{a} \} \% Standard behaviour
\char_set_lccode:nn \{ \char \text{A} \} \{ \char \text{A} + 32 \}
\char_set_lccode:nn \{ \text{50} \} \{ \text{60} \}
\end{verbatim}

The setting applies within the current \TeX{} group.

\begin{verbatim}
\char_value_lccode:n \char_value_lccode:n \{(integer expression)\}
\end{verbatim}

Expands to the current lower case code of the \textit{character} with character code given by the \textit{integer expression}.

\begin{verbatim}
\char_show_value_lccode:n \char_show_value_lccode:n \{(integer expression)\}
\end{verbatim}

Displays the current lower case code of the \textit{character} with character code given by the \textit{integer expression} on the terminal.

\begin{verbatim}
\char_set_uccode:nn \char_set_uccode:nn \{(intexpr_1)\} \{(intexpr_2)\}
\end{verbatim}

Sets up the behaviour of the \textit{character} when found inside \texttt{\text_\uppercase_n}, such that \textit{character$_1$} will be converted into \textit{character$_2$}. The two \textit{characters} may be specified using an \textit{integer expression} for the character code concerned. This may include the \TeX{} \langle\textit{character}\rangle method for converting a single character into its character code:

\begin{verbatim}
\char_set_uccode:nn \{ \char \text{a} \} \{ \char \text{A} \} \% Standard behaviour
\char_set_uccode:nn \{ \char \text{A} \} \{ \char \text{A} - 32 \}
\char_set_uccode:nn \{ \text{60} \} \{ \text{50} \}
\end{verbatim}

The setting applies within the current \TeX{} group.
Expands to the current upper case code of the \(\text{character} \) with character code given by the \(\text{integer expression} \).

Displays the current upper case code of the \(\text{character} \) with character code given by the \(\text{integer expression} \) on the terminal.

This function sets up the math code of \(\text{character} \). The \(\text{character} \) is specified as an \(\text{integer expression} \) which will be used as the character code of the relevant character. The setting applies within the current \TeX{} group.

Expands to the current math code of the \(\text{character} \) with character code given by the \(\text{integer expression} \).

Displays the current math code of the \(\text{character} \) with character code given by the \(\text{integer expression} \) on the terminal.

This function sets up the space factor for the \(\text{character} \). The \(\text{character} \) is specified as an \(\text{integer expression} \) which will be used as the character code of the relevant character. The setting applies within the current \TeX{} group.

Expands to the current space factor for the \(\text{character} \) with character code given by the \(\text{integer expression} \).

Displays the current space factor for the \(\text{character} \) with character code given by the \(\text{integer expression} \) on the terminal.

Used to track which tokens may require special handling at the document level as they are (or have been at some point) of category \(\text{active} \) (catcode 13). Each entry in the sequence consists of a single escaped token, for example \(\text{	exttt{\textbackslash~}} \). Active tokens should be added to the sequence when they are defined for general document use.

Used to track which tokens will require special handling when working with verbatim-like material at the document level as they are not of categories \(\text{letter} \) (catcode 11) or \(\text{other} \) (catcode 12). Each entry in the sequence consists of a single escaped token, for example \(\text{	exttt{\textbackslash\{}}} \) for an opening brace. Escaped tokens should be added to the sequence when they are defined for general document use.
3 Generic tokens

These are implicit tokens which have the category code described by their name. They are used internally for test purposes but are also available to the programmer for other uses.

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

These are implicit tokens which have the category code described by their name. They are used internally for test purposes and should not be used other than for category code tests.

\c_catcode_letter_token
\c_catcode_other_token
\c_catcode_active_tl

A token list containing an active token. This is used internally for test purposes and should not be used other than in appropriately-constructed category code tests.

4 Converting tokens

\token_to_meaning:N \token_to_meaning:C
\token_to_meaning:N \token_to_meaning:C

Inserts the current meaning of the \langle token\rangle into the input stream as a series of characters of category code 12 (other). This is the primitive \TeX\ description of the \langle token\rangle, thus for example both functions defined by \cs_set_nopar:Npn and token list variables defined using \tl_new:N are described as macros.

\TeX\hackers note: This is the \TeX\ primitive \meaning. The \langle token\rangle can thus be an explicit space tokens or an explicit begin-group or end-group character token (\{ or \} when normal \TeX\ category codes apply) even though these are not valid \N-type arguments.

\token_to_str:N \token_to_str:C
\token_to_str:N \token_to_str:C

Converts the given \langle token\rangle into a series of characters with category code 12 (other). If the \langle token\rangle is a control sequence, this will start with the current escape character with category code 12 (the escape character is part of the \langle token\rangle). This function requires only a single expansion.

\TeX\hackers note: \token_to_str:N is the \TeX\ primitive \string renamed. The \langle token\rangle can thus be an explicit space tokens or an explicit begin-group or end-group character token (\{ or \} when normal \TeX\ category codes apply) even though these are not valid \N-type arguments.
5 Token conditionals

/tests if \token has the category code of a begin group token (\{ when normal \TeX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

/tests if \token has the category code of an end group token (\} when normal \TeX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

/tests if \token has the category code of a math shift token ($ when normal \TeX category
codes are in force).

/tests if \token has the category code of an alignment token (& when normal \TeX category
codes are in force).

/tests if \token has the category code of a macro parameter token (# when normal \TeX category
codes are in force).

/tests if \token has the category code of a superscript token (^ when normal \TeX category
codes are in force).

/tests if \token has the category code of a subscript token (_ when normal \TeX category
codes are in force).

/tests if \token has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.
\token_if_letter_p:N \token_if_letter:N \token \{} \{false code\}\}

Tests if \langle \text{token} \rangle has the category code of a letter token.

\token_if_other_p:N \token_if_other:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if \langle \text{token} \rangle has the category code of an “other” token.

\token_if_active_p:N \token_if_active:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if \langle \text{token} \rangle has the category code of an active character.

\token_if_eq_catcode_p:NN \token_if_eq_catcode:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if the two \langle \text{tokens} \rangle have the same category code.

\token_if_eq_charcode_p:NN \token_if_eq_charcode:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if the two \langle \text{tokens} \rangle have the same character code.

\token_if_eq_meaning_p:NN \token_if_eq_meaning:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if the two \langle \text{tokens} \rangle have the same meaning when expanded.

\token_if_macro_p:N \token_if_macro:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if \langle \text{token} \rangle is a \TeX{} macro.

\token_if_protected_macro_p:N \token_if_protected_macro:N \{ \langle \text{true code} \rangle \} \{ \langle \text{false code} \rangle \}

Tests if the \langle \text{token} \rangle is a protected macro: for a macro which is both protected and long this returns \text{false}.
Tests if the \langle \text{token} \rangle is a protected long macro.

\textbf{\LaTeX}hackers note: Boolean, boxes and small integer constants are implemented as \texttt{\chardef}s.

Tests if the \langle \text{token} \rangle is defined to be a chardef.

\textbf{\LaTeX}hackers note: Constant integers may be implemented as integer registers, \texttt{\chardef}s, or \texttt{\mathchardef}s depending on their value.

Tests if the \langle \text{token} \rangle is defined to be a muskip register.

Tests if the \langle \text{token} \rangle is defined to be a skip register.
Tests if the \langle token \rangle is defined to be a toks register (not used by \LaTeX3).

Tests if the \langle token \rangle is an engine primitive.

6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving it in place. This is handled using the “peek” functions. The generic \texttt{\peek_after} is provided along with a family of predefined tests for common cases. As peeking ahead does \textit{not} skip spaces the predefined tests include both a space-respecting and space-skipping version.

\texttt{\peek_after} \langle function \rangle \langle token \rangle

Locally sets the test variable \texttt{l_peek_token} equal to \langle token \rangle (as an implicit token, \textit{not} as a token list), and then expands the \langle function \rangle. The \langle token \rangle remains in the input stream as the next item after the \langle function \rangle. The \langle token \rangle here may be \texttt{_}, \{ or \} (assuming normal \TeX{} category codes), \textit{i.e.} it is not necessarily the next argument which would be grabbed by a normal function.

\texttt{\peek_gafter} \langle function \rangle \langle token \rangle

Globally sets the test variable \texttt{g_peek_token} equal to \langle token \rangle (as an implicit token, \textit{not} as a token list), and then expands the \langle function \rangle. The \langle token \rangle remains in the input stream as the next item after the \langle function \rangle. The \langle token \rangle here may be \texttt{_}, \{ or \} (assuming normal \TeX{} category codes), \textit{i.e.} it is not necessarily the next argument which would be grabbed by a normal function.

\texttt{l_peek_token}

Token set by \texttt{\peek_after} and available for testing as described above.

\texttt{g_peek_token}

Token set by \texttt{\peek_gafter} and available for testing as described above.

\texttt{\peek_catcode}

Tests if the next \langle token \rangle in the input stream has the same category code as the \langle test token \rangle (as defined by the test \texttt{\token_if_eq_catcode}). Spaces are respected by the test and the \langle token \rangle is left in the input stream after the \langle true code \rangle or \langle false code \rangle (as appropriate to the result of the test).
\peek_catcode_ignore_spaces:NTF \peek_catcode_ignore_spaces:NTF \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next non-space ⟨token⟩ in the input stream has the same category code as the ⟨test token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit space tokens (with character code 32 and category code 10) are ignored and removed by the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false code⟩ (as appropriate to the result of the test).

\peek_catcode_remove:NTF \peek_catcode_remove:NTF \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next ⟨token⟩ in the input stream has the same category code as the ⟨test token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by the test and the ⟨token⟩ is removed from the input stream if the test is true. The function then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate to the result of the test).

\peek_catcode_remove_ignore_spaces:NTF \peek_catcode_remove_ignore_spaces:NTF \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next non-space ⟨token⟩ in the input stream has the same category code as the ⟨test token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit space tokens (with character code 32 and category code 10) are ignored and removed by the test and the ⟨token⟩ is removed from the input stream if the test is true. The function then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate to the result of the test).

\peek_charcode:NTF \peek_charcode:NTF \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false code⟩ (as appropriate to the result of the test).

\peek_charcode_remove:NTF \peek_charcode_remove:NTF \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by the test and the ⟨token⟩ is removed from the input stream if the test is true. The function then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate to the result of the test).

\peek_charcode_remove:N \peek_charcode_remove:N \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by the test and the ⟨token⟩ is removed from the input stream if the test is true. The function then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate to the result of the test).

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode_remove_ignore_spaces:NTF \langle test token \rangle \{\langle true code \rangle \} \{\langle false code \rangle \}

Tests if the next non-space ⟨token⟩ in the input stream has the same character code as the ⟨test token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Explicit and implicit space tokens (with character code 32 and category code 10) are ignored and removed by the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false code⟩ (as appropriate to the result of the test).
Tests if the next non-space \(\langle\text{token}\rangle\) in the input stream has the same character code as the \(\langle\text{test token}\rangle\) (as defined by the test \code{\token_if_eq_charcode:NNTF}). Explicit and implicit space tokens (with character code 32 and category code 10) are ignored and removed by the test and the \(\langle\text{token}\rangle\) is removed from the input stream if the test is true. The function then places either the \(\langle\text{true code}\rangle\) or \(\langle\text{false code}\rangle\) in the input stream (as appropriate to the result of the test).

Tests if the next \(\langle\text{token}\rangle\) in the input stream has the same meaning as the \(\langle\text{test token}\rangle\) (as defined by the test \code{\token_if_eq_meaning:NNTF}). Spaces are respected by the test and the \(\langle\text{token}\rangle\) is left in the input stream after the \(\langle\text{true code}\rangle\) or \(\langle\text{false code}\rangle\) (as appropriate to the result of the test).

Tests if the next non-space \(\langle\text{token}\rangle\) in the input stream has the same meaning as the \(\langle\text{test token}\rangle\) (as defined by the test \code{\token_if_eq_meaning:NNTF}). Explicit and implicit space tokens (with character code 32 and category code 10) are ignored and removed by the test and the \(\langle\text{token}\rangle\) is removed from the input stream if the test is true. The function then places either the \(\langle\text{true code}\rangle\) or \(\langle\text{false code}\rangle\) in the input stream (as appropriate to the result of the test).

Tests if the next \(\langle\text{token}\rangle\) in the input stream has the same meaning as the \(\langle\text{test token}\rangle\) (as defined by the test \code{\token_if_eq_meaning:NNTF}). Spaces are respected by the test and the \(\langle\text{token}\rangle\) is removed from the input stream if the test is true. The function then places either the \(\langle\text{true code}\rangle\) or \(\langle\text{false code}\rangle\) in the input stream (as appropriate to the result of the test).
\peek_N_type:TF ⟨true code⟩ \{⟨false code⟩\}

Tests if the next ⟨token⟩ in the input stream can be safely grabbed as an N-type argument. The test is ⟨false⟩ if the next ⟨token⟩ is either an explicit or implicit begin-group or end-group token (with any character code), or an explicit or implicit space character (with character code 32 and category code 10), or an outer token (never used in \LaTeX3) and ⟨true⟩ in all other cases. Note that a ⟨true⟩ result ensures that the next ⟨token⟩ is a valid N-type argument. However, if the next ⟨token⟩ is for instance \c_space_token, the test takes the ⟨false⟩ branch, even though the next ⟨token⟩ is in fact a valid N-type argument. The ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false code⟩ (as appropriate to the result of the test).

\section{Description of all possible tokens}

Let us end by reviewing every case that a given token can fall into. This section is quite technical and some details are only meant for completeness. We distinguish the meaning of the token, which controls the expansion of the token and its effect on \LaTeX’s state, and its shape, which is used when comparing token lists such as for delimited arguments. Two tokens of the same shape must have the same meaning, but the converse does not hold.

A token has one of the following shapes.

\begin{itemize}
 \item A control sequence, characterized by the sequence of characters that constitute its name: for instance, \texttt{\use:n} is a five-letter control sequence.
 \item An active character token, characterized by its character code (between 0 and 1114111 for \texttt{\lua} and \texttt{\xetex} and less for other engines) and category code 13.
 \item A character token, characterized by its character code and category code (one of 1, 2, 3, 4, 6, 7, 8, 10, 11 or 12 whose meaning is described below).\footnote{In \texttt{\lua}, there is also the case of “bytes”, which behave as character tokens of category code 12 (other) and character code between 1114112 and 1114366. They are used to output individual bytes to files, rather than UTF-8.}
\end{itemize}

There are also a few internal tokens. The following list may be incomplete in some engines.

\begin{itemize}
 \item Expanding \texttt{\the\font} results in a token that looks identical to the command that was used to select the current font (such as \texttt{\tenrm}) but it differs from it in shape.
 \item A “frozen” \texttt{\relax}, which differs from the primitive in shape (but has the same meaning), is inserted when the closing \texttt{\fi} of a conditional is encountered before the conditional is evaluated.
 \item Expanding \texttt{\noexpand ⟨token⟩} (when the ⟨token⟩ is expandable) results in an internal token, displayed (temporarily) as \texttt{\notexpanded: ⟨token⟩}, whose shape coincides with the ⟨token⟩ and whose meaning differs from \texttt{\relax}.
 \item An \texttt{\outer endtemplate}: can be encountered when peeking ahead at the next token; this expands to another internal token, end of alignment template.
 \item Tricky programming might access a frozen \texttt{\endwrite}.
\end{itemize}
Some frozen tokens can only be accessed in interactive sessions: \cr, \right, \endgroup, \fi, \inaccessible.

The meaning of a (non-active) character token is fixed by its category code (and character code) and cannot be changed. We call these tokens \emph{explicit} character tokens. Category codes that a character token can have are listed below by giving a sample output of the \TeX{} primitive \verb+\meaning+, together with their \LaTeX{} names and most common example:

1. begin-group character (\texttt{group_begin}, often \{),
2. end-group character (\texttt{group_end}, often \}),
3. math shift character (\texttt{math_toggle}, often $),
4. alignment tab character (\texttt{alignment}, often &),
5. macro parameter character (\texttt{parameter}, often #),
6. superscript character (\texttt{math_superscript}, often ^),
7. subscript character (\texttt{math_subscript}, often _),
8. blank space (\texttt{space}, often character code 32),
9. the letter (\texttt{letter}, such as A),
10. the character (\texttt{other}, such as 0).

Category code 13 (\texttt{active}) is discussed below. Input characters can also have several other category codes which do not lead to character tokens for later processing: 0 (\texttt{escape}), 5 (\texttt{end_line}), 9 (\texttt{ignore}), 14 (\texttt{comment}), and 15 (\texttt{invalid}).

The meaning of a control sequence or active character can be identical to that of any character token listed above (with any character code), and we call such tokens \emph{implicit} character tokens. The meaning is otherwise in the following list:

- a macro, used in \LaTeX{} for most functions and some variables (\texttt{tl}, \texttt{fp}, \texttt{seq}, ...),
- a primitive such as \verb+\def+ or \verb+\topmark+, used in \LaTeX{} for some functions,
- a register such as \verb+\count123+, used in \LaTeX{} for the implementation of some variables (\texttt{int}, \texttt{dim}, ...),
- a constant integer such as \verb+\char"56+ or \verb+\mathchar"121+,
- a font selection command,
- undefined.

Macros be \verb+\protected+ or not, \verb+\long+ or not (the opposite of what \LaTeX{} calls \texttt{nopar}), and \verb+\outer+ or not (unused in \LaTeX{}). Their \verb+\meaning+ takes the form

\langle properties \rangle \texttt{macro:} \langle parameters \rangle \rightarrow \langle replacement \rangle
where \textit{properties} is among \texttt{\textbackslash protected\textbackslash long\textbackslash outer}, \textit{parameters} describes parameters that the macro expects, such as \texttt{#1#2#3}, and \textit{replacement} describes how the parameters are manipulated, such as \texttt{#2/#1/#3}.

Now is perhaps a good time to mention some subtleties relating to tokens with category code 10 (space). Any input character with this category code (normally, space and tab characters) becomes a normal space, with character code 32 and category code 10.

When a macro takes an undelimited argument, explicit space characters (with character code 32 and category code 10) are ignored. If the following token is an explicit character token with category code 1 (begin-group) and an arbitrary character code, then \TeX scans ahead to obtain an equal number of explicit character tokens with category code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer braces removed) becomes the argument. Otherwise, a single token is taken as the argument for the macro: we call such single tokens “N-type”, as they are suitable to be used as an argument for a function with the signature \(:N \).
Part XVII

The \texttt{l3prop} package

Property lists

\LaTeX{}X3 implements a “property list” data type, which contains an unordered list of entries each of which consists of a ⟨\textit{key}⟩ and an associated ⟨\textit{value}⟩. The ⟨\textit{key}⟩ and ⟨\textit{value}⟩ may both be any ⟨\textit{balanced text}⟩. It is possible to map functions to property lists such that the function is applied to every key–value pair within the list.

Each entry in a property list must have a unique ⟨\textit{key}⟩: if an entry is added to a property list which already contains the ⟨\textit{key}⟩ then the new entry overwrites the existing one. The ⟨\textit{keys}⟩ are compared on a string basis, using the same method as \texttt{\textbackslash str_if_eq:nn}.

Property lists are intended for storing key-based information for use within code. This is in contrast to key–value lists, which are a form of input parsed by the \texttt{keys} module.

1 Creating and initialising property lists

\begin{verbatim}
\prop_new:N \prop_new:c
\prop_clear:N \prop_clear:c \prop_gclear:N \prop_gclear:c
\prop_clear_new:N \prop_clear_new:c \prop_gclear_new:N \prop_gclear_new:c
\prop_set_eq:NN \prop_set_eq:cc \prop_gset_eq:NN \prop_gset_eq:cc
\prop_set_from_keyval:Nn \prop_set_from_keyval:cn \prop_gset_from_keyval:Nn \prop_gset_from_keyval:cn
\end{verbatim}

\begin{itemize}
\item \texttt{\prop_set_eq:NN} ⟨\textit{property list1}⟩ ⟨\textit{property list2}⟩
\text{Sets the content of ⟨\textit{property list1}⟩ equal to that of ⟨\textit{property list2}⟩.}
\item \texttt{\prop_set_from_keyval:Nn} ⟨\textit{prop var}⟩
\{ ⟨\textit{key1}⟩ = ⟨\textit{value1}⟩ ,
 ⟨\textit{key2}⟩ = ⟨\textit{value2}⟩ , ... \}
\text{Sets ⟨\textit{prop var}⟩ to contain key–value pairs given in the second argument. If duplicate keys appear only one of the values is kept.}
\end{itemize}

New: 2017-11-28
Updated: 2019-08-25

143
\prop_const_from_keyval:Nn \prop_const_from_keyval:cn

New: 2017-11-28 Updated: 2019-08-25

\prop_const_from_keyval:Nn (prop var)
\prop_const_from_keyval:cn

{⟨key1⟩=⟨value1⟩, ⟨key2⟩=⟨value2⟩,...}

Creates a new constant ⟨prop var⟩ or raises an error if the name is already taken. The ⟨prop var⟩ is set globally to contain key–value pairs given in the second argument. If duplicate keys appear only one of the values is kept.

2 Adding entries to property lists

\prop_put:Nnn \prop_put:Nnn (property list)
\prop_put:Nnn (⟨property list⟩){⟨key⟩}{⟨value⟩}

\prop_gput:Nnn \prop_gput:Nnn (⟨property list⟩){⟨key⟩}{⟨value⟩}
\prop_gput:Nnn (⟨property list⟩){⟨key⟩}{⟨value⟩}

Adds an entry to the ⟨property list⟩ which may be accessed using the ⟨key⟩ and which has ⟨value⟩. Both the ⟨key⟩ and ⟨value⟩ may contain any ⟨balanced text⟩. The ⟨key⟩ is stored after processing with \tl_to_str:n, meaning that category codes are ignored. If the ⟨key⟩ is already present in the ⟨property list⟩, the existing entry is overwritten by the new ⟨value⟩.

\prop_put_if_new:Nnn \prop_put_if_new:Nnn (property list) {⟨key⟩} {⟨value⟩}
\prop_put_if_new:cnn \prop_put_if_new:cnn

If the ⟨key⟩ is present in the ⟨property list⟩ then no action is taken. If the ⟨key⟩ is not present in the ⟨property list⟩ then a new entry is added. Both the ⟨key⟩ and ⟨value⟩ may contain any ⟨balanced text⟩. The ⟨key⟩ is stored after processing with \tl_to_str:n, meaning that category codes are ignored.

3 Recovering values from property lists

\prop_get:NnN \prop_get:NnN (property list) {⟨key⟩} {tl var}
\prop_get:NnN (⟨property list⟩){⟨key⟩}{tl var}

\prop_get:NnN (⟨property list⟩){⟨key⟩}{tl var}
\prop_get:NnN (⟨property list⟩){⟨key⟩}{tl var}
\prop_get:NnN (⟨property list⟩){⟨key⟩}{tl var}
\prop_get:NnN (⟨property list⟩){⟨key⟩}{tl var}

Recover the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then the ⟨token list variable⟩ is set to the special marker \q_no_value. The ⟨token list variable⟩ is set within the current \TeX group. See also \prop_get:NnNTF.

\prop_pop:NnN \prop_pop:NnN (property list) {⟨key⟩} {tl var}
\prop_pop:NnN (⟨property list⟩){⟨key⟩}{tl var}
\prop_pop:NnN (⟨property list⟩){⟨key⟩}{tl var}
\prop_pop:NnN (⟨property list⟩){⟨key⟩}{tl var}
\prop_pop:NnN (⟨property list⟩){⟨key⟩}{tl var}

Recover the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then the ⟨token list variable⟩ is set to the special marker \q_no_value. The ⟨key⟩ and ⟨value⟩ are then deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.
Recovers the \langle value \rangle stored with \langle key \rangle from the \langle property list \rangle, and places this in the \langle token list variable \rangle. If the \langle key \rangle is not found in the \langle property list \rangle then the \langle token list variable \rangle is set to the special marker \q_no_value. The \langle key \rangle and \langle value \rangle are then deleted from the property list. The \langle property list \rangle is modified globally, while the assignment of the \langle token list variable \rangle is local. See also \prop_gpop:NnNTF.

Updated: 2011-08-18

Expands to the \langle value \rangle corresponding to the \langle key \rangle in the \langle property list \rangle. If the \langle key \rangle is missing, this has an empty expansion.

\TeXhackers note: This function is slower than the non-expandable analogue \prop_get:Nn. The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \langle value \rangle does not expand further when appearing in an x-type argument expansion.

Leaves the number of key–value pairs in the \langle property list \rangle in the input stream as an \langle integer denotation \rangle.

4 Modifying property lists

Removes the entry listed under \langle key \rangle from the \langle property list \rangle. If the \langle key \rangle is not found in the \langle property list \rangle no change occurs, \textit{i.e} there is no need to test for the existence of a key before deleting it.

5 Property list conditionals

Tests whether the \langle property list \rangle is currently defined. This does not check that the \langle property list \rangle really is a property list variable.

Tests if the \langle property list \rangle is empty (containing no entries).
Tests if the \langle key \rangle is present in the \langle property list \rangle, making the comparison using the method described by \texttt{\texttt{\texttt{\str_if_eq:nnTF}}}.

\textbf{\texttt{\TeX}hackers note:} This function iterates through every key–value pair in the \langle property list \rangle and is therefore slower than using the non-expandable \texttt{\prop_get:NnTF}.

6 Recovering values from property lists with branching

The functions in this section combine tests for the presence of a key in a property list with recovery of the associated value. This makes them useful for cases where different cases follow dependent on the presence or absence of a key in a property list. They offer increased readability and performance over separate testing and recovery phases.

\prop_get:NnNTF	\prop_get:NnNTF \langle property list \rangle \{\langle key \rangle\} \{\langle token list variable \rangle\} \{\{true code\}\} \{\{false code\}\}
\prop_get:NnN	\prop_get:NnN \langle property list \rangle \langle key \rangle \{\langle token list variable \rangle\} \{\{true code\}\} \{\{false code\}\}
\prop_pop:NnNTF	\prop_pop:NnNTF \langle property list \rangle \{\langle key \rangle\} \{\langle token list variable \rangle\} \{\{true code\}\} \{\{false code\}\}
\prop_gpop:NnNTF	\prop_gpop:NnNTF \langle property list \rangle \{\langle key \rangle\} \{\langle token list variable \rangle\} \{\{true code\}\} \{\{false code\}\}

If the \langle key \rangle is not present in the \langle property list \rangle, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle key \rangle is present in the \langle property list \rangle, it pops the corresponding \langle value \rangle in the \langle token list variable \rangle, i.e. removes the item from the \langle property list \rangle. Both the \langle property list \rangle and the \langle token list variable \rangle are assigned locally.
7 Mapping to property lists

All mappings are done at the current group level, \emph{i.e.} any local assignments made by the \langle function \rangle or \langle code \rangle discussed below remain in effect after the loop.

\prop_map_function:NN \langle property list \rangle \langle function \rangle

Applies \langle function \rangle to every \langle entry \rangle stored in the \langle property list \rangle. The \langle function \rangle receives two arguments for each iteration: the \langle key \rangle and associated \langle value \rangle. The order in which \langle entries \rangle are returned is not defined and should not be relied upon. To pass further arguments to the \langle function \rangle, see \prop_map_tokens:Nn.

\prop_map_break:

Used to terminate a \prop_map_ function before all entries in the \langle property list \rangle have been processed. This normally takes place within a conditional statement, for example

\prop_map_break:

Use outside of a \prop_map_ scenario leads to low level \LaTeX{} errors.

\textbf{\TeX{}hackers note:} When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.

\prop_map_inline:Nn \langle property list \rangle \{ \langle inline function \rangle \}

Applies \langle inline function \rangle to every \langle entry \rangle stored within the \langle property list \rangle. The \langle inline function \rangle should consist of code which receives the \langle key \rangle as \#1 and the \langle value \rangle as \#2. The order in which \langle entries \rangle are returned is not defined and should not be relied upon.

\prop_map_tokens:Nn \langle property list \rangle \{ \langle code \rangle \}

Analogue of \prop_map_function:NN which maps several tokens instead of a single function. The \langle code \rangle receives each key–value pair in the \langle property list \rangle as two trailing brace groups. For instance,

\prop_map_tokens:Nn \l_my_prop \{ \str_if_eq:nnT \{ mykey \} \}

expands to the value corresponding to mykey: for each pair in \l_my_prop the function \str_if_eq:nnT receives mykey, the \langle key \rangle and the \langle value \rangle as its three arguments. For that specific task, \prop_item:Nn is faster.
\prop_map_break:n \prop_map_break:n {(code)}

Used to terminate a \prop_map_inline:Nn function before all entries in the \prop_list have been processed, inserting the (code) after the mapping has ended. This normally takes place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{
 \str_if_eq:nnTF { #1 } { bingo }
 { \prop_map_break:n { <code> } }
 {
 % Do something useful
 }
}

Use outside of a \prop_map_inline:Nn scenario leads to low level \TeX errors.

\TeXhackers\ note: When the mapping is broken, additional tokens may be inserted before the (code) is inserted into the input stream. This depends on the design of the mapping function.

8 Viewing property lists

\prop_show:N \prop_show:c

\prop_show:N \prop_list

Displays the entries in the \prop_list in the terminal.

\prop_log:N \prop_log:c

\prop_log:N \prop_list

 Writes the entries in the \prop_list in the log file.

9 Scratch property lists

\l_tmpa_prop \l_tmpb_prop

Scratch property lists for local assignment. These are never used by the kernel code, and so are safe for use with any \lTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_prop \g_tmpb_prop

Scratch property lists for global assignment. These are never used by the kernel code, and so are safe for use with any \lTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
10 Constants

`\empty_prop` A permanently-empty property list used for internal comparisons.
Part XVIII
The \texttt{l3msg} package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate how the code is proceeding. The \texttt{l3msg} module provides a consistent method for doing this (as opposed to writing directly to the terminal or log).

The system used by \texttt{l3msg} to create messages divides the process into two distinct parts. Named messages are created in the first part of the process; at this stage, no decision is made about the type of output that the message will produce. The second part of the process is actually producing a message. At this stage a choice of message class has to be made, for example \texttt{error}, \texttt{warning} or \texttt{info}.

By separating out the creation and use of messages, several benefits are available. First, the messages can be altered later without needing details of where they are used in the code. This makes it possible to alter the language used, the detail level and so on. Secondly, the output which results from a given message can be altered. This can be done on a message class, module or message name basis. In this way, message behaviour can be altered and messages can be entirely suppressed.

1 Creating new messages

All messages have to be created before they can be used. The text of messages is automatically wrapped to the length available in the console. As a result, formatting is only needed where it helps to show meaning. In particular, \texttt{\textbackslash \textbackslash} may be used to force a new line and \texttt{\textbackslash u} forces an explicit space. Additionally, \texttt{\textbackslash l}, \texttt{\textbackslash s}, \texttt{\textbackslash w} and \texttt{\textbackslash r} can be used to produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within the message filtering system to allow for example the \LaTeX\ kernel messages to belong to the module \LaTeX\ while still being filterable at a more granular level. Thus for example

\begin{verbatim}
\msg_new:nnnn { mymodule } { submodule / message } ...
\end{verbatim}

will allow to filter out specifically messages from the \texttt{submodule}.

\begin{verbatim}
\msg_new:nnnn \msg_new:nnnn
\msg_set:nnnn \msg_set:nnnn \msg_gset:nnnn \msg_gset:nnnn
\end{verbatim}

\begin{verbatim}
\msg_new:nnnn \{ (module) \} \{ (message) \} \{ (text) \} \{ (more text) \}
\end{verbatim}

Creates a \texttt{(message)} for a given \texttt{(module)}. The message is defined to first give \texttt{(text)} and then \texttt{(more text)} if the user requests it. If no \texttt{(more text)} is available then a standard text is given instead. Within \texttt{(text)} and \texttt{(more text)} four parameters (\texttt{#1} to \texttt{#4}) can be used: these will be supplied at the time the message is used. An error is raised if the \texttt{(message)} already exists.

\begin{verbatim}
\msg_set:nnnn \{ (module) \} \{ (message) \} \{ (text) \} \{ (more text) \}
\end{verbatim}

Sets up the text for a \texttt{(message)} for a given \texttt{(module)}. The message is defined to first give \texttt{(text)} and then \texttt{(more text)} if the user requests it. If no \texttt{(more text)} is available then a standard text is given instead. Within \texttt{(text)} and \texttt{(more text)} four parameters (\texttt{#1} to \texttt{#4}) can be used: these will be supplied at the time the message is used.

150
\texttt{\textbackslash msg_if_exist_p:nn} \star
\texttt{\textbackslash msg_if_exist_nnTF} \star
\texttt{\textbackslash msg_if_exist_nnTF \{\textit{module}\} \{\textit{message}\}}
\texttt{\textbackslash msg_if_exist_nnTF \{\textit{true code}\} \{\textit{false code}\}}
Tests whether the \langle \textit{message} \rangle for the \langle \textit{module} \rangle is currently defined.

2 Contextual information for messages

\texttt{\textbackslash msg_line_context: \star} \texttt{\textbackslash msg_line_context:}
Prints the current line number when a message is given, and thus suitable for giving context to messages. The number itself is proceeded by the text on line.

\texttt{\textbackslash msg_line_number: \star} \texttt{\textbackslash msg_line_number:}
Prints the current line number when a message is given.

\texttt{\textbackslash msg_fatal_text:n \star} \texttt{\textbackslash msg_fatal_text:n \{\textit{module}\}}
Produces the standard text
\textbf{Fatal Package} \langle \textit{module} \rangle Error
This function can be redefined to alter the language in which the message is given, using \#1 as the name of the \langle \textit{module} \rangle to be included.

\texttt{\textbackslash msg_critical_text:n \star} \texttt{\textbackslash msg_critical_text:n \{\textit{module}\}}
Produces the standard text
\textbf{Critical Package} \langle \textit{module} \rangle Error
This function can be redefined to alter the language in which the message is given, using \#1 as the name of the \langle \textit{module} \rangle to be included.

\texttt{\textbackslash msg_error_text:n \star} \texttt{\textbackslash msg_error_text:n \{\textit{module}\}}
Produces the standard text
\textbf{Package} \langle \textit{module} \rangle Error
This function can be redefined to alter the language in which the message is given, using \#1 as the name of the \langle \textit{module} \rangle to be included.

\texttt{\textbackslash msg_warning_text:n \star} \texttt{\textbackslash msg_warning_text:n \{\textit{module}\}}
Produces the standard text
\textbf{Package} \langle \textit{module} \rangle Warning
This function can be redefined to alter the language in which the message is given, using \#1 as the name of the \langle \textit{module} \rangle to be included. The \langle \textit{type} \rangle of \langle \textit{module} \rangle may be adjusted: Package is the standard outcome: see \texttt{\textbackslash msg_module_type:n}.
\msg_info_text:n * \msg_info_text:n \{⟨module⟩\}

Produces the standard text:

\textbf{Package} \langle ⟨module⟩ \rangle \textbf{Info}

This function can be redefined to alter the language in which the message is given, using \#1 as the name of the \langle ⟨module⟩ \rangle to be included. The \langle ⟨type⟩ \rangle of \langle ⟨module⟩ \rangle may be adjusted:

\textbf{Package} is the standard outcome: see \msg_module_type:n.

\msg_module_name:n * \msg_module_name:n \{⟨module⟩\}

\textbf{New: 2018-10-10}

Expands to the public name of the \langle ⟨module⟩ \rangle as defined by \g_msg_module_name_prop (or otherwise leaves the \langle ⟨module⟩ \rangle unchanged).

\msg_module_type:n * \msg_module_type:n \{⟨module⟩\}

\textbf{New: 2018-10-10}

Expands to the description which applies to the \langle ⟨module⟩ \rangle, for example a \textbf{Package} or \textbf{Class}. The information here is defined in \g_msg_module_type_prop, and will default to \textbf{Package} if an entry is not present.

\msg_see_documentation_text:n * \msg_see_documentation_text:n \{⟨module⟩\}

\textbf{Updated: 2018-09-30}

Produces the standard text

\textit{See the} \langle ⟨module⟩ \rangle \textit{documentation for further information.}

This function can be redefined to alter the language in which the message is given, using \#1 as the name of the \langle ⟨module⟩ \rangle to be included. The name of the \langle ⟨module⟩ \rangle may be altered by use of \g_msg_module_documentation_prop.

\g_msg_module_name_prop

\textbf{New: 2018-10-10}

Provides a mapping between the module name used for messages, and that for documentation. For example, \LaTeX3 core messages are stored in the reserved \texttt{LaTeX} tree, but are printed as \texttt{LaTeX3}.

\g_msg_module_type_prop

\textbf{New: 2018-10-10}

Provides a mapping between the module name used for messages, and that type of module. For example, for \LaTeX3 core messages, an empty entry is set here meaning that they are not described using the standard \textbf{Package} text.

3 Issuing messages

Messages behave differently depending on the message class. In all cases, the message may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does not match the number in the definition of the message, extra arguments are ignored, or empty arguments added (of course the sense of the message may be impaired). The four arguments are converted to strings before being added to the message text: the \textit{x}-type variants should be used to expand material.
\texttt{\msgfatal:nnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}}

Issues \texttt{(module) error \{message\}, passing \{arg one\} to \{arg four\} to the text-creating functions. After issuing a fatal error the \TeX{} run halts. No PDF file will be produced in this case (DVI mode runs may produce a truncated DVI file).

\texttt{\msgcritical:nnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}}

Issues \texttt{(module) error \{message\}, passing \{arg one\} to \{arg four\} to the text-creating functions. After issuing a critical error, \TeX{} stops reading the current input file. This may halt the \TeX{} run (if the current file is the main file) or may abort reading a sub-file.

\TeX{}\texttt{hackers note: }The \TeX{} \texttt{\endinput} primitive is used to exit the file. In particular, the rest of the current line remains in the input stream.

\texttt{\msgerror:nnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}}

Issues \texttt{(module) error \{message\}, passing \{arg one\} to \{arg four\} to the text-creating functions. The error interrupts processing and issues the text at the terminal. After user input, the run continues.

\texttt{\msgwarning:nnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}}

Issues \texttt{(module) warning \{message\}, passing \{arg one\} to \{arg four\} to the text-creating functions. The warning text is added to the log file and the terminal, but the \TeX{} run is not interrupted.
4 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message when it is given. Thus we might have

\msg_new:nnnn \ { module } \ { my-message } \ { Some-text } \ { Some-more-text } \n
to define a message, with

\msg_error:nn \ { module } \ { my-message } \n
when it is used. With no filtering, this raises an error. However, we could alter the behaviour with

\msg_redirect_class:nn \ { error } \ { warning } \n
to turn all errors into warnings, or with

\msg_redirect_module:nn \ { module } \ { error } \ { warning } \n
to alter only messages from that module, or even

\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to messages from one module and finally to messages of one class. Thus it is possible to select out an individual message for special treatment even if the entire class is already redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an empty argument for the target class. Redirection to a missing class raises an error immediately. Infinite loops are prevented by eliminating the redirection starting from the target of the redirection that caused the loop to appear. Namely, if redirections are requested as $A \rightarrow B$, $B \rightarrow C$ and $C \rightarrow A$ in this order, then the $A \rightarrow B$ redirection is cancelled.

\msg_redirect_class:nnn { ⟨class one⟩ } { ⟨class two⟩ }

Changes the behaviour of messages of ⟨class one⟩ so that they are processed using the code for those of ⟨class two⟩.

\msg_redirect_module:nnn { ⟨module⟩ } { ⟨class one⟩ } { ⟨class two⟩ }

Redirects message of ⟨class one⟩ for ⟨module⟩ to act as though they were from ⟨class two⟩. Messages of ⟨class one⟩ from sources other than ⟨module⟩ are not affected by this redirection. This function can be used to make some messages “silent” by default. For example, all of the warning messages of ⟨module⟩ could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn { ⟨module⟩ } { ⟨message⟩ } { ⟨class⟩ }

Redirects a specific ⟨message⟩ from a specific ⟨module⟩ to act as a member of ⟨class⟩ of messages. No further redirection is performed. This function can be used to make a selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }
Part XIX
The l3file package
File and I/O operations

This module provides functions for working with external files. Some of these functions apply to an entire file, and have prefix \file_, while others are used to work with files on a line by line basis and have prefix \ior_ (reading) or \iow_ (writing).

It is important to remember that when reading external files \TeX attempts to locate them using both the operating system path and entries in the \TeX file database (most \TeX systems use such a database). Thus the “current path” for \TeX is somewhat broader than that for other programs.

For functions which expect a \langle file name \rangle argument, this argument may contain both literal items and expandable content, which should on full expansion be the desired file name. Active characters (as declared in \l_char_active_seq) are not expanded, allowing the direct use of these in file names. Quote tokens (") are not permitted in file names as they are reserved for internal use by some \TeX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the fact that some file systems do not allow or interact unpredictably with spaces in these positions. When no extension is given, this will trim spaces from the start of the name only.

1 Input–output stream management

As \TeX engines have a limited number of input and output streams, direct use of the streams by the programmer is not supported in \LaTeX3. Instead, an internal pool of streams is maintained, and these are allocated and deallocated as needed by other modules. As a result, the programmer should close streams when they are no longer needed, to release them for other processes.

Note that I/O operations are global: streams should all be declared with global names and treated accordingly.

\ior_new:N \ior_new:c \iow_new:N \iow_new:c

Updated: 2011-09-26

\ior_open:Nn \ior_open:cn

Updated: 2012-02-10

\ior_open:Nn \ior_open:cn

Opens \langle file name \rangle for reading using \langle stream \rangle as the control sequence for file access. If the \langle stream \rangle was already open it is closed before the new operation begins. The \langle stream \rangle is available for access immediately and will remain allocated to \langle file name \rangle until a \ior_close:N instruction is given or the \TeX run ends. If the file is not found, an error is raised.
\ior_open:NnTF \ior_open:cnTF
New: 2013-01-12
Opens \textit{file name} for reading using \textit{stream} as the control sequence for file access. If the \textit{stream} was already open it is closed before the new operation begins. The \textit{stream} is available for access immediately and will remain allocated to \textit{file name} until a \ior_close:N instruction is given or the \TeX run ends. The \textit{true code} is then inserted into the input stream. If the file is not found, no error is raised and the \textit{false code} is inserted into the input stream.

\ior_open:Nn \ior_open:cn
Updated: 2012-02-09
Opens \textit{file name} for writing using \textit{stream} as the control sequence for file access. If the \textit{stream} was already open it is closed before the new operation begins. The \textit{stream} is available for access immediately and will remain allocated to \textit{file name} until a \iow_close:N instruction is given or the \TeX run ends. Opening a file for writing clears any existing content in the file (\textit{i.e.} writing is \textit{not} additive).

\ior_close:N \ior_close:c
\iow_close:N \iow_close:c
Updated: 2012-07-31
Closes the \textit{stream}. Streams should always be closed when they are finished with as this ensures that they remain available to other programmers.

\ior_show_list: \ior_log_list: \iow_show_list: \iow_log_list:
New: 2017-06-27
Display (to the terminal or log file) a list of the file names associated with each open (read or write) stream. This is intended for tracking down problems.

1.1 Reading from files

Reading from files and reading from the terminal are separate processes in \texttt{expl3}. The functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are designed to work with \texttt{files}.

157
\ior_get:NN \ior_get:NN \langle stream \rangle \langle token list variable \rangle
\ior_get:NNTF \ior_get:NNTF \langle stream \rangle \langle token list variable \rangle \langle true code \rangle \langle false code \rangle

Function that reads one or more lines (until an equal number of left and right braces are found) from the file input \langle stream \rangle and stores the result locally in the \langle token list \rangle variable. The material read from the \langle stream \rangle is tokenized by \TeX{} according to the category codes and \texttt{\endlinechar} in force when the function is used. Assuming normal settings, any lines which do not end in a comment character \% have the line ending converted to a space, so for example input

\begin{verbatim}
a b c
\end{verbatim}
results in a token list \texttt{a/uni2423b/uni2423c/uni2423}. Any blank line is converted to the token \texttt{\par}. Therefore, blank lines can be skipped by using a test such as

\begin{verbatim}
\ior_get:NN \l_my_stream \l_tmpa_tl
\tl_set:Nn \l_tmpb_tl { \par }
\tl_if_eq:NNF \l_tmpa_tl \l_tmpb_tl ...
\end{verbatim}

Also notice that if multiple lines are read to match braces then the resulting token list can contain \texttt{\par} tokens. In the non-branching version, where the \langle stream \rangle is not open the \langle tl var \rangle is set to \texttt{\q_no_value}.

\textbf{\texttt{T\TeX{}hackers note}}: This protected macro is a wrapper around the \TeX{} primitive \texttt{\readline}. Regardless of settings, \TeX{} replaces trailing space and tab characters (character codes 32 and 9) in each line by an end-of-line character (character code \texttt{\endlinechar}, omitted if \texttt{\endlinechar} is negative or too large) before turning characters into tokens according to current category codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_str_get:NN \ior_str_get:NNTF

\texttt{\ior_str_get:NN} \langle stream \rangle \langle token list variable \rangle
\texttt{\ior_str_get:NNTF} \langle stream \rangle \langle token list variable \rangle \langle true code \rangle \langle false code \rangle

Function that reads one line from the file input \langle stream \rangle and stores the result locally in the \langle token list \rangle variable. The material is read from the \langle stream \rangle as a series of tokens with category code 12 (other), with the exception of space characters which are given category code 10 (space). Multiple whitespace characters are retained by this process. It always only reads one line and any blank lines in the input result in the \langle token list variable \rangle being empty. Unlike \texttt{\ior_get:NN}, line ends do not receive any special treatment. Thus input

\begin{verbatim}
a b c
\end{verbatim}
results in a token list \texttt{a b c} with the letters a, b, and c having category code 12. In the non-branching version, where the \langle stream \rangle is not open the \langle tl var \rangle is set to \texttt{\q_no_value}.

\textbf{\texttt{T\TeX{}hackers note}}: This protected macro is a wrapper around the \texttt{\readline} \texttt{\vTeX{}} primitive. Regardless of settings, \TeX{} removes trailing space and tab characters (character codes 32 and 9). However, the end-line character normally added by this primitive is not included in the result of \texttt{\ior_str_get:NN}.

All mappings are done at the current group level, \textit{i.e.} any local assignments made by the \langle function \rangle or \langle code \rangle discussed below remain in effect after the loop.
\ior_map_inline:Nn
\ior_map_inline:Nn \ior_get:NN \ior_map_inline:Nn
Applies the \langle inline function \rangle to each set of \langle lines \rangle obtained by calling \ior_get:NN until reaching the end of the file. \TeX ignores any trailing new-line marker from the file it reads. The \langle inline function \rangle should consist of code which receives the \langle line \rangle as \#1.

\ior_str_map_inline:Nn
\ior_str_map_inline:Nn \ior_get:NN \ior_str_map_inline:Nn
Applies the \langle inline function \rangle to every \langle line \rangle in the \langle stream \rangle. The material is read from the \langle stream \rangle as a series of tokens with category code 12 (other), with the exception of space characters which are given category code 10 (space). The \langle inline function \rangle should consist of code which receives the \langle line \rangle as \#1. Note that \TeX removes trailing space and tab characters (character codes 32 and 9) from every line upon input. \TeX also ignores any trailing new-line marker from the file it reads.

\ior_map_variable:NNn
\ior_map_variable:NNn \ior_get:NN \ior_map_variable:NNn
For each set of \langle lines \rangle obtained by calling \ior_get:NN until reaching the end of the file, stores the \langle lines \rangle in the \langle tl var \rangle then applies the \langle code \rangle. The \langle code \rangle will usually make use of the \langle variable \rangle, but this is not enforced. The assignments to the \langle variable \rangle are local. Its value after the loop is the last set of \langle lines \rangle, or its original value if the \langle stream \rangle is empty. \TeX ignores any trailing new-line marker from the file it reads. This function is typically faster than \ior_map_inline:Nn.

\ior_str_map_variable:NNn
\ior_str_map_variable:NNn \ior_get:NN \ior_str_map_variable:NNn
For each \langle line \rangle in the \langle stream \rangle, stores the \langle line \rangle in the \langle variable \rangle then applies the \langle code \rangle. The material is read from the \langle stream \rangle as a series of tokens with category code 12 (other), with the exception of space characters which are given category code 10 (space). The \langle code \rangle will usually make use of the \langle variable \rangle, but this is not enforced. The assignments to the \langle variable \rangle are local. Its value after the loop is the last \langle line \rangle, or its original value if the \langle stream \rangle is empty. Note that \TeX removes trailing space and tab characters (character codes 32 and 9) from every line upon input. \TeX also ignores any trailing new-line marker from the file it reads. This function is typically faster than \ior_str_map_inline:Nn.

\ior_map_break:
\ior_map_break:
\ior_map_break:
\ior_map_break:
\ior_map_break:
\ior_map_break:
Used to terminate a \ior_map_... function before all lines from the \langle stream \rangle have been processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn l_my_iør
{ \str_if_eq:nnTF { #1 } { bingo } { \ior_map_break: } % Do something useful }

Use outside of a \ior_map_... scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.
Used to terminate a \ior_map_{\ldots} function before all lines in the (stream) have been processed, inserting the (code) after the mapping has ended. This normally takes place within a conditional statement, for example

\begin{verbatim}
\ior_map_inline:Nn \l_my_ior
{\str_if_eq:nnTF { #1 } { bingo } { \ior_map_break:n { <code> } }% Do something useful
}
\end{verbatim}

Use outside of a \ior_map_{\ldots} scenario leads to low level \TeX{} errors.

\TeX{}hackers note: When the mapping is broken, additional tokens may be inserted before the (code) is inserted into the input stream. This depends on the design of the mapping function.

Tests if the end of a file (stream) has been reached during a reading operation. The test also returns a true value if the (stream) is not open.

1.2 Writing to files

This functions writes (tokens) to the specified (stream) immediately (i.e. the write operation is called on expansion of $\iow_now:Nn$).

This function writes the given (tokens) to the log (transcript) file immediately: it is a dedicated version of $\iow_now:Nn$.

This function writes the given (tokens) to the terminal file immediately: it is a dedicated version of $\iow_now:Nn$.
\iow_shipout:Nn \iow_shipout:(Nx|cn|cx)

This function writes \{tokens\} to the specified \{stream\} when the current page is finalised (i.e. at shipout). The x-type variants expand the \{tokens\} at the point where the function is used but not when the resulting tokens are written to the \{stream\} (cf. \iow_shipout_-x:Nn).

\TeXhackers note: When using expl3 with a format other than \LaTeX, new line characters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional unwanted line-breaks.

\iow_shipout_x:Nn \iow_shipout_x:(Nx|cn|cx) Updated: 2012-09-08

This function writes \{tokens\} to the specified \{stream\} when the current page is finalised (i.e. at shipout). The \{tokens\} are expanded at the time of writing in addition to any expansion when the function is used. This makes these functions suitable for including material finalised during the page building process (such as the page number integer).

\TeXhackers note: This is a wrapper around the \TeX primitive \write. When using expl3 with a format other than \LaTeX, new line characters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional unwanted line-breaks.

\iow_char:N * \iow_char:N \{char\}

Inserts \{char\} into the output stream. Useful when trying to write difficult characters such as \%, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow \{ \iow_char:N \{ text \iow_char:N \} \}

The function has no effect if writing is taking place without expansion (e.g. in the second argument of \iow_now:Nn).

\iow_newline: * \iow_newline:

Function to add a new line within the \{tokens\} written to a file. The function has no effect if writing is taking place without expansion (e.g. in the second argument of \iow_now:Nn).

\TeXhackers note: When using expl3 with a format other than \LaTeX, the character inserted by \iow_newline: is not recognized by \TeX, which may lead to the insertion of additional unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_x:Nn and direct uses of primitive operations.
1.3 Wrapping lines in output

This function wraps the \text to a fixed number of characters per line. At the start of each line which is wrapped, the \run-on text is inserted. The line character count targeted is the value of \l_iow_line_count_int minus the number of characters in the \run-on text for all lines except the first, for which the target number of characters is simply \l_iow_line_count_int since there is no run-on text. The \text and \run-on text are exhaustively expanded by the function, with the following substitutions:

- \ or \iow_newline: may be used to force a new line,
- \ may be used to represent a forced space (for example after a control sequence),
- \#, \%, \{}, \ may be used to represent the corresponding character,
- \iow_allow_break: may be used to allow a line-break without inserting a space (this is experimental),
- \iow_indent:n may be used to indent a part of the \text (not the \run-on text).

Additional functions may be added to the wrapping by using the \set up, which is executed before the wrapping takes place: this may include overriding the substitutions listed.

Any expandable material in the \text which is not to be expanded on wrapping should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N, etc.

The result of the wrapping operation is passed as a braced argument to the \function, which is typically a wrapper around a write operation. The output of \iow_wrap:nnnN (i.e. the argument passed to the \function) consists of characters of category “other” (category code 12), with the exception of spaces which have category “space” (category code 10). This means that the output does not expand further when written to a file.

\TeX hackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the \text to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used to prevent expansion of material. However, this is less conceptually clear than conversion to a string, which is therefore the supported method for handling expandable material in the \text.

In the first argument of \iow_wrap:nnnN (for instance in messages), indents \text by four spaces. This function does not cause a line break, and only affects lines which start within the scope of the \text. In case the indented \text should appear on separate lines from the surrounding text, use \ to force line breaks.

The maximum number of characters in a line to be written by the \iow_wrap:nnnN function. This value depends on the \TeX system in use: the standard value is 78, which is typically correct for unmodified \TeXlive and \MiKTeX systems.
1.4 Constant input–output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so are safe for use with any \texttt{\LaTeX}3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\begin{itemize}
 \item \texttt{_g_tmp_ior}
 \item \texttt{_g_tmpb_ior}
\end{itemize}

Constant output streams for writing to the log and to the terminal (plus the log), respectively.

\begin{itemize}
 \item \texttt{_c_log_iow}
 \item \texttt{_c_term_iow}
\end{itemize}

Scratch output stream for global use. These are never used by the kernel code, and so are safe for use with any \texttt{\LaTeX}3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\begin{itemize}
 \item \texttt{_g_tmp_iow}
 \item \texttt{_g_tmpb_iow}
\end{itemize}

New: 2017-12-11

1.5 Primitive conditionals

\begin{verbatim}
\if_eof:w * (true code)
\else:
 (false code)
\fi:
\end{verbatim}

Tests if the \texttt{_stream} returns “end of file”, which is true for non-existent files. The \texttt{\else:} branch is optional.

\texttt{\LaTeX}hackers note: This is the \texttt{\LaTeX} primitive \texttt{_ifdef}.

2 File operation functions

\begin{itemize}
 \item \texttt{_g_file_curr_dir_str}
 \item \texttt{_g_file_curr_name_str}
 \item \texttt{_g_file_curr_ext_str}
\end{itemize}

New: 2017-06-21

Contain the directory, name and extension of the current file. The directory is empty if the file was loaded without an explicit path (\textit{i.e.} if it is in the \texttt{\LaTeX} search path), and does not end in / other than the case that it is exactly equal to the root directory. The \texttt{_name} and \texttt{_ext} parts together make up the file name, thus the \texttt{_name} part may be thought of as the “job name” for the current file. Note that \texttt{\LaTeX} does not provide information on the \texttt{_ext} part for the main (top level) file and that this file always has an empty \texttt{_dir} component. Also, the \texttt{_name} here will be equal to \texttt{_c_sys_jobname_str}, which may be different from the real file name (if set using \texttt{_jobname}, for example).
Each entry is the path to a directory which should be searched when seeking a file. Each path can be relative or absolute, and should not include the trailing slash. The entries are not expanded when used so may contain active characters but should not feature any variable content. Spaces need not be quoted.

\TeXhackersnote: When working as a package in \LaTeX, expl3 will automatically append the current \input@path to the set of values from \l_file_search_path_seq.

\file_if_exist:nTF \{⟨file name⟩\} {⟨true code⟩} {⟨false code⟩}

Searches for ⟨file name⟩ using the current \TeX search path and the additional paths controlled by \l_file_search_path_seq.

\file_get:nnN \{⟨filename⟩\} {⟨setup⟩} ⟨tl⟩
\file_get:nnNTF \{⟨filename⟩\} {⟨setup⟩} ⟨tl⟩ {⟨true code⟩} {⟨false code⟩}

Defines ⟨tl⟩ to the contents of ⟨filename⟩. Category codes may need to be set appropriately via the ⟨setup⟩ argument. The non-branching version sets the ⟨tl⟩ to \q_no_value if the file is not found. The branching version runs the ⟨true code⟩ after the assignment to ⟨tl⟩ if the file is found, and ⟨false code⟩ otherwise.

\file_get_full_name:nN \{⟨file name⟩\} ⟨tl⟩
\file_get_full_name:nNTF \{⟨file name⟩\} ⟨tl⟩ {⟨true code⟩} {⟨false code⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found sets the ⟨tl var⟩ the fully-qualified name of the file, i.e. the path and file name. This includes an extension .tex when the given ⟨file name⟩ has no extension but the file found has that extension. In the non-branching version, the ⟨tl var⟩ will be set to \q_no_value in the case that the file does not exist.

\file_full_name:n \{⟨file name⟩\}
\file_full_name:V \{⟨file name⟩\}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found leaves the fully-qualified name of the file, i.e. the path and file name, in the input stream. This includes an extension .tex when the given ⟨file name⟩ has no extension but the file found has that extension. If the file is not found on the path, the expansion is empty.
\file_parse_full_name:nNNN \file_parse_full_name:VNNN

Parses the \emph{full name} and splits it into three parts, each of which is returned by setting the appropriate local string variable:

- The \emph{dir}: everything up to the last / (path separator) in the \emph{file path}. As with system \texttt{PATH} variables and related functions, the \emph{dir} does \textit{not} include the trailing / unless it points to the root directory. If there is no path (only a file name), \emph{dir} is empty.

- The \emph{name}: everything after the last / up to the last ., where both of those characters are optional. The \emph{name} may contain multiple . characters. It is empty if \emph{full name} consists only of a directory name.

- The \emph{ext}: everything after the last \texttt{.} (including the dot). The \emph{ext} is empty if there is no . after the last /.

This function does not expand the \emph{full name} before turning it to a string. It assume that the \emph{full name} either contains no quote (") characters or is surrounded by a pair of quotes.

\file_hex_dump:n ☆ \file_hex_dump:nnn ☆

\file_hex_dump:n \{\emph{file name}\} \file_hex_dump:nnn \{\emph{file name}\} \{\emph{start index}\} \{\emph{end index}\}

Searches for \emph{file name} using the current \TeX{} search path and the additional paths controlled by \texttt{__file_search_path_seq}. It then expands to leave the hexadecimal dump of the file content in the input stream. The file is read as bytes, which means that in contrast to most \TeX{} behaviour there will be a difference in result depending on the line endings used in text files. The same file will produce the same result between different engines: the algorithm used is the same in all cases. When the file is not found, the result of expansion is empty. The \{\emph{start index}\} and \{\emph{end index}\} values work as described for \texttt{__str_range:nnn}.

\file_get_hex_dump:n \file_get_hex_dump:nFF \file_get_hex_dump:nnn \file_get_hex_dump:nnnFF

\file_get_hex_dump:n \{\emph{file name}\} \{t l var\} \file_get_hex_dump:nnn \{\emph{file name}\} \{\emph{start index}\} \{\emph{end index}\} \{t l var\}

Sets the \{t l var\} to the result of applying \texttt{__file_hex_dump:n/__file_hex_dump:nnn} to the \emph{file}. If the file is not found, the \{t l var\} will be set to \texttt{__q_no_value}.

\file_mdfive_hash:n ☆ \file_mdfive_hash:nN FF

\file_mdfive_hash:n \{\emph{file name}\}

Searches for \emph{file name} using the current \TeX{} search path and the additional paths controlled by \texttt{__file_search_path_seq}. It then expands to leave the MD5 sum generated from the contents of the file in the input stream. The file is read as bytes, which means that in contrast to most \TeX{} behaviour there will be a difference in result depending on the line endings used in text files. The same file will produce the same result between different engines: the algorithm used is the same in all cases. When the file is not found, the result of expansion is empty.

\file_get_mdfive_hash:n \file_get_mdfive_hash:nN FF

\file_get_mdfive_hash:n \{\emph{file name}\} \{t l var\}

Sets the \{t l var\} to the result of applying \texttt{__file_mdfive_hash:n/__file_mdfive_hash:nnn} to the \emph{file}. If the file is not found, the \{t l var\} will be set to \texttt{__q_no_value}.
\file_size:n \{(file name)\}

Searches for \(\langle\text{file name}\rangle\) using the current \TeX\ search path and the additional paths controlled by \l_file_search_path_seq. It then expands to leave the size of the file in bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_get_size:nN \{\langle\text{file name}\rangle\} \{\langle\text{tl var}\rangle\}

Sets the \(\langle\text{tl var}\rangle\) to the result of applying \file_size:n to the \(\langle\text{file}\rangle\). If the file is not found, the \(\langle\text{tl var}\rangle\) will be set to \textbackslash q\textunderscore no\textunderscore value. This is not available in older versions of \Xe\TeX.

\file_timestamp:n \{(file name)\}

Searches for \(\langle\text{file name}\rangle\) using the current \TeX\ search path and the additional paths controlled by \l_file_search_path_seq. It then expands to leave the modification timestamp of the file in the input stream. The timestamp is of the form \(D:\langle\text{year}\rangle\langle\text{month}\rangle\langle\text{day}\rangle\langle\text{hour}\rangle\langle\text{minute}\rangle\langle\text{second}\rangle\langle\text{offset}\rangle\), where the latter may be Z (UTC) or \(\langle\text{plus}-\text{minus}\rangle\langle\text{hours}\rangle'\langle\text{minutes}\rangle'). When the file is not found, the result of expansion is empty. This is not available in older versions of \Xe\TeX.

\file_get_timestamp:nN \{\langle\text{file name}\rangle\} \{\langle\text{tl var}\rangle\}

Sets the \(\langle\text{tl var}\rangle\) to the result of applying \file_timestamp:n to the \(\langle\text{file}\rangle\). If the file is not found, the \(\langle\text{tl var}\rangle\) will be set to \textbackslash q\textunderscore no\textunderscore value. This is not available in older versions of \Xe\TeX.

\file_compare_timestamp:p:nNn \{\langle\text{file-1}\rangle\} \{\langle\text{comparator}\rangle\} \{\langle\text{file-2}\rangle\} \{\langle\text{true code}\rangle\} \{\langle\text{false code}\rangle\}

\file_compare_timestamp_p:nNn \{\langle\text{file-1}\rangle\} \{\langle\text{comparator}\rangle\} \{\langle\text{file-2}\rangle\}

Compares the file stamps on the two \(\langle\text{files}\rangle\) as indicated by the \(\langle\text{comparator}\rangle\), and inserts either the \(\langle\text{true code}\rangle\) or \(\langle\text{false case}\rangle\) as required. A file which is not found is treated as older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT \{source\textunderscore file\} > \{derived\textunderscore file\}

\{
 \% Code to regenerate derived file
\}

to work when the derived file is entirely absent. The timestamp of two absent files is regarded as different. This is not available in older versions of \Xe\TeX.

\file_input:n \{\langle\text{file name}\rangle\}

Searches for \(\langle\text{file name}\rangle\) in the path as detailed for \file_if_exist:nTF, and if found reads in the file as additional \LaTeX\ source. All files read are recorded for information and the file name stack is updated by this function. An error is raised if the file is not found.
\file_if_exist_input:n \file_if_exist_input:n \{file name\}
\file_if_exist_input:nF \file_if_exist_input:nF \{file name\} \{false code\}

Searches for \file{file name} using the current \TeX{} search path and the additional paths controlled by \file_path_include:n. If found then reads in the file as additional \LaTeX{} source as described for \file_input:n, otherwise inserts \file{false code}. Note that these functions do not raise an error if the file is not found, in contrast to \file_input:n.

\file_input_stop:
\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the file is reached. Where the file reading is being terminated due to an error, \msg_-critical:nn(nn) should be preferred.

\TeX\hackers{note}: This function must be used on a line on its own: \TeX{} reads files line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_show_list:
\file_log_list:

These functions list all files loaded by \LaTeX{} commands that populate \@filelist or by \file_input:n. While \file_show_list: displays the list in the terminal, \file_log_list: outputs it to the log file only.
The \texttt{l3skip} package
Dimensions and skips

\LaTeX\ provides two general length variables: \texttt{dim} and \texttt{skip}. Lengths stored as \texttt{dim} variables have a fixed length, whereas \texttt{skip} lengths have a rubber (stretch/shrink) component. In addition, the \texttt{muskip} type is available for use in math mode: this is a special form of \texttt{skip} where the lengths involved are determined by the current math font (in \texttt{mu}). There are common features in the creation and setting of length variables, but for clarity the functions are grouped by variable type.

1 Creating and initialising \texttt{dim} variables

<table>
<thead>
<tr>
<th>\texttt{command}</th>
<th>\texttt{description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{\dim_new:N}</td>
<td>Creates a new \texttt{dimension} or raises an error if the name is already taken. The declaration is global. The \texttt{dimension} is initially equal to 0 pt.</td>
</tr>
<tr>
<td>\texttt{\dim_new:c}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_const:Nn}</td>
<td>Creates a new constant \texttt{dimension} or raises an error if the name is already taken. The value of the \texttt{dimension} is set globally to the \texttt{dimension expression}.</td>
</tr>
<tr>
<td>\texttt{\dim_const:cn}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_zero:N}</td>
<td>Sets \texttt{dimension} to 0 pt.</td>
</tr>
<tr>
<td>\texttt{\dim_zero:c}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_gzero:N}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_gzero:c}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_zero_new:N}</td>
<td>Ensures that the \texttt{dimension} exists globally by applying \texttt{\dim_new:N} if necessary, then applies \texttt{\dim_gzero:N} to leave the \texttt{dimension} set to zero.</td>
</tr>
<tr>
<td>\texttt{\dim_zero_new:c}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_gzero_new:N}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_gzero_new:c}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_if_exist_p:N}</td>
<td>Tests whether the \texttt{dimension} is currently defined. This does not check that the \texttt{dimension} really is a dimension variable.</td>
</tr>
<tr>
<td>\texttt{\dim_if_exist_p:c}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_if_exist:NTF}</td>
<td></td>
</tr>
<tr>
<td>\texttt{\dim_if_exist:CTF}</td>
<td></td>
</tr>
</tbody>
</table>

New: 2012-03-03
2 Setting dim variables

\dim_add:Nn \{dimension\} \{\langle\text{dimension expression}\rangle\}

Adds the result of the \langle\text{dimension expression}\rangle to the current content of the \langle\text{dimension}\rangle.

\dim_add:cn \dim_gadd:Nn \dim_gadd:cn

Updated: 2011-10-22

\dim_set:Nn \{dimension\} \{\langle\text{dimension expression}\rangle\}

Sets \langle\text{dimension}\rangle to the value of \langle\text{dimension expression}\rangle, which must evaluate to a length with units.

\dim_set:cn \dim_gset:Nn \dim_gset:cn

Updated: 2011-10-22

\dim_set_eq:NN \langle\text{dimension}\rangle_1 \langle\text{dimension}\rangle_2

Sets the content of \langle\text{dimension}\rangle_1 equal to that of \langle\text{dimension}\rangle_2.

\dim_set_eq:NN \dim_set_eq:cn \dim_gset_eq:NN \dim_gset_eq:cn

New: 2012-09-09

Updated: 2011-10-22

\dim_sub:Nn \{dimension\} \{\langle\text{dimension expression}\rangle\}

Subtracts the result of the \langle\text{dimension expression}\rangle from the current content of the \langle\text{dimension}\rangle.

\dim_sub:cn \dim_gsub:Nn \dim_gsub:cn

Updated: 2011-10-22

3 Utilities for dimension calculations

\dim_abs:n \{\langle\text{dimexpr}\rangle\}

Converts the \langle\text{dimexpr}\rangle to its absolute value, leaving the result in the input stream as a \langle\text{dimension denotation}\rangle.

\dim_abs:n \dim_max:nn \dim_min:nn

Updated: 2012-09-26

\dim_max:nn \{\langle\text{dimexpr}\rangle_1\} \{\langle\text{dimexpr}\rangle_2\}

\dim_min:nn \{\langle\text{dimexpr}\rangle_1\} \{\langle\text{dimexpr}\rangle_2\}

New: 2012-09-09

Updated: 2012-09-26

Evaluator the two \langle\text{dimension expressions}\rangle and leaves either the maximum or minimum value in the input stream as appropriate, as a \langle\text{dimension denotation}\rangle.
\texttt{\dim_ratio:nn} \(\dim_ratio:nn \ \langle \text{dimexpr}_1 \rangle \ \langle \text{dimexpr}_2 \rangle \)

Parses the two \langle dimension expressions \rangle and converts the ratio of the two to a form suitable for use inside a \langle dimension expression \rangle. This ratio is then left in the input stream, allowing syntax such as

\input{example.tex}

The output of \texttt{\dim_ratio:nn} on full expansion is a ratio expression between two integers, with all distances converted to scaled points. Thus

\input{example2.tex}

displays 327680/655360 on the terminal.

\section{Dimension expression conditionals}

\texttt{\dim_compare:p:nNn} \(\dim_compare:p:nNn \ \langle \text{dimexpr}_1 \rangle \ \langle \text{relation} \rangle \ \langle \text{dimexpr}_2 \rangle \)

\texttt{\dim_compare:nNnTF} \(\langle \text{dimexpr}_1 \rangle \ \langle \text{relation} \rangle \ \langle \text{dimexpr}_2 \rangle \)

\texttt{\langle true code \rangle \ \langle false code \rangle}

This function first evaluates each of the \langle dimension expressions \rangle as described for \texttt{\dim_eval:n}. The two results are then compared using the \langle relation \rangle:

\begin{align*}
\text{Equal} & = \\
\text{Greater than} & > \\
\text{Less than} & <
\end{align*}

This function is less flexible than \texttt{\dim_compare:nTF} but around 5 times faster.
This function evaluates the \textit{dimension expressions} as described for \texttt{dim_eval:n} and compares consecutive result using the corresponding \textit{relation}, namely it compares \texttt{dimexpr1} and \texttt{dimexpr2} using the \textit{relation1}, then \texttt{dimexpr2} and \texttt{dimexpr3} using the \textit{relation2}, until finally comparing \texttt{dimexprN} and \texttt{dimexprN+1} using the \textit{relationN}. The test yields \texttt{true} if all comparisons are \texttt{true}. Each \textit{dimension expression} is evaluated only once, and the evaluation is lazy, in the sense that if one comparison is \texttt{false}, then no other \textit{dimension expression} is evaluated and no other comparison is performed. The \textit{relations} can be any of the following:

\begin{itemize}
 \item Equal \quad = \quad \texttt{or} \quad \texttt{==}
 \item Greater than or equal to \quad \geq
 \item Greater than \quad \texttt{>}
 \item Less than or equal to \quad \leq
 \item Less than \quad \texttt{<}
 \item Not equal \quad \texttt{!=}
\end{itemize}

This function is more flexible than \texttt{dim_compare:nNnTF} but around 5 times slower.
This function evaluates the \textit{test dimension expression} and compares this in turn to each of the \textit{dimension expression cases}. If the two are equal then the associated \textit{code} is left in the input stream and other cases are discarded. If any of the cases are matched, the \textit{true code} is also inserted into the input stream (after the code for the appropriate case), while if none match then the \textit{false code} is inserted. The function \texttt{\dim_case:nn}, which does nothing if there is no match, is also available. For example

\begin{verbatim}
\dim_set:Nn \l_tmpa_dim { 5 pt }
\dim_case:nnF { 2 \l_tmpa_dim } { 5 pt } { Small } { 4 pt + 6 pt } { Medium } { - 10 pt } { Negative }
{ No idea! }
\end{verbatim}

leaves “Medium” in the input stream.

\section{Dimension expression loops}

\begin{verbatim}
\dim_do_until:nNnn \texttt{\dim_compare:nNnTF} { (dimexpr_1) } { (dimexpr_2) } { (true code) } { (false code) }
\end{verbatim}

Places the \textit{code} in the input stream for \TeX to process, and then evaluates the relationship between the two \textit{dimension expressions} as described for \texttt{\dim_compare:nNnTF}. If the test is \texttt{false} then the \textit{code} is inserted into the input stream again and a loop occurs until the \textit{relation} is \texttt{true}.

\begin{verbatim}
\dim_do_while:nNnn \texttt{\dim_compare:nNnTF} { (dimexpr_1) } { (dimexpr_2) } { (true code) } { (false code) }
\end{verbatim}

Places the \textit{code} in the input stream for \TeX to process, and then evaluates the relationship between the two \textit{dimension expressions} as described for \texttt{\dim_compare:nNnTF}. If the test is \texttt{true} then the \textit{code} is inserted into the input stream again and a loop occurs until the \textit{relation} is \texttt{false}.

\begin{verbatim}
\dim_until_do:nNnn \texttt{\dim_compare:nNnTF} { (dimexpr_1) } { (dimexpr_2) } { (true code) } { (false code) }
\end{verbatim}

Evaluates the relationship between the two \textit{dimension expressions} as described for \texttt{\dim_compare:nNnTF}, and then places the \textit{code} in the input stream if the \textit{relation} is \texttt{false}. After the \textit{code} has been processed by \TeX the test is repeated, and a loop occurs until the test is \texttt{true}.
\texttt{\textbackslash dim_while_do:nNnn} \quad \texttt{\textbackslash dim_while_do:nNnn \{dimexpr_1\} \{relation\} \{dimexpr_2\} \{code\}}

Evaluates the relationship between the two \textit{(dimension expressions)} as described for \texttt{\textbackslash dim_compare:nNTF}, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \texttt{true}. After the \textit{(code)} has been processed by \LaTeX{} the test is repeated, and a loop occurs until the test is \texttt{false}.

\texttt{\textbackslash dim_do_until:nn} \quad \texttt{\textbackslash dim_do_until:nn \{dimension relation\} \{code\}}

Places the \textit{(code)} in the input stream for \LaTeX{} to process, and then evaluates the \textit{(dimension relation)} as described for \texttt{\textbackslash dim_compare:nTF}. If the test is \texttt{false} then the \textit{(code)} is inserted into the input stream again and a loop occurs until the \textit{(relation)} is \texttt{true}.

\texttt{\textbackslash dim_while_do:nn} \quad \texttt{\textbackslash dim_while_do:nn \{dimension relation\} \{code\}}

Places the \textit{(code)} in the input stream for \LaTeX{} to process, and then evaluates the \textit{(dimension relation)} as described for \texttt{\textbackslash dim_compare:nTF}. If the test is \texttt{true} then the \textit{(code)} is inserted into the input stream again and a loop occurs until the \textit{(relation)} is \texttt{false}.

\texttt{\textbackslash until_do:nn} \quad \texttt{\textbackslash until_do:nn \{dimension relation\} \{code\}}

Evaluates the \textit{(dimension relation)} as described for \texttt{\textbackslash dim_compare:nTF}, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \texttt{false}. After the \textit{(code)} has been processed by \LaTeX{} the test is repeated, and a loop occurs until the test is \texttt{true}.

\texttt{\textbackslash dim_do_do:nn} \quad \texttt{\textbackslash dim_do_do:nn \{dimension relation\} \{code\}}

Evaluates the \textit{(dimension relation)} as described for \texttt{\textbackslash dim_compare:nTF}, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \texttt{true}. After the \textit{(code)} has been processed by \LaTeX{} the test is repeated, and a loop occurs until the test is \texttt{false}.

6 Dimension step functions

\texttt{\textbackslash dim_step_function:nnnN} \quad \texttt{\textbackslash dim_step_function:nnnN \{initial value\} \{step\} \{final value\} \{function\}}

This function first evaluates the \textit{(initial value)}, \textit{(step)} and \textit{(final value)}, all of which should be dimension expressions. The \textit{(function)} is then placed in front of each \textit{(value)} from the \textit{(initial value)} to the \textit{(final value)} in turn (using \textit{(step)} between each \textit{(value)}). The \textit{(step)} must be non-zero. If the \textit{(step)} is positive, the loop stops when the \textit{(value)} becomes larger than the \textit{(final value)}. If the \textit{(step)} is negative, the loop stops when the \textit{(value)} becomes smaller than the \textit{(final value)}. The \textit{(function)} should absorb one argument.

\texttt{\textbackslash dim_step_inline:nnn} \quad \texttt{\textbackslash dim_step_inline:nnn \{initial value\} \{step\} \{final value\} \{code\}}

This function first evaluates the \textit{(initial value)}, \textit{(step)} and \textit{(final value)}, all of which should be dimension expressions. Then for each \textit{(value)} from the \textit{(initial value)} to the \textit{(final value)} in turn (using \textit{(step)} between each \textit{(value)}), the \textit{(code)} is inserted into the input stream with \texttt{\#1} replaced by the current \textit{(value)}. Thus the \textit{(code)} should define a function of one argument (\texttt{\#1}).
This function first evaluates the \(<initial value>\), \(<step>\) and \(<final value>\), all of which should be dimension expressions. Then for each \(<value>\) from the \(<initial value>\) to the \(<final value>\) in turn (using \(<step>\) between each \(<value>\)), the \(<code>\) is inserted into the input stream, with the \(<tl var>\) defined as the current \(<value>\). Thus the \(<code>\) should make use of the \(<tl var>\).

7 Using \texttt{dim} expressions and variables

\texttt{\textbackslash dim_eval:n}
\begin{footnotesize}
\texttt{\textbackslash dim_eval:n} \{\langle\texttt{dimension expression}\rangle\}
\end{footnotesize}

Evaluates the \(<\texttt{dimension expression}>\), expanding any dimensions and token list variables within the \(<\texttt{expression}>\) to their content (without requiring \texttt{\dim_use:N}/\texttt{\tl_use:N}) and applying the standard mathematical rules. The result of the calculation is left in the input stream as a \(<\texttt{dimension denotation}>\) after two expansions. This is expressed in points (pt), and requires suitable termination if used in a \TeX{}-style assignment as it is not an \(<\texttt{internal dimension}>\).

\texttt{\textbackslash dim_sign:n}
\begin{footnotesize}
\texttt{\textbackslash dim_sign:n} \{\langle\texttt{dimexpr}\rangle\}
\end{footnotesize}

Evaluates the \(<\texttt{dimexpr}>\) then leaves 1 or 0 or \(-1\) in the input stream according to the sign of the result.

\texttt{\textbackslash dim_use:N}
\begin{footnotesize}
\texttt{\textbackslash dim_use:N} \{\langle\texttt{dimension}\rangle\}
\end{footnotesize}

Recovers the content of a \(<\texttt{dimension}>\) and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where a \(<\texttt{dimension}>\) is required (such as in the argument of \texttt{\dim_eval:n}).

\texttt{\textbackslash dim_to_decimal:n}
\begin{footnotesize}
\texttt{\textbackslash dim_to_decimal:n} \{\langle\texttt{dimexpr}\rangle\}
\end{footnotesize}

Evaluates the \(<\texttt{dimension expression}>\), and leaves the result, expressed in points (pt) in the input stream, with \textit{no units}. The result is rounded by \TeX{} to four or five decimal places. If the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\begin{verbatim}
\texttt{\dim_to_decimal:n} \{ 1bp \}
\end{verbatim}

leaves 1.00374 in the input stream, \emph{i.e.} the magnitude of one “big point” when converted to (\TeX) points.
Evaluates the \langle dimension expression \rangle, and leaves the result, expressed in big points (bp) in the input stream, with no units. The result is rounded by \TeX{} to four or five decimal places. If the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, \textit{i.e.} the magnitude of one (\TeX{}) point when converted to big points.

\dim_to_decimal_in_sp:n \star \dim_to_decimal_in_sp:n \{ \langle dimexpr \rangle \} \star \dim_to_decimal_in_sp:n \{ \langle dimexpr \rangle \}

Evaluates the \langle dimension expression \rangle, and leaves the result, expressed in scaled points (sp) in the input stream, with no units. The result is necessarily an integer.

\dim_to_decimal_in_unit:nn \star \dim_to_decimal_in_unit:nn \{ \langle dimexpr_1 \rangle \} \{ \langle dimexpr_2 \rangle \}

Evaluates the \langle dimension expressions \rangle, and leaves the value of \langle dimexpr_1 \rangle, expressed in a unit given by \langle dimexpr_2 \rangle, in the input stream. The result is a decimal number, rounded by \TeX{} to four or five decimal places. If the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\dim_to_decimal_in_unit:nn { 1bp } { 1mm }

leaves 0.35277 in the input stream, \textit{i.e.} the magnitude of one big point when converted to millimetres.

Note that this function is not optimised for any particular output and as such may give different results to \dim_to_decimal_in_bp:n or \dim_to_decimal_in_sp:n. In particular, the latter is able to take a wider range of input values as it is not limited by the ability to calculate a ratio using \varepsilon-\TeX{} primitives, which is required internally by \dim_to_decimal_in_unit:nn.

\dim_to_fp:n \star \dim_to_fp:n \{ \langle dimexpr \rangle \}

Expands to an internal floating point number equal to the value of the \langle dimexpr \rangle in pt. Since dimension expressions are evaluated much faster than their floating point equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low precision and a smaller range are acceptable.

8 Viewing dim variables

\dim_show:N \dim_show:c

Displays the value of the \langle dimension \rangle on the terminal.
\dim_show:n \{\langle\text{dimension expression}\rangle\} \\
Displays the result of evaluating the \langle\text{dimension expression}\rangle\) on the terminal.

\dim_log:N \dim_log:c \\
\{\langle\text{dimension}\rangle\} \\
Writes the value of the \langle\text{dimension}\rangle\ in the log file.

\dim_log:n \{\langle\text{dimension expression}\rangle\} \\
Writes the result of evaluating the \langle\text{dimension expression}\rangle\ in the log file.

9 Constant dimensions

\c_max_dim \\
The maximum value that can be stored as a dimension. This can also be used as a component of a skip.

\c_zero_dim \\
A zero length as a dimension. This can also be used as a component of a skip.

10 Scratch dimensions

\l_tmpa_dim \l_tmpb_dim \\
Scratch dimension for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_dim \g_tmpb_dim \\
Scratch dimension for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

11 Creating and initialising skip variables

\skip_new:N \skip_new:c \\
\{\langle\text{skip}\rangle\} \\
Creates a new \langle\text{skip}\rangle or raises an error if the name is already taken. The declaration is global. The \langle\text{skip}\rangle is initially equal to 0 pt.
\skip_const:Nn
\skip_const:cn

New: 2012-03-05

\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

New: 2012-01-07

\skip_if_exist_p:N ★ \skip_if_exist_p:c ★ \skip_if_exist:N TF ★ \skip_if_exist:c TF ★

New: 2012-03-03

\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn

Updated: 2011-10-22

\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

Updated: 2011-10-22

\skip_set_eq:NN
\skip_set_eq:(cN|Nc|cc)
\skip_gset_eq:NN
\skip_gset_eq:(cN|Nc|cc)

\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn
\skip_gsub:cn

Updated: 2011-10-22

12 Setting skip variables

\skip_add:Nn \{\langle skip expression\rangle\}

Adds the result of the \langle skip expression\rangle to the current content of the \langle skip\rangle.

\skip_set:Nn \{\langle skip expression\rangle\}

Sets \langle skip\rangle to the value of \langle skip expression\rangle, which must evaluate to a length with units and may include a rubber component (for example 1 cm plus 0.5 cm).

\skip_set_eq:NN \langle skip_1\rangle \langle skip_2\rangle

Sets the content of \langle skip_1\rangle equal to that of \langle skip_2\rangle.

\skip_sub:Nn \{\langle skip expression\rangle\}

Subtracts the result of the \langle skip expression\rangle from the current content of the \langle skip\rangle.
13 Skip expression conditionals

\skip_if_eq_p:nn mathematics
\skip_if_eq:nn{TF} mathematics
This function first evaluates each of the \langle skip expressions \rangle as described for \skip_eval:n. The two results are then compared for exact equality, i.e. both the fixed and rubber components must be the same for the test to be true.

\skip_if_finite_p:n mathematics
\skip_if_finite:n{TF} mathematics
Evaluates the \langle skip expression \rangle as described for \skip_eval:n, and then tests if all of its components are finite.

14 Using skip expressions and variables

\skip_eval:n \langle skip expression \rangle
evaluates the \langle skip expression \rangle, expanding any skips and token list variables within the \langle expression \rangle to their content (without requiring \skip_use:N/\tl_use:N) and applying the standard mathematical rules. The result of the calculation is left in the input stream as a \langle glue denotation \rangle after two expansions. This is expressed in points (pt), and requires suitable termination if used in a \TeX-style assignment as it is not an \langle internal glue \rangle.

\skip_use:N \langle skip \rangle
recovers the content of a \langle skip \rangle and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where a \langle dimension \rangle or \langle skip \rangle is required (such as in the argument of \skip_eval:n).

\TeXhacks{\skip_use:N is the \TeX primitive \the: this is one of several \LaTeX3 names for this primitive.}

15 Viewing skip variables

\skip_show:N \langle skip \rangle
displays the value of the \langle skip \rangle on the terminal.

\skip_show:n \langle skip expression \rangle
displays the result of evaluating the \langle skip expression \rangle on the terminal.
\skip_log:N \skip_log:c
New: 2014-08-22
Updated: 2015-08-03

\skip_log:n
New: 2014-08-22
Updated: 2015-08-07

\skip_horizontal:N \skip_horizontal:c \skip_horizontal:n
Updated: 2011-10-22

16 Constant skips

\c_max_skip
Updated: 2012-11-02

\c_zero_skip
Updated: 2012-11-01

17 Scratch skips

\l_tmpa_skip \l_tmpb_skip
Scratch skip for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_skip \g_tmpb_skip
Scratch skip for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

18 Inserting skips into the output

\texttt{\bf \TeXhackers note: \skip_horizontal:N is the \TeX primitive \hskip renamed.}
\skip_vertical:N \skip_vertical:c \skip_vertical:n

Inserted a vertical \textit{skip} into the current list. The argument can also be a \textit{dim}.

\TeX{hacker} note: \skip_vertical:N is the \TeX primitive \texttt{\vskip} renamed.

19 Creating and initialising \textit{muskip} variables

\muskip_new:N \muskip_new:c

Creates a new \textit{muskip} or raises an error if the name is already taken. The declaration is global. The \textit{muskip} is initially equal to 0\,mu.

\muskip_const:Nn \muskip_const:cn

New: 2012-03-05

Creates a new constant \textit{muskip} or raises an error if the name is already taken. The value of the \textit{muskip} is set globally to the \textit{muskip expression}.

\muskip_zero:N \skip_zero:N \muskip_zero:c \muskip_gzero:N \muskip_gzero:c

Sets \textit{muskip} to 0\,mu.

\muskip_zero_new:N \muskip_zero_new:c \muskip_gzero_new:N \muskip_gzero_new:c

New: 2012-01-07

Ensures that the \textit{muskip} exists globally by applying \muskip_new:N if necessary, then applies \muskip_(g)zero:N to leave the \textit{muskip} set to zero.

\muskip_if_exist_p:N \muskip_if_exist_p:c \muskip_if_exist:NTF \muskip_if_exist:c

New: 2012-03-03

Tests whether the \textit{muskip} is currently defined. This does not check that the \textit{muskip} really is a muskip variable.

20 Setting \textit{muskip} variables

\muskip_add:Nn \muskip_add:cn \muskip_gadd:Nn \muskip_gadd:cn

Updated: 2011-10-22

\muskip_add:Nn \muskip_add:cn \muskip_gadd:Nn \muskip_gadd:cn

\texttt{\muskip_add:Nn} \texttt{\textit{muskip}} \texttt{\texttt{\textit{muskip expression}}} \texttt{\texttt{\texttt{\textit{muskip}}}}

Adds the result of the \textit{muskip expression} to the current content of the \textit{muskip}.
\texttt{\textbackslash muskip_set:Nn} \texttt{\textbackslash muskip_set:cn} \texttt{\textbackslash muskip_gset:Nn} \texttt{\textbackslash muskip_gset:cn} \texttt{\textbackslash muskip_eval:n} \texttt{\textbackslash muskip_use:N} \texttt{\textbackslash muskip_use:c} \texttt{\textbackslash muskip_show:N} \texttt{\textbackslash muskip_show:c}

Updated: 2011-10-22

\texttt{\textbackslash muskip_set:Nn} \texttt{\textbackslash muskip_set:cn} \texttt{\textbackslash muskip_gset:Nn} \texttt{\textbackslash muskip_gset:cn} \texttt{\textbackslash muskip_eval:n} \texttt{\textbackslash muskip_use:N} \texttt{\textbackslash muskip_use:c} \texttt{\textbackslash muskip_show:N} \texttt{\textbackslash muskip_show:c}

Updated: 2011-10-22

\texttt{\textbackslash muskip_set_eq:NN} \texttt{\textbackslash muskip_set_eq:cn} \texttt{\textbackslash muskip_gset_eq:NN} \texttt{\textbackslash muskip_gset_eq:cn} \texttt{\textbackslash muskip_sub:Nn} \texttt{\textbackslash muskip_sub:cn} \texttt{\textbackslash muskip_gsub:Nn} \texttt{\textbackslash muskip_gsub:cn}

Updated: 2011-10-22

\texttt{\textbackslash muskip_set:Nn} \texttt{\textbackslash (muskip expression)}

Sets \texttt{\textbackslash (muskip)} to the value of \texttt{\textbackslash (muskip expression)}, which must evaluate to a math length with units and may include a rubber component (for example 1 \texttt{mu} plus 0.5 \texttt{mu}.

\texttt{\textbackslash muskip_set_eq:NN \textbackslash (muskip1)} \texttt{\textbackslash (muskip2)}

Sets the content of \texttt{\textbackslash (muskip1)} equal to that of \texttt{\textbackslash (muskip2)}.

\texttt{\textbackslash muskip_sub:Nn} \texttt{\textbackslash (muskip expression)}

Subtracts the result of the \texttt{\textbackslash (muskip expression)} from the current content of the \texttt{\textbackslash (muskip)}.

\texttt{\textbackslash muskip_eval:n} \texttt{\textbackslash (muskip expression)}

Evaluates the \texttt{\textbackslash (muskip expression)}, expanding any skips and token list variables within the \texttt{\textbackslash (expression)} to their content (without requiring \texttt{\textbackslash muskip_use:N}/\texttt{\textbackslash tl_use:N}) and applying the standard mathematical rules. The result of the calculation is left in the input stream as a \texttt{\textbackslash (muglue denotation)} after two expansions. This is expressed in \texttt{mu}, and requires suitable termination if used in a \texttt{\textbackslash PG\textbackslash X}-style assignment as it is \texttt{not} an \texttt{\textbackslash (internal muglue)}.

\texttt{\textbackslash muskip_use:N} \texttt{\textbackslash (muskip)}

Recover the content of a \texttt{\textbackslash (skip)} and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where a \texttt{\textbackslash (dimension)} is required (such as in the argument of \texttt{\textbackslash muskip_eval:n}).

\texttt{\textbackslash PG\textbackslash X-hackers note:} \texttt{\textbackslash muskip_use:N} is the \texttt{\textbackslash PG\textbackslash X} primitive \texttt{\textbackslash the:} this is one of several \texttt{\textbackslash PG\textbackslash X3} names for this primitive.

\texttt{\textbackslash muskip_show:N} \texttt{\textbackslash (muskip)}

Displays the value of the \texttt{\textbackslash (muskip)} on the terminal.

\section{Using muskip expressions and variables}

\texttt{\textbackslash muskip_eval:n} \texttt{\textbackslash (muskip expression)}

\texttt{\textbackslash muskip_use:N} \texttt{\textbackslash (muskip)}

\texttt{\textbackslash muskip_show:N} \texttt{\textbackslash (muskip)}

\section{Viewing muskip variables}
\muskip_show:n \muskip_show:n \{\textit{muskip expression}\} \muskip_show:n \{\textit{muskip expression}\}
Displays the result of evaluating the \textit{\textit{muskip expression}} on the terminal.

\muskip_log:N \muskip_log:N \textit{\textit{muskip}} \muskip_log:c \textit{\textit{muskip}}
Writes the value of the \textit{\textit{muskip}} in the log file.

\muskip_log:n \muskip_log:n \{\textit{\textit{muskip expression}}\} \muskip_log:n \{\textit{\textit{muskip expression}}\}
Writes the result of evaluating the \textit{\textit{muskip expression}} in the log file.

23 Constant muskips

\c_max_muskip The maximum value that can be stored as a muskip, with no stretch nor shrink component.

\c_zero_muskip A zero length as a muskip, with no stretch nor shrink component.

24 Scratch muskips

\l_tmpa_muskip \l_tmpb_muskip
\l_tmpa_muskip \l_tmpb_muskip
Scratch muskip for local assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_muskip \g_tmpb_muskip
\g_tmpa_muskip \g_tmpb_muskip
Scratch muskip for global assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

25 Primitive conditional

\if_dim:w * \if_dim:w \{\textit{dimen}_1\} \{\textit{relation}\} \{\textit{dimen}_2\}
\{\textit{true code}\}
\else:
\{\textit{false}\}
\fi:
Compare two dimensions. The \textit{\textit{relation}} is one of \textit{\textit{<}}, \textit{\textit{=}} or \textit{\textit{>}} with category code 12.

\TeXhackers note: This is the \TeX primitive \texttt{ifdim}.
Part XXI

The l3keys package

Key–value interfaces

The key–value method is a popular system for creating large numbers of settings for controlling function or package behaviour. The system normally results in input of the form

\MyModuleSetup{
 key-one = value one,
 key-two = value two
}

or

\MyModuleMacro[
 key-one = value one,
 key-two = value two
]{argument}

for the user.

The high level functions here are intended as a method to create key–value controls. Keys are themselves created using a key–value interface, minimising the number of functions and arguments required. Each key is created by setting one or more properties of the key:

\keys_define:nn { mymodule }
{
 key-one .code:n = code including parameter #1,
 key-two .tl_set:N = \l_mymodule_store_tl
}

These values can then be set as with other key–value approaches:

\keys_set:nn { mymodule }
{
 key-one = value one,
 key-two = value two
}

At a document level, \keys_set:nn is used within a document function, for example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } }
\DeclareDocumentCommand \MyModuleMacro { o m }
{\group_begin:
 \keys_set:nn { mymodule } { #1 }
 % Main code for \MyModuleMacro
 \group_end:
}
Key names may contain any tokens, as they are handled internally using `\tl_to_str:n`. As discussed in section 2, it is suggested that the character `/` is reserved for sub-division of keys into logical groups. Functions and variables are not expanded when creating key names, and so

```latex
\tl_set:Nn \l_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
  \l_mymodule_tmp_tl .code:n = code
}
```

creates a key called `\l_mymodule_tmp_tl`, and not one called `key`.

1 Creating keys

\keys_define:nn \keys_define:nn { ⟨module⟩ } { ⟨keyval list⟩ }

Parses the `⟨keyval list⟩` and defines the keys listed there for `⟨module⟩`. The `⟨module⟩` name is treated as a string. In practice the `⟨module⟩` should be chosen to be unique to the module in question (unless deliberately adding keys to an existing module).

The `⟨keyval list⟩` should consist of one or more key names along with an associated key property. The properties of a key determine how it acts. The individual properties are described in the following text; a typical use of `\keys_define:nn` might read

```latex
\keys_define:nn { mymodule }
{
  keyname .code:n = Some-code-using-#1,
  keyname .value_required:n = true
}
```

where the properties of the key begin from the `. after the key name.

The various properties available take either no arguments at all, or require one or more arguments. This is indicated in the name of the property using an argument specification. In the following discussion, each property is illustrated attached to an arbitrary `⟨key⟩`, which when used may be supplied with a `⟨value⟩`. All key definitions are local.

Key properties are applied in the reading order and so the ordering is significant. Key properties which define “actions”, such as `.code:n`, `.tl_set:N`, etc., override one another. Some other properties are mutually exclusive, notably `.value_required:n` and `.value_forbidden:n`, and so they replace one another. However, properties covering non-exclusive behaviours may be given in any order. Thus for example the following definitions are equivalent.

```latex
\keys_define:nn { mymodule }
{
  keyname .code:n = Some-code-using-#1,
  keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
}
```
keyname .value_required:n = true,
keyname .code:n = Some-code-using-#1
}

Note that with the exception of the special .undefine: property, all key properties define the key within the current TeX scope.

〈key〉 .bool_set:N = 〈boolean〉

Defines 〈key〉 to set 〈boolean〉 to 〈value〉 (which must be either true or false). If the variable does not exist, it will be created globally at the point that the key is set up.

〈key〉 .bool_set_inverse:N = 〈boolean〉

Defines 〈key〉 to set 〈boolean〉 to the logical inverse of 〈value〉 (which must be either true or false). If the 〈boolean〉 does not exist, it will be created globally at the point that the key is set up.

〈key〉 .choice:

Sets 〈key〉 to act as a choice key. Each valid choice for 〈key〉 must then be created, as discussed in section 3.

〈key〉 .choices:nn = {〈choices〉} {〈code〉}

Sets 〈key〉 to act as a choice key, and defines a series 〈choices〉 which are implemented using the 〈code〉. Inside 〈code〉, \l_keys_choice_tl will be the name of the choice made, and \l_keys_choice_int will be the position of the choice in the list of 〈choices〉 (indexed from 1). Choices are discussed in detail in section 3.

〈key〉 .clist_set:N = 〈comma list variable〉

Defines 〈key〉 to set 〈comma list variable〉 to 〈value〉. Spaces around commas and empty items will be stripped. If the variable does not exist, it is created globally at the point that the key is set up.

〈key〉 .code:n = {〈code〉}

Stores the 〈code〉 for execution when 〈key〉 is used. The 〈code〉 can include one parameter (#1), which will be the 〈value〉 given for the 〈key〉.

〈key〉 .cs_set:Np = 〈control sequence〉 {arg. spec.}

Defines 〈key〉 to set 〈control sequence〉 to have 〈arg. spec.〉 and replacement text 〈value〉.
C:\Users\Eni\Documents\LaTeX\key-docs\key-docs-xetex.tex

\keys_define:nn { mymodule }
{
 key .code:n = Hello-#1,
 key .default:n = World
}
\keys_set:nn { mymodule }
{
 key = Fred, % Prints 'Hello Fred'
 key, % Prints 'Hello World'
 key = , % Prints 'Hello'
}

The default does not affect keys where values are required or forbidden. Thus a required value cannot be supplied by a default value, and giving a default value for a key which cannot take a value does not trigger an error.

\keys_define:nn { dim } {
 .dim_set:N = \dim,
 .dim_set:c = \dim,
 .dim_gset:N = \dim,
 .dim_gset:c = \dim }

Defines \texttt{\{key\}} to set \texttt{\{dimension\}} to \texttt{\{value\}} (which must a dimension expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.

\keys_define:nn { fp } {
 .fp_set:N = \fpeval,
 .fp_set:c = \fpeval,
 .fp_gset:N = \fpeval,
 .fp_gset:c = \fpeval }

Defines \texttt{\{key\}} to set \texttt{\{floating point\}} to \texttt{\{value\}} (which must a floating point expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.

\keys_define:nn { groups } {
 .groups:n = \{groups\},
}

Defines \texttt{\{key\}} as belonging to the \texttt{\{groups\}} declared. Groups provide a “secondary axis” for selectively setting keys, and are described in Section 6.

\keys_define:nn { inherit } {
 .inherit:n = \{parents\}
}

Specifies that the \texttt{\{key\}} path should inherit the keys listed as \texttt{\{parents\}}. For example, after setting

\keys_define:nn { foo } { test .code:n = \tl_show:n {#1} }
\keys_define:nn { } { bar .inherit:n = foo }

setting

\keys_set:nn { bar } { test = a }

will be equivalent to

\keys_set:nn { foo } { test = a }
\begin{align*}
\text{\texttt{.initial:n}} & \quad \text{Initialises the \texttt{(key)} with the \texttt{(value)}, equivalent to} \\
& \quad \texttt{\keys_set:nn \{\texttt{(module)}\} \{ \texttt{(key)} = \texttt{(value)} \}} \\
\text{\texttt{.int_set:N}} & \quad \text{Defines \texttt{(key)} to set \texttt{(integer)} to \texttt{(value)} (which must be an integer expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.} \\
\text{\texttt{.meta:n}} & \quad \text{Makes \texttt{(key)} a meta-key, which will set \texttt{(keyval list)} in one go. The \texttt{(keyval list)} can refer as \texttt{#1} to the value given at the time the \texttt{(key)} is used (or, if no value is given, the \texttt{(key)}'s default value).} \\
\text{\texttt{.meta:nn}} & \quad \text{Makes \texttt{(key)} a meta-key, which will set \texttt{(keyval list)} in one go using the \texttt{(path)} in place of the current one. The \texttt{(keyval list)} can refer as \texttt{#1} to the value given at the time the \texttt{(key)} is used (or, if no value is given, the \texttt{(key)}'s default value).} \\
\text{\texttt{.multichoice}} & \quad \text{Sets \texttt{(key)} to act as a multiple choice key. Each valid choice for \texttt{(key)} must then be created, as discussed in section 3.} \\
\text{\texttt{.multichoices:nn}} & \quad \text{Sets \texttt{(key)} to act as a multiple choice key, and defines a series \texttt{(choices)} which are implemented using the \texttt{(code)}. Inside \texttt{(code)}, \texttt{l_keys_choice_tl} will be the name of the choice made, and \texttt{l_keys_choice_int} will be the position of the choice in the list of \texttt{(choices)} (indexed from 1). Choices are discussed in detail in section 3.} \\
\text{\texttt{.muskip_set:N}} & \quad \text{Defines \texttt{(key)} to set \texttt{(muskip)} to \texttt{(value)} (which must be a muskip expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.} \\
\text{\texttt{.prop_put:N}} & \quad \text{Defines \texttt{(key)} to put the \texttt{(value)} onto the \texttt{(property list)} stored under the \texttt{(key)}. If the variable does not exist, it is created globally at the point that the key is set up.} \\
\end{align*}
\begin{itemize}
\item \texttt{.skip_set:N} = \texttt{(skip)}
\begin{itemize}
\item Defines \texttt{(key)} to set \texttt{(skip)} to \texttt{(value)} (which must be a skip expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.
\end{itemize}
\end{itemize}

\begin{itemize}
\item \texttt{.tl_set:N} = \texttt{(token list variable)}
\begin{itemize}
\item Defines \texttt{(key)} to set \texttt{(token list variable)} to \texttt{(value)}. If the variable does not exist, it is created globally at the point that the key is set up.
\end{itemize}
\end{itemize}

\begin{itemize}
\item \texttt{.tl_set_x:N} = \texttt{(token list variable)}
\begin{itemize}
\item Defines \texttt{(key)} to set \texttt{(token list variable)} to \texttt{(value)}, which will be subjected to an \texttt{x}-type expansion (\textit{i.e.} using \texttt{\tl_set:Nx}). If the variable does not exist, it is created globally at the point that the key is set up.
\end{itemize}
\end{itemize}

\begin{itemize}
\item \texttt{.undefine:}
\begin{itemize}
\item Removes the definition of the \texttt{(key)} within the current scope.
\end{itemize}
\end{itemize}

\begin{itemize}
\item \texttt{.value_forbidden:n} = \texttt{true|false}
\begin{itemize}
\item Specifies that \texttt{(key)} cannot receive a \texttt{(value)} when used. If a \texttt{(value)} is given then an error will be issued. Setting the property \texttt{false} cancels the restriction.
\end{itemize}
\end{itemize}

\begin{itemize}
\item \texttt{.value_required:n} = \texttt{true|false}
\begin{itemize}
\item Specifies that \texttt{(key)} must receive a \texttt{(value)} when used. If a \texttt{(value)} is not given then an error will be issued. Setting the property \texttt{false} cancels the restriction.
\end{itemize}
\end{itemize}

\section{Sub-dividing keys}

When creating large numbers of keys, it may be desirable to divide them into several sub-groups for a given module. This can be achieved either by adding a sub-division to the module name:

\begin{verbatim}
\keys_define:nn { mymodule / subgroup }
 { key .code:n = code }
\end{verbatim}

or to the key name:

\begin{verbatim}
\keys_define:nn { mymodule }
 { subgroup / key .code:n = code }
\end{verbatim}

As illustrated, the best choice of token for sub-dividing keys in this way is \texttt{/}. This is because of the method that is used to represent keys internally. Both of the above code fragments set the same key, which has full name \texttt{mymodule/subgroup/key}.

As illustrated in the next section, this subdivision is particularly relevant to making multiple choices.
3 Choice and multiple choice keys

The 3keys system supports two types of choice key, in which a series of pre-defined input values are linked to varying implementations. Choice keys are usually created so that the various values are mutually-exclusive: only one can apply at any one time. “Multiple” choice keys are also supported: these allow a selection of values to be chosen at the same time.

Mutually-exclusive choices are created by setting the .choice: property:

```
\keys_define:nn { mymodule }
{ key .choice: }
```

For keys which are set up as choices, the valid choices are generated by creating sub-keys of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of the choice or the position of the choice in the list of all possibilities. Here, the keys can share the same code, and can be rapidly created using the .choices:nn property.

```
\keys_define:nn { mymodule }
{ key .choices:nn =
{ choice-a, choice-b, choice-c }
{ You\_gave\_choice-\'tl_use:N \l_keys_choice_tl',~
which\_is\_in\_position\_int_use:N \l_keys_choice_int \_c_space_tl
in\_the\_list. }
}
```

The index \l_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \l_keys_choice_tl and \l_keys_choice_int are available to indicate the name of the current choice, and its position in the comma list. The position is indexed from 1. Note that, as with standard key code generated using .code:n, the value passed to the key (i.e. the choice name) is also available as #1.

On the other hand, it is sometimes useful to create choices which use entirely different code from one another. This can be achieved by setting the .choice: property of a key, then manually defining sub-keys.

```
\keys_define:nn { mymodule }
{ key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
}
```

It is possible to mix the two methods, but manually-created choices should not use \l_keys_choice_tl or \l_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using \texttt{.choices:nn} (\textit{i.e.} anything might happen).

It is possible to allow choice keys to take values which have not previously been defined by adding code for the special \texttt{unknown} choice. The general behavior of the \texttt{unknown} key is described in Section 5. A typical example in the case of a choice would be to issue a custom error message:

\begin{verbatim}
\keys_define:nn { mymodule }
{
 key .choice:,
 key / choice-a .code:n = code-a,
 key / choice-b .code:n = code-b,
 key / choice-c .code:n = code-c,
 key / unknown .code:n = \msg_error:nxxx { mymodule } { unknown-choice }
 { key } % Name of choice key
 { choice-a , choice-b , choice-c } % Valid choices
 { \exp_not:n {#1} } % Invalid choice given
%
%
}
\end{verbatim}

Multiple choices are created in a very similar manner to mutually-exclusive choices, using the properties \texttt{.multichoice:} and \texttt{.multichoices:nn}. As with mutually exclusive choices, multiple choices are defined as sub-keys. Thus both

\begin{verbatim}
\keys_define:nn { mymodule }
{
 key .multichoices:nn =
 { choice-a, choice-b, choice-c }
 { You-gave-choice-`\tl_use:N \l_keys_choice_tl`,~
 which-is-in-position- \int_use:N \l_keys_choice_int \c_space_tl
 in-the-list.
 }
}
\end{verbatim}

and

\begin{verbatim}
\keys_define:nn { mymodule }
{
 key .multichoice:,
 key / choice-a .code:n = code-a,
 key / choice-b .code:n = code-b,
 key / choice-c .code:n = code-c,
}
\end{verbatim}

are valid.

When a multiple choice key is set
\keys_set:nn \{ mymodule \}
{
 key = \{ a , b , c \} \% 'key' defined as a multiple choice
}

each choice is applied in turn, equivalent to a \clist mapping or to applying each value individually:
\keys_set:nn \{ mymodule \}
{
 key = a ,
 key = b ,
 key = c ,
}

Thus each separate choice will have passed to it the \l_keys_choice_tl and \l_keys_choice_int in exactly the same way as described for .choices:nn.

4 Setting keys

\keys_set:nn \{⟨module⟩\} \{⟨keyval list⟩\}

Parses the ⟨keyval list⟩, and sets those keys which are defined for ⟨module⟩. The behaviour on finding an unknown key can be set by defining a special unknown key: this is illustrated later.

For each key processed, information of the full path of the key, the name of the key and the value of the key is available within three token list variables. These may be used within the code of the key.

The value is everything after the =, which may be empty if no value was given. This is stored in \l_keys_value_tl, and is not processed in any way by \keys_set:nn.

The path of the key is a “full” description of the key, and is unique for each key. It consists of the module and full key name, thus for example
\keys_set:nn \{ mymodule \} \{ key-a = some-value \}

has path mymodule/key-a while
\keys_set:nn \{ mymodule \} \{ subset / key-a = some-value \}

has path mymodule/subset/key-a. This information is stored in \l_keys_path_str.

The name of the key is the part of the path after the last /, and thus is not unique. In the preceding examples, both keys have name key-a despite having different paths. This information is stored in \l_keys_key_str.

5 Handling of unknown keys

If a key has not previously been defined (is unknown), \keys_set:nn looks for a special unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom error texts.

\keys_define:nn { mymodule }
{ unknown .code:n = You tried to set key `-\l_keys_key_str’ to `-#1’. }

\keys_set_known:nn \keys_set_known:nn { (module) } { (keyval list) }
\keys_set_known:nnN \keys_set_known:nnN { (module) } { (keyval list) } { (tl) } { (tl) }
\keys_set_known:nnN \keys_set_known:nnN { (module) } { (keyval list) } { (root) } { (tl) }
\keys_set_known:nnnN \keys_set_known:nnnN { (module) } { (keyval list) } { (nVnN) } { (nvnN) } { (nonN) }

New: 2011-08-23
Updated: 2019-01-29

These functions set keys which are known for the ⟨module⟩, and simply ignore other keys. The \keys_set_known:nn function parses the ⟨keyval list⟩, and sets those keys which are defined for ⟨module⟩. Any keys which are unknown are not processed further by the parser. In addition, \keys_set_known:nnN stores the key–value pairs in the ⟨tl⟩ in comma-separated form (i.e. an edited version of the ⟨keyval list⟩). When a ⟨root⟩ is given (\keys_set_known:nnnN), the key–value entries are returned relative to this point in the key tree. When it is absent, only the key name and value are provided. The correct list is returned by nested calls.

6 Selective key setting

In some cases it may be useful to be able to select only some keys for setting, even though these keys have the same path. For example, with a set of keys defined using

\keys_define:nn { mymodule }
{ key-one .code:n = { \my_func:n {#1} },
 key-two .tl_set:N = \l_my_a_tl ,
 key-three .tl_set:N = \l_my_b_tl ,
 key-four .fp_set:N = \l_my_a_fp ,
}

the use of \keys_set:nn attempts to set all four keys. However, in some contexts it may only be sensible to set some keys, or to control the order of setting. To do this, keys may be assigned to groups: arbitrary sets which are independent of the key tree. Thus modifying the example to read

\keys_define:nn { mymodule }
{ key-one .code:n = { \my_func:n {#1} },
 key-one .groups:n = { first },
 key-two .tl_set:N = \l_my_a_tl ,
}

192
assigns key-one and key-two to group first, key-three to group second, while key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be made “active”, or by marking one or more groups to be ignored in key setting.

Activates key filtering in an “opt-out” sense: keys assigned to any of the ⟨groups⟩ specified are ignored. The ⟨groups⟩ are given as a comma-separated list. Unknown keys are not assigned to any group and are thus always set. The key–value pairs for each key which is filtered out are stored in the ⟨tl⟩ in a comma-separated form (i.e. an edited version of the ⟨keyval list⟩). The \keys_set_filter:nn version skips this stage.

Use of \keys_set_filter:nnn can be nested, with the correct residual ⟨keyval list⟩ returned at each stage. In the version which takes a ⟨root⟩ argument, the key list is returned relative to that point in the key tree. In the cases without a ⟨root⟩ argument, only the key names and values are returned.

Activates key filtering in an “opt-in” sense: only keys assigned to one or more of the ⟨groups⟩ specified are set. The ⟨groups⟩ are given as a comma-separated list. Unknown keys are not assigned to any group and are thus never set.

7 Utility functions for keys

Tests if the ⟨key⟩ exists for ⟨module⟩, i.e. if any code has been defined for ⟨key⟩.
Tests if the \(\textit{choice}\) is defined for the \(\textit{key}\) within the \(\textit{module}\), \textit{i.e.} if any code has been defined for \(\textit{key}/\textit{choice}\). The test is \textit{false} if the \(\textit{key}\) itself is not defined.

\(\texttt{\textbackslash keys_log:nn}\) \(\langle\texttt{module}\rangle\) \(\langle\texttt{key}\rangle\)

Writes in the log file the information associated to the \(\textit{key}\) for a \(\textit{module}\). See also \(\texttt{\textbackslash keys_show:nn}\) which displays the result in the terminal.

8 Low-level interface for parsing key–val lists

To re-cap from earlier, a key–value list is input of the form

\[
\text{KeyOne} = \text{ValueOne} , \\
\text{KeyTwo} = \text{ValueTwo} , \\
\text{KeyThree}
\]

where each key–value pair is separated by a comma from the rest of the list, and each key–value pair does not necessarily contain an equals sign or a value! Processing this type of input correctly requires a number of careful steps, to correctly account for braces, spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing such input, in special circumstances you may wish to use a lower-level approach. The low-level parsing system converts a \(\textit{key–value list}\) into \(\textit{keys}\) and associated \(\textit{values}\). After the parsing phase is completed, the resulting keys and values (or keys alone) are available for further processing. This processing is not carried out by the low-level parser itself, and so the parser requires the names of two functions along with the key–value list. One function is needed to process key–value pairs (it receives two arguments), and a second function is required for keys given without any value (it is called with a single argument).

The parser does not double \# tokens or expand any input. Active tokens = and , appearing at the outer level of braces are converted to category “other” (12) so that the parser does not “miss” any due to category code changes. Spaces are removed from the ends of the keys and values. Keys and values which are given in braces have exactly one set removed (after space trimming), thus

\[
\text{key} = \{\text{value here}\},
\]

and

\[
\text{key} = \text{value here},
\]
are treated identically.

\keyval_parse:NNn \{function_1\} \{function_2\} \{\langle key–value list\rangle\}

Parses the \langle key–value list\rangle into a series of \langle keys\rangle and associated \langle values\rangle, or keys alone (if no \langle value\rangle was given). \langle function_1\rangle should take one argument, while \langle function_2\rangle should absorb two arguments. After \keyval_parse:NNn has parsed the \langle key–value list\rangle, \langle function_1\rangle is used to process keys given with no value and \langle function_2\rangle is used to process keys given with a value. The order of the \langle keys\rangle in the \langle key–value list\rangle is preserved. Thus

\keyval_parse:NNn \function:n \function:nn
 \{ key1 = value1 , key2 = value2 , key3 = , key4 \}

is converted into an input stream

\function:nn \{ key1 \} \{ value1 \}
\function:nn \{ key2 \} \{ value2 \}
\function:nn \{ key3 \} \{ \}
\function:n \{ key4 \}

Note that there is a difference between an empty value (an equals sign followed by nothing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the \langle key\rangle and \langle value\rangle, then one outer set of braces is removed from the \langle key\rangle and \langle value\rangle as part of the processing.

\TeXhackers note: The result is returned within \exp_not:n, which means that the converted input stream does not expand further when appearing in an \texttt{x}-type or \texttt{e}-type argument expansion.
Part XXII
The \texttt{l3intarray} package: fast global integer arrays

1 \texttt{l3intarray} documentation

For applications requiring heavy use of integers, this module provides arrays which can be accessed in constant time (contrast \texttt{l3seq}, where access time is linear). These arrays have several important features

- The size of the array is fixed and must be given at point of initialisation
- The absolute value of each entry has maximum $2^{30} - 1$ (\textit{i.e.} one power lower than the usual \maxint ceiling of $2^{31} - 1$)

The use of \texttt{intarray} data is therefore recommended for cases where the need for fast access is of paramount importance.

\begin{verbatim}
\intarray_new:Nn \intarray_new:cn
\intarray_new:Nn \intarray_new:cn
\intarray_count:N \intarray_count:cn
\intarray_count:N \intarray_count:cn
\intarray_gset:Nnn \intarray_gset:cnn
\intarray_gset:Nnn \intarray_gset:cnn
\intarray_const_from_clist:Nn \intarray_const_from_clist:cn
\intarray_const_from_clist:Nn \intarray_const_from_clist:cn
\intarray_gzero:N \intarray_gzero:cn
\intarray_gzero:N \intarray_gzero:cn
\end{verbatim}

Evaluates the integer expression \texttt{(size)} and allocates an \texttt{integer array variable} with that number of (zero) entries. The variable name should start with \texttt{\g_} because assignments are always global.

Expands to the number of entries in the \texttt{integer array variable}. Contrarily to \texttt{\seq_-count:N} this is performed in constant time.

Stores the result of evaluating the integer expression \texttt{(value)} into the \texttt{integer array variable} at the (integer expression) \texttt{(position)}. If the \texttt{(position)} is not between 1 and the \texttt{\intarray_count:N}, or the \texttt{(value)}'s absolute value is bigger than $2^{30} - 1$, an error occurs. Assignments are always global.

Creates a new constant \texttt{integer array variable} or raises an error if the name is already taken. The \texttt{integer array variable} is set (globally) to contain as its items the results of evaluating each \texttt{integer expression} in the \texttt{comma list}.

Sets all entries of the \texttt{integer array variable} to zero. Assignments are always global.
\texttt{\textbackslash intarray_item:Nn} \hspace{1em} \texttt{\textbackslash intarray_item:cn} \hspace{1em} \texttt{New: 2018-03-29}

\texttt{\textbackslash intarray_rand_item:N} \hspace{1em} \texttt{\textbackslash intarray_rand_item:c} \hspace{1em} \texttt{New: 2018-05-05}

\texttt{\textbackslash intarray_show:N} \hspace{1em} \texttt{\textbackslash intarray_log:N} \hspace{1em} \texttt{New: 2018-05-04}

\texttt{\textbackslash intarray_item:Nn (intarray_var) \{\texttt{position}\}}

Expands to the integer entry stored at the (integer expression) \{\texttt{position}\} in the (integer array variable). If the (\texttt{position}) is not between 1 and the \texttt{\textbackslash intarray_count:N}, an error occurs.

\texttt{\textbackslash intarray_rand_item:N (intarray_var)}

Selects a pseudo-random item of the (integer array). If the (integer array) is empty, produce an error.

\texttt{\textbackslash intarray_show:N (intarray_var)} \hspace{1em} \texttt{\textbackslash intarray_log:N (intarray_var)}

Displays the items in the (integer array variable) in the terminal or writes them in the log file.

\section*{1.1 Implementation notes}

It is a wrapper around the \texttt{\fontdimen} primitive, used to store arrays of integers (with a restricted range: absolute value at most $2^{30} - 1$). In contrast to \texttt{l3seq} sequences the access to individual entries is done in constant time rather than linear time, but only integers can be stored. More precisely, the primitive \texttt{\fontdimen} stores dimensions but the \texttt{l3intarray} package transparently converts these from/to integers. Assignments are always global.

While Lua\TeX{}’s memory is extensible, other engines can “only” deal with a bit less than 4×10^6 entries in all \texttt{\fontdimen} arrays combined (with default \TeX{}Live settings).
Part XXIII

The l3fp package: Floating points

A decimal floating point number is one which is stored as a significand and a separate exponent. The module implements expandably a wide set of arithmetic, trigonometric, and other operations on decimal floating point numbers, to be used within floating point expressions. Floating point expressions support the following operations with their usual precedence.

- Basic arithmetic: addition $x + y$, subtraction $x - y$, multiplication $x \times y$, division x/y, square root \sqrt{x}, and parentheses.
- Comparison operators: $x < y$, $x \leq y$, $x > y$, $x \geq y$ etc.
- Boolean logic: sign sign x, negation $\neg x$, conjunction $x \& \& y$, disjunction $x \mid \mid y$, ternary operator $x ? y : z$.
- Exponentials: $\exp x$, $\ln x$, x^y, $\log_b x$.
- Integer factorial: $\text{fact} x$.
- Trigonometry: $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$ expecting their arguments in radians, and $\sin d x$, $\cos d x$, $\tan d x$, $\cot d x$, $\sec d x$, $\csc d x$ expecting their arguments in degrees.
- Inverse trigonometric functions: $\arcsin x$, $\arccos x$, $\arctan x$, $\arccot x$, $\arcsec x$, $\arccsc x$ giving a result in radians, and $\arcsind x$, $\arcosd x$, $\artand x$, $\arccotd x$, $\arcsecd x$, $\arccscd x$ giving a result in degrees.

(not yet) Hyperbolic functions and their inverse functions: $\sinh x$, $\cosh x$, $\tanh x$, $\coth x$, $\sech x$, $\csch x$, and $\text{asinh} x$, $\text{acosh} x$, $\text{atanh} x$, $\text{acoth} x$, $\text{asech} x$, $\text{acsch} x$.
- Extrema: $\max(x_1, x_2, \ldots)$, $\min(x_1, x_2, \ldots)$, $\text{abs}(x)$.
- Rounding functions, controlled by two optional values, n (number of places, 0 by default) and t (behavior on a tie, NaN by default):
 - $\text{trunc}(x, n)$ rounds towards zero,
 - $\text{floor}(x, n)$ rounds towards $-\infty$,
 - $\text{ceil}(x, n)$ rounds towards $+\infty$,
 - $\text{round}(x, n, t)$ rounds to the closest value, with ties rounded to an even value by default, towards zero if $t = 0$, towards $+\infty$ if $t > 0$ and towards $-\infty$ if $t < 0$.

And (not yet) modulo, and “quantize”.
- Random numbers: $\text{rand}()$, $\text{randint}(m, n)$.
- Constants: π, deg (one degree in radians).
- Dimensions, automatically expressed in points, e.g., p\text{c} is 12.
Automatic conversion (no need for \type_use:N) of integer, dimension, and skip variables to floating point numbers, expressing dimensions in points and ignoring the stretch and shrink components of skips.

Tuples: \((x_1,\ldots,x_n)\) that can be stored in variables, added together, multiplied or divided by a floating point number, and nested.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or -.0001), or as a stored floating point variable, which is automatically replaced by its current value. A “floating point” is a floating point number or a tuple thereof. See section 9.1 for a description of what a floating point is, section 9.2 for details about how an expression is parsed, and section 9.3 to know what the various operations do. Some operations may raise exceptions (error messages), described in section 7.

An example of use could be the following.

\begin{verbatim}
\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3} = \ExplSyntaxOn \fp_to_decimal:n {\sin(3.5)/2 + 2e-3} \$.
\end{verbatim}

The operation \texttt{round} can be used to limit the result’s precision. Adding +0 avoids the possibly undesirable output -0, replacing it by +0. However, the \texttt{l3fp} module is mostly meant as an underlying tool for higher-level commands. For example, one could provide a function to typeset nicely the result of floating point computations.

\begin{verbatim}
\documentclass{article}
\usepackage{xparse, siunitx}
\ExplSyntaxOn
\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }
\ExplSyntaxOff
\begin{document}
\calcnum { 2 \pi \times \sin (2.3 ^ 5) }
\end{document}
\end{verbatim}

See the documentation of \texttt{siunitx} for various options of \texttt{num}.

\section{Creating and initialising floating point variables}

\begin{verbatim}
\fp_new:N \fp_new:c
\fp_new:N (fp var)
\end{verbatim}

Creates a new \((fp\ var)\) or raises an error if the name is already taken. The declaration is global. The \((fp\ var)\) is initially +0.

\begin{verbatim}
\fp_const:Nn \fp_const:cn
\fp_const:Nn (fp var) \{(floating point expression)\}
\end{verbatim}

Creates a new constant \((fp\ var)\) or raises an error if the name is already taken. The \((fp\ var)\) is set globally equal to the result of evaluating the \((floating\ point\ expression)\).

\begin{verbatim}
\fp_zero:N \fp_zero:c \fp_gzero:N \fp_gzero:c
\end{verbatim}

Sets the \((fp\ var)\) to +0.
\texttt{\textbackslash fp_zero_new:N} \hspace{1em} \texttt{\textbackslash fp_zero_new:c} \hspace{1em} \texttt{\textbackslash fp_gzero_new:N} \hspace{1em} \texttt{\textbackslash fp_gzero_new:c}

Ensures that the \texttt{(fp var)} exists globally by applying \texttt{\textbackslash fp_new:N} if necessary, then applies \texttt{\textbackslash fp_(g)zero:N} to leave the \texttt{(fp var)} set to $+0$.

\section{Setting floating point variables}

\texttt{\textbackslash fp_set:Nn} \hspace{1em} \texttt{\textbackslash fp_set:cn} \hspace{1em} \texttt{\textbackslash fp_gset:Nn} \hspace{1em} \texttt{\textbackslash fp_gset:cn}

Sets \texttt{(fp var)} equal to the result of computing the \texttt{(floating point expression)}.

\texttt{\textbackslash fp_set_eq:NN} \hspace{1em} \texttt{\textbackslash fp_set_eq:(cN|Nc|cc)} \hspace{1em} \texttt{\textbackslash fp_gset_eq:NN} \hspace{1em} \texttt{\textbackslash fp_gset_eq:(cN|Nc|cc)}

Sets the floating point variable \texttt{(fp var\textsubscript{1})} equal to the current value of \texttt{(fp var\textsubscript{2})}.

\texttt{\textbackslash fp_add:Nn} \hspace{1em} \texttt{\textbackslash fp_add:cn} \hspace{1em} \texttt{\textbackslash fp_gadd:Nn} \hspace{1em} \texttt{\textbackslash fp_gadd:cn}

Adds the result of computing the \texttt{(floating point expression)} to the \texttt{(fp var)}. This also applies if \texttt{(fp var)} and \texttt{(floating point expression)} evaluate to tuples of the same size.

\texttt{\textbackslash fp_sub:Nn} \hspace{1em} \texttt{\textbackslash fp_sub:cn} \hspace{1em} \texttt{\textbackslash fp_gsub:Nn} \hspace{1em} \texttt{\textbackslash fp_gsub:cn}

Subtracts the result of computing the \texttt{(floating point expression)} from the \texttt{(fp var)}. This also applies if \texttt{(fp var)} and \texttt{(floating point expression)} evaluate to tuples of the same size.

\section{Using floating points}

\texttt{\textbackslash fp_eval:n} \hspace{1em} \texttt{\textbackslash fp_eval:cn}

Evaluates the \texttt{(floating point expression)} and expresses the result as a decimal number with no exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant trailing zeros are trimmed, and integers are expressed without a decimal separator. The values $\pm\infty$ and NaN trigger an “invalid operation” exception. For a tuple, each item is converted using \texttt{\textbackslash fp_eval:n} and they are combined as $(\langle fp\textsubscript{1} \rangle, \langle fp\textsubscript{2} \rangle, \ldots, \langle fp\textsubscript{n} \rangle)$ if $n > 1$ and $(\langle fp\textsubscript{1} \rangle)$ or $\langle \rangle$ for fewer items. This function is identical to \texttt{\textbackslash fp_to_decimal:n}.
\fp_sign:n \{⟨fpexpr⟩\}

Evaluates the \langle fpexpr ⟩ and leaves its sign in the input stream using \fp_eval:n \{sign(⟨result⟩)\}: +1 for positive numbers and for +∞, −1 for negative numbers and for −∞, ±0 for ±0. If the operand is a tuple or is NaN, then “invalid operation” occurs and the result is 0.

\fp_decimal:N \{⟨fp var⟩\}

\fp_decimal:n \{⟨floating point expression⟩\}

Evaluates the \langle floating point expression ⟩ and expresses the result as a decimal number with no exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant trailing zeros are trimmed, and integers are expressed without a decimal separator. The values ±∞ and NaN trigger an “invalid operation” exception.

For a tuple, each item is converted using \fp_decimal:n and they are combined as \(⟨fp_1⟩, ⟨fp_2⟩, \ldots, ⟨fp_n⟩\) if \(n > 1\) and \(⟨fp_1⟩\), or () for fewer items.

\fp_to_decimal:N \{⟨fp var⟩\}

\fp_to_decimal:c \{⟨fp var⟩\}

\fp_to_decimal:n \{⟨floating point expression⟩\}

Evaluates the \langle floating point expression ⟩ and expresses the result as a dimension (in pt) suitable for use in dimension expressions. The output is identical to \fp_to_decimal:n, with an additional trailing pt (both letter tokens). In particular, the result may be outside the range \([-2^{14} \pm 2^{-17}, 2^{14} - 2^{-17}]\) of valid \TeX{} dimensions, leading to overflow errors if used as a dimension. Tuples, as well as the values ±∞ and NaN, trigger an “invalid operation” exception.

\fp_to_int:N \{⟨fp var⟩\}

\fp_to_int:c \{⟨fp var⟩\}

\fp_to_int:n \{⟨floating point expression⟩\}

Evaluates the \langle floating point expression ⟩, and rounds the result to the closest integer, rounding exact ties to an even integer. The result may be outside the range \([-2^{31} + 1, 2^{31} - 1]\) of valid \TeX{} integers, leading to overflow errors if used in an integer expression. Tuples, as well as the values ±∞ and NaN, trigger an “invalid operation” exception.

\fp_to_scientific:N \{⟨fp var⟩\}

\fp_to_scientific:c \{⟨fp var⟩\}

\fp_to_scientific:n \{⟨floating point expression⟩\}

Evaluates the \langle floating point expression ⟩ and expresses the result in scientific notation: \(⟨optional \sim⟩⟨digit⟩.⟨15 digits⟩e⟨optional sign⟩⟨exponent⟩\)

The leading \langle digit ⟩ is non-zero except in the case of ±0. The values ±∞ and NaN trigger an “invalid operation” exception. Normal category codes apply: thus the e is category code 11 (a letter). For a tuple, each item is converted using \fp_to_scientific:n and they are combined as \(⟨fp_1⟩, ⟨fp_2⟩, \ldots, ⟨fp_n⟩\) if \(n > 1\) and \(⟨fp_1⟩\), or () for fewer items.
4 Floating point conditionals

\fp_compare:nNnTF \fpexpr1 \relation \fpexpr2 \{ \truth \} \{ \false \}
\fp_compare:nNnTF \fpexpr1 \relation \fpexpr2 \{ \truth \} \{ \false \}

Compares the \fpexpr1 and the \fpexpr2, and returns \texttt{true} if the \texttt{relation} is obeyed.

Tuples are equal if they have the same number of items and items compare equal (in particular there must be no NaN). At present any other comparison with tuples yields \texttt{?} (not ordered). This is experimental.

This function is less flexible than \fp_compare:nTF but slightly faster. It is provided for consistency with \int_compare:nNnTF and \dim_compare:nNnTF.
Evaluates the \textit{floating point expressions} as described for \texttt{\fp_eval:n} and compares consecutive result using the corresponding \textit{relation}, namely it compares \texttt{\fpexpr1} and \texttt{\fpexpr2} using the \texttt{\relation1}, then \texttt{\fpexpr2} and \texttt{\fpexpr3} using the \texttt{\relation2}, until finally comparing \texttt{\fpexprN} and \texttt{\fpexprN+1} using the \texttt{\relationN}. The test yields \texttt{true} if all comparisons are \texttt{true}. Each \textit{floating point expression} is evaluated only once.

Contrarily to \texttt{\int_compare:nTF}, all \textit{floating point expressions} are computed, even if one comparison is \texttt{false}. Two floating points \(x\) and \(y\) may obey four mutually exclusive relations: \(x < y\), \(x = y\), \(x > y\), or \(x ? y\) ("not ordered"). The last case occurs exactly if one or both operands is NaN or is a tuple, unless they are equal tuples. Each \texttt{\relation} can be any (non-empty) combination of \(<\), \(\=\), \(>\), and \(?\), plus an optional leading \(!\) (which negates the \texttt{\relation}), with the restriction that the \texttt{\relation} may not start with \(?\), as this symbol has a different meaning (in combination with \(\:\)) within floating point expressions. The comparison \(x \texttt{\relation} y\) is then \texttt{true} if the \texttt{\relation} does not start with \(!\) and the actual relation (\(<\), \(\=\), \(>\), or \(?\)) between \(x\) and \(y\) appears within the \texttt{\relation}, or on the contrary if the \texttt{\relation} starts with \(!\) and the relation between \(x\) and \(y\) does not appear within the \texttt{\relation}. Common choices of \texttt{\relation} include \(\geq\) (greater or equal), \(!=\) (not equal), \(!?\) or \(\leftrightarrow\) (comparable).

This function is more flexible than \texttt{\fp_compare:nNnTF} and only slightly slower.

5 Floating point expression loops

\begin{verbatim}
\fp_do_until:nNnn \{ \fpexpr1 \\{relation\} \\{\fpexpr2\} \\{\code\} \}
\end{verbatim}

Places the \texttt{\code} in the input stream for TeX to process, and then evaluates the relationship between the two \texttt{\fpexpr} as described for \texttt{\fp_compare:nNnTF}. If the test is \texttt{false} then the \texttt{\code} is inserted into the input stream again and a loop occurs until the \texttt{\relation} is \texttt{true}.

\begin{verbatim}
\fp_do_while:nNnn \{ \fpexpr1 \\{relation\} \\{\fpexpr2\} \\{\code\} \}
\end{verbatim}

Places the \texttt{\code} in the input stream for TeX to process, and then evaluates the relationship between the two \texttt{\fpexpr} as described for \texttt{\fp_compare:nNnTF}. If the test is \texttt{true} then the \texttt{\code} is inserted into the input stream again and a loop occurs until the \texttt{\relation} is \texttt{false}.

203
\fp_until_do:nNnn
\fp_until_do:nNnn \{\textit{fpexpr}_1\}\{\textit{relation}\}\{\textit{fpexpr}_2\}\{\textit{code}\}

Evaluates the relationship between the two \textit{floating point expressions} as described for \fp_compare:nNnTF, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \textit{false}. After the \textit{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \textit{true}.

\fp_while_do:nNnn
\fp_while_do:nNnn \{\textit{fpexpr}_1\}\{\textit{relation}\}\{\textit{fpexpr}_2\}\{\textit{code}\}

Evaluates the relationship between the two \textit{floating point expressions} as described for \fp_compare:nNnTF, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \textit{true}. After the \textit{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \textit{false}.

\fp_do_until:nn
\fp_do_until:nn \{\textit{fpexpr}_1\} \{\textit{relation}\} \{\textit{fpexpr}_2\} \{\textit{code}\}

Places the \textit{(code)} in the input stream for \TeX{} to process, and then evaluates the relationship between the two \textit{floating point expressions} as described for \fp_compare:nNnTF. If the test is \textit{false} then the \textit{(code)} is inserted into the input stream again and a loop occurs until the \textit{(relation)} is \textit{true}.

\fp_do_while:nn
\fp_do_while:nn \{\textit{fpexpr}_1\} \{\textit{relation}\} \{\textit{fpexpr}_2\} \{\textit{code}\}

Places the \textit{(code)} in the input stream for \TeX{} to process, and then evaluates the relationship between the two \textit{floating point expressions} as described for \fp_compare:nNnTF. If the test is \textit{true} then the \textit{(code)} is inserted into the input stream again and a loop occurs until the \textit{(relation)} is \textit{false}.

\fp_until_do:nn
\fp_until_do:nn \{\textit{fpexpr}_1\} \{\textit{relation}\} \{\textit{fpexpr}_2\} \{\textit{code}\}

Evaluates the relationship between the two \textit{floating point expressions} as described for \fp_compare:nNnTF, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \textit{false}. After the \textit{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \textit{true}.

\fp_while_do:nn
\fp_while_do:nn \{\textit{fpexpr}_1\} \{\textit{relation}\} \{\textit{fpexpr}_2\} \{\textit{code}\}

Evaluates the relationship between the two \textit{floating point expressions} as described for \fp_compare:nNnTF, and then places the \textit{(code)} in the input stream if the \textit{(relation)} is \textit{true}. After the \textit{(code)} has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \textit{false}.

New: 2012-08-16
Updated: 2013-12-14
\fp_step_function:nnnN \fp_step_function:nnnc

\fp_step_function:nnnN \fp_step_function:nnnc

\fp_step_variable:nnnNn
\fp_step_variable:nnnNn

\fp_step_inline:nnnn
\fp_step_inline:nnnn

6 Some useful constants, and scratch variables

\c_zero_fp \c_minus_zero_fp
\c_one_fp

Zero, with either sign.

One as an \texttt{fp}: useful for comparisons in some places.
Infinity, with either sign. These can be input directly in a floating point expression as \texttt{inf} and \texttt{-inf}.

The value of the base of the natural logarithm, $e = \exp(1)$.

The value of π. This can be input directly in a floating point expression as \texttt{pi}.

The value of 1° in radians. Multiply an angle given in degrees by this value to obtain a result in radians. Note that trigonometric functions expecting an argument in radians or in degrees are both available. Within floating point expressions, this can be accessed as \texttt{deg}.

Scratch floating points for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

Scratch floating points for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

7 Floating point exceptions

The functions defined in this section are experimental, and their functionality may be altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as $0 / 0$, or 10^{1e9999}. The relevant IEEE standard defines 5 types of exceptions, of which we implement 4.

- \textbf{Overflow} occurs whenever the result of an operation is too large to be represented as a normal floating point number. This results in $\pm \infty$.

- \textbf{Underflow} occurs whenever the result of an operation is too close to 0 to be represented as a normal floating point number. This results in ± 0.

- \textbf{Invalid operation} occurs for operations with no defined outcome, for instance $0/0$ or $\sin(\infty)$, and results in a \texttt{NaN}. It also occurs for conversion functions whose target type does not have the appropriate infinite or \texttt{NaN} value (e.g., \texttt{fp_to_dim:n}).

- \textbf{Division by zero} occurs when dividing a non-zero number by 0, or when evaluating functions at poles, e.g., $\ln(0)$ or $\cot(0)$. This results in $\pm \infty$.
(not yet) Inexact occurs whenever the result of a computation is not exact, in other words, almost always. At the moment, this exception is entirely ignored in \LaTeX3.

To each exception we associate a “flag”: \texttt{fp_overflow}, \texttt{fp_underflow}, \texttt{fp_invalid_operation} and \texttt{fp_division_by_zero}. The state of these flags can be tested and modified with commands from \texttt{l3flag}

By default, the “invalid operation” exception triggers an (expandable) error, and raises the corresponding flag. Other exceptions raise the corresponding flag but do not trigger an error. The behaviour when an exception occurs can be modified (using \texttt{\textbackslash fp_trap:nn}) to either produce an error and raise the flag, or only raise the flag, or do nothing at all.

\[
\texttt{\textbackslash fp_trap:nn \{\langle exception\rangle\} \{\langle trap type\rangle\}}
\]

All occurrences of the \{exception\} (\textit{overflow}, \textit{underflow}, \textit{invalid_operation} or \textit{division_by_zero}) within the current group are treated as \{\textit{trap type}\}, which can be

\begin{itemize}
 \item \textit{none}: the \{exception\} will be entirely ignored, and leave no trace;
 \item \textit{flag}: the \{exception\} will turn the corresponding flag on when it occurs;
 \item \textit{error}: additionally, the \{exception\} will halt the \TeX{} run and display some information about the current operation in the terminal.
\end{itemize}

This function is experimental, and may be altered or removed.

Flags denoting the occurrence of various floating-point exceptions.

8 Viewing floating points

\[
\texttt{\textbackslash fp_show:N \{\langle fp var\rangle\}}
\]
\[
\texttt{\textbackslash fp_show:c}
\]
\[
\texttt{\textbackslash fp_show:n}
\]

Evaluates the \{floating point expression\} and displays the result in the terminal.

\[
\texttt{\textbackslash fp_log:N \{\langle fp var\rangle\}}
\]
\[
\texttt{\textbackslash fp_log:c}
\]
\[
\texttt{\textbackslash fp_log:n}
\]

Evaluates the \{floating point expression\} and writes the result in the log file.
9 Floating point expressions

9.1 Input of floating point numbers

We support four types of floating point numbers:

- $\pm m \cdot 10^n$, a floating point number, with integer $1 \leq m \leq 10^{16}$, and $-10000 \leq n \leq 10000$;
- ± 0, zero, with a given sign;
- $\pm \infty$, infinity, with a given sign;
- NaN, is “not a number”, and can be either quiet or signalling (not yet: this distinction is currently unsupported);

Normal floating point numbers are stored in base 10, with up to 16 significant figures.

On input, a normal floating point number consists of:

- $\langle \text{sign} \rangle$: a possibly empty string of + and − characters;
- $\langle \text{significand} \rangle$: a non-empty string of digits together with zero or one dot;
- $\langle \text{exponent} \rangle$ optionally: the character e or E, followed by a possibly empty string of + and − tokens, and a non-empty string of digits.

The sign of the resulting number is + if $\langle \text{sign} \rangle$ contains an even number of −, and − otherwise, hence, an empty $\langle \text{sign} \rangle$ denotes a non-negative input. The stored significand is obtained from $\langle \text{significand} \rangle$ by omitting the decimal separator and leading zeros, and rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the value stored is exact if the input $\langle \text{significand} \rangle$ has at most 16 digits. The stored $\langle \text{exponent} \rangle$ is obtained by combining the input $\langle \text{exponent} \rangle$ (0 if absent) with a shift depending on the position of the significand and the number of leading zeros.

A special case arises if the resulting $\langle \text{exponent} \rangle$ is either too large or too small for the floating point number to be represented. This results either in an overflow (the number is then replaced by $\pm \infty$), or an underflow (resulting in ± 0).

The result is thus ± 0 if and only if $\langle \text{significand} \rangle$ contains no non-zero digit (i.e., consists only in characters 0, and an optional period), or if there is an underflow. Note that a single dot is currently a valid floating point number, equal to $+0$, but that is not guaranteed to remain true.

The $\langle \text{significand} \rangle$ must be non-empty, so e1 and e-1 are not valid floating point numbers. Note that the latter could be mistaken with the difference of “e” and 1. To avoid confusions, the base of natural logarithms cannot be input as e and should be input as $\exp(1)$ or \c_e_fp (which is faster).

Special numbers are input as follows:

- inf represents $+\infty$, and can be preceded by any $\langle \text{sign} \rangle$, yielding $\pm \infty$ as appropriate.
- nan represents a (quiet) non-number. It can be preceded by any sign, but that sign is ignored.
- Any unrecognizable string triggers an error, and produces a NaN.
- Note that commands such as \infty, \pi, or \sin do not work in floating point expressions. They may silently be interpreted as completely unexpected numbers, because integer constants (allowed in expressions) are commonly stored as mathematical characters.
9.2 Precedence of operators

We list here all the operations supported in floating point expressions, in order of decreasing precedence: operations listed earlier bind more tightly than operations listed below them.

- Function calls (sin, ln, etc).
- Binary ** and ^ (right associative).
- Unary +, -, !.
- Implicit multiplication by juxtaposition (2pi) when neither factor is in parentheses.
- Binary * and /, implicit multiplication by juxtaposition with parentheses (for instance 3(4+5)).
- Binary + and -.
- Comparisons >=, !=, <?, etc.
- Logical and, denoted by &&.
- Logical or, denoted by ||.
- Ternary operator ?:(right associative).
- Comma (to build tuples).

The precedence of operations can be overridden using parentheses. In particular, the precedence of juxtaposition implies that

\[
1/2\pi = 1/(2\pi),
\]
\[
1/2\pi(\pi + \pi) = (2\pi)^{-1}(\pi + \pi) \approx 1,
\]
\[
\sin(2\pi) = \sin(2\pi) \approx 0,
\]
\[
2^\text{2max}(3,5) = 2^2 \text{max}(3,5) = 20,
\]
\[
\text{1in}/\text{1cm} = (\text{1in})/(\text{1cm}) = 2.54.
\]

Functions are called on the value of their argument, contrarily to \TeX macros.

9.3 Operations

We now present the various operations allowed in floating point expressions, from the lowest precedence to the highest. When used as a truth value, a floating point expression is false if it is ±0, and true otherwise, including when it is NaN or a tuple such as (0,0). Tuples are only supported to some extent by operations that work with truth values (?:, ||, &&, !), by comparisons (!<=>?), and by +, -, *, /, Unless otherwise specified, providing a tuple as an argument of any other operation yields the “invalid operation” exception and a NaN result.
The ternary operator `?:` results in `<operand2>` if `<operand1>` is true (not ±0), and `<operand3>` if `<operand1>` is false (±0). All three `<operands>` are evaluated in all cases; they may be tuples. The operator is right associative, hence

\[\text{\texttt{\textbackslash fp_eval:n \{ \langle operand1 \rangle \ ? \langle operand2 \rangle : \langle operand3 \rangle \}}} \]

first tests whether 1 + 3 > 4; since this isn’t true, the branch following `:` is taken, and `2 + 4 > 5` is compared; since this is true, the branch before `:` is taken, and everything else is (evaluated then) ignored. That allows testing for various cases in a concise manner, with the drawback that all computations are made in all cases.

\[\text{\texttt{\textbackslash fp_eval:n \{ \langle operand1 \rangle \ |\| \langle operand2 \rangle \}}} \]

If `<operand1>` is true (not ±0), use that value, otherwise the value of `<operand2>`. Both `<operands>` are evaluated in all cases; they may be tuples. In `<operand1> |\| ... |\| <operandN>`, the first true (nonzero) `<operand>` is used and if all are zero the last one (±0) is used.

\[\text{\texttt{\textbackslash fp_eval:n \{ \langle operand1 \rangle \ && \langle operand2 \rangle \}}} \]

If `<operand1>` is false (equal to ±0), use that value, otherwise the value of `<operand2>`. Both `<operands>` are evaluated in all cases; they may be tuples. In `<operand1> && ... && <operandN>`, the first false (±0) `<operand>` is used and if none is zero the last one is used.

Each `<relation>` consists of a non-empty string of `<`, `=`, `>`, and `?`, optionally preceded by `!`, and may not start with `!`. This evaluates to +1 if all comparisons `<operand1> <relation1> <operandN>` and `<operand1+1>` are true, and +0 otherwise. All `<operands>` are evaluated (once) in all cases. See \texttt{\textbackslash fp_compare:nTF} for details.

\[\text{\texttt{\textbackslash fp_eval:n \{ \langle operand1 \rangle \ + \langle operand2 \rangle \}}} \]
\[\text{\texttt{\textbackslash fp_eval:n \{ \langle operand1 \rangle \ - \langle operand2 \rangle \}}} \]

Computes the sum or the difference of its two `<operands>`. The “invalid operation” exception occurs for \(-\infty \pm \infty\). “Underflow” and “overflow” occur when appropriate. These operations supports the itemwise addition or subtraction of two tuples, but if they have a different number of items the “invalid operation” exception occurs and the result is NaN.
* \fp_eval:n \{ \langle \text{operand}_1 \rangle * \langle \text{operand}_2 \rangle \}

/ \fp_eval:n \{ \langle \text{operand}_1 \rangle / \langle \text{operand}_2 \rangle \}

Computes the product or the ratio of its two \langle \text{operands} \rangle. The “invalid operation” exception occurs for ∞/∞, $0/0$, or $0 \times \infty$. “Division by zero” occurs when dividing a finite non-zero number by ± 0. “Underflow” and “overflow” occur when appropriate. When $\langle \text{operand}_1 \rangle$ is a tuple and $\langle \text{operand}_2 \rangle$ is a floating point number, each item of $\langle \text{operand}_1 \rangle$ is multiplied or divided by $\langle \text{operand}_2 \rangle$. Other combinations yield an “invalid operation” exception and a NaN result.

+ \fp_eval:n \{ + \langle \text{operand} \rangle \}
- \fp_eval:n \{ - \langle \text{operand} \rangle \}
! \fp_eval:n \{ ! \langle \text{operand} \rangle \}

The unary + does nothing, the unary - changes the sign of the $\langle \text{operand} \rangle$ (for a tuple, of all its components), and ! $\langle \text{operand} \rangle$ evaluates to 1 if $\langle \text{operand} \rangle$ is false (is ± 0) and 0 otherwise (this is the not boolean function). Those operations never raise exceptions.

** \fp_eval:n \{ \langle \text{operand}_1 \rangle ** \langle \text{operand}_2 \rangle \}
^ \fp_eval:n \{ \langle \text{operand}_1 \rangle ^\langle \text{operand}_2 \rangle \}

Raises $\langle \text{operand}_1 \rangle$ to the power $\langle \text{operand}_2 \rangle$. This operation is right associative, hence $2 ** 2 ** 3 = 256$. If $\langle \text{operand}_1 \rangle$ is negative or -0 then: the result’s sign is + if the $\langle \text{operand}_2 \rangle$ is infinite and $(-1)^p$ if the $\langle \text{operand}_2 \rangle$ is $p/5^q$ with p, q integers; the result is $+0$ if abs($\langle \text{operand}_1 \rangle$)$^\langle \text{operand}_2 \rangle$ evaluates to zero; in other cases the “invalid operation” exception occurs because the sign cannot be determined. “Division by zero” occurs when raising ± 0 to a finite strictly negative power. “Underflow” and “overflow” occur when appropriate. If either operand is a tuple, “invalid operation” occurs.

abs \fp_eval:n \{ abs(\langle \text{fpexpr} \rangle) \}

Computes the absolute value of the $\langle \text{fpexpr} \rangle$. If the operand is a tuple, “invalid operation” occurs. This operation does not raise exceptions in other cases. See also \fp_abs:n.

exp \fp_eval:n \{ exp(\langle \text{fpexpr} \rangle) \}

Computes the exponential of the $\langle \text{fpexpr} \rangle$. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

fact \fp_eval:n \{ fact(\langle \text{fpexpr} \rangle) \}

Computes the factorial of the $\langle \text{fpexpr} \rangle$. If the $\langle \text{fpexpr} \rangle$ is an integer between -0 and 3248 included, the result is finite and correctly rounded. Larger positive integers give $+\infty$ with “overflow”, while fact($+\infty$) = $+\infty$ and fact(nan) = nan with no exception. All other inputs give NaN with the “invalid operation” exception.

ln \fp_eval:n \{ ln(\langle \text{fpexpr} \rangle) \}

Computes the natural logarithm of the $\langle \text{fpexpr} \rangle$. Negative numbers have no (real) logarithm, hence the “invalid operation” is raised in that case, including for ln(-0). “Division by zero” occurs when evaluating ln($+0$) = $-\infty$. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.
Determines the exponent of the \(\langle \text{fpexpr} \rangle \), namely the floor of the base-10 logarithm of its absolute value. “Division by zero” occurs when evaluating \(\log_{10}(\pm 0) = -\infty \). Other special values are \(\log_{10}(\pm \infty) = +\infty \) and \(\log_{10}(\text{NaN}) = \text{NaN} \). If the operand is a tuple or is \(\text{NaN} \), then “invalid operation” occurs and the result is \(\text{NaN} \).

Evaluates each \(\langle \text{fpexpr} \rangle \) and computes the largest (smallest) of those. If any of the \(\langle \text{fpexpr} \rangle \) is a \(\text{NaN} \) or tuple, the result is \(\text{NaN} \). If any operand is a tuple, “invalid operation” occurs; these operations do not raise exceptions in other cases.

Only \texttt{round} accepts a third argument. Evaluates \(\langle \text{fpexpr}_1 \rangle = x \) and \(\langle \text{fpexpr}_2 \rangle = n \) and \(\langle \text{fpexpr}_3 \rangle = t \) then rounds \(x \) to \(n \) places. If \(n \) is an integer, this rounds \(x \) to a multiple of \(10^{-n} \); if \(n = +\infty \), this always yields \(x \); if \(n = -\infty \), this yields one of \(\pm 0 \), \(\pm \infty \), or \(\text{NaN} \); if \(n = \text{NaN} \), this yields \(\text{NaN} \); if \(n \) is neither \(\pm \infty \) nor an integer, then an “invalid operation” exception is raised. When \(\langle \text{fpexpr}_2 \rangle \) is omitted, \(n = 0 \), i.e., \(\langle \text{fpexpr}_1 \rangle \) is rounded to an integer. The rounding direction depends on the function.

- \texttt{round} yields the multiple of \(10^{-n} \) closest to \(x \), with ties (\(x \) half-way between two such multiples) rounded as follows. If \(t \) is \(\text{nan} \) (or not given) the even multiple is chosen (“ties to even”), if \(t = \pm 0 \) the multiple closest to \(0 \) is chosen (“ties to zero”), if \(t \) is positive/negative the multiple closest to \(\infty/-\infty \) is chosen (“ties towards positive/negative infinity”).

- \texttt{floor} yields the largest multiple of \(10^{-n} \) smaller or equal to \(x \) (“round towards negative infinity”);

- \texttt{ceil} yields the smallest multiple of \(10^{-n} \) greater or equal to \(x \) (“round towards positive infinity”);

- \texttt{trunc} yields a multiple of \(10^{-n} \) with the same sign as \(x \) and with the largest absolute value less than that of \(x \) (“round towards zero”).

“Overflow” occurs if \(x \) is finite and the result is infinite (this can only happen if \(\langle \text{fpexpr}_2 \rangle < -9984 \)). If any operand is a tuple, “invalid operation” occurs.

Evaluates the \(\langle \text{fpexpr} \rangle \) and determines its sign: \(+1\) for positive numbers and for \(+\infty \), \(-1\) for negative numbers and for \(-\infty \), \(\pm 0 \) for \(\pm 0 \), and \(\text{NaN} \) for \(\text{NaN} \). If the operand is a tuple, “invalid operation” occurs. This operation does not raise exceptions in other cases.
Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the \(\langle \text{fpexpr} \rangle \) given in radians. For arguments given in degrees, see \text{sind}, \text{cosd}, \text{etc.} Note that since \(\pi \) is irrational, \(\sin(8\pi) \) is not quite zero, while its analogue \(\text{sind}(8 \times 180) \) is exactly zero. The trigonometric functions are undefined for an argument of \(\pm \infty \), leading to the “invalid operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at one of their poles leads to a “division by zero” exception. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\[
\begin{align*}
\text{sin} & \quad \text{fn} \{ \text{sin(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{cos} & \quad \text{fn} \{ \text{cos(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{tan} & \quad \text{fn} \{ \text{tan(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{cot} & \quad \text{fn} \{ \text{cot(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{csc} & \quad \text{fn} \{ \text{csc(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{sec} & \quad \text{fn} \{ \text{sec(} \langle \text{fpexpr} \rangle \text{) } \} \\
\end{align*}
\]

\text{Updated: 2013-11-17}

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the \(\langle \text{fpexpr} \rangle \) given in degrees. For arguments given in radians, see \text{sin}, \text{cos}, \text{etc.} Note that since \(\pi \) is irrational, \(\sin(8\pi) \) is not quite zero, while its analogue \(\text{sind}(8 \times 180) \) is exactly zero. The trigonometric functions are undefined for an argument of \(\pm \infty \), leading to the “invalid operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at one of their poles leads to a “division by zero” exception. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\[
\begin{align*}
\text{sind} & \quad \text{fn} \{ \text{sind(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{cosd} & \quad \text{fn} \{ \text{cosd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{tand} & \quad \text{fn} \{ \text{tand(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{cotd} & \quad \text{fn} \{ \text{cotd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{cscd} & \quad \text{fn} \{ \text{cscd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{secd} & \quad \text{fn} \{ \text{secd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\end{align*}
\]

\text{New: 2013-11-02}

Computes the arcsine, arccosine, arccosecant, or arccosecant of the \(\langle \text{fpexpr} \rangle \) and returns the result in radians, in the range \([-\pi/2, \pi/2] \) for \text{asin} and \text{acsc} and \([0, \pi] \) for \text{acos} and \text{asec}. For a result in degrees, use \text{asind}, \text{etc.} If the argument of \text{asin} or \text{acos} lies outside the range \([-1,1] \), or the argument of \text{acsc} or \text{asec} inside the range \((-1,1) \), an “invalid operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\[
\begin{align*}
\text{asin} & \quad \text{fn} \{ \text{asin(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{acos} & \quad \text{fn} \{ \text{acos(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{acsc} & \quad \text{fn} \{ \text{acsc(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{asec} & \quad \text{fn} \{ \text{asec(} \langle \text{fpexpr} \rangle \text{) } \} \\
\end{align*}
\]

\text{New: 2013-11-02}

Computes the arcsine, arccosine, arccosecant, or arccosecant of the \(\langle \text{fpexpr} \rangle \) and returns the result in degrees, in the range \([-90, 90] \) for \text{asin} and \text{acsc} and \([0, 180] \) for \text{acos} and \text{asec}. For a result in radians, use \text{asind}, \text{etc.} If the argument of \text{asin} or \text{acos} lies outside the range \([-1,1] \), or the argument of \text{acsc} or \text{asec} inside the range \((-1,1) \), an “invalid operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\[
\begin{align*}
\text{asind} & \quad \text{fn} \{ \text{asind(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{acosd} & \quad \text{fn} \{ \text{acosd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{acscd} & \quad \text{fn} \{ \text{acscd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\text{asecd} & \quad \text{fn} \{ \text{asecd(} \langle \text{fpexpr} \rangle \text{) } \} \\
\end{align*}
\]

\text{New: 2013-11-02}
Those functions yield an angle in radians: \texttt{atand} and \texttt{acotd} are their analogs in degrees. The one-argument versions compute the arctangent or arccotangent of the \langle\texttt{fexpr}\rangle: arctangent takes values in the range \([-\pi/2, \pi/2]\), and arccotangent in the range \([0, \pi]\). The two-argument arctangent computes the angle in polar coordinates of the point with Cartesian coordinates \langle\texttt{fexpr}_2, \texttt{fexpr}_1\rangle: this is the arctangent of \langle\texttt{fexpr}_1/\texttt{fexpr}_2\rangle, possibly shifted by \pi depending on the signs of \langle\texttt{fexpr}_1\rangle and \langle\texttt{fexpr}_2\rangle. The two-argument arccotangent computes the angle in polar coordinates of the point \langle\texttt{fexpr}_1, \texttt{fexpr}_2\rangle, equal to the arccotangent of \langle\texttt{fexpr}_1/\texttt{fexpr}_2\rangle, possibly shifted by \pi. Both two-argument functions take values in the wider range \([-\pi, \pi]\). The ratio \langle\texttt{fexpr}_1/\texttt{fexpr}_2\rangle need not be defined for the two-argument arctangent: when both expressions yield \pm 0, or when both yield \pm \infty, the resulting angle is one of \{\pm \pi/4, \pm 3\pi/4\} depending on signs. The “underflow” exception can occur. If any operand is a tuple, “invalid operation” occurs.

Those functions yield an angle in degrees: \texttt{atand} and \texttt{acotd} are their analogs in radians. The one-argument versions compute the arctangent or arccotangent of the \langle\texttt{fexpr}\rangle: arctangent takes values in the range \([-90, 90]\), and arccotangent in the range \([0, 180]\). The two-argument arctangent computes the angle in polar coordinates of the point with Cartesian coordinates \langle\texttt{fexpr}_2, \texttt{fexpr}_1\rangle: this is the arctangent of \langle\texttt{fexpr}_1/\texttt{fexpr}_2\rangle, possibly shifted by 180 depending on the signs of \langle\texttt{fexpr}_1\rangle and \langle\texttt{fexpr}_2\rangle. The two-argument arccotangent computes the angle in polar coordinates of the point \langle\texttt{fexpr}_1, \texttt{fexpr}_2\rangle, equal to the arccotangent of \langle\texttt{fexpr}_1/\texttt{fexpr}_2\rangle, possibly shifted by 180. Both two-argument functions take values in the wider range \([-180, 180]\]. The ratio \langle\texttt{fexpr}_1/\texttt{fexpr}_2\rangle need not be defined for the two-argument arctangent: when both expressions yield \pm 0, or when both yield \pm \infty, the resulting angle is one of \{\pm 45, \pm 135\} depending on signs. The “underflow” exception can occur. If any operand is a tuple, “invalid operation” occurs.

Computes the square root of the \langle\texttt{fexpr}\rangle. The “invalid operation” is raised when the \langle\texttt{fexpr}\rangle is negative or is a tuple; no other exception can occur. Special values yield

\[
\sqrt{-0} = -0, \quad \sqrt{+0} = +0, \quad \sqrt{-\infty} = +\infty \quad \text{and} \quad \sqrt{\NaN} = \NaN.
\]
rand \fp_eval:n { rand() } Produces a pseudo-random floating-point number (multiple of \(10^{-16}\)) between 0 included and 1 excluded. This is not available in older versions of \(\text{Xe}\TeX\). The random seed can be queried using \sys_rand_seed: and set using \sys_gset_rand_seed:n.

\TeX\ Hackers note: This is based on pseudo-random numbers provided by the engine's primitive \pdfuniformdeviate in pdf\TeX, \pu\TeX, \up\TeX and \uniformdeviate in Lua\TeX and \(\text{Xe}\TeX\). The underlying code is based on Metapost, which follows an additive scheme recommended in Section 3.6 of “The Art of Computer Programming, Volume 2”.

While we are more careful than \uniformdeviate to preserve uniformity of the underlying stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be relied upon for serious numerical computations nor cryptography.

randint \fp_eval:n { randint(⟨fpexpr⟩) } \fp_eval:n { randint(⟨fpexpr1⟩, ⟨fpexpr2⟩) } Produces a pseudo-random integer between 1 and ⟨fpexpr⟩ or between ⟨fpexpr1⟩ and ⟨fpexpr2⟩ inclusive. The bounds must be integers in the range \((-10^{16}, 10^{16})\) and the first must be smaller or equal to the second. See rand for important comments on how these pseudo-random numbers are generated.

\texttt{inf} The special values \(+\infty, -\infty,\) and NaN are represented as \texttt{inf}, \texttt{-inf} and \texttt{nan} (see \texttt{_inf_fp}, \texttt{_minus_inf_fp} and \texttt{_nan_fp}).

\texttt{pi} The value of \(\pi\) (see \texttt{_pi_fp}).

\texttt{deg} The value of \(1^\circ\) in radians (see \texttt{_one_degree_fp}).
Those units of measurement are equal to their values in \textit{pt}, namely

\begin{align*}
1\, \text{in} &= 72.27\, \text{pt} \\
1\, \text{pt} &= 1\, \text{pt} \\
1\, \text{pc} &= 12\, \text{pt} \\
1\, \text{cm} &= \frac{1}{2.54}\, \text{in} = 28.45275590551181\, \text{pt} \\
1\, \text{mm} &= \frac{1}{25.4}\, \text{in} = 2.845275590551181\, \text{pt} \\
1\, \text{dd} &= 0.376065\, \text{mm} = 1.07000856496063\, \text{pt} \\
1\, \text{cc} &= 12\, \text{dd} = 12.8401027952756\, \text{pt} \\
1\, \text{nd} &= 0.375\, \text{mm} = 1.066978346456693\, \text{pt} \\
1\, \text{nc} &= 12\, \text{nd} = 12.80374015748031\, \text{pt} \\
1\, \text{bp} &= \frac{1}{72}\, \text{in} = 1.00375\, \text{pt} \\
1\, \text{sp} &= 2^{-16}\, \text{pt} = 1.52587890625\, e-5\, \text{pt}.
\end{align*}

The values of the (font-dependent) units \textit{em} and \textit{ex} are gathered from \TeX when the surrounding floating point expression is evaluated.

\begin{tabular}{|l|}
\hline
\textbf{true} & \textbf{false} \\
\hline
\end{tabular}

\begin{itemize}
\item \texttt{\fp_abs:n} \hspace{1em} Evaluates the (floating point expression) as described for \texttt{\fp_eval:n} and leaves the absolute value of the result in the input stream. If the argument is \pm\infty, \texttt{NaN} or a tuple, “invalid operation” occurs. Within floating point expressions, \texttt{abs()} can be used; it accepts \pm\infty and \texttt{NaN} as arguments.
\item \texttt{\fp_max:nn} \hspace{1em} \texttt{\fp_min:nn} \hspace{1em} Evaluates the (floating point expressions) as described for \texttt{\fp_eval:n} and leaves the resulting larger (max) or smaller (min) value in the input stream. If the argument is a tuple, “invalid operation” occurs, but no other case raises exceptions. Within floating point expressions, \texttt{max()} and \texttt{min()} can be used.
\end{itemize}

\section{Disclaimer and roadmap}

The package may break down if the escape character is among \texttt{0123456789_+}, or if it receives a \TeX primitive conditional affected by \texttt{\exp_not:N}.

The following need to be done. I’ll try to time-order the items.

\begin{itemize}
\item Function to count items in a tuple (and to determine if something is a tuple).
\item Decide what exponent range to consider.
\end{itemize}
• Support signalling `nan`.
• Modulo and remainder, and rounding function `quantize` (and its friends analogous to `trunc`, `ceil`, `floor`).
• `\fp_format:nn {⟨fpexpr⟩} {⟨format⟩}`, but what should `⟨format⟩` be? More general pretty printing?
• Add `and`, `or`, `xor`? Perhaps under the names `all`, `any`, and `xor`?
• Add `log(x,b)` for logarithm of `x` in base `b`.
• `hypot` (Euclidean length). Cartesian-to-polar transform.
• Hyperbolic functions `cosh`, `sinh`, `tanh`.
• Inverse hyperbolics.
• Base conversion, input such as `0xAB.CDEF`.
• Factorial (not with `!`), gamma function.
• Improve coefficients of the `sin` and `tan` series.
• Treat upper and lower case letters identically in identifiers, and ignore underscores.
• Add an `array(1,2,3)` and `i=complex(0,1)`.
• Provide an experimental `map` function? Perhaps easier to implement if it is a single character, `@sin(1,2)`?
• Provide an `isnan` function analogue of `\fp_if_nan:nTF`?
• Support keyword arguments?

`Pgfmath` also provides box-measurements (depth, height, width), but boxes are not possible expandably.

Bugs, and tests to add.
• Check that functions are monotonic when they should.
• Add exceptions to `?`, `!`, `<>=>?`, `&&`, `||`, and `!`.
• Logarithms of numbers very close to 1 are inaccurate.
• When rounding towards $-\infty$, `\dim_to_fp:n {0pt}` should return -0, not $+0$.
• The result of $(±0) + (±0)$, of $x + (−x)$, and of `(−x) + x` should depend on the rounding mode.
• `0e9999999999` gives a `T\LaTeX` “number too large” error.
• Subnormals are not implemented.

Possible optimizations/improvements.
• Document that `l3trial/l3fp-types` introduces tools for adding new types.
• In subsection 9.1, write a grammar.
• It would be nice if the parse auxiliaries for each operation were set up in the corresponding module, rather than centralizing in l3fp-parse.

• Some functions should get an _o ending to indicate that they expand after their result.

• More care should be given to distinguish expandable/restricted expandable (auxiliary and internal) functions.

• The code for the ternary set of functions is ugly.

• There are many - missing in the doc to avoid bad line-breaks.

• The algorithm for computing the logarithm of the significand could be made to use a 5 terms Taylor series instead of 10 terms by taking \(c = \frac{2000}{\lfloor 200x \rfloor + 1} \in [10, 95] \) instead of \(c \in [1, 10] \). Also, it would then be possible to simplify the computation of \(t \). However, we would then have to hard-code the logarithms of 44 small integers instead of 9.

• Improve notations in the explanations of the division algorithm (l3fp-basics).

• Understand and document \texttt{__fp_basics_pack_weird_low:NNNW} and \texttt{__fp_-_basics_pack_weird_high:NNNNNNNNNW} better. Move the other \texttt{basics_pack} auxiliaries to l3fp-aux under a better name.

• Find out if underflow can really occur for trigonometric functions, and redoc as appropriate.

• Add bibliography. Some of Kahan’s articles, some previous \TeX\ fp packages, the international standards,…

• Also take into account the “inexact” exception?

• Support multi-character prefix operators (\textit{e.g.}, @/ or whatever)?
Part XXIV

The \texttt{l3fparray} package: fast global floating point arrays

1 \texttt{l3fparray} documentation

For applications requiring heavy use of floating points, this module provides arrays which can be accessed in constant time (contrast \texttt{l3seq}, where access time is linear). The interface is very close to that of \texttt{l3intarray}. The size of the array is fixed and must be given at point of initialisation

\begin{verbatim}
\texttt{\textbackslash fparray_new:Nn} \hspace{1em} \texttt{\textbackslash fparray_new:Nn \{fparray\ var\} \{size\}}
\end{verbatim}

Evaluates the integer expression \texttt{\{size\}} and allocates an \texttt{(floating point array variable)} with that number of (zero) entries. The variable name should start with \texttt{\g_} because assignments are always global.

\begin{verbatim}
\texttt{\textbackslash fparray_count:N} \hspace{1em} \texttt{\textbackslash fparray_count:N \{fparray\ var\}}
\end{verbatim}

Expands to the number of entries in the \texttt{(floating point array variable)}. This is performed in constant time.

\begin{verbatim}
\texttt{\textbackslash fparray_gset:Nnn} \hspace{1em} \texttt{\textbackslash fparray_gset:Nnn \{fparray\ var\} \{position\} \{value\}}
\end{verbatim}

Stores the result of evaluating the floating point expression \texttt{\{value\}} into the \texttt{(floating point array variable)} at the (integer expression) \texttt{\{position\}}. If the \texttt{\{position\}} is not between 1 and the \texttt{\textbackslash fparray_count:N}, an error occurs. Assignments are always global.

\begin{verbatim}
\texttt{\textbackslash fparray_gzero:N} \hspace{1em} \texttt{\textbackslash fparray_gzero:N \{fparray\ var\}}
\end{verbatim}

Sets all entries of the \texttt{(floating point array variable)} to +0. Assignments are always global.

\begin{verbatim}
\texttt{\textbackslash fparray_item:Nn} \hspace{1em} \texttt{\textbackslash fparray_item:Nn \{fparray\ var\} \{position\}}
\end{verbatim}

\begin{verbatim}
\texttt{\textbackslash fparray_item_to_tl:Nn} \hspace{1em} \texttt{\textbackslash fparray_item_to_tl:Nn \{fparray\ var\} \{position\}}
\end{verbatim}

Applies \texttt{\textbackslash fp_use:N} or \texttt{\textbackslash fp_to_tl:N} (respectively) to the floating point entry stored at the (integer expression) \texttt{\{position\}} in the \texttt{(floating point array variable)}. If the \texttt{\{position\}} is not between 1 and the \texttt{\textbackslash fparray_count:N}, an error occurs.
Part XXV

The \texttt{l3sort} package

Sorting functions

1 Controlling sorting

\LaTeX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists) according to some user-defined comparison. For instance,

\begin{verbatim}
\clist_set:Nn \l_foo_clist { 3 , 01 , -2 , 5 , +1 }
\clist_sort:Nn \l_foo_clist
{\int_compare:nNnTF { #1 } > { #2 }
 { \sort_return_swapped: }
 { \sort_return_same: }
}
\end{verbatim}

results in \texttt{\l_foo_clist} holding the values \texttt{\{-2 , 01 , +1 , 3 , 5\}} sorted in non-decreasing order.

The code defining the comparison should call \texttt{\sort_return_swapped:} if the two items given as \texttt{#1} and \texttt{#2} are not in the correct order, and otherwise it should call \texttt{\sort_return_same:} to indicate that the order of this pair of items should not be changed.

For instance, a \texttt{⟨comparison code⟩} consisting only of \texttt{\sort_return_same:} with no test yields a trivial sort: the final order is identical to the original order. Conversely, using a \texttt{⟨comparison code⟩} consisting only of \texttt{\sort_return_swapped:} reverses the list (in a fairly inefficient way).

\LaTeXhackers note: The current implementation is limited to sorting approximately 20000 items (40000 in Lu\LaTeX3), depending on what other packages are loaded.

Internally, the code from \texttt{l3sort} stores items in \texttt{\toks} registers allocated locally. Thus, the \texttt{⟨comparison code⟩} should not call \texttt{\newtoks} or other commands that allocate new \texttt{\toks} registers. On the other hand, altering the value of a previously allocated \texttt{\toks} register is not a problem.

\begin{verbatim}
\texttt{\sort_return_same:} \texttt{\sort_return_swapped:}
\end{verbatim}

\begin{verbatim}
\seq_sort:Nn \seq \{ \sort_return_same: or \sort_return_swapped: \}
\end{verbatim}

Indicates whether to keep the order or swap the order of two items that are compared in the sorting code. Only one of the \texttt{\sort_return\ldots} functions should be used by the code, according to the results of some tests on the items \texttt{#1} and \texttt{#2} to be compared.
Part XXVI

The \texttt{l3tl-analysis} package: Analysing token lists

1 \texttt{l3tl-analysis} documentation

This module mostly provides internal functions for use in the \texttt{l3regex} module. However, it provides as a side-effect a user debugging function, very similar to the \texttt{ShowTokens} macro from the \texttt{ted} package.

\begin{Verbatim}
\texttt{\tl_analysis_show:n \{token list\}}
\end{Verbatim}

Displays to the terminal the detailed decomposition of the \texttt{token list} into tokens, showing the category code of each character token, the meaning of control sequences and active characters, and the value of registers.

\begin{Verbatim}
\texttt{\tl_analysis_map_inline:nn \{token list\} \{inline function\}}
\end{Verbatim}

Applies the \texttt{inline function} to each individual \texttt{token} in the \texttt{token list}. The \texttt{inline function} receives three arguments:

- \texttt{tokens}, which both \texttt{o}-expand and \texttt{x}-expand to the \texttt{token}. The detailed form of \texttt{token} may change in later releases.
- \texttt{char code}, a decimal representation of the character code of the token, \(-1\) if it is a control sequence (with \texttt{catcode} \texttt{0}).
- \texttt{catcode}, a capital hexadecimal digit which denotes the category code of the \texttt{token} (\texttt{0}: control sequence, \texttt{1}: begin-group, \texttt{2}: end-group, \texttt{3}: math shift, \texttt{4}: alignment tab, \texttt{6}: parameter, \texttt{7}: superscript, \texttt{8}: subscript, \texttt{A}: space, \texttt{B}: letter, \texttt{C}: other, \texttt{D}: active).

As all other mappings the mapping is done at the current group level, \textit{i.e.} any local assignments made by the \texttt{inline function} remain in effect after the loop.
The \texttt{l3regex} package: Regular expressions in \TeX

The \texttt{l3regex} package provides regular expression testing, extraction of submatches, splitting, and replacement, all acting on token lists. The syntax of regular expressions is mostly a subset of the \texttt{pcre} syntax (and very close to \texttt{posix}), with some additions due to the fact that \TeX manipulates tokens rather than characters. For performance reasons, only a limited set of features are implemented. Notably, back-references are not supported.

Let us give a few examples. After

\begin{verbatim}
\tl_set:Nn \l_my_tl { That\textunderscore cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl
\end{verbatim}

the token list variable \texttt{\l_my_tl} holds the text “This cat.”, where the first occurrence of “at” was replaced by “is”. A more complicated example is a pattern to emphasize each word and add a comma after it:

\begin{verbatim}
\regex_replace_all:nnN { \w+ } { \texttt{\texttt{\c{emph}\cB\{} \0 \cE\} , } } \l_my_tl
\end{verbatim}

The \texttt{\w} sequence represents any “word” character, and \texttt{+} indicates that the \texttt{\w} sequence should be repeated as many times as possible (at least once), hence matching a word in the input token list. In the replacement text, \texttt{\0} denotes the full match (here, a word). The command \texttt{\emph} is inserted using \texttt{\c{emph}}, and its argument \texttt{\0} is put between braces \texttt{\cB\{} and \texttt{\cE\}}.

If a regular expression is to be used several times, it can be compiled once, and stored in a regex variable using \texttt{\regex_const:Nn}. For example,

\begin{verbatim}
\regex_const:Nn \c_foo_regex { \c{begin} \cB. (\c[^BE].*) \cE. }
\end{verbatim}

stores in \texttt{\c_foo_regex} a regular expression which matches the starting marker for an environment: \texttt{\begin}, followed by a begin-group token (\texttt{\cB.}), then any number of tokens which are neither begin-group nor end-group character tokens (\texttt{\c[^BE].*}), ending with an end-group token (\texttt{\cE.}). As explained in the next section, the parentheses “capture” the result of \texttt{\c[^BE].*}, giving us access to the name of the environment when doing replacements.

1 Syntax of regular expressions

We start with a few examples, and encourage the reader to apply \texttt{\regex_show:n} to these regular expressions.

- \texttt{\texttt{Cat}} matches the word “Cat” capitalized in this way, but also matches the beginning of the word “Cattle”: use \texttt{\texttt{\bCat\b}} to match a complete word only.

- \texttt{\texttt{[abc]}} matches one letter among “a”, “b”, “c”; the pattern \texttt{\texttt{(a\mid b\mid c)}} matches the same three possible letters (but see the discussion of submatches below).

- \texttt{\texttt{[A-Za-z]*}} matches any number (due to the quantifier \texttt{*}) of Latin letters (not accented).
• `\c{[A-Za-z]*}` matches a control sequence made of Latin letters.

• `_\[\-_]*_` matches an underscore, any number of characters other than underscore, and another underscore; it is equivalent to `_*?_*` where , matches arbitrary characters and the lazy quantifier `*?` means to match as few characters as possible, thus avoiding matching underscores.

• `\[\+\-]?\d+` matches an explicit integer with at most one sign.

• `\[\+\-_]*\d+\[_\]` matches an explicit integer with any number of `+` and `−` signs, with spaces allowed except within the mantissa, and surrounded by spaces.

• `\[\+\-_]*(\d*\+\d*)\d*` matches an explicit integer or decimal number; using `[. ,]` instead of \ would allow the comma as a decimal marker.

• `\[\+\-_]*(\d+\d*\d+)\[_\]` matches an explicit dimension with any unit that `\TeX` knows, where `(?i)` means to treat lowercase and uppercase letters identically.

• `\[\+\-_]*(\d+\d*\d+)\[_\]\((?i)nan|inf|\d+\d+\d+)\[_\]` matches an explicit floating point number or the special values `nan` and `inf` (with signs and spaces allowed).

• `\[\+\-_]*(\d+\d+\d+)\[_\]` matches an explicit integer or control sequence (without checking whether it is an integer variable).

• `\G.*?\K` at the beginning of a regular expression matches and discards (due to `\K`) everything between the end of the previous match (`\G`) and what is matched by the rest of the regular expression; this is useful in `\regex_replace_all:nnN` when the goal is to extract matches or submatches in a finer way than with `\regex_extract_all:nnN`.

While it is impossible for a regular expression to match only integer expressions, `\[\+\-_]*(\d+\d+\d+)\[_\]` matches among other things all valid integer expressions (made only with explicit integers). One should follow it with further testing.

Most characters match exactly themselves, with an arbitrary category code. Some characters are special and must be escaped with a backslash (e.g., `*` matches a star character). Some escape sequences of the form backslash–letter also have a special meaning (for instance `\d` matches any digit). As a rule,

• every alphanumeric character (`A–Z, a–z, 0–9`) matches exactly itself, and should not be escaped, because `\A`, `\B`, ... have special meanings;

• non-alphanumeric printable ascii characters can (and should) always be escaped: many of them have special meanings (e.g., use `\(`, `\)`, `\?`, `. `);

• spaces should always be escaped (even in character classes);

• any other character may be escaped or not, without any effect: both versions match exactly that character.
Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into \TeX under normal category codes. For instance, \texttt{\abc\%} matches the
characters \texttt{\abc\%} (with arbitrary category codes), but does not match the control
sequence \texttt{\abc} followed by a percent character. Matching control sequences can be done
using the \texttt{\regex{⟨regex⟩}} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\texttt{\x{hh\ldots}} Character with hex code hh\ldots
\texttt{\xhh} Character with hex code hh.
\texttt{\a} Alarm (hex 07).
\texttt{\e} Escape (hex 1B).
\texttt{\f} Form-feed (hex 0C).
\texttt{\n} New line (hex 0A).
\texttt{\r} Carriage return (hex 0D).
\texttt{\t} Horizontal tab (hex 09).

Character types.

. A single period matches any token.
\texttt{\d} Any decimal digit.
\texttt{\h} Any horizontal space character, equivalent to \texttt{[\ \^^I]}: space and tab.
\texttt{\s} Any space character, equivalent to \texttt{[\ \^^I\^^J\^^L\^^M]}.
\texttt{\v} Any vertical space character, equivalent to \texttt{[\^^J\^^K\^^L\^^M]}.

Note that \texttt{\^^K} is a vertical space, but not a space, for compatibility with Perl.
\texttt{\w} Any word character, \textit{i.e.}, alphanumericics and underscore, equivalent to the explicit
class \texttt{[A-Za-z0-9_]}.
\texttt{\d} Any token not matched by \texttt{\d}.
\texttt{\h} Any token not matched by \texttt{\h}.
\texttt{\n} Any token other than the \texttt{\n} character (hex 0A).
\texttt{\s} Any token not matched by \texttt{\s}.
\texttt{\v} Any token not matched by \texttt{\v}.
\texttt{\w} Any token not matched by \texttt{\w}.

Of those, \texttt{.}, \texttt{\d}, \texttt{\h}, \texttt{\n}, \texttt{\s}, \texttt{\v}, and \texttt{\w} match arbitrary control sequences.
Character classes match exactly one token in the subject.

\texttt{\[\ldots\]} Positive character class. Matches any of the specified tokens.
[^...] Negative character class. Matches any token other than the specified characters.

x-y Within a character class, this denotes a range (can be used with escaped characters).

[:<name>:] Within a character class (one more set of brackets), this denotes the POSIX character class <name>, which can be alnum, alpha, ascii, blank, cntrl, digit, graph, lower, print, punct, space, upper, word, or xdigit.

[:~<name>:] Negative POSIX character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control sequences (see below for a description of \c).

Quantifiers (repetition).

? 0 or 1, greedy.

?? 0 or 1, lazy.

* 0 or more, greedy.

*? 0 or more, lazy.

+ 1 or more, greedy.

+? 1 or more, lazy.

{n} Exactly n.

{n,} n or more, greedy.

{n,}? n or more, lazy.

{n, m} At least n, no more than m, greedy.

{n, m}? At least n, no more than m, lazy.

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W, or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the boundary).

^ or \A Start of the subject token list.

\$ or \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ^ in the case of multiple matches: for instance \regex_count:nnN { \G a } { aaba } \l_tmpa_int yields 2, but replacing \G by ^ would result in \l_tmpa_int holding the value 1.

Alternation and capturing groups.

A|B|C Either one of A, B, or C.

(...) Capturing group.

(?:...) Non-capturing group.
(?!...) Non-capturing group which resets the group number for capturing groups in each alternative. The following group is numbered with the first unused group number.

The \c escape sequence allows to test the category code of tokens, and match control sequences. Each character category is represented by a single uppercase letter:

- C for control sequences;
- B for begin-group tokens;
- E for end-group tokens;
- M for math shift;
- T for alignment tab tokens;
- P for macro parameter tokens;
- U for superscript tokens (up);
- D for subscript tokens (down);
- S for spaces;
- L for letters;
- 0 for others; and
- A for active characters.

The \c escape sequence is used as follows.

\c{⟨regex⟩} A control sequence whose csname matches the ⟨regex⟩, anchored at the beginning and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, character property, class, or group, and forces this object to only match tokens with category X (any of CBEMTPUDSLOA). For instance, \cL[A-Z]\d matches uppercase letters and digits of category code letter, \cC. matches any control sequence, and \cO(abc) matches abc where each character has category other.

\c{XYZ} Applies to the next object, and forces it to only match tokens with category X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c{LSO}(...) matches two tokens of category letter, space, or other.

\c{^-XYZ} Applies to the next object and prevents it from matching any token with category X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c{~O}\d matches digits which have any category different from other.

The category code tests can be used inside classes; for instance, [\c{O}\d \c{[L0][A-F]}] matches what TpX considers as hexadecimal digits, namely digits with category other, or uppercase letters from A to F with category either letter or other. Within a group affected by a category code test, the outer test can be overridden by a nested test: for instance, \cL(ab\cO*cd) matches ab*cd where all characters are of category letter, except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{"\(tl\ var\ name\)\} matches the exact contents of the token list \(tl\ var\). Within a \c{...} control sequence matching, the \u escape sequence only expands its argument once, in effect performing \tl_to_str:v. Quantifiers are not supported directly: use a group.

The option \(?i\) makes the match case insensitive (identifying A–Z with a–z; no Unicode support yet). This applies until the end of the group in which it appears, and can be reverted using \(?-i\). For instance, in \(?i\)(a(?-i)b|c)d, the letters a and d are affected by the \(i\) option. Characters within ranges and classes are affected individually: \(?i\)[Y–\]\] is equivalent to \[YZ\[\yz\], and \(?i\)[^aeiou]\] matches any character which is not a vowel. Neither character properties, nor \c{...} nor \u{...} are affected by the \(i\) option.

In character classes, only [], ^, \, \ and spaces are special, and should be escaped. Other non-alphanumeric characters can still be escaped without harm. Any escape sequence which matches a single character (\d, \D, etc.) is supported in character classes. If the first character is ^, then the meaning of the character class is inverted; ^ appearing anywhere else in the range is not special. If the first character (possibly following a leading ^) is] then it does not need to be escaped since ending the range there would make it empty. Ranges of characters can be expressed using ^, for instance, \[\D 0–5\] and \[^6–9\] are equivalent.

Capturing groups are a means of extracting information about the match. Parenthesized groups are labelled in the order of their opening parenthesis, starting at 1. The contents of those groups corresponding to the “best” match (leftmost longest) can be extracted and stored in a sequence of token lists using for instance \regex_extract_once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nn { a \K . } { a123aaaxyz } \l_foo_seq

results in \l_foo_seq containing the items \{1\} and \{a\}: the true matches are \{a1\} and \{aa\}, but they are trimmed by the use of \K. The \K command does not affect capturing groups: for instance,

\regex_extract_once:mnN { (. \K c)+ \d } { acbc3 } \l_foo_seq

results in \l_foo_seq containing the items \{c3\} and \{bc\}: the true match is \{acbc3\}, with first submatch \{bc\}, but \K resets the beginning of the match to the last position where it appears.

2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the replacement text. Backslash introduces various special constructions, described further below:

- \0 is the whole match;
- \1 is the submatch that was matched by the first (capturing) group \(\ldots\); similarly for \2, \ldots, \9 and \g{\(number\)};
- \u inserts a space (spaces are ignored when not escaped);
• \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular expressions;
• \c{⟨cs name⟩} inserts a control sequence;
• \c⟨category⟩⟨character⟩ (see below);
• \u{⟨tl var name⟩} inserts the contents of the ⟨tl var⟩ (see below).

Characters other than backslash and space are simply inserted in the result (but since the replacement text is first converted to a string, one should also escape characters that are special for \TeX, for instance use \#). Non-alphanumeric characters can always be safely escaped with a backslash.

For instance,
\tl_set:Nn \l_my_tl { Hello,-world! }
\regex_replace_all:nnN { (\[er\]?l|o) . } { (\0--\1) } \l_my_tl
results in \l_my_tl holding H(ell--el)(o,--o) w(or--o)(1d--1)!

The submatches are numbered according to the order in which the opening parenthesis of capturing groups appear in the regular expression to match. The n-th submatch is empty if there are fewer than n capturing groups or for capturing groups that appear in alternatives that were not used for the match. In case a capturing group matches several times during a match (due to quantifiers) only the last match is used in the replacement text. Submatches always keep the same category codes as in the original token list.

The characters inserted by the replacement have category code 12 (other) by default, with the exception of space characters. Spaces inserted through \ have category code 10, while spaces inserted through \x20 or \x{20} have category code 12. The escape sequence \c allows to insert characters with arbitrary category codes, as well as control sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA as in regular expressions. Parentheses are optional for a single character (which can be an escape sequence). When nested, the innermost category code applies, for instance \cL(Hello\cS world)! gives this text with standard category codes.

\c{⟨text⟩} Produces the control sequence with csname ⟨text⟩. The ⟨text⟩ may contain references to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{⟨tl var name⟩} allows to insert the contents of the token list with name ⟨tl var name⟩ directly into the replacement, giving an easier control of category codes. When nested in \c{⟨...⟩} and \u{⟨...⟩} constructions, the \u and \c escape sequences perform \tl_to_str:v, namely extract the value of the control sequence and turn it into a string. Matches can also be used within the arguments of \c and \u. For instance,
\tl_set:Nn \l_my_one_tl { first }
\tl_set:Nn \l_my_two_tl { \emph{second} }
\tl_set:Nn \l_my_tl { one , two , one , one }
\regex_replace_all:nnN { [\-]+ } { \u{l_my_\0_tl} } \l_my_tl
results in \l_my_tl holding first,\emph{second},first,first.
3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather than doing it each time the regular expression is used. The compiled regular expression is stored in a variable. All of the \texttt{l3regex} module’s functions can be given their regular expression argument either as an explicit string or as a compiled regular expression.

\texttt{\regex_new:N} \langle \texttt{regex var} \rangle

Creates a new \langle \texttt{regex var} \rangle or raises an error if the name is already taken. The declaration is global. The \langle \texttt{regex var} \rangle is initially such that it never matches.

\texttt{\regex_set:Nn} \langle \texttt{regex var} \rangle { \langle \texttt{regex} \rangle }

Stores a compiled version of the \langle \texttt{regular expression} \rangle in the \langle \texttt{regex var} \rangle. For instance, this function can be used as

\begin{verbatim}
\regex_new:N \l_my_regex
\regex_set:Nn \l_my_regex { my\ (simple\)? reg(ex|ular\) expression}
\end{verbatim}

The assignment is local for \texttt{\regex_set:Nn} and global for \texttt{\regex_gset:Nn}. Use \texttt{\regex_const:Nn} for compiled expressions which never change.

\texttt{\regex_show:n} { \langle \texttt{regex} \rangle }

Shows how \texttt{l3regex} interprets the \langle \texttt{regex} \rangle. For instance, \texttt{\regex_show:n} \{ \A X|Y \} shows

\begin{verbatim}
+branch
 anchor at start (\A)
 char code 88
+branch
 char code 89
\end{verbatim}

indicating that the anchor \texttt{\A} only applies to the first branch: the second branch is not anchored to the beginning of the match.

4 Matching

All regular expression functions are available in both \texttt{:n} and \texttt{:N} variants. The former require a “standard” regular expression, while the later require a compiled expression as generated by \texttt{\regex_(g)set:Nn}.

\texttt{\regex_match:nnTF} { \langle \texttt{regex} \rangle } { \langle \texttt{token list} \rangle } { \langle \texttt{true code} \rangle } { \langle \texttt{false code} \rangle }

Tests whether the \langle \texttt{regular expression} \rangle matches any part of the \langle \texttt{token list} \rangle. For instance,

\begin{verbatim}
\regex_match:nnTF { b [cde]* } { abedcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dq-w] } { example } { TRUE } { FALSE }
\end{verbatim}

leaves \texttt{TRUE} then \texttt{FALSE} in the input stream.
```latex
\texttt{\regex_count:nN \{\textit{regex}\} \{\textit{token list}\} \textit{int var}}
```

Sets \textit{int var} within the current \TeX group level equal to the number of times \textit{regular expression} appears in \textit{token list}. The search starts by finding the left-most longest match, respecting greedy and lazy (non-greedy) operators. Then the search starts again from the character following the last character of the previous match, until reaching the end of the token list. Infinite loops are prevented in the case where the regular expression can match an empty token list: then we count one match between each pair of characters. For instance,

\begin{verbatim}
\int_new:N \l_foo_int
\regex_count:nN { (b+|c) } { abbababbb } \l_foo_int
\end{verbatim}

results in \texttt{\l_foo_int} taking the value 5.

5 Submatch extraction

```latex
\texttt{\regex_extract_once:nN \{\textit{regex}\} \{\textit{token list}\} \textit{seq var}}
```

Finds the first match of the \textit{regular expression} in the \textit{token list}. If it exists, the match is stored as the first item of the \textit{seq var}, and further items are the contents of capturing groups, in the order of their opening parenthesis. The \textit{seq var} is assigned locally. If there is no match, the \textit{seq var} is cleared. The testing versions insert the \textit{true code} into the input stream if a match was found, and the \textit{false code} otherwise. For instance, assume that you type

\begin{verbatim}
\regex_extract_once:nN { \A(La)?TeX(!*)\Z } { \texttt{LaTeX!!!} } \l_foo_seq
 \{ \texttt{true} \} \{ \texttt{false} \}
\end{verbatim}

Then the regular expression (anchored at the start with \texttt{\A} and at the end with \texttt{\Z}) must match the whole token list. The first capturing group, \texttt{(La)?}, matches \texttt{La}, and the second capturing group, \texttt{(!*)}, matches \texttt{!!!}. Thus, \texttt{\l_foo_seq} contains as a result the items \texttt{\LaTeX!!!}, \texttt{(La)}, and \texttt{(!!!)}, and the \texttt{true} branch is left in the input stream. Note that the \texttt{n}-th item of \texttt{\l_foo_seq}, as obtained using \texttt{\seq_item:Nn}, correspond to the submatch numbered \texttt{(n − 1)} in functions such as \texttt{\regex_replace_once:nN}.

```latex
\texttt{\regex_extract_all:nN \{\textit{regex}\} \{\textit{token list}\} \textit{seq var}}
```

Finds all matches of the \textit{regular expression} in the \textit{token list}, and stores all the submatch information in a single sequence (concatenating the results of multiple \texttt{\regex_extract_once:nN} calls). The \textit{seq var} is assigned locally. If there is no match, the \textit{seq var} is cleared. The testing versions insert the \textit{true code} into the input stream if a match was found, and the \textit{false code} otherwise. For instance, assume that you type

\begin{verbatim}
\regex_extract_all:nN { \w+ } { \texttt{Hello,-world!} } \l_foo_seq
 \{ \texttt{true} \} \{ \texttt{false} \}
\end{verbatim}

Then the regular expression matches twice, the resulting sequence contains the two items \texttt{\{Hello\}} and \texttt{\{world\}}, and the \texttt{true} branch is left in the input stream.

230
Splits the \langle token list \rangle into a sequence of parts, delimited by matches of the \langle regular expression \rangle. If the \langle regular expression \rangle has capturing groups, then the token lists that they match are stored as items of the sequence as well. The assignment to \langle seq var \rangle is local. If no match is found the resulting \langle seq var \rangle has the \langle token list \rangle as its sole item. If the \langle regular expression \rangle matches the empty token list, then the \langle token list \rangle is split into single tokens. The testing versions insert the \langle true code \rangle into the input stream if a match was found, and the \langle false code \rangle otherwise. For example, after
\seq_new:N \l_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \l_path_seq
{ true } { false }
the sequence \l_path_seq contains the items \{the\}, \{path\}, \{for\}, \{this\}, and \{file.tex\}, and the true branch is left in the input stream.

6 Replacement

Searches for the \langle regular expression \rangle in the \langle token list \rangle and replaces the first match with the \langle replacement \rangle. The result is assigned locally to \langle tl var \rangle. In the \langle replacement \rangle, \\0 represents the full match, \\1 represent the contents of the first capturing group, \\2 of the second, etc.

Replaces all occurrences of the \langle regular expression \rangle in the \langle token list \rangle by the \langle replacement \rangle, where \\0 represents the full match, \\1 represent the contents of the first capturing group, \\2 of the second, etc. Every match is treated independently, and matches cannot overlap. The result is assigned locally to \langle tl var \rangle.

7 Constants and variables

Scratch regex for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

Scratch regex for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
8 Bugs, misfeatures, future work, and other possibilities

The following need to be done now.

- Rewrite the documentation in a more ordered way, perhaps add a BNF?
 Additional error-checking to come.
- Clean up the use of messages.
- Cleaner error reporting in the replacement phase.
- Add tracing information.
- Detect attempts to use back-references and other non-implemented syntax.
- Test for the maximum register \c_max_register_int.
- Find out whether the fact that \W and friends match the end-marker leads to bugs.
 Possibly update __regex_item_reverse:n.
- The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
 Code improvements to come.
- Shift arrays so that the useful information starts at position 1.
- Only build \c{...} once.
- Use arrays for the left and right state stacks when compiling a regex.
- Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
 (I think not.)
- Quantifiers for \u and assertions.
- When matching, keep track of an explicit stack of current_state and current_-_submatches.
- If possible, when a state is reused by the same thread, kill other subthreads.
- Use an array rather than \l___regex_balance_tl to build the function __regex_-_replacement_balance_one_match:n.
- Reduce the number of epsilon-transitions in alternatives.
- Optimize simple strings: use less states (abcade should give two states, for abc and ade).
 [Does that really make sense?]
- Optimize groups with no alternative.
- Optimize states with a single __regex_action_free:n.
- Optimize the use of __regex_action_success: by inserting it in state 2 directly
 instead of having an extra transition.
- Optimize the use of \int_step_... functions.
• Groups don’t capture within regexes for csnames; optimize and document.

• Better “show” for anchors, properties, and catcode tests.

• Does \K really need a new state for itself?

• When compiling, use a boolean in_cs and less magic numbers.

• Instead of checking whether the character is special or alphanumeric using its character code, check if it is special in regexes with \cs_if_exist tests.

The following features are likely to be implemented at some point in the future.

• General look-ahead/behind assertions.

• Regex matching on external files.

• Conditional subpatterns with look ahead/behind: “if what follows is […], then […]”.

• (.*...) and (?...?) sequences to set some options.

• UTF-8 mode for pdfTeX.

• Newline conventions are not done. In particular, we should have an option for .not to match newlines. Also, \A should differ from ^, and \z, \Z and $ should differ.

• Unicode properties: \p{..} and \P{..}; \X which should match any “extended” Unicode sequence. This requires to manipulate a lot of data, probably using tree-boxes.

• Provide a syntax such as \ur{l_my_regex} to use an already-compiled regex in a more complicated regex. This makes regexes more easily composable.

• Allowing \u{l_my_tl} in more places, for instance as the number of repetitions in a quantifier.

The following features of PCRE or Perl may or may not be implemented.

• Callout with (?C...) or other syntax: some internal code changes make that possible, and it can be useful for instance in the replacement code to stop a regex replacement when some marker has been found; this raises the question of a potential \regex_break: and then of playing well with \tl_map_break: called from within the code in a regex. It also raises the question of nested calls to the regex machinery, which is a problem since \fontdimen are global.

• Conditional subpatterns (other than with a look-ahead or look-behind condition): this is non-regular, isn’t it?

• Named subpatterns: TeX programmers have lived so far without any need for named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.

• Back-references: non-regular feature, this requires backtracking, which is prohibitively slow.
• Recursion: this is a non-regular feature.

• Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic backtracking, are unnecessary in a non-backtracking algorithm, and difficult to implement.

• Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking algorithm, in particular because the corresponding group should be treated as atomic.

• Backtracking control verbs: intrinsically tied to backtracking.

• \texttt{\textbackslash ddd}, matching the character with octal code \texttt{ddd}: we already have \texttt{\textbackslash x\{\ldots\}} and the syntax is confusingly close to what we could have used for backreferences (\texttt{\textbackslash 1, \textbackslash 2, \ldots}), making it harder to produce useful error message.

• \texttt{\textbackslash cx}, similar to \TeX’s own \texttt{\textbackslash ^{\textbackslash x}}.

• Comments: \TeX already has its own system for comments.

• \texttt{\textbackslash Q\ldots\textbackslash E} escaping: this would require to read the argument verbatim, which is not in the scope of this module.

• \texttt{\textbackslash C} single byte in UTF-8 mode: Xe\TeX and Lua\TeX serve us characters directly, and splitting those into bytes is tricky, encoding dependent, and most likely not useful anyways.
Part XXVIII

The \texttt{l3box} package

Boxes

There are three kinds of box operations: horizontal mode denoted with prefix \texttt{\textbackslash hbox}_, vertical mode with prefix \texttt{\textbackslash vbox}_, and the generic operations working in both modes with prefix \texttt{\textbackslash box}_.

1 Creating and initialising boxes

\begin{verbatim}
\box_new:N \box_new:c
\box_clear:N \box_clear:c \box_gclear:N \box_gclear:c
\box_clear_new:N \box_clear_new:c \box_gclear_new:N \box_gclear_new:c
\box_set_eq:NN \box_set_eq:NN \box_gset_eq:NN \box_gset_eq:NN
\box_if_exist_p:N \box_if_exist:NTF \box_if_exist:c \box_if_exist:c
\end{verbatim}

\begin{itemize}
 \item \texttt{\box_new:N \box_new:c}
 \begin{itemize}
 \item Creates a new \langle box \rangle or raises an error if the name is already taken. The declaration is
global. The \langle box \rangle is initially void.
 \end{itemize}
 \item \texttt{\box_clear:N \box_clear:c \box_gclear:N \box_gclear:c}
 \begin{itemize}
 \item Clears the content of the \langle box \rangle by setting the box equal to \texttt{\textbackslash c_empty_box}.
 \end{itemize}
 \item \texttt{\box_clear_new:N \box_clear_new:c \box_gclear_new:N \box_gclear_new:c}
 \begin{itemize}
 \item Ensures that the \langle box \rangle exists globally by applying \texttt{\box_new:N} if necessary, then applies
\texttt{\box_(g)clear:N} to leave the \langle box \rangle empty.
 \end{itemize}
 \item \texttt{\box_set_eq:NN \box_set_eq:NN \box_gset_eq:NN \box_gset_eq:NN}
 \begin{itemize}
 \item Sets the content of \langle box_1 \rangle equal to that of \langle box_2 \rangle.
 \end{itemize}
 \item \texttt{\box_if_exist_p:N \box_if_exist:NTF \box_if_exist:c \box_if_exist:c}
 \begin{itemize}
 \item Tests whether the \langle box \rangle is currently defined. This does not check that the \langle box \rangle really is
a box.
 \end{itemize}
\end{itemize}

2 Using boxes

\begin{verbatim}
\box_use:N \box_use:c
\end{verbatim}

\begin{itemize}
 \item \texttt{\box_use:N \box_use:c}
 \begin{itemize}
 \item Inserts the current content of the \langle box \rangle onto the current list for typesetting. An error is
raised if the variable does not exist or if it is invalid.
 \end{itemize}
\end{itemize}

\textbf{\texttt{\textbackslash TeX}hackers note:} This is the \texttt{\textbackslash TeX} primitive \texttt{\textbackslash copy}.
\box_move_right:nn \box_move_left:nn

This function operates in vertical mode, and inserts the material specified by the \langle box function \rangle such that its reference point is displaced horizontally by the given \langle dimexpr \rangle from the reference point for typesetting, to the right or left as appropriate. The \langle box function \rangle should be a box operation such as \textbackslash{}box_use:N \textbackslash{}box or a “raw” box specification such as \textbackslash{}vbox:n \{ xyz \}.

\box_move_up:nn \box_move_down:nn

This function operates in horizontal mode, and inserts the material specified by the \langle box function \rangle such that its reference point is displaced vertically by the given \langle dimexpr \rangle from the reference point for typesetting, up or down as appropriate. The \langle box function \rangle should be a box operation such as \textbackslash{}box_use:N \textbackslash{}box or a “raw” box specification such as \textbackslash{}vbox:n \{ xyz \}.

3 Measuring and setting box dimensions

\box_dp:N \box_dp:c

Calculates the depth (below the baseline) of the \langle box \rangle in a form suitable for use in a \langle dimension expression \rangle.

\textbf{\TeX{}hackers note:} This is the \TeX{} primitive \textbackslash{}dp.

\box_ht:N \box_ht:c

Calculates the height (above the baseline) of the \langle box \rangle in a form suitable for use in a \langle dimension expression \rangle.

\textbf{\TeX{}hackers note:} This is the \TeX{} primitive \textbackslash{}ht.

\box_wd:N \box_wd:c

Calculates the width of the \langle box \rangle in a form suitable for use in a \langle dimension expression \rangle.

\textbf{\TeX{}hackers note:} This is the \TeX{} primitive \textbackslash{}wd.

\box_set_dp:Nn \box_set_dp:cn \box_gset_dp:Nn \box_gset_dp:cn

Set the depth (below the baseline) of the \langle box \rangle to the value of the \langle dimension expression \rangle.

Updated: 2019-01-22

\box_set_ht:Nn \box_set_ht:cn \box_gset_ht:Nn \box_gset_ht:cn

Set the height (above the baseline) of the \langle box \rangle to the value of the \langle dimension expression \rangle.

Updated: 2019-01-22
\texttt{\box_set_wd:Nn} \texttt{\box_set_wd:cn} \texttt{\box_gset_wd:Nn} \texttt{\box_gset_wd:cn}

Updated: 2019-01-22

4 Box conditionals

\texttt{\box_if_empty_p:N} \texttt{\box_if_empty_p:c} \texttt{\box_if_empty:NTF} \texttt{\box_if_empty:cTF}
\texttt{\box_if_horizontal_p:N} \texttt{\box_if_horizontal_p:c} \texttt{\box_if_horizontal:NTF} \texttt{\box_if_horizontal:cTF}
\texttt{\box_if_vertical_p:N} \texttt{\box_if_vertical_p:c} \texttt{\box_if_vertical:NTF} \texttt{\box_if_vertical:cTF}

5 The last box inserted

\texttt{\box_set_to_last:N} \texttt{\box_set_to_last:c} \texttt{\box_gset_to_last:N} \texttt{\box_gset_to_last:c}

6 Constant boxes

\texttt{\c_empty_box}

Updated: 2012-11-04

This is a permanently empty box, which is neither set as horizontal nor vertical.

\textbf{\TeXhackers note:} At the \TeX{} level this is a void box.
7 Scratch boxes

\texttt{l_tmpa_box} \texttt{l_tmpb_box}

Updated: 2012-11-04

Scratch boxes for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\texttt{g_tmpa_box} \texttt{g_tmpb_box}

Scratch boxes for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

8 Viewing box contents

\texttt{\box_show:N} \texttt{\box_show:c}

Updated: 2012-05-11

\texttt{\box_show:Nnn} \texttt{\box_show:cn}

\texttt{\box_log:N} \texttt{\box_log:c}

Updated: 2012-05-11

\texttt{\box_log:Nnn} \texttt{\box_log:cn}

New: 2012-05-11

Shows full details of the content of the \texttt{\langle box\rangle} in the terminal.

Display the contents of \texttt{\langle box\rangle} in the terminal, showing the first \texttt{\langle intexpr_1\rangle} items of the box, and descending into \texttt{\langle intexpr_2\rangle} group levels.

Writes full details of the content of the \texttt{\langle box\rangle} to the log.

New: 2012-05-11

9 Boxes and color

All \LaTeXX3 boxes are “color safe”: a color set inside the box stops applying after the end of the box has occurred.

10 Horizontal mode boxes

\texttt{\hbox:n}

Updated: 2017-04-05

Typesets the \texttt{\langle contents\rangle} into a horizontal box of natural width and then includes this box in the current list for typesetting.
\hbox_to_wd:nn \hbox_to_wd:nn \{\dimexpr\} \{\langle\text{contents}\rangle}\}

Typesets the \langle\text{contents}\rangle into a horizontal box of width \langle\dimexpr\rangle and then includes this box in the current list for typesetting.

\hbox_to_zero:n
\hbox_to_zero:n \{\langle\text{contents}\rangle\}

Typesets the \langle\text{contents}\rangle into a horizontal box of zero width and then includes this box in the current list for typesetting.

\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

Typesets the \langle\text{contents}\rangle at natural width and then stores the result inside the \langle\text{box}\rangle.

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Typesets the \langle\text{contents}\rangle to the width given by the \langle\dimexpr\rangle and then stores the result inside the \langle\text{box}\rangle.

\hbox_overlap_right:n
\hbox_overlap_right:n \{\langle\text{contents}\rangle\}

Typesets the \langle\text{contents}\rangle into a horizontal box of zero width such that material protrudes to the right of the insertion point.

\hbox_overlap_left:n
\hbox_overlap_left:n \{\langle\text{contents}\rangle\}

Typesets the \langle\text{contents}\rangle into a horizontal box of zero width such that material protrudes to the left of the insertion point.

\hbox_set:Nw
\hbox_set:cw
\hbox_gset:Nw
\hbox_gset:cw
\hbox_gset_end:

Typesets the \langle\text{contents}\rangle at natural width and then stores the result inside the \langle\text{box}\rangle. In contrast to \hbox_set:Nn this function does not absorb the argument when finding the \langle\text{content}\rangle, and so can be used in circumstances where the \langle\text{content}\rangle may not be a simple argument.

\hbox_set_to_wd:Nnw
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

Typesets the \langle\text{contents}\rangle to the width given by the \langle\dimexpr\rangle and then stores the result inside the \langle\text{box}\rangle. In contrast to \hbox_set_to_wd:Nnn this function does not absorb the argument when finding the \langle\text{content}\rangle, and so can be used in circumstances where the \langle\text{content}\rangle may not be a simple argument.

\hbox_unpack:N
\hbox_unpack:c

Unpacks the content of the horizontal \langle\text{box}\rangle, retaining any stretching or shrinking applied when the \langle\text{box}\rangle was set.

\TeXhackers note: This is the \TeX primitive \unhcopy.
11 Vertical mode boxes

Vertical boxes inherit their baseline from their contents. The standard case is that the baseline of the box is at the same position as that of the last item added to the box. This means that the box has no depth unless the last item added to it had depth. As a result most vertical boxes have a large height value and small or zero depth. The exception are _top boxes, where the reference point is that of the first item added. These tend to have a large depth and small height, although the latter is typically non-zero.

\vbox:n \{⟨contents⟩\}

Typesets the ⟨contents⟩ into a vertical box of natural height and includes this box in the current list for typesetting.

\vbox_top:n \{⟨contents⟩\}

Typesets the ⟨contents⟩ into a vertical box of natural height and includes this box in the current list for typesetting. The baseline of the box is equal to that of the first item added to the box.

\vbox_to_ht:nn \{⟨dimexpr⟩\} \{⟨contents⟩\}

Typesets the ⟨contents⟩ into a vertical box of height ⟨dimexpr⟩ and then includes this box in the current list for typesetting.

\vbox_to_zero:n \{⟨contents⟩\}

Typesets the ⟨contents⟩ into a vertical box of zero height and then includes this box in the current list for typesetting.

\vbox_set:Nn \{⟨box⟩\} \{⟨contents⟩\}

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.

\vbox_set_top:Nn \{⟨box⟩\} \{⟨contents⟩\}

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩. The baseline of the box is equal to that of the first item added to the box.

\vbox_set_to_ht:Nnn \{⟨box⟩\} \{⟨dimexpr⟩\} \{⟨contents⟩\}

Typesets the ⟨contents⟩ to the height given by the ⟨dimexpr⟩ and then stores the result inside the ⟨box⟩.
\vbox_set:Nw (box) \langle contents \rangle \vbox_set_end:
Typesets the \langle contents \rangle at natural height and then stores the result inside the \langle box \rangle. In contrast to \vbox_set:Nn this function does not absorb the argument when finding the \langle content \rangle, and so can be used in circumstances where the \langle content \rangle may not be a simple argument.

\vbox_set_to_ht:Nnw \langle box \rangle \langle \dimexpr \rangle \langle contents \rangle \vbox_set_end:
Typesets the \langle contents \rangle to the height given by the \langle \dimexpr \rangle and then stores the result inside the \langle box \rangle. In contrast to \vbox_set_to_ht:Nnn this function does not absorb the argument when finding the \langle content \rangle, and so can be used in circumstances where the \langle content \rangle may not be a simple argument.

\vbox_unpack:N \langle box \rangle \vbox_unpack:c
Unpacks the content of the vertical \langle box \rangle, retaining any stretching or shrinking applied when the \langle box \rangle was set.

TeXhackers note: This is the TeX primitive \unvcopy.

12 Using boxes efficiently
The functions above for using box contents work in exactly the same way as for any other expl3 variable. However, for efficiency reasons, it is also useful to have functions which drop box contents on use. When a box is dropped, the box becomes empty at the group level \emph{where the box was originally set} rather than necessarily \emph{at the current group level}. For example, with
\hbox_set:Nn \l_tmpa_box { A }
\group_begin:
\hbox_set:Nn \l_tmpa_box { B }
\group_begin:
\box_use_drop:N \l_tmpa_box
\group_end:
\box_show:N \l_tmpa_box
\group_end:
\box_show:N \l_tmpa_box
the first use of \texttt{\box_show:N} will show an entirely cleared (void) box, and the second will show the letter A in the box.

These functions should be preferred when the content of the box is no longer required after use. Note that due to the unusual scoping behaviour of \texttt{drop} functions they may be applied to both local and global boxes: the latter will naturally be set and thus cleared at a global level.

\begin{verbatim}
\texttt{\box_use_drop:N} \texttt{\\box_use_drop:c}
\end{verbatim}

Inserts the current content of the \texttt{⟨box⟩} onto the current list for typesetting then drops the box content. An error is raised if the variable does not exist or if it is invalid. This function may be applied to local or global boxes.

\textbf{\TeXhacker note:} This is the \texttt{\box} primitive.

\begin{verbatim}
\texttt{\box_set_eq_drop:NN} \texttt{\\box_set_eq_drop:} \texttt{(cN|Nc|cc)}
\end{verbatim}

Sets the content of \texttt{⟨box⟩}_1 equal to that of \texttt{⟨box⟩}_2, then drops \texttt{⟨box⟩}_2.

\begin{verbatim}
\texttt{\box_gset_eq_drop:NN} \texttt{\\box_gset_eq_drop:} \texttt{(cN|Nc|cc)}
\end{verbatim}

Sets the content of \texttt{⟨box⟩}_1 globally equal to that of \texttt{⟨box⟩}_2, then drops \texttt{⟨box⟩}_2.

\begin{verbatim}
\texttt{\hbox_unpack_drop:N} \texttt{\\hbox_unpack_drop:c}
\end{verbatim}

Unpacks the content of the horizontal \texttt{⟨box⟩}, retaining any stretching or shrinking applied when the \texttt{⟨box⟩} was set. The original \texttt{⟨box⟩} is then dropped.

\textbf{\TeXhacker note:} This is the \TeX primitive \texttt{\unhbox}.

\begin{verbatim}
\texttt{\vbox_unpack_drop:N} \texttt{\\vbox_unpack_drop:c}
\end{verbatim}

Unpacks the content of the vertical \texttt{⟨box⟩}, retaining any stretching or shrinking applied when the \texttt{⟨box⟩} was set. The original \texttt{⟨box⟩} is then dropped.

\textbf{\TeXhacker note:} This is the \TeX primitive \texttt{\unvbox}.

\section{Affine transformations}

Affine transformations are changes which (informally) preserve straight lines. Simple translations are affine transformations, but are better handled in \TeX by doing the translation first, then inserting an unmodified box. On the other hand, rotation and resizing of boxed material can best be handled by modifying boxes. These transformations are described here.
Resizes the ⟨box⟩ to fit within the given ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (vertically); both of the sizes are dimension expressions. The ⟨y-size⟩ is the height only: it does not include any depth. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the resizing is applied. The final size of the ⟨box⟩ is the smaller of {⟨x-size⟩} and {⟨y-size⟩}, i.e. the result fits within the dimensions specified. Negative sizes cause the material in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.

Resizes the ⟨box⟩ to fit within the given ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (vertically); both of the sizes are dimension expressions. The ⟨y-size⟩ is the total vertical size (height plus depth). The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the resizing is applied. The final size of the ⟨box⟩ is the smaller of {⟨x-size⟩} and {⟨y-size⟩}, i.e. the result fits within the dimensions specified. Negative sizes cause the material in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.

Resizes the ⟨box⟩ to ⟨y-size⟩ (vertically), scaling the horizontal size by the same amount; ⟨y-size⟩ is a dimension expression. The ⟨y-size⟩ is the height only: it does not include any depth. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the resizing is applied. A negative ⟨y-size⟩ causes the material in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.
Resizes the \textlangle box\textrangle to \textlangle y-size\textrangle (vertically), scaling the horizontal size by the same amount: \textlangle y-size\textrangle is a dimension expression. The \textlangle y-size\textrangle is the total vertical size (height plus depth). The updated \textlangle box\textrangle is an \texttt{hbox}, irrespective of the nature of the \textlangle box\textrangle before the resizing is applied. A negative \textlangle y-size\textrangle causes the material in the \textlangle box\textrangle to be reversed in direction, but the reference point of the \textlangle box\textrangle is unchanged. Thus a negative \textlangle y-size\textrangle results in the \textlangle box\textrangle having a depth dependent on the height of the original and \textit{vice versa}.

Resizes the \textlangle box\textrangle to \textlangle x-size\textrangle (horizontally), scaling the vertical size by the same amount: \textlangle x-size\textrangle is a dimension expression. The updated \textlangle box\textrangle is an \texttt{hbox}, irrespective of the nature of the \textlangle box\textrangle before the resizing is applied. A negative \textlangle x-size\textrangle causes the material in the \textlangle box\textrangle to be reversed in direction, but the reference point of the \textlangle box\textrangle is unchanged. Thus a negative \textlangle x-size\textrangle results in the \textlangle box\textrangle having a depth dependent on the height of the original and \textit{vice versa}.

Resizes the \textlangle box\textrangle to \textlangle x-size\textrangle (horizontally) and \textlangle y-size\textrangle (vertically): both of the sizes are dimension expressions. The \textlangle y-size\textrangle is the height only and does not include any depth. The updated \textlangle box\textrangle is an \texttt{hbox}, irrespective of the nature of the \textlangle box\textrangle before the resizing is applied. Negative sizes cause the material in the \textlangle box\textrangle to be reversed in direction, but the reference point of the \textlangle box\textrangle is unchanged. Thus a negative \textlangle y-size\textrangle results in the \textlangle box\textrangle having a depth dependent on the height of the original and \textit{vice versa}.

Resizes the \textlangle box\textrangle to \textlangle x-size\textrangle (horizontally) and \textlangle y-size\textrangle (vertically): both of the sizes are dimension expressions. The \textlangle y-size\textrangle is the total vertical size (height plus depth). The updated \textlangle box\textrangle is an \texttt{hbox}, irrespective of the nature of the \textlangle box\textrangle before the resizing is applied. Negative sizes cause the material in the \textlangle box\textrangle to be reversed in direction, but the reference point of the \textlangle box\textrangle is unchanged. Thus a negative \textlangle y-size\textrangle results in the \textlangle box\textrangle having a depth dependent on the height of the original and \textit{vice versa}.
\box_rotate:Nn \box_rotate:cn \box_grotate:Nn \box_grotate:cn Updated: 2019-01-22

Rotates the $\langle box \rangle$ by $\langle angle \rangle$ (in degrees) anti-clockwise about its reference point. The reference point of the updated box is moved horizontally such that it is at the left side of the smallest rectangle enclosing the rotated material. The updated $\langle box \rangle$ is an hbox, irrespective of the nature of the $\langle box \rangle$ before the rotation is applied.

\box_scale:Nnn \box_scale:cn \box_gscale:Nnn \box_gscale:cn Updated: 2019-01-22

Scales the $\langle box \rangle$ by factors $\langle x-scale \rangle$ and $\langle y-scale \rangle$ in the horizontal and vertical directions, respectively (both scales are integer expressions). The updated $\langle box \rangle$ is an hbox, irrespective of the nature of the $\langle box \rangle$ before the scaling is applied. Negative scalings cause the material in the $\langle box \rangle$ to be reversed in direction, but the reference point of the $\langle box \rangle$ is unchanged. Thus a negative $\langle y-scale \rangle$ results in the $\langle box \rangle$ having a depth dependent on the height of the original and vice versa.

14 Primitive box conditionals

\if_hbox:N \if_vbox:N \if_box_empty:N * \if_hbox:N \langle box \rangle \if_hbox:N \langle box \rangle \if_vbox:N \langle box \rangle \if_box_empty:N \langle box \rangle \if_hbox:N \langle box \rangle \if_vbox:N \langle box \rangle \if_box_empty:N \langle box \rangle

\verb|\if_hbox:N| \verb|\else:| \verb|\fi:|
Tests is $\langle box \rangle$ is a horizontal box.

\TeX\ hackers note: This is the \TeX\ primitive \verb|\ifhbox|.

\verb|\if_vbox:N| \verb|\else:| \verb|\fi:|
Tests is $\langle box \rangle$ is a vertical box.

\TeX\ hackers note: This is the \TeX\ primitive \verb|\ifvbox|.

\verb|\if_box_empty:N| \verb|\else:| \verb|\fi:|
Tests is $\langle box \rangle$ is an empty (void) box.

\TeX\ hackers note: This is the \TeX\ primitive \verb|\ifvoid|.
Part XXIX
The \texttt{l3coffins} package
Coffin code layer

The material in this module provides the low-level support system for coffins. For details about the design concept of a coffin, see the \texttt{xcoffins} module (in the \texttt{l3experimental} bundle).

1 Creating and initialising coffins

\begin{verbatim}
\coffin_new:N \coffin_new:c
New: 2011-08-17
\coffin_clear:N \coffin_clear:c
\coffin_gclear:N \coffin_gclear:c
New: 2011-08-17
Updated: 2019-01-21
\coffin_set_eq:NN \coffin_set_eq:\cc
\coffin_gset_eq:NN \coffin_gset_eq:\cc
New: 2011-08-17
Updated: 2019-01-21
\coffin_if_exist_p:N \coffin_if_exist:NTF
\coffin_if_exist:c TF *
New: 2012-06-20
\end{verbatim}

\begin{verbatim}
\coffin_new:N (coffin)
Creates a new \texttt{(coffin)} or raises an error if the name is already taken. The declaration is global. The \texttt{(coffin)} is initially empty.
\coffin_clear:N (coffin)
Clears the content of the \texttt{(coffin)}.
\coffin_set_eq:NN (coffin1) (coffin2)
Sets both the content and poles of \texttt{(coffin1)} equal to those of \texttt{(coffin2)}.
\coffin_if_exist_p:N (box)
\coffin_if_exist:NTF (box) \{(true code)\} \{(false code)\}
Tests whether the \texttt{(coffin)} is currently defined.
\end{verbatim}

2 Setting coffin content and poles

\begin{verbatim}
\hcoffin_set:Nn \hcoffin_set:cn
\hcoffin_gset:Nn \hcoffin_gset:cn
New: 2011-08-17
Updated: 2019-01-21
\end{verbatim}

\begin{verbatim}
\hcoffin_set:Nn (coffin) \{(material)\}
Typesets the \texttt{(material)} in horizontal mode, storing the result in the \texttt{(coffin)}. The standard poles for the \texttt{(coffin)} are then set up based on the size of the typeset material.
\end{verbatim}
\hcoffin_set:Nw \hcoffin_set:cw \hcoffin_set_end:
\hcoffin_gset:Nw \hcoffin_gset:cw \hcoffin_gset_end:

Typesets the \textit{(material)} in horizontal mode, storing the result in the \textit{(coffin)}. The standard poles for the \textit{(coffin)} are then set up based on the size of the typeset material. These functions are useful for setting the entire contents of an environment in a coffin.

\vcoffin_set:Nnn \vcoffin_set:cnn \vcoffin_gset:Nnn \vcoffin_gset:cnn

Typesets the \textit{(material)} in vertical mode constrained to the given \textit{(width)} and stores the result in the \textit{(coffin)}. The standard poles for the \textit{(coffin)} are then set up based on the size of the typeset material. These functions are useful for setting the entire contents of an environment in a coffin.

\coffin_set_horizontal_pole:Nnn \coffin_set_horizontal_pole:cnn \coffin_gset_horizontal_pole:Nnn \coffin_gset_horizontal_pole:cnn

Sets the \textit{(pole)} to run horizontally through the \textit{(coffin)}. The \textit{(pole)} is placed at the \textit{(offset)} from the bottom edge of the bounding box of the \textit{(coffin)}. The \textit{(offset)} should be given as a dimension expression.

\coffin_set_vertical_pole:Nnn \coffin_set_vertical_pole:cnn \coffin_gset_vertical_pole:Nnn \coffin_gset_vertical_pole:cnn

Sets the \textit{(pole)} to run vertically through the \textit{(coffin)}. The \textit{(pole)} is placed at the \textit{(offset)} from the left-hand edge of the bounding box of the \textit{(coffin)}. The \textit{(offset)} should be given as a dimension expression.
3 Coffin affine transformations

\coffin_resize:Nnn
\coffin_resize:cnn
\coffin_gresize:Nnn
\coffin_gresize:cnn

Updated: 2019-01-23

\coffin_rotate:Nn
\coffin_grotate:cn
\coffin_grotate:Nn
\coffin_grotate:cn

\coffin_scale:Nnn
\coffin_gscale:cnn
\coffin_gscale:Nnn
\coffin_gscale:cnn

Updated: 2019-01-23

Resized the \coffin to \width and \totalheight, both of which should be given as dimension expressions.

\coffin_rotate:Nn \coffin \\{angle\}

Rotates the \coffin by the given \angle (given in degrees counter-clockwise). This process rotates both the coffin content and poles. Multiple rotations do not result in the bounding box of the coffin growing unnecessarily.

\coffin_scale:Nnn \coffin \\{x-scale\} \\{y-scale\}

Scales the \coffin by a factors \xscale and \yscale in the horizontal and vertical directions, respectively. The two scale factors should be given as real numbers.

4 Joining and using coffins

\coffin_attach:NnnNnnnn
\coffin_attach:cnnNnnnNnnn|nncnnnn|cnncnnnn
\coffin_gattach:NnnNnnnn
\coffin_gattach:cnnNnnnNnnn|nncnnnn|cnncnnnn

Updated: 2019-01-22

This function attaches \coffin2 to \coffin1 such that the bounding box of \coffin1 is not altered, i.e. \coffin2 can protrude outside of the bounding box of the coffin. The alignment is carried out by first calculating \handle1, the point of intersection of \coffin1-pole1 and \coffin1-pole2, and \handle2, the point of intersection of \coffin2-pole1 and \coffin2-pole2. \coffin2 is then attached to \coffin1 such that the relationship between \handle1 and \handle2 is described by the \xoffset and \yoffset. The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn
\coffin_join:cnnNnnnNnnn|nncnnnn|cnncnnnn
\coffin_gjoin:NnnNnnnn
\coffin_gjoin:cnnNnnnNnnn|nncnnnn|cnncnnnn

Updated: 2019-01-22

This function joins \coffin2 to \coffin1 such that the bounding box of \coffin1 may expand. The new bounding box covers the area containing the bounding boxes of the two original coffins. The alignment is carried out by first calculating \handle1, the point of intersection of \coffin1-pole1 and \coffin1-pole2, and \handle2, the point of intersection of \coffin2-pole1 and \coffin2-pole2. \coffin2 is then attached to \coffin1 such that the relationship between \handle1 and \handle2 is described by the \xoffset and \yoffset. The two offsets should be given as dimension expressions.
Typesetting is carried out by first calculating \(\text{handle} \), the point of intersection of \(\text{pole}_1 \) and \(\text{pole}_2 \). The coffin is then typeset in horizontal mode such that the relationship between the current reference point in the document and the \(\text{handle} \) is described by the \(x\text{-offset} \) and \(y\text{-offset} \). The two offsets should be given as dimension expressions. Typesetting a coffin is therefore analogous to carrying out an alignment where the “parent” coffin is the current insertion point.

5 Measuring coffins

\begin{verbatim}
\coffin_dp:N (coffin) \coffin_dp:c
\coffin_ht:N (coffin) \coffin_ht:c
\coffin_wd:N (coffin) \coffin_wd:c
\end{verbatim}

Calculates the depth (below the baseline) of the \(\text{coffin} \) in a form suitable for use in a \(\langle \text{dimension expression} \rangle \).

Calculates the height (above the baseline) of the \(\text{coffin} \) in a form suitable for use in a \(\langle \text{dimension expression} \rangle \).

Calculates the width of the \(\text{coffin} \) in a form suitable for use in a \(\langle \text{dimension expression} \rangle \).

6 Coffin diagnostics

\begin{verbatim}
\coffin_display_handles:N (coffin) \{\langle \text{color} \rangle \}
\end{verbatim}

This function first calculates the intersections between all of the \(\langle \text{poles} \rangle \) of the \(\text{coffin} \) to give a set of \(\langle \text{handles} \rangle \). It then prints the \(\text{coffin} \) at the current location in the source, with the position of the \(\langle \text{handles} \rangle \) marked on the coffin. The \(\langle \text{handles} \rangle \) are labelled as part of this process: the locations of the \(\langle \text{handles} \rangle \) and the labels are both printed in the \(\langle \text{color} \rangle \) specified.

\begin{verbatim}
\coffin_mark_handle:N (coffin) \{\langle \text{pole}_1 \rangle \} \{\langle \text{pole}_2 \rangle \} \{\langle \text{color} \rangle \}
\end{verbatim}

This function first calculates the \(\langle \text{handle} \rangle \) for the \(\text{coffin} \) as defined by the intersection of \(\langle \text{pole}_1 \rangle \) and \(\langle \text{pole}_2 \rangle \). It then marks the position of the \(\langle \text{handle} \rangle \) on the \(\text{coffin} \). The \(\langle \text{handle} \rangle \) are labelled as part of this process: the location of the \(\langle \text{handle} \rangle \) and the label are both printed in the \(\langle \text{color} \rangle \) specified.

\begin{verbatim}
\coffin_show_structure:N (coffin)
\end{verbatim}

This function shows the structural information about the \(\text{coffin} \) in the terminal. The width, height and depth of the typeset material are given, along with the location of all of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the \(x \) and \(y \) co-ordinates of a point that the pole passes through and the \(x \)- and \(y \)-components of a vector denoting the direction of the pole. It is the ratio between the later, rather than the absolute values, which determines the direction of the pole.
This function writes the structural information about the \textit{coffin} in the log file. See also \texttt{coffin_show_structure} which displays the result in the terminal.

7 Constants and variables

A permanently empty coffin.

Scratch coffins for local assignment. These are never used by the kernel code, and so are safe for use with any \texttt{\LaTeX}3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

Scratch coffins for global assignment. These are never used by the kernel code, and so are safe for use with any \texttt{\LaTeX}3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
Part XXX

The l3color-base package
Color support

This module provides support for color in L\TeX3. At present, the material here is mainly intended to support a small number of low-level requirements in other l3kernel modules.

1 Color in boxes

Controlling the color of text in boxes requires a small number of control functions, so that the boxed material uses the color at the point where it is set, rather than where it is used.

\color_group_begin: \color_group_end:
\color_group_begin: \color_group_end:

New: 2011-09-03

\color_ensure_current:

\color_ensure_current:

New: 2011-09-03

Creates a color group: one used to “trap” color settings.

\color_ensure_current:

Ensures that material inside a box uses the foreground color at the point where the box is set, rather than that in force when the box is used. This function should usually be used within a \color_group_begin: ... \color_group_end: group.
Part XXXI

The l3luatex package:
Lua\TeX-specific functions

The \LaTeX{} engine provides access to the Lua programming language, and with it access to the “internals” of \TeX{}. In order to use this within the framework provided here, a family of functions is available. When used with pdf\TeX{}, p\TeX{}, up\TeX{} or X\TeX{} these raise an error: use \texttt{\sys_if_engine_luatex:T} to avoid this. Details on using Lua with the Lua\TeX{} engine are given in the Lua\TeX{} manual.

1 Breaking out to Lua

\texttt{\lua_now:n \{token list\}}

The \{token list\} is first tokenized by \TeX{}, which includes converting line ends to spaces in the usual \TeX{} manner and which respects currently-applicable \TeX{} category codes. The resulting \{Lua input\} is passed to the Lua interpreter for processing. Each \texttt{\lua_now:n} block is treated by Lua as a separate chunk. The Lua interpreter executes the \{Lua input\} immediately, and in an expandable manner.

\textbf{\LaTeX{}hackers note:} \texttt{\lua_now:e} is a macro wrapper around \texttt{\directlua}: when Lua\TeX{} is in use two expansions are required to yield the result of the Lua code.

\texttt{\lua_shipout:n \{token list\}}

The \{token list\} is first tokenized by \TeX{}, which includes converting line ends to spaces in the usual \TeX{} manner and which respects currently-applicable \TeX{} category codes. The resulting \{Lua input\} is passed to the Lua interpreter when the current page is finalised (\emph{i.e.} at shipout). Each \texttt{\lua_shipout:n} block is treated by Lua as a separate chunk. The Lua interpreter will execute the \{Lua input\} during the page-building routine: no \TeX{} expansion of the \{Lua input\} will occur at this stage.

In the case of the \texttt{\lua_shipout_e:n} version the input is fully expanded by \TeX{} in an \texttt{e}-type manner during the shipout operation.

\textbf{\LaTeX{}hackers note:} At a \TeX{} level, the \{Lua input\} is stored as a “whatsit”.

\texttt{\lua_escape:n \{token list\}}

Converts the \{token list\} such that it can safely be passed to Lua: embedded backslashes, double and single quotes, and newlines and carriage returns are escaped. This is done by prepping an extra token consisting of a backslash with category code 12, and for the line endings, converting them to \texttt{\n} and \texttt{\r}, respectively.

\textbf{\LaTeX{}hackers note:} \texttt{\lua_escape:e} is a macro wrapper around \texttt{\luaescapestring}: when Lua\TeX{} is in use two expansions are required to yield the result of the Lua code.
2 Lua interfaces

As well as interfaces for \TeX, there are a small number of Lua functions provided here.

\begin{itemize}
\item \texttt{l3kernel.charcat(\langle charcode \rangle, \langle catcode \rangle)}
 Constructs a character of \langle charcode \rangle and \langle catcode \rangle and returns the result to \TeX.
\item \texttt{l3kernel.elapsedtime()}
 Returns the CPU time in \langle scaled seconds \rangle since the start of the \TeX run or since \texttt{l3kernel.resettimer} was issued. This only measures the time used by the CPU, not the real time, e.g., waiting for user input.
\item \texttt{l3kernel.fiiledump(\langle file \rangle, \langle offset \rangle, \langle length \rangle)}
 Returns the uppercase hexadecimal representation of the content of the \langle file \rangle read as bytes. If the \langle length \rangle is given, only this part of the file is returned; similarly, one may specify the \langle offset \rangle from the start of the file. If the \langle length \rangle is not given, the entire file is read starting at the \langle offset \rangle.
\item \texttt{l3kernel.filemdfivesum(\langle file \rangle)}
 Returns the MD5 sum of the file contents read as bytes; note that the result will depend on the nature of the line endings used in the file, in contrast to normal \TeX behaviour. If the \langle file \rangle is not found, nothing is returned with no error raised.
\item \texttt{l3kernel.filemoddate(\langle file \rangle)}
 Returns the date/time of last modification of the \langle file \rangle in the format
 \begin{equation*}
 D:(year)(month)(day)(hour)(minute)(second)(offset)
 \end{equation*}
 where the latter may be Z (UTC) or \langle plus-minus \rangle\langle hours \rangle'\langle minutes \rangle'. If the \langle file \rangle is not found, nothing is returned with no error raised.
\item \texttt{l3kernel.filesize(\langle file \rangle)}
 Returns the size of the \langle file \rangle in bytes. If the \langle file \rangle is not found, nothing is returned with no error raised.
\item \texttt{l3kernel.resettimer()}
 Resets the timer used by \texttt{l3kernel.elapsedtime}.
\item \texttt{l3kernel.shellescape(\langle cmd \rangle)}
 Executes the \langle cmd \rangle and prints to the log as for pdf\TeX.
\item \texttt{l3kernel.strcmp(\langle str one \rangle, \langle str two \rangle)}
 Compares the two strings and returns 0 to \TeX if the two are identical.
\end{itemize}
Part XXXII

The \underline{13unicode} package: Unicode support functions

This module provides Unicode-specific functions along with loading data from a range of Unicode Consortium files. At present, it provides no public functions.
Part XXXIII
The \texttt{l3text} package: text processing

1 \texttt{l3text} documentation

This module deals with manipulation of (formatted) text; such material is comprised of a restricted set of token list content. The functions provided here concern conversion of textual content for example in case changing, generation of bookmarks and extraction to tags. All of the major functions operate by expansion. Begin-group and end-group tokens in the \langle text \rangle are normalized and become \{ and \}; respectively.

1.1 Expanding text

\texttt{\texttt{\textit{text_expand:}}n} \langle text \rangle
\texttt{\textit{text_expand:}}n \texttt{\langle text \rangle}

Takes user input \langle text \rangle and expands the content. Protected commands (typically formatting) are left in place, and no processing takes place of math mode material (as delimited by pairs given in \texttt{l_text_math_delims_tl} or as the argument to commands listed in \texttt{l_text_math_arg_tl}). Commands which are neither engine- nor \texttt{\LaTeX} protected are expanded exhaustively. Any commands listed in \texttt{l_text_expand_exclude_tl}, \texttt{l_text_accents_tl} and \texttt{l_text_letterlike_tl} are excluded from expansion.

\texttt{\textit{text_declare_expand_equivalent:}}n \langle cmd \rangle \langle replacement \rangle
\texttt{\textit{text_declare_expand_equivalent:}}n \texttt{\langle cmd \rangle \langle replacement \rangle}

Declares that the \langle replacement \rangle tokens should be used whenever the \langle cmd \rangle (a single token) is encountered. The \langle replacement \rangle tokens should be expandable.
1.2 Case changing

\text_lowercase:n \text_uppercase:n \text_titlecase:n \text_titlecase_first:n \text_lowercascen:n \text_uppercase:nn \text_titlecase:nn \text_titlecase_first:nn

\str_lowercase:n \str_uppercase:n \str_titlecase:n \str_titlecase_first:n \str_lowercascen:n \str_uppercase:nn \str_titlecase:nn \str_titlecase_first:nn

\text_uppercase:n \{(tokens}\}
\text_uppercase:nn \{(language}\} \{(tokens}\}

Takes user input (text) first applies \text_expand, then transforms the case of character tokens as specified by the function name. The category code of letters are not changed by this process (at least where they can be represented by the engine as a single token: 8-bit engines may require active characters).

Upper- and lowercase have the obvious meanings. Titlecasing may be regarded informally as converting the first character of the (tokens) to uppercase and the rest to lowercase. However, the process is more complex than this as there are some situations where a single lowercase character maps to a special form, for example ij in Dutch which becomes IJ. The \text_titlecase_first variant does not attempt any case changing at all after the first letter has been processed.

Importantly, notice that these functions are intended for working with user text for typesetting. For case changing programmatic data see the l3str module and discussion there of \str_lowercase:n, \str_uppercase:n and \str_foldcase:n. Case changing does not take place within math mode material so for example

\text_uppercase:n \{ Some-text-$y = mx + c$-with\{Braces} \}

becomes

SOME TEXT $y = mx + c$ WITH \{BRACES\}

The arguments of commands listed in _text_case_exclude_arg_tl are excluded from case changing; the latter are entirely non-textual content (such as labels).

As is generally true for expl3, these functions are designed to work with Unicode input only. As such, UTF-8 input is assumed for all engines. When used with Xe\TeX{} or Lua\TeX{} a full range of Unicode transformations are enabled. Specifically, the standard mappings here follow those defined by the Unicode Consortium in UnicodeData.txt and SpecialCasing.txt. In the case of 8-bit engines, mappings are provided for characters which can be represented in output typeset using the T1, T2 and LGR font encodings. Thus for example á can be case-changed using pdf\TeX{}. For \TeX{} only the ASCII range is covered as the engine treats input outside of this range as east Asian.

Language-sensitive conversions are enabled using the \{language\} argument, and follow Unicode Consortium guidelines. Currently, the languages recognised for special handling are as follows.

- Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated for these languages. The combining dot mark is removed when lowercasing I-dot and introduced when upper casing i-dotless.

- German (de-alt). An alternative mapping for German in which the lowercase Eszett maps to a großes Eszett. Since there is a T1 slot for the großes Eszett in T1, this tailoring is available with pdf\TeX{} as well as in the Unicode \TeX{} engines.

- Greek (el). Removes accents from Greek letters when uppercasing; titlecasing leaves accents in place.

- Lithuanian (lt). The lowercase letters i and j should retain a dot above when the accents grave, acute or tilde are present. This is implemented for lowercasing of the relevant uppercase letters both when input as single Unicode codepoints and when using combining accents. The combining dot is removed when uppercasing in these cases. Note that only the accents used in Lithuanian are covered: the behaviour of other accents are not modified.

- Dutch (nl). Capitalisation of ij at the beginning of titlecased input produces IJ rather than Ij. The output retains two separate letters, thus this transformation is available using pdf\TeX{}.

For titlecasing, note that there are two functions available. The function \text_titlecase:n applies (broadly) uppercasing to the first letter of the input, then lower.

\str_lowercase:n \str_uppercase:n \str_titlecase:n \str_titlecase_first:n \str_lowercascen:n \str_uppercase:nn \str_titlecase:nn \str_titlecase_first:nn

\text_uppercase:n \{(tokens}\}
\text_uppercase:nn \{(language}\} \{(tokens}\}

Takes user input (text) first applies \text_expand, then transforms the case of character tokens as specified by the function name. The category code of letters are not changed by this process (at least where they can be represented by the engine as a single token: 8-bit engines may require active characters).

Upper- and lowercase have the obvious meanings. Titlecasing may be regarded informally as converting the first character of the (tokens) to uppercase and the rest to lowercase. However, the process is more complex than this as there are some situations where a single lowercase character maps to a special form, for example ij in Dutch which becomes IJ. The \text_titlecase_first variant does not attempt any case changing at all after the first letter has been processed.

Importantly, notice that these functions are intended for working with user text for typesetting. For case changing programmatic data see the l3str module and discussion there of \str_lowercase:n, \str_uppercase:n and \str_foldcase:n. Case changing does not take place within math mode material so for example

\text_uppercase:n \{ Some-text-$y = mx + c$-with\{Braces} \}

becomes

SOME TEXT $y = mx + c$ WITH \{BRACES\}

The arguments of commands listed in _text_case_exclude_arg_tl are excluded from case changing; the latter are entirely non-textual content (such as labels).

As is generally true for expl3, these functions are designed to work with Unicode input only. As such, UTF-8 input is assumed for all engines. When used with Xe\TeX{} or Lua\TeX{} a full range of Unicode transformations are enabled. Specifically, the standard mappings here follow those defined by the Unicode Consortium in UnicodeData.txt and SpecialCasing.txt. In the case of 8-bit engines, mappings are provided for characters which can be represented in output typeset using the T1, T2 and LGR font encodings. Thus for example á can be case-changed using pdf\TeX{}. For \TeX{} only the ASCII range is covered as the engine treats input outside of this range as east Asian.

Language-sensitive conversions are enabled using the \{language\} argument, and follow Unicode Consortium guidelines. Currently, the languages recognised for special handling are as follows.

- Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated for these languages. The combining dot mark is removed when lowercasing I-dot and introduced when upper casing i-dotless.

- German (de-alt). An alternative mapping for German in which the lowercase Eszett maps to a großes Eszett. Since there is a T1 slot for the großes Eszett in T1, this tailoring is available with pdf\TeX{} as well as in the Unicode \TeX{} engines.

- Greek (el). Removes accents from Greek letters when uppercasing; titlecasing leaves accents in place.

- Lithuanian (lt). The lowercase letters i and j should retain a dot above when the accents grave, acute or tilde are present. This is implemented for lowercasing of the relevant uppercase letters both when input as single Unicode codepoints and when using combining accents. The combining dot is removed when uppercasing in these cases. Note that only the accents used in Lithuanian are covered: the behaviour of other accents are not modified.

- Dutch (nl). Capitalisation of ij at the beginning of titlecased input produces IJ rather than Ij. The output retains two separate letters, thus this transformation is available using pdf\TeX{}.

For titlecasing, note that there are two functions available. The function \text_titlecase:n applies (broadly) uppercasing to the first letter of the input, then lower.
1.3 Removing formatting from text

\text{\textit{\texttt{text_purify:n}}} \texttt{\{\textit{\texttt{text}}\}}

Takes user input \texttt{\{\textit{\texttt{text}}\}} and expands as described for \texttt{\textit{\texttt{text_expand:n}}}, then removes all functions from the resulting text. Math mode material (as delimited by pairs given in \texttt{\l_text_math_delims_tl} or as the argument to commands listed in \texttt{\l_text_math_arg_tl}) is left contained in a pair of \$ delimiters. Non-expandable functions present in the \texttt{\{\textit{\texttt{text}}\}} must either have a defined equivalent (see \texttt{\textit{\texttt{text_declare_purify_equivalent:Nn}}} or will be removed from the result. Implicit tokens are converted to their explicit equivalent.

\text{\textit{\texttt{text_declare_purify_equivalent:Nn}}} \texttt{\{\textit{\texttt{cmd}}} \texttt{\}{\textit{\texttt{replacement}}}}

Declares that the \texttt{\{\textit{\texttt{replacement}}\}} tokens should be used whenever the \texttt{\{\textit{\texttt{cmd}}} (a single token) is encountered. The \texttt{\{\textit{\texttt{replacement}}\}} tokens should be expandable.

1.4 Control variables

\texttt{\l_text_accents_tl}

Lists commands which represent accents, and which are left unchanged by expansion. (Defined only for the \texttt{\LaTeX}\texttt{2\varepsilon} package.)

\texttt{\l_text_letterlike_tl}

Lists commands which represent letters; these are left unchanged by expansion. (Defined only for the \texttt{\LaTeX}\texttt{2\varepsilon} package.)

\texttt{\l_text_math_arg_tl}

Lists commands present in the \texttt{\{\textit{\texttt{text}}\}} where the argument of the command should be treated as math mode material. The treatment here is similar to \texttt{\l_text_math_delims_tl} but for a command rather than paired delimiters.

\texttt{\l_text_math_delims_tl}

Lists pairs of tokens which delimit (in-line) math mode content; such content \emph{may} be excluded from processing.

\texttt{\l_text_case_exclude_arg_tl}

Lists commands which are excluded from case changing.

\texttt{\l_text_expand_exclude_tl}

Lists commands which are excluded from expansion.

\texttt{\l_text_titlecase_check_letter_bool}

Controls how the start of titlecasing is handled: when \texttt{true}, the first \texttt{letter} in text is considered. The standard setting is \texttt{true}. 258
Part XXXIV

The \texttt{l3legacy} package

Interfaces to legacy concepts

There are a small number of \TeX{} or \LaTeX{}\ε concepts which are not used in \texttt{expl3} code but which need to be manipulated when working as a \LaTeX{}\ε package. To allow these to be integrated cleanly into \texttt{expl3} code, a set of legacy interfaces are provided here.

\begin{verbatim}
\legacy_if_p:n \legacy_if:nTF \\ legacy_if:nTF \{⟨name⟩\} \{⟨true code⟩\} \{⟨false code⟩\}
\end{verbatim}

Tests if the \LaTeX{}\ε/plain \TeX{} conditional (generated by \texttt{\newif}) if \texttt{true} or \texttt{false} and branches accordingly. The \texttt{⟨name⟩} of the conditional should \textit{omit} the leading \texttt{if}.
Part XXXV

The \texttt{l3candidates} package

Experimental additions to \texttt{l3kernel}

1 Important notice

This module provides a space in which functions can be added to \texttt{l3kernel} (\texttt{expl3}) while still being experimental.

As such, the functions here may not remain in their current form, or indeed at all, in \texttt{l3kernel} in the future.

In contrast to the material in \texttt{l3experimental}, the functions here are all small additions to the kernel. We encourage programmers to test them out and report back on the \LaTeX-L mailing list.

Thus, if you intend to use any of these functions from the candidate module in a public package offered to others for productive use (e.g., being placed on CTAN) please consider the following points carefully:

- Be prepared that your public packages might require updating when such functions are being finalized.

- Consider informing us that you use a particular function in your public package, e.g., by discussing this on the \LaTeX-L mailing list. This way it becomes easier to coordinate any updates necessary without issues for the users of your package.

- Discussing and understanding use cases for a particular addition or concept also helps to ensure that we provide the right interfaces in the final version so please give us feedback if you consider a certain candidate function useful (or not).

We only add functions in this space if we consider them being serious candidates for a final inclusion into the kernel. However, real use sometimes leads to better ideas, so functions from this module are \textbf{not necessarily stable} and we may have to adjust them!

2 Additions to \texttt{l3box}

2.1 Viewing part of a box

\begin{verbatim}
\box_clip:N \box_clip:c \box_gclip:N \box_gclip:c
\end{verbatim}

\texttt{\box_clip:N \{box\}}

Clips the \texttt{\{box\}} in the output so that only material inside the bounding box is displayed in the output. The updated \texttt{\{box\}} is an hbox, irrespective of the nature of the \texttt{\{box\}} before the clipping is applied.

These functions require the \texttt{l3T\!e\!X3} native drivers: they do not work with the \texttt{l3T\!e\!X2e} graphics drivers!

\textbf{\textsc{\LaTeX}hackers note}: Clipping is implemented by the driver, and as such the full content of the box is placed in the output file. Thus clipping does not remove any information from the raw output, and hidden material can therefore be viewed by direct examination of the file.

\texttt{\box_clip:N \{box\}}

\texttt{\box_clip:c}

\texttt{\box_gclip:N}

\texttt{\box_gclip:c}

Updated: 2019-01-23

260
\texttt{\box_set_trim:Nnnnn} \texttt{\box_set_trim:cnnnn} \texttt{\box_gset_trim:Nnnnn} \texttt{\box_gset_trim:cnnnn}

\texttt{\box_set_viewport:Nnnnn} \texttt{\box_set_viewport:cnnnn} \texttt{\box_gset_viewport:Nnnnn} \texttt{\box_gset_viewport:cnnnn}

Adjusts the bounding box of the \texttt{〈box〉} \texttt{(left)} is removed from the left-hand edge of the bounding box, \texttt{(right)} from the right-hand edge and so fourth. All adjustments are \texttt{〈dimension expressions〉}. Material outside of the bounding box is still displayed in the output unless \texttt{\box_clip:N} is subsequently applied. The updated \texttt{〈box〉} is an hbox, irrespective of the nature of the \texttt{〈box〉} before the trim operation is applied. The behavior of the operation where the trims requested is greater than the size of the box is undefined.

\texttt{\box_set_viewport:Nnnnn} \texttt{\box_set_viewport:cnnnn} \texttt{\box_gset_viewport:Nnnnn} \texttt{\box_gset_viewport:cnnnn}

Adjusts the bounding box of the \texttt{〈box〉} such that it has lower-left co-ordinates (\texttt{〈llx〉}, \texttt{〈lly〉}) and upper-right co-ordinates (\texttt{〈urx〉}, \texttt{〈ury〉}). All four co-ordinate positions are \texttt{〈dimension expressions〉}. Material outside of the bounding box is still displayed in the output unless \texttt{\box_clip:N} is subsequently applied. The updated \texttt{〈box〉} is an hbox, irrespective of the nature of the \texttt{〈box〉} before the viewport operation is applied.

3 Additions to \texttt{l3expan}

\texttt{\exp_args_generate:n}

Defines \texttt{\exp_args:N〈variant〉} functions for each \texttt{〈variant〉} given in the comma list \texttt{〈〈variant argument specifiers〉〉}. Each \texttt{〈variant〉} should consist of the letters \texttt{N}, \texttt{c}, \texttt{n}, \texttt{V}, \texttt{v}, \texttt{o}, \texttt{f}, \texttt{e}, \texttt{x}, \texttt{p} and the resulting function is protected if the letter \texttt{x} appears in the \texttt{〈variant〉}. This is only useful for cases where \texttt{\cs_generate_variant:Nn} is not applicable.

4 Additions to \texttt{l3fp}

\texttt{\fp_if_nan:n} \texttt{〈fpexpr〉}

Evaluates the \texttt{〈fpexpr〉} and tests whether the result is exactly \texttt{NaN}. The test returns \texttt{false} for any other result, even a tuple containing \texttt{NaN}.

5 Additions to \texttt{l3file}

\texttt{\iow_allow_break:}

In the first argument of \texttt{\iow_wrap:nnnN} (for instance in messages), inserts a break-point that allows a line break. In other words this is a zero-width breaking space.

261
Function that reads one or more lines (until an equal number of left and right
braces are found) from the terminal and stores the result locally in the (token list)
variable. Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the (prompt) is empty, \TeX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the (prompt) is given, it will appear in the terminal followed by an =, e.g.

prompt=

Opens the pseudo-file created by the output of the (shell command) for reading using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until a \ior_close:N instruction is given or
the \TeX run ends. If piped system calls are disabled an error is raised.
For details of handling of the (shell command), see \sys_get_shell:nnN(TF).

6 Additions to l3flag

\flag_raise_if_clear:n \flag_raise_if_clear:n (flag name)
Ensures the (flag) is raised by making its height at least 1, locally.

7 Additions to l3intarray

\intarray_gset_rand:Nnn \intarray_gset_rand:ccn \intarray_gset_rand:Nn \intarray_gset_rand:cn
\intarray_gset_rand:nn \intarray_gset_rand:ccn \intarray_gset_rand:cn
Evaluates the integer expressions (minimum) and (maximum) then sets each entry (independent-
dependently) of the (integer array variable) to a pseudo-random number between the two
(with bounds included). If the absolute value of either bound is bigger than 2^{30} − 1, an
error occurs. Entries are generated in the same way as repeated calls to \int_rand:nn
or \int_rand:n respectively, in particular for the second function the (minimum) is 1.
Assignments are always global. This is not available in older versions of \Xe\TeX.

7.1 Working with contents of integer arrays

\intarray_to_clist:N \intarray_to_clist:n (integer array)
Converts the (integer array) to integer denotations separated by commas. All tokens have
category code other. If the (integer array) has no entry the result is empty; otherwise the
result has one fewer comma than the number of items.
8 Additions to \l3msg

In very rare cases it may be necessary to produce errors in an expansion-only context. The functions in this section should only be used if there is no alternative approach using \msg_error:nnnnnn or other non-expandable commands from the previous section. Despite having a similar interface as non-expandable messages, expandable errors must be handled internally very differently from normal error messages, as none of the tools to print to the terminal or the log file are expandable. As a result, short-hands such as \| or \ do not work, and messages must be very short (with default settings, they are truncated after approximately 50 characters). It is advisable to ensure that the message is understandable even when truncated, by putting the most important information up front. Another particularity of expandable messages is that they cannot be redirected or turned off by the user.

\msg_expandable_error:nnnnnn ⋆ \msg_expandable_error:nnffff ⋆ \msg_expandable_error:nnnn ⋆ \msg_expandable_error:nnff ⋆ \msg_expandable_error:nnn ⋆ \msg_expandable_error:nnf ⋆ \msg_expandable_error:nn

Issues an “Undefined error” message from \TeX itself using the undefined control sequence \::error then prints “! ⟨module⟩: ⟨error message⟩, which should be short. With default settings, anything beyond approximately 60 characters long (or bytes in some engines) is cropped. A leading space might be removed as well.

\int_eval:n and the ⟨expression⟩ is 1+2 then this logs 1+2=3.

\msg_show:n \msg_log:n

\msg_show:nnnnnn ⟨module⟩ {⟨message⟩} ⟨arg one⟩ ⟨arg two⟩ ⟨arg three⟩ ⟨arg four⟩

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating functions. The information text is shown on the terminal and the \TeX run is interrupted in a manner similar to \tl_show:n. This is used in conjunction with \msg_show_item:n and similar functions to print complex variable contents completely. If the formatted text does not contain >- at the start of a line, an additional line >-, will be put at the end. In addition, a final period is added if not present.

\msg_show_eval:Nn \msg_log_eval:Nn

\msg_show:nnnnnn ⟨module⟩ {⟨message⟩} ⟨arg one⟩ ⟨arg two⟩ ⟨arg three⟩ ⟨arg four⟩

New: 2015-08-06
Updated: 2019-02-28

New: 2017-12-04

Used in the text of messages for \texttt{\msg_show:nnxxxx} to show or log a list of items or key–value pairs. The one-argument functions are used for sequences, clist or token lists and the others for property lists. These functions turn their arguments to strings.

9 Additions to \texttt{l3prg}

\texttt{\bool_set_inverse:N} \texttt{(boolean)}

Toggles the \texttt{(boolean)} from \texttt{true} to \texttt{false} and conversely: sets it to the inverse of its current value.

\texttt{\bool_case_true:nTF} \texttt{\bool_case_false:nTF}

Evaluates in turn each of the \texttt{(boolean expression cases)} until the first one that evaluates to \texttt{true} or to \texttt{false}, for \texttt{\bool_case_true:n} and \texttt{\bool_case_false:n}, respectively. The \texttt{(code)} associated to this first case is left in the input stream, followed by the \texttt{(true code)}, and other cases are discarded. If none of the cases match then only the \texttt{(false code)} is inserted. The functions \texttt{\bool_case_true:n} and \texttt{\bool_case_false:n}, which do nothing if there is no match, are also available. For example

\begin{verbatim}
\bool_case_true:nF
{ \dim_compare_p:n { \l__mypkg_wd_dim <= 10pt } }
{ Fits }
{ \int_compare_p:n { \l__mypkg_total_int >= 10 } }
{ Many }
{ \l__mypkg_special_bool }
{ Special }
}
{ No idea! }
\end{verbatim}

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way similar to some other language’s “if \texttt{... elseif ... elseif ... else ...}.”
10 Additions to \texttt{l3prop}

\begin{itemize}
\item \texttt{\prop_rand_key_value:N} (\textit{prop} \textit{var})
\item \texttt{\prop_rand_key_value:c} (\textit{prop} \textit{var})
\end{itemize}

Selects a pseudo-random key–value pair from the \langle property list \rangle and returns \{\langle key \rangle\} and \{\langle value \rangle\}. If the \langle property list \rangle is empty the result is empty. This is not available in older versions of X\LaTeX.

\textbf{\TeX} hackers note: The result is returned within the \texttt{\unexpanded} primitive (\texttt{\exp_not:n}), which means that the \langle value \rangle does not expand further when appearing in an \texttt{x}-type argument expansion.

11 Additions to \texttt{l3seq}

\begin{itemize}
\item \texttt{\texttt{\texttt{\texttt{\seq_mapthread_function:NNN}}} \star \texttt{\texttt{\texttt{\texttt{\seq_mapthread_function:NNN}}} (seq_1) (seq_2) (function)}
\item \texttt{\texttt{\texttt{\texttt{\seq_mapthread_function:NNN}}} (NcN|cNN|ccN) \star}
\end{itemize}

Applies \langle function \rangle to every pair of items \langle seq_1\text{-item}\rangle–\langle seq_2\text{-item}\rangle from the two sequences, returning items from both sequences from left to right. The \langle function \rangle receives two \texttt{n}-type arguments for each iteration. The mapping terminates when the end of either sequence is reached (\textit{i.e.} whichever sequence has fewer items determines how many iterations occur).

\begin{itemize}
\item \texttt{\texttt{\texttt{\texttt{\seq_set_filter:NNn}}} \texttt{\texttt{\texttt{\texttt{\seq_set_filter:NNn}}} (sequence_1) (sequence_2) \{\langle inline boolexpr\rangle\}}
\item \texttt{\texttt{\texttt{\texttt{\seq_set_filter:NNn}}} (sequence_2) \{\langle inline boolexpr\rangle\}}
\item \texttt{\texttt{\texttt{\texttt{\seq_gset_filter:NNn}}} \texttt{\texttt{\texttt{\texttt{\seq_gset_filter:NNn}}} (sequence_1) (sequence_2) \{\langle inline boolexpr\rangle\}}
\item \texttt{\texttt{\texttt{\texttt{\seq_gset_filter:NNn}}} (sequence_2) \{\langle inline boolexpr\rangle\}}
\end{itemize}

Evaluates the \langle inline boolexpr \rangle for every \langle item \rangle stored within the \langle sequence_2 \rangle. The \langle inline boolexpr \rangle receives the \langle item \rangle as \#1. The sequence of all \langle items \rangle for which the \langle inline boolexpr \rangle evaluated to \texttt{true} is assigned to \langle sequence_1 \rangle.

\textbf{\TeX} hackers note: Contrarily to other mapping functions, \texttt{\seq_map_break}: cannot be used in this function, and would lead to low-level \TeX\ errors.

\begin{itemize}
\item \texttt{\texttt{\texttt{\texttt{\seq_set_map:NNn}}} \texttt{\texttt{\texttt{\texttt{\seq_set_map:NNn}}} (sequence_1) (sequence_2) \{\langle inline function\rangle\}}
\item \texttt{\texttt{\texttt{\texttt{\seq_set_map:NNn}}} (sequence_2) \{\langle inline function\rangle\}}
\item \texttt{\texttt{\texttt{\texttt{\seq_gset_map:NNn}}} \texttt{\texttt{\texttt{\texttt{\seq_gset_map:NNn}}} (sequence_1) (sequence_2) \{\langle inline function\rangle\}}
\item \texttt{\texttt{\texttt{\texttt{\seq_gset_map:NNn}}} (sequence_2) \{\langle inline function\rangle\}}
\end{itemize}

Applies \langle inline function \rangle to every \langle item \rangle stored within the \langle sequence_2 \rangle. The \langle inline function \rangle should consist of code which will receive the \langle item \rangle as \#1. The sequence resulting from \texttt{x}-expanding \langle inline function \rangle applied to each \langle item \rangle is assigned to \langle sequence_1 \rangle. As such, the code in \langle inline function \rangle should be expandable.

\textbf{\TeX} hackers note: Contrarily to other mapping functions, \texttt{\seq_map_break}: cannot be used in this function, and would lead to low-level \TeX\ errors.
\seq_set_from_function:Nn \seq_set_from_function:Nn \seq_set_from_inline_x:Nnn
\seq_gset_from_function:NnN
\seq_gset_from_inline_x:Nnn

Sets the \var{seq} equal to a sequence whose items are obtained by x-expanding \var{loop code} \var{function}. This expansion must result in successive calls to the \var{function} with no nonexpandable tokens in between. More precisely the \var{function} is replaced by a wrapper function that inserts the appropriate separators between items in the sequence. The \var{loop code} must be expandable; it can be for example \tl_map_function:NN \var{tl var} or \clist_map_function:nN \var{clist} or \int_step_function:nnnN \var{initial value} \var{step} \var{final value}.

\seq_indexed_map_function:NN \var{seq} \var{function} \var{seq} \var{function}

Applies \var{function} to every entry in the \var{sequence variable}. The \var{function} should have signature :nn. It receives two arguments for each iteration: the \var{index} (namely 1 for the first entry, then 2 and so on) and the \var{item}.

\seq_indexed_map_inline:Nn \seq_indexed_map_inline:No \var{seq} \var{inline function} \var{seq} \var{inline function}

Applies \var{inline function} to every entry in the \var{sequence variable}. The \var{inline function} should consist of code which receives the \var{index} (namely 1 for the first entry, then 2 and so on) as #1 and the \var{item} as #2.
12 Additions to l3sys

The version string of the current engine, in the same form as given in the banner issued when running a job. For pdfTeX and LuaTeX this is of the form

\(\langle \text{major} \rangle . \langle \text{minor} \rangle . \langle \text{revision} \rangle \)

For XeTeX, the form is

\(\langle \text{major} \rangle . \langle \text{minor} \rangle \)

For pTeX and upTeX, only releases since \TeX\ Live 2018 make the data available, and the form is more complex, as it comprises the pTeX version, the upTeX version and the e-pTeX version.

\(p\langle \text{major} \rangle . \langle \text{revision} \rangle . u\langle \text{major} \rangle . \langle \text{minor} \rangle - e\langle \text{pTeX} \rangle \)

where the \(u \) part is only present for upTeX.

\c_sys_engine_version_str

New: 2018-05-02

\sys_if_rand_exist_p:
\sys_if_rand_exist:TF {
\langle true code \rangle }
\langle false code \rangle

Tests if the engine has a pseudo-random number generator. Currently this is the case in pdfTeX, LuaTeX, pTeX, upTeX and recent releases of XeTeX.
Leaves in the input stream the items from the \langle start index \rangle to the \langle end index \rangle inclusive, using the same indexing as \tl_range:nnn. Spaces are ignored. Regardless of whether items appear with or without braces in the \langle token list \rangle, the \tl_range_braced:nnn function wraps each item in braces, while \tl_range_unbraced:nnn does not (overall it removes an outer set of braces). For instance,

\begin{verbatim}
\iow_term:x { \tl_range_braced:nnn { abcd-e{}f } { 2 } { 5 } }
\iow_term:x { \tl_range_braced:nnn { abcd-e{}f } { -4 } { -1 } }
\iow_term:x { \tl_range_braced:nnn { abcd-e{}f } { -2 } { -1 } }
\iow_term:x { \tl_range_braced:nnn { abcd-e{}f } { 0 } { -1 } }
\end{verbatim}

prints \{b}{c}{d}{e{}}, \{c}{d}{e{}f}, \{e{}f\}, and an empty line to the terminal, while

\begin{verbatim}
\iow_term:x { \tl_range_unbraced:nnn { abcd-e{}f } { 2 } { 5 } }
\iow_term:x { \tl_range_unbraced:nnn { abcd-e{}f } { -4 } { -1 } }
\iow_term:x { \tl_range_unbraced:nnn { abcd-e{}f } { -2 } { -1 } }
\iow_term:x { \tl_range_unbraced:nnn { abcd-e{}f } { 0 } { -1 } }
\end{verbatim}

prints bcde{}, cde{}f, e{}f, and an empty line to the terminal. Because braces are removed, the result of \tl_range_unbraced:nnn may have a different number of items as for \tl_range:nnn or \tl_range_braced:nnn. In cases where preserving spaces is important, consider the slower function \tl_range:nnn.

\textbf{T\TeX hackers note:} The result is returned within the \texttt{\unexpanded} primitive (\texttt{\exp_not:n}), which means that the \langle item \rangle does not expand further when appearing in an x-type argument expansion.

\begin{verbatim}
\tl_build_begin:N \tl_build_gbegin:N
\end{verbatim}

\texttt{\tl_build_begin:N} \langle tl var \rangle

Clears the \langle tl var \rangle and sets it up to support other \tl_build_... functions, which allow accumulating large numbers of tokens piece by piece much more efficiently than standard \l3tl functions. Until \tl_build_end:N \langle tl var \rangle is called, applying any function from \l3tl other than \tl_build_... will lead to incorrect results. The \texttt{begin} and \texttt{gbegin} functions must be used for local and global \langle tl var \rangle respectively.

\begin{verbatim}
\tl_build_clear:N \tl_build_gclear:N
\end{verbatim}

\texttt{\tl_build_clear:N} \langle tl var \rangle

Clears the \langle tl var \rangle and sets it up to support other \tl_build_... functions. The \texttt{clear} and \texttt{gclear} functions must be used for local and global \langle tl var \rangle respectively.
\texttt{\textbackslash tl_build_put_left:Nn}
\texttt{\textbackslash tl_build_put_right:Nn}
\texttt{\textbackslash tl_build_gput_left:Nn}
\texttt{\textbackslash tl_build_gput_right:Nn}
\texttt{\textbackslash tl_build_gput_left:Nx}
\texttt{\textbackslash tl_build_gput_right:Nx}

\texttt{\textbackslash tl_build_get:NN}
\texttt{\textbackslash tl_build_end:N}
\texttt{\textbackslash tl_build_gend:N}

\texttt{\textbackslash _catcode_active_space_tl}
\texttt{\textbackslash \textbackslash char_to_utfviii_bytes:n}
\texttt{\textbackslash _char_to_nfd:N}

\textbf{14 Additions to \texttt{l3token}}

Token list containing one character with category code 13, (“active”), and character code 32 (space).

\texttt{\textbackslash _catcode_active_space_tl}
\texttt{\textbackslash _char_to_utfviii_bytes:n}

Converts the (Unicode) \texttt{(\textbackslash codepoint)} to UTF-8 bytes. The expansion of this function comprises four brace groups, each of which will contain a hexadecimal value: the appropriate byte. As UTF-8 is a variable-length, one or more of the groups may be empty: the bytes read in the logical order, such that a two-byte codepoint will have groups \#1 and \#2 filled and \#3 and \#4 empty.

\texttt{\textbackslash _char_to_nfd:N}

Converts the \texttt{(\textbackslash char)} to the Unicode Normalization Form Canonical Decomposition. The category code of the generated character is the same as the \texttt{(\textbackslash char)}. With 8-bit engines, no change is made to the character.
Collects and removes tokens from the input stream until finding a token that does not match the \textit{test token} (as defined by the test \texttt{\token_if_eq_catcode:NNTF} or \texttt{\token_if_eq_charcode:NNTF} or \texttt{\token_if_eq_meaning:NNTF}). The collected tokens are passed to the \textit{inline code} as \#1. When begin-group or end-group tokens (usually \{ or \}) are collected they are replaced by implicit \texttt{\c_group_begin_token} and \texttt{\c_group_end_token}, and when spaces (including \texttt{\c_space_token}) are collected they are replaced by explicit spaces.

For example the following code prints “Hello” to the terminal and leave “, world!” in the input stream.

\begin{verbatim}
\peek_catcode_collect_inline:Nn A { \iow_term:n {#1} } Hello,-world!
\end{verbatim}

Another example is that the following code tests if the next token is *, ignoring intervening spaces, but putting them back using \#1 if there is no *.

\begin{verbatim}
\peek_meaning_collect_inline:Nn \c_space_token { \peek_charcode:NTF * { star } { no~star #1 } }
\end{verbatim}

Removes explicit and implicit space tokens (category code 10 and character code 32) from the input stream, then inserts \texttt{(code)}.

Part XXXVI

Implementation

1 l3bootstrap implementation

\begin{verbatim}
\{*infix | package\}
\{@@=kernel\}
\end{verbatim}

1.1 Format-specific code

The very first thing to do is to bootstrap the ini\TeX{} system so that everything else will actually work. \TeX{} does not start with some pretty basic character codes set up.

\begin{verbatim}
\{*infix\}
\catcode \{ = 1 \%
\catcode \} = 2 \%
\catcode \# = 6 \%
\catcode \^ = 7 \%
\{\/\textit{infix}\}
\end{verbatim}

Tab characters should not show up in the code, but to be on the safe side.

\begin{verbatim}
\{*infix\}
\catcode \^\^I = 10 \%
\end{verbatim}

270
For LuaTeX, the extra primitives need to be enabled. This is not needed in package mode: common formats have the primitives enabled.

\begin{verbatim}
\expandafter\ifx\csname directlua\endcsname\relax
\else
\directlua{tex.enableprimitives("", tex.extraprimitives())}\
\fi
\end{verbatim}

Depending on the versions available, the \LaTeX{} format may not have the raw \texttt{\textbackslash{U}math} primitive names available. We fix that globally: it should cause no issues. Older LuaTeX versions do not have a pre-built table of the primitive names here so sort one out ourselves. These end up globally-defined but at that is true with a newer format anyway and as they all start \texttt{\textbackslash{U}} this should be reasonably safe.

\begin{verbatim}
\expandafter\ifx\csname pdfstrcmp\endcsname\relax
\let\pdfstrcmp\strcmp
\fi
\end{verbatim}

1.2 The \texttt{\textbackslash{pdfstrcmp}} primitive in \texttt{\textbackslash{Xe}}\TeX

Only \texttt{pdfTeX} has a primitive called \texttt{\textbackslash{pdfstrcmp}}. The \texttt{\textbackslash{Xe}}\TeX{} version is just \texttt{\textbackslash{strcmp}}, so there is some shuffling to do. As this is still a real primitive, using the \texttt{pdfTeX} name is “safe”.

\begin{verbatim}
\expandafter\ifx\csname pdfstrcmp\endcsname\relax
\let\pdfstrcmp\strcmp
\fi
\end{verbatim}

1.3 Loading support Lua code

When LuaTeX is used there are various pieces of Lua code which need to be loaded. The code itself is defined in \texttt{\textbackslash{luatex}} and is extracted into a separate file. Thus here the task is to load the Lua code both now and (if required) at the start of each job.

\begin{verbatim}
\expandafter\ifx\csname pdfstrcmp\endcsname\relax
\let\pdfstrcmp\strcmp
\fi
\end{verbatim}
In package mode for LuaTeX we make sure the basic support is loaded: this is only necessary in plain.

As the user might be making a custom format, no assumption is made about matching package mode with only loading the Lua code once. Instead, a query to Lua reveals what mode is in operation.

1.4 Engine requirements

The code currently requires ε-TeX and functionality equivalent to \pdfstrcmp, and also driver and Unicode character support. This is available in a reasonably-wide range of engines.
For pdfTeX and XeTeX the `-etex' command-line switch is also needed. \LineBreak
Format building will abort!\LineBreak
}%
\errmessage{\ShortText}%
\endgroup
\noexpand\endinput
1.5 Extending allocators

In format mode, allocating registers is handled by \l3alloc. However, in package mode it’s much safer to rely on more general code. For example, the ability to extend \TeX’s allocation routine to allow for ε-\TeX has been around since 1997 in the etex package. Loading this support is delayed until here as we are now sure that the ε-\TeX extensions and \pdfstrcmp or equivalent are available. Thus there is no danger of an “uncontrolled” error if the engine requirements are not met.

For \LaTeX{}2ε we need to make sure that the extended pool is being used: expl3 uses a lot of registers. For formats from 2015 onward there is nothing to do as this is automatic. For older formats, the etex package needs to be loaded to do the job. In that case, some inserts are reserved also as these have to be from the standard pool. Note that \reserveinserts is \outer and so is accessed here by csname. In earlier versions, loading etex was done directly and so \reserveinserts appeared in the code: this then required a \relax after \RequirePackage to prevent an error with “unsafe” definitions as seen for example with \capoptions. The optional loading here is done using a group and \ifx test as we are not quite in the position to have a single name for \pdfstrcmp just yet.

1.6 Character data

\TeX needs various pieces of data to be set about characters, in particular which ones to treat as letters and which \lccode values apply as these affect hyphenation. It makes most sense to set this and related information up in one place. Whilst for Lua\TeX hyphenation patterns can be read anywhere, other engines have to build them into the format and so we must do this set up before reading the patterns. For the Unicode engines, there are shared loaders available to obtain the relevant information directly from the Unicode Consortium data files. These need standard (Ini)\TeX category codes and primitive availability and must therefore loaded very early. This has a knock-on
effect on the 8-bit set up: it makes sense to do the definitions for those here as well so it is all in one place.

For Xe\TeX{} and Lua\TeX{}, which are natively Unicode engines, simply load the Unicode data.

\begin{verbatim}
\ifdefined\Umathcode
\input load-unicode-data %
\input load-unicode-math-classes %
\else
\begingroup
Lower case chars: map to themselves when lower casing and down by \textasciitilde{}20 when upper casing. (The characters a–z are set up correctly by ini\TeX{}.)
\def\temp{%
 \ifnum\count0>\count2 %
 \global\lccode\count0 = \count0 %
 \global\uccode\count0 = \numexpr\count0 - \textasciitilde{}20\relax
 \advance\count0 by 1 %
 \expandafter\temp
 \fi
}
\count0 = \textasciitilde{}A0 %
\count2 = \textasciitilde{}BC %
\temp
\count0 = \textasciitilde{}E0 %
\count2 = \textasciitilde{}FF %
\temp
\end{verbatim}

Upper case chars: map up by \textasciitilde{}20 when lower casing, to themselves when upper casing and require an \texttt{afcode} of 999. (The characters A–Z are set up correctly by ini\TeX{}.)

\begin{verbatim}
\def\temp{%
 \ifnum\count0>\count2 %
 \global\lccode\count0 = \numexpr\count0 + \textasciitilde{}20\relax
 \global\uccode\count0 = \count0 %
 \global\afcode\count0 = 999 %
 \advance\count0 by 1 %
 \expandafter\temp
 \fi
}
\count0 = \textasciitilde{}80 %
\count2 = \textasciitilde{}9C %
\temp
\count0 = \textasciitilde{}C0 %
\count2 = \textasciitilde{}DF %
\temp
\end{verbatim}

A few special cases where things are not as one might expect using the above pattern: dotless-I, dotless-J, dotted-I and d-bar.

\def\temp{\global\lccode\textasciitilde{}Y = \textasciitilde{}Y %}
Allow hyphenation at a zero-width glyph (used to break up ligatures or to place accents between characters).

\global\lccode\^^Z = \^^Z %
\global\uccode\^^Y = \^I %
\global\uccode\^^Z = \^J %
\global\uccode"9D = "9D %
\global\uccode"9E = "9E %
\global\uccode"9D = "9D %
\global\uccode"9E = "9E %
\global\lccode23 = 23 %
\endgroup
\fi
⟨/initex⟩

1.7 The \LaTeX3 code environment

The code environment is now set up.

\ExplSyntaxOff
Before changing any category codes, in package mode we need to save the situation before loading. Note the set up here means that once applied \ExplSyntaxOff becomes a “do nothing” command until \ExplSyntaxOn is used. For format mode, there is no need to save category codes so that step is skipped.

\ExplSyntaxOn
\protected\def\ExplSyntaxOff{}%
⟨package⟩
\protected\edef\ExplSyntaxOff{%
\protected\def\ExplSyntaxOff{}%
\catcode 9 = \the\catcode 9\relax
\catcode 32 = \the\catcode 32\relax
\catcode 34 = \the\catcode 34\relax
\catcode 38 = \the\catcode 38\relax
\catcode 58 = \the\catcode 58\relax
\catcode 94 = \the\catcode 94\relax
\catcode 95 = \the\catcode 95\relax
\catcode 124 = \the\catcode 124\relax
\catcode 126 = \the\catcode 126\relax
\endlinechar = \the\endlinechar\relax
\chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = 0\relax
}%
⟨/package⟩

(End definition for \ExplSyntaxOff. This function is documented on page 7.)

The code environment is now set up.

\catcode 9 = 9\relax
\catcode 32 = 9\relax
\catcode 34 = 12\relax
\catcode 38 = 4\relax
\catcode 58 = 11\relax
\catcode 94 = 7\relax
\catcode 95 = 11\relax
\catcode 124 = 12\relax
\catcode 126 = 10\relax
\endlinechar = 32\relax

276
The status for experimental code syntax: this is on at present.
\chardef\l__kernel_expl_bool = 1\relax

(End definition for \l__kernel_expl_bool.)

The idea here is that multiple \ExplSyntaxOn calls are not going to mess up category codes, and that multiple calls to \ExplSyntaxOff are also not wasting time. Applying \ExplSyntaxOn alters the definition of \ExplSyntaxOff and so in package mode this function should not be used until after the end of the loading process!
\begin{verbatim}
\protected \def \ExplSyntaxOn
\{
 \bool_if:NF \l__kernel_expl_bool
 \{
 \cs_set_protected:Npx \ExplSyntaxOff
 \{
 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
 \char_set_catcode:nn { 38 } { \char_value_catcode:n { 38 } }
 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
 \tex_endlinechar:D = \tex_the:D \tex_endlinechar:D \scan_stop:
 \cs_set_protected:Npn \ExplSyntaxOff { }
 \}
 \}
 \char_set_catcode_ignore:n { 9 } % tab
 \char_set_catcode_ignore:n { 32 } % space
 \char_set_catcode_other:n { 34 } % double quote
 \char_set_catcode_alignment:n { 38 } % ampersand
 \char_set_catcode_letter:n { 58 } % colon
 \char_set_catcode_math_superscript:n { 94 } % circumflex
 \char_set_catcode_letter:n { 95 } % underscore
 \char_set_catcode_other:n { 124 } % pipe
 \char_set_catcode_space:n { 126 } % tilde
 \text_endlinechar:D = 32 \scan_stop:
 \bool_set_true:N \l__kernel_expl_bool
 \cs_set_protected:Npn \ExplSyntaxOff { }
\end{verbatim}

(End definition for \ExplSyntaxOn. This function is documented on page 7.)

\endinput

\section{\texttt{l3names} implementation}

The prefix here is \texttt{kernel}. A few places need \texttt{@@} to be left as is; this is obtained as \texttt{@@@@}.
\begin{verbatim}
\@@=kernel
\end{verbatim}
The code here simply renames all of the primitives to new, internal, names. In format mode, it also deletes all of the existing names (although some do come back later).

The \texttt{\let} primitive is renamed by hand first as it is essential for the entire process to follow. This also uses \texttt{\global}, as that way we avoid leaving an unneeded csname in the hash table.

```
\let \tex_global:D \global
\let \tex_let:D \let
```

Everything is inside a (rather long) group, which keeps \texttt{__kernel_primitive:NN} trapped.

```
\begingroup
\_\_kernel\_primitive:NN
```

A temporary function to actually do the renaming. This also allows the original names to be removed in format mode.

```
\long \def \_\_kernel\_primitive:NN #1#2
{\langle \textsf{initex} \rangle
 \tex_global:D \tex_let:D #2 #1
\langle \textsf{initex} \rangle
 \tex_global:D \tex_let:D #1 \tex_undefined:D
\langle /textsf{initex} \rangle
}
```

(End definition for \texttt{__kernel_primitive:NN}.)

To allow extracting “just the names”, a bit of DocStrip fiddling.

```
\langle /textsf{initex} | package \rangle
\langle /textsf{initex} | names | package \rangle
```

In the current incarnation of this package, all \TeX{} primitives are given a new name of the form \texttt{\tex_oldname:D}. But first three special cases which have symbolic original names. These are given modified new names, so that they may be entered without catcode tricks.

```
\_\_kernel\_primitive:NN \ \tex\_space:D
\_\_kernel\_primitive:NN \ / \ \tex\_italiccorrection:D
\_\_kernel\_primitive:NN \ \tex\_accent:D
```

Now all the other primitives.

```
\_\_kernel\_primitive:NN \ \above \ \tex\_above:D
\_\_kernel\_primitive:NN \ \abovedisplayshortskip \ \tex\_abovedisplayshortskip:D
\_\_kernel\_primitive:NN \ \abovedisplayskip \ \tex\_abovedisplayskip:D
\_\_kernel\_primitive:NN \ \abovewithdelims \ \tex\_abovewithdelims:D
\_\_kernel\_primitive:NN \ \accent \ \tex\_accent:D
\_\_kernel\_primitive:NN \ \adjdemerits \ \tex\_adjdemerits:D
\_\_kernel\_primitive:NN \ \advance \ \tex\_advance:D
\_\_kernel\_primitive:NN \ \afterassignment \ \tex\_afterassignment:D
\_\_kernel\_primitive:NN \ \aftergroup \ \tex\_aftergroup:D
\_\_kernel\_primitive:NN \ \atop \ \tex\_atop:D
\_\_kernel\_primitive:NN \ \atopwithdelims \ \tex\_atopwithdelims:D
\_\_kernel\_primitive:NN \ \badness \ \tex\_badness:D
\_\_kernel\_primitive:NN \ \baselineskip \ \tex\_baselineskip:D
\_\_kernel\_primitive:NN \ \batchmode \ \tex\_batchmode:D
\_\_kernel\_primitive:NN \ \begingroup \ \tex\_begingroup:D
\_\_kernel\_primitive:NN \ \belowdisplayshortskip \ \tex\_belowdisplayshortskip:D
\_\_kernel\_primitive:NN \ \belowdisplayskip \ \tex\_belowdisplayskip:D
\_\_kernel\_primitive:NN \ \binoppenalty \ \tex\_binoppenalty:D
\_\_kernel\_primitive:NN \ \botmark \ \tex\_botmark:D
```

278
__kernel_primitive:NN \moveright \tex_moveright:D
__kernel_primitive:NN \mskip \tex_msip:D
__kernel_primitive:NN \multiply \tex_multiply:D
__kernel_primitive:NN \muskip \tex_muskip:D
__kernel_primitive:NN \muskipdef \tex_muskipdef:D
__kernel_primitive:NN \newlinechar \tex_newlinechar:D
__kernel_primitive:NN \noalign \tex_noalign:D
__kernel_primitive:NN \noboundary \tex_noboundary:D
__kernel_primitive:NN \noexpand \tex_noexpand:D
__kernel Primitive:NN \nonscript \tex_nonscript:D
__kernel Primitive:NN \nonstopmode \tex_nonstopmode:D
__kernel Primitive:NN \nulldelimiterspace \tex_nulldelimiterspace:D
__kernel Primitive:NN \nullfont \tex_nullfont:D
__kernel Primitive:NN \number \tex_number:D
__kernel Primitive:NN \omit \tex_omit:D
__kernel Primitive:NN \openin \tex_openin:D
__kernel Primitive:NN \openout \tex_openout:D
__kernel Primitive:NN \or \tex_or:D
__kernel Primitive:NN \outer \tex_outer:D
__kernel Primitive:NN \output \tex_output:D
__kernel Primitive:NN \outputpenalty \tex_outputpenalty:D
__kernel Primitive:NN \over \tex_over:D
__kernel Primitive:NN \overfullrule \tex_overfullrule:D
__kernel Primitive:NN \overline \tex_overline:D
__kernel Primitive:NN \overwithdelims \tex_overwithdelims:D
__kernel Primitive:NN \pagedepth \tex_pagedepth:D
__kernel Primitive:NN \pagefilllstretch \tex_pagefilllstretch:D
__kernel Primitive:NN \pagefillstretch \tex_pagefillstretch:D
__kernel Primitive:NN \pagefilstretch \tex_pagefilstretch:D
__kernel Primitive:NN \pagegoal \tex_pagegoal:D
__kernel Primitive:NN \pageshrink \tex_pageshrink:D
__kernel Primitive:NN \pagemode \tex_pagemode:D
__kernel Primitive:NN \pagetotal \tex_pagetotal:D
__kernel Primitive:NN \par \tex_par:D
__kernel Primitive:NN \parfillskip \tex_parfillskip:D
__kernel Primitive:NN \parindent \tex_parindent:D
__kernel Primitive:NN \parshape \tex_parshape:D
__kernel Primitive:NN \parskip \tex_parskip:D
__kernel Primitive:NN \patterns \tex_patterns:D
__kernel Primitive:NN \pausing \tex_pausing:D
__kernel Primitive:NN \penalty \tex_penalty:D
__kernel Primitive:NN \postdisplaypenalty \tex_postdisplaypenalty:D
__kernel Primitive:NN \predisplaypenalty \tex_predisplaypenalty:D
__kernel Primitive:NN \predisplaysize \tex_predisplaysize:D
__kernel Primitive:NN \pretolerance \tex_pretolerance:D
__kernel Primitive:NN \prevdepth \tex_prevdepth:D
__kernel Primitive:NN \prevgraf \tex_prevgraf:D
__kernel Primitive:NN \radical \tex_radical:D
__kernel Primitive:NN \raise \tex_raise:D
__kernel Primitive:NN \read \tex_read:D
__kernel Primitive:NN \relax \tex_relax:D
__kernel Primitive:NN \relpenalty \tex_relpenalty:D
Primitives introduced by \text{e-\LaTeX}.
Post-ε-TeX primitives do not always end up with the same name in all engines, if indeed they are available cross-engine anyway. We therefore take the approach of preferring the shortest name that makes sense. First, we deal with the primitives introduced by pdfTeX which directly relate to PDF output: these are copied with the names unchanged.
These are not related to PDF output and either already appear in other engines without the \texttt{pdf} prefix, or might reasonably do so at some future stage. We therefore drop the leading \texttt{pdf} here.
The version primitives are not related to PDF mode but are pdftex-specific, so again are carried forward unchanged.

These ones appear in pdftex but don’t have pdf in the name at all: no decisions to make.

Post pdfTeX primitive availability gets more complex. Both XeTeX and LuaTeX have varying names for some primitives from pdfTeX. Particularly for LuaTeX tracking all of that would be hard. Instead, we now check that we only save primitives if they actually exist.

XeTeX-specific primitives. Note that XeTeX’s `strcm` is handled earlier and is “rolled up” into `pdfstrcm`. A few cross-compatibility names which lack the pdf of the original are handled later.
Primitives from pdfTeX that \texttt{Xe\LaTeX} renames: also helps with \texttt{Lua\LaTeX}.

\verbatim
__kernel_primitive:NN \creationdate \tex_creationdate:D
__kernel_primitive:NN \elapsedtime \tex_elapsedtime:D
__kernel_primitive:NN \filedump \tex_filedump:D
__kernel_primitive:NN \filesize \tex_filesize:D
__kernel_primitive:NN \mdfivesum \tex_mdfivesum:D
__kernel_primitive:NN \ifprimitive \tex_ifprimitive:D
__kernel_primitive:NN \primitive \tex_primitive:D
__kernel_primitive:NN \resettimer \tex_resettimer:D
__kernel_primitive:NN \shellescape \tex_shellescape:D

Primitives from \texttt{Lua\LaTeX}, some of which have been ported back to \texttt{Xe\LaTeX}.

\verbatim
__kernel_primitive:NN \alignmark \tex_alignmark:D
__kernel_primitive:NN \aligntab \tex_aligntab:D
__kernel_primitive:NN \attribute \tex_attribute:D
__kernel_primitive:NN \attributedef \tex_attributedef:D
__kernel_primitive:NN \automaticdiscretionary \tex_automaticdiscretionary:D
__kernel_primitive:NN \automatichyphenmode \tex_automatichyphenmode:D
__kernel_primitive:NN \automatichyphenpenalty \tex_automatichyphenpenalty:D
__kernel_primitive:NN \begincsname \tex_begincsname:D
__kernel_primitive:NN \bodydir \tex_bodydir:D
__kernel_primitive:NN \bodydirection \tex_bodydirection:D
__kernel_primitive:NN \boxdir \tex_boxdir:D
__kernel_primitive:NN \boxdirection \tex_boxdirection:D
__kernel_primitive:NN \breakafterdirmode \tex_breakafterdirmode:D
__kernel_primitive:NN \catcodetable \tex_catcodetable:D
__kernel_primitive:NN \clearmarks \tex_clearmarks:D
__kernel_primitive:NN \crampeddisplaystyle \tex_crampeddisplaystyle:D
__kernel_primitive:NN \crampedscriptscriptstyle \tex_crampedscriptscriptstyle:D
__kernel_primitive:NN \crampedscriptstyle \tex_crampedscriptstyle:D
__kernel_primitive:NN \crampedtextstyle \tex_crampedtextstyle:D
__kernel_primitive:NN \csstring \tex_csstring:D
__kernel_primitive:NN \directlua \tex_directlua:D
__kernel_primitive:NN \dviextension \tex_dviextension:D
__kernel_primitive:NN \dvifeedback \tex_dvifeedback:D
__kernel_primitive:NN \dvivariable \tex_dvivariable:D
__kernel_primitive:NN \eTeXglueshrinkorder \tex_eTeXglueshrinkorder:D
__kernel_primitive:NN \eTeXgluestretchorder \tex_eTeXgluestretchorder:D
__kernel_primitive:NN \etoksapp \tex_etoksapp:D
__kernel_primitive:NN \etokspre \tex_etokspre:D
__kernel_primitive:NN \exceptionpenalty \tex_exceptionpenalty:D
__kernel_primitive:NN \explicithyphenpenalty \tex_explicithyphenpenalty:D
__kernel_primitive:NN \expanded \tex_expanded:D
__kernel_primitive:NN \explicitdiscretionary \tex_explicitdiscretionary:D
__kernel_primitive:NN \firstvalidlanguage \tex_firstvalidlanguage:D
__kernel_primitive:NN \fontid \tex_fontid:D
__kernel_primitive:NN \formatname \tex_formatname:D
__kernel_primitive:NN \hjcode \tex_hjcode:D
__kernel_primitive:NN \hpack \tex_hpack:D
__kernel_primitive:NN \hyphenationbounds \tex_hyphenationbounds:D
Primitives from pdfTeX that LuaTeX renames.

__kernel_primitive:NN \adjustspacing \tex_adjustspacing:D
__kernel_primitive:NN \adjustforcing \tex_adjustforcing:D
__kernel_primitive:NN \draftmode \tex_draftmode:D
__kernel_primitive:NN \expandglyphsinfont \tex_fontexpand:D
__kernel_primitive:NN \ifabsdim \tex_ifabsdim:D
__kernel_primitive:NN \ifabsnum \tex_ifabsnum:D
__kernel_primitive:NN \ignoreligaturesinfont \tex_ignoreligaturesinfont:D
__kernel_primitive:NN \insertht \tex_insertht:D
__kernel_primitive:NN \lastsavedboxresourceindex \tex_lastsavedboxresourceindex:D
__kernel_primitive:NN \lastsavedimageresourceindex \tex_lastsavedimageresourceindex:D
__kernel_primitive:NN \lastsavedimageresourcepages \tex_lastsavedimageresourcepages:D
__kernel_primitive:NN \lastxpos \tex_lastxpos:D
__kernel_primitive:NN \lastypos \tex_lastypos:D
__kernel_primitive:NN \normaldeviate \tex_normaldeviate:D
__kernel_primitive:NN \outputmode \tex_pdfoutput:D
__kernel_primitive:NN \pxdimen \tex_pxdimen:D
__kernel_primitive:NN \randomseed \tex_randomseed:D
__kernel_primitive:NN \readxypos \tex_readxypos:D
__kernel_primitive:NN \readxyposlong \tex_readxyposlong:D
__kernel_primitive:NN \readxyposlonger \tex_readxyposlonger:D
__kernel_primitive:NN \readxyposlongerr \tex_readxyposlongerr:D
__kernel_primitive:NN \readxyposition \tex_readxyposition:D
__kernel_primitive:NN \roundupfrom \tex_roundupfrom:D
__kernel_primitive:NN \roundupfromlong \tex_roundupfromlong:D
__kernel_primitive:NN \roundupfromlonger \tex_roundupfromlonger:D
__kernel_primitive:NN \roundupfromlongerr \tex_roundupfromlongerr:D
__kernel_primitive:NN \roundupfromposition \tex_roundupfromposition:D
__kernel_primitive:NN \setdimen \tex_setdimen:D
__kernel_primitive:NN \setdimens \tex_setdimens:D
__kernel_primitive:NN \setfloatwidth \tex_setfloatwidth:D
__kernel_primitive:NN \setfloatwidthlong \tex_setfloatwidthlong:D
__kernel_primitive:NN \setfloatwidthlonger \tex_setfloatwidthlonger:D
__kernel_primitive:NN \setfloatwidthlongerr \tex_setfloatwidthlongerr:D
__kernel_primitive:NN \setfloatwidthposition \tex_setfloatwidthposition:D
__kernel_primitive:NN \setlength \tex_setlength:D
__kernel_primitive:NN \setlengthlong \tex_setlengthlong:D
__kernel_primitive:NN \setlengthlonger \tex_setlengthlonger:D
__kernel_primitive:NN \setlengthlongerr \tex_setlengthlongerr:D
__kernel_primitive:NN \setlengthposition \tex_setlengthposition:D
__kernel_primitive:NN \setlengthunit \tex_setlengthunit:D
__kernel_primitive:NN \setlengthunitlong \tex_setlengthunitlong:D
__kernel_primitive:NN \setlengthunitlonger \tex_setlengthunitlonger:D
__kernel_primitive:NN \setlengthunitlongerr \tex_setlengthunitlongerr:D
__kernel_primitive:NN \setlengthunitposition \tex_setlengthunitposition:D
__kernel_primitive:NN \setlengthunitunit \tex_setlengthunitunit:D
__kernel_primitive:NN \setlong
__kernel_primitive:NN \setlonglong
__kernel_primitive:NN \setlonglonger
__kernel_primitive:NN \setlonglongerr
__kernelPrimitive:NN \setlongposition
__kernelPrimitive:NN \setlongunit
__kernelPrimitive:NN \setlongunitlong
__kernelPrimitive:NN \setlongunitlonger
__kernelPrimitive:NN \setlongunitlongerr
__kernelPrimitive:NN \setlongunitposition
__kernelPrimitive:NN \setlongunitunit
__kernelPrimitive:NN \setlonger
__kernelPrimitive:NN \setlongerlong
__kernelPrimitive:NN \setlongerlonger
__kernelPrimitive:NN \setlongerlongerr
__kernelPrimitive:NN \setlongerposition
__kernelPrimitive:NN \setlongerunit
__kernelPrimitive:NN \setlongerr
__kernelPrimitive:NN \setlongerrlong
__kernelPrimitive:NN \setlongerrlonger
__kernelPrimitive:NN \setlongerrlongerr
__kernelPrimitive:NN \setlongerrposition
__kernelPrimitive:NN \setlongerrunit
__kernelPrimitive:NN \setposition
__kernelPrimitive:NN \setpositionlong
__kernelPrimitive:NN \setpositionlonger
__kernelPrimitive:NN \setpositionlongerr
__kernelPrimitive:NN \setpositionposition
__kernelPrimitive:NN \setpositionunit
__kernelPrimitive:NN \setpositionunitlong
__kernelPrimitive:NN \setpositionunitlonger
__kernelPrimitive:NN \setpositionunitlongerr
__kernelPrimitive:NN \setpositionunitposition
__kernelPrimitive:NN \setpositionunitunit
__kernelPrimitive:NN \setpositionunitunitlong
__kernelPrimitive:NN \setpositionunitunitlonger
__kernelPrimitive:NN \setpositionunitunitlongerr
__kernelPrimitive:NN \setpositionunitunitposition
__kernelPrimitive:NN \setpositionunitunitunit
__kernelPrimitive:NN \setpositionunitunitunitlong
__kernelPrimitive:NN \setpositionunitunitunitlonger
__kernelPrimitive:NN \setpositionunitunitunitlongerr
__kernelPrimitive:NN \setpositionunitunitunitposition
__kernelPrimitive:NN \setunit
__kernelPrimitive:NN \setunitlong
__kernelPrimitive:NN \setunitlonger
__kernelPrimitive:NN \setunitlongerr
__kernelPrimitive:NN \setunitposition
__kernelPrimitive:NN \setunitunit
__kernelPrimitive:NN \setunitunitlong
__kernelPrimitive:NN \setunitunitlonger
__kernelPrimitive:NN \setunitunitlongerr
__kernelPrimitive:NN \setunitunitposition
__kernelPrimitive:NN \setunitunitunit
\docstart
The set of Unicode math primitives were introduced by \XeTeX and \LuaTeX in a somewhat complex fashion: a few first as \XeTeX... which were then renamed with \LuaTeX having a lot more. These names now all start \U... and mainly \Umath....
Primitives from \LaTeXX.

\begin{verbatim}
__kernel_primitive:NN \Umathunderdelimitervgap \tex_Umathunderdelimitervgap:D
__kernel_primitive:NN \Unosubscript \tex_Unosubscript:D
__kernel_primitive:NN \Unosuperscript \tex_Unosuperscript:D
__kernel_primitive:NN \Uoverdelimiter \tex_Uoverdelimiter:D
__kernel_primitive:NN \Uradical \tex_Uradical:D
__kernel_primitive:NN \Uroot \tex_Uroot:D
__kernel_primitive:NN \Uskewed \tex_Uskewed:D
__kernel_primitive:NN \Uskewedwithdelims \tex_Uskewedwithdelims:D
__kernel_primitive:NN \Ustack \tex_Ustack:D
__kernel_primitive:NN \Ustartdisplaymath \tex_Ustartdisplaymath:D
__kernel_primitive:NN \Ustartmath \tex_Ustartmath:D
__kernel_primitive:NN \Ustopdisplaymath \tex_Ustopdisplaymath:D
__kernel_primitive:NN \Ustopmath \tex_Ustopmath:D
__kernel_primitive:NN \Usubscript \tex_Usubscript:D
__kernel_primitive:NN \Usuperscript \tex_Usuperscript:D
__kernel_primitive:NN \Uunderdelimiter \tex_Uunderdelimiter:D
__kernel_primitive:NN \Uvextensible \tex_Uvextensible:D
\\special{epstopdf:}
\end{verbatim}

\special{epstopdf:}

\begin{verbatim}
__kernel_primitive:NN \autospacing \tex_autospacing:D
__kernel_primitive:NN \autosxsp \tex_autosxsp:D
__kernel_primitive:NN \currentcjktoken \tex_currentcjktoken:D
__kernel_primitive:NN \currentspacingmode \tex_currentspacingmode:D
__kernel_primitive:NN \currentxspacingmode \tex_currentxspacingmode:D
__kernel_primitive:NN \disinhibitglue \tex_disinhibitglue:D
__kernel_primitive:NN \dou \tex_dou:D
__kernel_primitive:NN \epTeXinputencoding \tex_epTeXinputencoding:D
__kernel_primitive:NN \epTeXversion \tex_epTeXversion:D
__kernel_primitive:NN \euc \tex_euc:D
__kernel_primitive:NN \hfi \tex_hfi:D
__kernel_primitive:NN \jcharwidowpenalty \tex_jcharwidowpenalty:D
__kernel_primitive:NN \jfam \tex_jfam:D
__kernel_primitive:NN \jis \tex_jis:D
__kernel_primitive:NN \kanjiskip \tex_kanjiskip:D
__kernel_primitive:NN \kansuji \tex_kansuji:D
__kernel_primitive:NN \kansujichar \tex_kansujichar:D
__kernel_primitive:NN \kcctocode \tex_kcctocode:D
__kernel_primitive:NN \kuten \tex_kuten:D
__kernel_primitive:NN \lastnodechar \tex_lastnodechar:D
__kernel_primitive:NN \lastnodesubtype \tex_lastnodesubtype:D
__kernel_primitive:NN \noautospacing \tex_noautospacing:D
\end{verbatim}

296
Primitives from upTeX.

Omega primitives provided by upTeX (listed separately mainly to allow understanding of their source).

End of the “just the names” part of the source.

The job is done: close the group (using the primitive renamed!).

\textit{The \LaTeX\ package}\n
\LaTeX\ 2\epsilon moves a few primitives, so these are sorted out. A convenient test for \LaTeX\ 2\epsilon is the \texttt{\@@end} saved primitive.
The \texttt{shipout} primitive is particularly tricky as a number of packages want to hook in here. First, we see if a sufficiently-new kernel has saved a copy: if it has, just use that. Otherwise, we need to check each of the possible packages/classes that might move it: here, we are looking for those which do not delay action to the \texttt{AtBeginDocument} hook. (We cannot use \texttt{primitive} as that doesn’t allow us to make a direct copy of the primitive itself.) As we know that \LaTeX{} is in use, we use its \texttt{@tfor} loop here.

Some tidying up is needed for \texttt{(pdf)tracingfonts}. Newer Lua\TeX{} has this simply as \texttt{tracingfonts}, but that is overwritten by the \LaTeX{} kernel. So any spurious definition has to be removed, then the real version saved either from the pdf\TeX{} name or from Lua\TeX{}. In the latter case, we leave \texttt{@tracingfonts} available: this might be useful and almost all \LaTeX{} users will have expl3 loaded by fontspec. (We follow the usual kernel convention that \texttt{@} is used for saved primitives.)
That is also true for the \LaTeX\ primitives under \LaTeX\ 2e (depending on the format-building date). There are a few primitives that get the right names anyway so are missing here!

Which also covers those slightly odd ones.
Only pdfTeX and LuaTeX define \textpdfmapfile and \textpdfmapline: Tidy up the fact that some format-building processes leave a couple of questionable decisions about that!

A few packages do unfortunate things to date-related primitives.
Up to v0.80, LuaTeX defines the pdfTeX version data: rather confusing. Removing them means that \texttt{\texttt{tex_pdf texversion:D}} is a marker for pdfTeX alone: useful in engine-dependent code later.

For ConTeXt, two tests are needed. Both Mark II and Mark IV move several primitives: these are all covered by the first test, again using \texttt{\texttt{end}} as a marker. For Mark IV, a few more primitives are moved: they are implemented using some Lua code in the current ConTeXt.

2.1 Deprecated functions

Older versions of expl3 divided up primitives by “source”: that becomes very tricky with multiple parallel engine developments, so has been dropped. To cover the transition, we provide the older names here for a limited period (until the end of 2019).

To allow \texttt{\texttt{debug_on:n \{}\texttt{\{deprecation\}\}}} to work we save the list of primitives into \texttt{\texttt{__kernel_primitives:}}
3 Internal kernel functions

__kernel_chk_cs_exist:N __kernel_chk_cs_exist:N \langle cs \rangle
This function is only created if debugging is enabled. It checks that \langle cs \rangle exists according to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error.

__kernel_chk_defined:NT __kernel_chk_defined:NT \langle variable \rangle \{ \langle true code \rangle \}
If \langle variable \rangle is not defined (according to \cs_if_exist:NTF), this triggers an error, otherwise the \langle true code \rangle is run.
This function is only created if debugging is enabled. By default it is equivalent to `\use_i:nnnn`. When expression checking is enabled, it leaves in the input stream the result of `\tex_the:D (eval) (expr) \tex_relax:D` after checking that no token was left over. If any token was not taken as part of the expression, there is an error message displaying the result of the evaluation as well as the `(caller)`. For instance `(eval)` can be `_int_eval:w` and `(caller)` can be `\int_eval:n` or `\int_set:Nn`. The argument `(convert)` is empty except for mu expressions where it is `\tex_mutoglue:D`, used for internal purposes.

Evaluates the number of `(args)` and leaves the `(follow-on)` code followed by a brace group containing the required number of primitive parameter markers (#1, etc.). If the number of `(args)` is outside the range [0, 9], the `(false code)` is inserted instead of the `(follow-on)`.

Stores both an `(error)` and `(working)` definition for given material such that they can be exchanged by `\debug_on:` and `\debug_off:`.

Carries out expansion on the `(expandable tokens)` before preventing further expansion of the `(content)`. Typically, the `(expandable tokens)` will alter the nature of the `(content)`, i.e. allow it to be generated in some way.

A boolean which records the current code syntax status: `true` if currently inside a code environment. This variable should only be set by `\ExplSyntaxOn`/`\ExplSyntaxOff`.

Expands the `(name)` as per `_kernel_file_name_sanitize:nN` then produces an error message indicating that this file was not found.

For converting a `(name)` to a string where active characters are treated as strings.

Used to push and pop data from the internal file stack: needed only in package mode, where interfacing with the \LaTeX{} kernel is necessary.

Expands to the result of adding the three `(integers)` (which must be suitable input for `\int_eval:w`), avoiding intermediate overflow. Overflow occurs only if the overall result is outside \([-2^{31}+1,2^{31}−1]\). The `(integers)` may be of the form `\int_eval:w ... \scan_stop` but may be evaluated more than once.
__kernel_ior_open: \(Nn\) __kernel_ior_open: \(No\)

This function has identical syntax to the public version. However, is does not take precautions against active characters in the \(file\ name\), and it does not attempt to add a \(path\) to the \(file\ name\): it is therefore intended to be used by higher-level functions which have already fully expanded the \(file\ name\) and which need to perform multiple open or close operations. See for example the implementation of \file_get_full_name:nN,

__kernel_iow_with:Nnn __kernel_iow_with:Nn

If the \(<integer>\) is equal to the \(<value>\) then this function simply runs the \(<code>\). Otherwise it saves the current value of the \(<integer>\), sets it to the \(<value>\), runs the \(<code>\), and restores the \(<integer>\) to its former value. This is used to ensure that the newlinechar is 10 when writing to a stream, which lets \low_newline: work, and that \error_context_lines is −1 when displaying a message.

__kernel_msg_new:nnn __kernel_msg_new:nnnn

Creates a kernel \(<message>\) for a given \(<module>\). The message is defined to first give \(<text>\) and then \(<more\ text>\) if the user requests it. If no \(<more\ text>\) is available then a standard text is given instead. Within \(<text>\) and \(<more\ text>\) four parameters (\#1 to \#4) can be used: these will be supplied and expanded at the time the message is used. An error is raised if the \(<message>\) already exists.

__kernel_msg_set:nnn __kernel_msg_set:nnnn

Sets up the text for a kernel \(<message>\) for a given \(<module>\). The message is defined to first give \(<text>\) and then \(<more\ text>\) if the user requests it. If no \(<more\ text>\) is available then a standard text is given instead. Within \(<text>\) and \(<more\ text>\) four parameters (\#1 to \#4) can be used: these will be supplied and expanded at the time the message is used.

__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nn
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnn
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nnxx
__kernel_msg_fatal:nnnnn __kernel_msg_fatal:nn

Issues kernel \(<module>\) error \(<message>\), passing \(<arg\ one>\) to \(<arg\ four>\) to the text-creating functions. After issuing a fatal error the \TeX run halts. Cannot be redirected.

__kernel_msg_error:nnnnn __kernel_msg_error:nnnnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nnnnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nnnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nn
__kernel_msg_error:nnnnn __kernel_msg_error:nnnn
__kernel_msg_error:nnnnn __kernel_msg_error:nnnnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nnnnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nnnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nnxx
__kernel_msg_error:nnnnn __kernel_msg_error:nn

Issues kernel \(<module>\) error \(<message>\), passing \(<arg\ one>\) to \(<arg\ four>\) to the text-creating functions. The error stops processing and issues the text at the terminal. After user input, the run continues. Cannot be redirected.
Issues kernel ⟨module⟩ warning ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating functions. The warning text is added to the log file, but the \TeX run is not interrupted.

Issues kernel ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating functions. The information text is added to the log file.

Issues an error, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating functions. The resulting string must be much shorter than a line, otherwise it is cropped.

This integer is used by non-expandable mapping functions to track the level of nesting in force. The functions \langle type\rangle_map_1:w, \langle type\rangle_map_2:w, etc., labelled by \g__kernel_prg_map_int hold functions to be mapped over various list datatypes in inline and variable mappings.

(Maximal allowed argument to _kernel_randint:n. Equal to $2^{17} - 1$.)
__kernel_randint:nn __kernel_randint:nn \{\langle min\rangle\} \{\langle max\rangle\} Used in an integer expression this gives a pseudo-random number between \langle min\rangle and \langle max\rangle included. The \langle min\rangle and \langle max\rangle must be suitable for \int_value:w (and any \int_eval:w must be terminated by \scan_stop: or equivalent). For small ranges \(R = \langle max\rangle - \langle min\rangle + 1 \leq 2^{17} - 1, \langle min\rangle - 1 + __kernel_randint:n\{R\} \) is faster.

__kernel_register_show:N __kernel_register_show:N \{register\} Used to show the contents of a \TeX{} register at the terminal, formatted such that internal parts of the mechanism are not visible.

__kernel_register_log:N __kernel_register_log:N \{register\} Used to write the contents of a \TeX{} register to the log file in a form similar to __kernel_register_show:N.

__kernel_str_to_other:n \{\langle token\ list\rangle\} Converts the \langle token\ list\rangle to a \langle other\ string\rangle, where spaces have category code “other”. This function can be \texttt{f}-expanded without fear of losing a leading space, since spaces do not have category code 10 in its result. It takes a time quadratic in the character count of the string.

__kernel_str_to_other_fast:n \{\langle token\ list\rangle\} Same behaviour __kernel_str_to_other:n but only restricted-expandable. It takes a time linear in the character count of the string.

__kernel_tl_to_str:w \{\langle expandable\ tokens\rangle\} \{\langle tokens\rangle\} Carries out expansion on the \langle expandable\ tokens\rangle before conversion of the \langle tokens\rangle to a string as describe for \texttt{tl_to_str:n}. Typically, the \langle expandable\ tokens\rangle will alter the nature of the \langle tokens\rangle, \emph{i.e.} allow it to be generated in some way. This function requires only a single expansion.

4 Kernel backend functions

These functions are required to pass information to the backend. The nature of these means that they are defined only when the relevant backend is in use.

__kernel_backend_literal:n __kernel_backend_literal:n \{\langle content\rangle\} Adds the \langle content\rangle literally to the current vertical list as a whatsis. The nature of the \langle content\rangle will depend on the backend in use.

__kernel_backend_literal:postscript:n __kernel_backend_literal:postscript:n \{\langle PostScript\rangle\} Adds the \langle PostScript\rangle literally to the current vertical list as a whatsis. No positioning is applied.
__kernel_backend_literal_pdf:n __kernel_backend_literal_pdf:x
__kernel_backend_literal_pdf:n \{PDF instructions}\}

Adds the (PDF instructions) literally to the current vertical list as a whatsit. No positioning is applied.

__kernel_backend_literal_svg:n __kernel_backend_literal_svg:x
__kernel_backend_literal_svg:n \{SVG instructions}\}

Adds the (SVG instructions) literally to the current vertical list as a whatsit. No positioning is applied.

__kernel_backend_postscript:n __kernel_backend_postscript:x
__kernel_backend_postscript:n \{PostScript\}

Adds the (PostScript) to the current vertical list as a whatsit. The PostScript reference point is adjusted to match the current position. The PostScript is inserted inside a SDict begin/end pair.

__kernel_backend_align_begin: __kernel_backend_align_begin:
__kernel_backend_align_end: __kernel_backend_align_end:
__kernel_backend_align_end:

Arranges to align the PostScript and DVI current positions and scales.

__kernel_backend_scope_begin: __kernel_backend_scope_begin:
__kernel_backend_scope_end: __kernel_backend_scope_end:
__kernel_backend_scope_end:

Creates a scope for instructions at the backend level.

__kernel_backend_matrix:n __kernel_backend_matrix:x
__kernel_backend_matrix:n \{matrix\}

Applies the (matrix) to the current transformation matrix.

\g__kernel_backend_header_bool

Specifies whether to write headers for the backend.

\l__kernel_color_stack_int

The color stack used in pdf\TeX{} and Lua\TeX{} for the main color.

\section{\texttt{l3basics} implementation}

\l\{\texttt{initex} | package\}

\subsection{Renaming some \TeX{} primitives (again)}

Having given all the \TeX{} primitives a consistent name, we need to give sensible names to the ones we actually want to use. These will be defined as needed in the appropriate modules, but we do a few now, just to get started.\footnote{This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use the \texttt{\textbackslash tex_\ldots\:D} name in the cases where no good alternative exists.}
\texttt{\textbackslash if_true:} Then some conditionals.
\texttt{\textbackslash if_false:}
\texttt{\textbackslash or:}
\texttt{\textbackslash else:}
\texttt{\textbackslash fi:}
\texttt{\textbackslash reverse_if:N}
\texttt{\textbackslash if:w}
\texttt{\textbackslash if_charcode:w}
\texttt{\textbackslash if_catcode:w}
\texttt{\textbackslash if_meaning:w}

(End definition for \texttt{\textbackslash if_true:} and others. These functions are documented on page 23.)

\texttt{\textbackslash if_mode_math:}\TeX\ lets us detect some if its modes.
\texttt{\textbackslash if_mode_horizontal:}
\texttt{\textbackslash if_mode_vertical:}
\texttt{\textbackslash if_mode_inner:}

(End definition for \texttt{\textbackslash if_mode_math:} and others. These functions are documented on page 23.)

\texttt{\textbackslash if_cs_exist:N} Building csnames and testing if control sequences exist.
\texttt{\textbackslash cs:w}
\texttt{\textbackslash cs_end:}

(End definition for \texttt{\textbackslash if_cs_exist:N} and others. These functions are documented on page 23.)

\texttt{\textbackslash exp_after:wN}
The five \texttt{\textbackslash exp_} functions are used in the \texttt{l3expan} module where they are described.
\texttt{\textbackslash exp_not:N}
\texttt{\textbackslash exp_not:n}

(End definition for \texttt{\textbackslash exp_after:wN}, \texttt{\textbackslash exp_not:N}, and \texttt{\textbackslash exp_not:n}. These functions are documented on page 33.)

\texttt{\textbackslash token_to_meaning:N}
\texttt{\textbackslash cs_meaning:N}

(End definition for \texttt{\textbackslash token_to_meaning:N} and \texttt{\textbackslash cs_meaning:N}. These functions are documented on page 133.)

\texttt{\textbackslash tl_to_str:n}
\texttt{\textbackslash token_to_str:N}
\texttt{_kernel_tl_to_str:w}

(End definition for \texttt{\textbackslash tl_to_str:n}, \texttt{\textbackslash token_to_str:N}, and \texttt{_kernel_tl_to_str:w}. These functions are documented on page 46.)
The next three are basic functions for which there also exist versions that are safe inside alignments. These safe versions are defined in the \l3prg\ module.

(End definition for \scan_stop:, \group_begin:, and \group_end:. These functions are documented on page 9.)

For integers.

(End definition for \if_int_compare:w and __int_to_roman:w. This function is documented on page 100.)

Adding material after the end of a group.

(End definition for \group_insert_after:N. This function is documented on page 9.)

Discussed in \l3exp\, but needed much earlier.

(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 29.)

A small number of variants defined by hand. Some of the necessary functions (\use_i:nn, \use_ii:nn, and \exp_args:NNc) are not defined at that point yet, but will be defined before those variants are used. The \cs_meaning:c command must check for an undefined control sequence to avoid defining it mistakenly.

(End definition for \token_to_meaning:N. This function is documented on page 133.)
5.2 Defining some constants

\c_zero_int

We need the constant \c_zero_int which is used by some functions in the \l3alloc module. The rest are defined in the \l3int module – at least for the ones that can be defined with \text_chardef:D or \text_mathchardef:D. For other constants the \l3int module is required but it can’t be used until the allocation has been set up properly!

\text_chardef:D \c_zero_int = 0 ~

(End definition for \c_zero_int. This variable is documented on page 99.)

\c_max_register_int

This is here as this particular integer is needed both in package mode and to bootstrap \l3alloc, and is documented in \l3int. LuaTeX and those which contain parts of the Omega extensions have more registers available than \eTeX.

\text_ifdefined:D \text_luatexversion:D

\text_chardef:D \c_max_register_int = 65 535 ~

\text_else:D

\text_ifdefined:D \text_omathchardef:D

\text_chardef:D \c_max_register_int = 65535 ~

\text_else:D

\text_chardef:D \c_max_register_int = 32767 ~

\text_fi:D

(End definition for \c_max_register_int. This variable is documented on page 99.)

5.3 Defining functions

We start by providing functions for the typical definition functions. First the local ones.

All assignment functions in \LaTeX{} should be naturally protected; after all, the \TeX{} primitives for assignments are and it can be a cause of problems if others aren’t.

\text_let:D \cs_set_nopar:Npn \text_def:D

\text_let:D \cs_set_nopar:Npx \text_edef:D

\text_protected:D \text_long:D \text_def:D \cs_set:Npn

\text_protected:D \text_long:D \text_def:D \cs_set:Npx

\text_protected:D \text_long:D \text_edef:D

\text_protected:D \text_long:D \text_def:D \cs_set_protected_nopar:Npn

\text_protected:D \text_long:D \text_def:D \cs_set_protected_nopar:Npx

\text_protected:D \text_long:D \text_edef:D

(End definition for \cs_set_nopar:Npn and others. These functions are documented on page 11.)

Global versions of the above functions.

\text_let:D \cs_gset_nopar:Npn \text_gdef:D

\text_let:D \cs_gset_nopar:Npx \text_xdef:D

\cs_gset:Npn

\cs_gset:Npx

\cs_gset_protected_nopar:Npn

\cs_gset_protected_nopar:Npx

\cs_gset_protected:Npn

\cs_gset_protected:Npx

321
5.4 Selecting tokens

__exp_internal_tl

Scratch token list variable for \texttt{\textbackslash{l}\textbackslash{3}\textbackslash{e}\textbackslash{x}p\textbackslash{a}n}, used by \texttt{\textbackslash{u}s\textbackslash{e}:x}, used in defining conditionals. We don’t use \texttt{tl} methods because \texttt{l3basics} is loaded earlier.

\texttt{\cs_set_nopar:Npn \l__exp_internal_tl \{ \}}

(\textit{End definition for }\texttt{l__exp_internal_tl}.)

\texttt{\use_c}

This macro grabs its argument and returns a csname from it.

\texttt{\cs_set:Npn \use_c \#1 \{ \cs:w \#1 \cs_e_\textbackslash{s}e_\textbackslash{d}: \}}

(\textit{End definition for }\texttt{\use_c}. \textit{This function is documented on page 16}.)

\texttt{\use_x}

Fully expands its argument and passes it to the input stream. Uses the reserved \texttt{\l___exp_internal_tl} which we’ve set up above.

\texttt{\cs_set_nopar:Npn \use\:x \#1 \{ \cs_set_nopar:Npm \l__exp_internal_tl \{\#1\} \}}

(\textit{End definition for }\texttt{\use\:x}. \textit{This function is documented on page 20}.)

\texttt{\use_e}

In non-Lua\TeX engines older than 2019, \texttt{\textbackslash{e}\textbackslash{x}\textbackslash{p}\textbackslash{a}n} is emulated.

\texttt{\cs_set_nopar:Npm \use\:e \#1 \{ \cs_if\textbackslash{d}\textbackslash{e}\textbackslash{f}\textbackslash{i}n\textbackslash{d}\textbackslash{e}:D \cs_exp\textbackslash{a}r\textbackslash{s}:N\textbackslash{e}\cs_\textbackslash{n}: \#1\} \}}

(\textit{End definition for }\texttt{\use\:e}. \textit{This function is documented on page 20}.)

\texttt{\use\:n, \use\:nn, \use\:nnn, \use\:nnnn}

These macros grab their arguments and return them back to the input (with outer braces removed).

\texttt{\cs_set_nopar:Npm \use\:n \#1 \{ \#1\}}

\texttt{\cs_set_nopar:Npm \use\:nn \#1\#2 \{ \#1\#2\}}

\texttt{\cs_set_nopar:Npm \use\:nnn \#1\#2\#3 \{ \#1\#2\#3\}}

\texttt{\cs_set_nopar:Npm \use\:nnnn \#1\#2\#3\#4 \{ \#1\#2\#3\#4\}}

(\textit{End definition for }\texttt{\use\:n} and others. \textit{These functions are documented on page 19}.)

322
\use_i:nn The equivalent to \LaTeX\'s \texttt{\@firstoftwo} and \texttt{\@secondoftwo}.
\use_ii:nn

(End definition for \texttt{\use_i:nn} and \texttt{\use_ii:nn}. These functions are documented on page 19.)

\use_i:nnn We also need something for picking up arguments from a longer list.
\use_ii:nnn
\use_iii:nnn
\use_iv:nnnn

(End definition for \texttt{\use_i:nnn} and others. These functions are documented on page 19.)

\use_ii_i:nn

(End definition for \texttt{\use_ii_i:nn}. This function is documented on page 20.)

\use_none_delimit_by_q_nil:w
\use_none_delimit_by_q_stop:w
\use_none_delimit_by_q_recursion_stop:w

Functions that gobble everything until they see either \texttt{\q_nil}, \texttt{\q_stop}, or \texttt{\q_recursion_stop}, respectively.

(End definition for \texttt{\use_none_delimit_by_q_nil:w}, \texttt{\use_none_delimit_by_q_stop:w}, and \texttt{\use_none_delimit_by_q_recursion_stop:w}. These functions are documented on page 21.)

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw
\use_i_delimit_by_q_recursion_stop:nw

Same as above but execute first argument after gobbling. Very useful when you need to skip the rest of a mapping sequence but want an easy way to control what should be expanded next.

(End definition for \texttt{\use_i_delimit_by_q_nil:nw}, \texttt{\use_i_delimit_by_q_stop:nw}, and \texttt{\use_i_delimit_by_q_recursion_stop:nw}. These functions are documented on page 21.)

5.5 Gobbling tokens from input

To gobble tokens from the input we use a standard naming convention: the number of tokens gobbled is given by the number of \texttt{n}'s following the \texttt{:} in the name. Although we could define functions to remove ten arguments or more using separate calls of \texttt{\use_minus_none:nnnnnn}, this is very non-intuitive to the programmer who will assume that expanding such a function once takes care of gobbling all the tokens in one go.

\use_minus_none:n
\use_minus_none:nn
\use_minus_none:nnn
\use_minus_none:nnnn
\use_minus_none:nnnnn
\use_minus_none:nnnnnn
\use_minus_none:nnnnnnn

323
5.6 Debugging and patching later definitions

__kernel_if_debug:TF

A more meaningful test of whether debugging is enabled than messing up with guards. We can also more easily change the logic in one place then. This is needed primarily for deprecations.

\cs_set_protected:Npn __kernel_if_debug:TF #1#2 {#2}

(End definition for __kernel_if_debug:TF.)

\debug_on:n\debug_off:n

Stubs.

\cs_set_protected:Npn \debug_on:n #1
\cs_set_protected:Npn \debug_off:n #1

(End definition for \debug_on:n and \debug_off:n. These functions are documented on page 24.)

\debug_suspend:\debug_resume:

Some commands were more recently deprecated and not yet removed; only make these into errors if the user requests it. This relies on two token lists, filled up in l3deprecation.

\cs_set_nopar:Npn \g__debug_deprecation_on_tl
\cs_set_nopar:Npn \g__debug_deprecation_off_tl

(End definition for __kernel_deprecation_code:nn, \g__debug_deprecation_on_tl, and \g__debug_deprecation_off_tl.)
5.7 Conditional processing and definitions

Underneath any predicate function \(_p\) or other conditional forms (TF, etc.) is a built-in logic saying that it after all of the testing and processing must return the \(\text{state}\) this leaves \TeX{} in. Therefore, a simple user interface could be something like

\begin{verbatim}
\if_meaning:w #1#2
 \prg_return_true:
\else:
 \if_meaning:w #1#3
 \prg_return_true:
\else:
 \prg_return_false:
\fi:
\fi:
\end{verbatim}

Usually, a \TeX{} programmer would have to insert a number of \texttt{\exp_after:wN}s to ensure the state value is returned at exactly the point where the last conditional is finished. However, that obscures the code and forces the \TeX{} programmer to prove that he/she knows the \(2^n - 1\) table. We therefore provide the simpler interface.

\prg_return_true:
\prg_return_false:

The idea here is that \texttt{\exp:w} expands fully any \texttt{\else:} and \texttt{\fi:} that are waiting to be discarded, before reaching the \texttt{\exp_end:} which leaves an empty expansion. The code can then leave either the first or second argument in the input stream. This means that all of the branching code has to contain at least two tokens: see how the logical tests are actually implemented to see this.

\begin{verbatim}
\cs_set:Npn \prg_return_true:
 { \exp_after:wN \use_i:nn \exp:w }
\cs_set:Npn \prg_return_false:
 { \exp_after:wN \use_ii:nn \exp:w}
\end{verbatim}

An extended state space could be implemented by including a more elaborate function in place of \texttt{\use_i:nn/\use_ii:nn}. Provided two arguments are absorbed then the code would work.

\begin{verbatim}
\cs_set_protected:Npn \prg_set_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_set:Npn e }
\cs_set_protected:Npn \prg_new_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_new:Npn e }
\cs_set_protected:Npn \prg_set_protected_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_set_protected:Npn p }
\cs_set_protected:Npn \prg_new_protected_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_new_protected:Npn p }
\end{verbatim}

The user functions for the types using parameter text from the programmer. The various functions only differ by which function is used for the assignment. For those \texttt{\Nnppn} type functions, we must grab the parameter text, reading everything up to a left brace before continuing. Then split the base function into name and signature, and feed \{\texttt{name}\} \{\texttt{signature}\} \{\texttt{boolean}\} \{\texttt{set or new}\} \{\texttt{maybe protected}\} \{\texttt{parameters}\} \{\texttt{TF,...}\} \{\texttt{code}\} to the auxiliary function responsible for defining all conditionals. Note that \texttt{e} stands for expandable and \texttt{p} for protected.

\begin{verbatim}
\cs_set_protected:Npn \prg_set_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_set:Npn e }
\cs_set_protected:Npn \prg_new_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_new:Npn e }
\cs_set_protected:Npn \prg_set_protected_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_set_protected:Npn p }
\cs_set_protected:Npn \prg_new_protected_conditional:Npnn
 { __prg_generate_conditional_parm:NNNpnn \cs_new_protected:Npn p }
\end{verbatim}

(End definition for \texttt{\prg_return_true:} and \texttt{\prg_return_false:}. These functions are documented on page 106.)
The user functions for the types automatically inserting the correct parameter text based on the signature. The various functions only differ by which function is used for the assignment. Split the base function into name and signature. The second auxiliary generates the parameter text from the number of letters in the signature. Then feed \{(name)\} \{(signature)\} \{boolean\} \{set or new\} \{maybe protected\} \{parameters\} \{TF,...\} \{code\} to the auxiliary function responsible for defining all conditionals. If the \{(signature)\} has more than 9 letters, the definition is aborted since \TeX{} macros have at most 9 arguments. The erroneous case where the function name contains no colon is captured later.

\begin{verbatim}
\cs_set_protected:Np __prg_generate_conditional_parm:NNNpnn #1#2#3#4#
{\use:x
\{__prg_generate_conditional:nnNNNnnn
\cs_split_function:N #3
\}
#1 #2 \{#4\}
}
\end{verbatim}

(End definition for \texttt{\prg_set_conditional:Nnn} and others. These functions are documented on page 104.)
The workhorse here is going through a list of desired forms, i.e., \(p, TF, T \) and \(F \). The first three arguments come from splitting up the base form of the conditional, which gives the name, signature and a boolean to signal whether or not there was a colon in the name. In the absence of a colon, we throw an error and don’t define any conditional. The fourth and fifth arguments build up the defining function. The sixth is the parameters to use (possibly empty), the seventh is the list of forms to define, the eighth is the replacement text which we will augment when defining the forms. The use of \(\texttt{tl_to_str:n} \) makes the later loop more robust.

A large number of our low-level conditionals look like \langle code \rangle \texttt{__prg_return_true:} \texttt{\else: __prg_return_false:} \texttt{\fi:} so we optimize this special case by calling \texttt{__prg_generate_conditional_fast:nw} \langle code \rangle. This passes \texttt{\use_i:nn} instead of \texttt{\use_i_i:nnn} to functions such as \texttt{__prg_generate_p_form:wNNnnnN}.

Looping through the list of desired forms. First are six arguments and seventh is the form. Use the form to call the correct type. If the form does not exist, the \texttt{\use:c} construction results in \texttt{\relax}, and the error message is displayed (unless the form is empty, to allow for \{T, , F\}), then \texttt{\use_none:nnnnnnnn} cleans up. Otherwise, the error message is removed by the variant form.
\use_i:nn { \use:ii:n } or \use_i:nn (for "fast" conditionals). Remember that the logic-returning functions expect two arguments to be present after \exp_end:: notice the construction of the different variants relies on this, and that the \T{} and \F{} variants will be slightly faster than the \T{} version. The \p{} form is only valid for expandable tests, we check for that by making sure that the second argument is empty. For "fast" conditionals, \c{7} has an extra \if\ldots. To optimize a bit further we could replace \exp_after:wN \use_i:nn and similar by a single macro similar to __prg_p_true:w. The drawback is that if the \T{} or \F{} arguments are actually missing, the recovery from the runaway argument would not insert \fi: back, messing up nesting of conditionals.

__prg_generate_p_form:wNNnnnnN
__prg_generate_T_form:wNNnnnnN
__prg_generate_F_form:wNNnnnnN
__prg_p_true:w

(End definition for __prg_generate_conditional:nnNNnnn and others.)

How to generate the various forms. Those functions take the following arguments: 1: junk, 2: \cs_set:Npn or similar, 3: \p{} (for protected conditionals) or \e{}, 4: function name, 5: signature, 6: parameter text, 7: replacement (possibly trimmed by __prg_generate_conditional_fast:nw), 8: \use_i:nn or \use_i:nn (for "fast" conditionals). Remember that the logic-returning functions expect two arguments to be present after \exp_end:: notice the construction of the different variants relies on this, and that the \T{} and \F{} variants will be slightly faster than the \T{} version. The \p{} form is only valid for expandable tests, we check for that by making sure that the second argument is empty. For “fast” conditionals, \c{7} has an extra \if\ldots. To optimize a bit further we could replace \exp_after:wN \use_i:nn and similar by a single macro similar to __prg_p_true:w. The drawback is that if the \T{} or \F{} arguments are actually missing, the recovery from the runaway argument would not insert \fi: back, messing up nesting of conditionals.

\cs_set_protected:Npn __prg_generate_p_form:wNNnnnnN
{ #8 }
{ \exp_args:Nc #2 { #4 _p: #5 } #6 }
__kernel_msg_error:nnx { kernel } { protected-predicate }
{ \token_to_str:c { #4 _p: #5 } }
__prg_generate_T_form:wNNnnnnN
{ #8 }
{ \exp_args:Nc #2 { #4 : #5 T } #6 }
__prg_generate_F_form:wNNnnnnN
{ #8 }
{ \exp_args:Nc #2 { #4 : #5 F } #6 }

The setting-equal functions. Split both functions and feed \{⟨name1⟩\} {⟨signature1⟩} ⟨boolean1⟩ {⟨name2⟩} {⟨signature2⟩} ⟨copying function⟩ ⟨conditions⟩ , \texttt{\textbackslash q\textunderscore recursion_tail} , \texttt{\textbackslash q\textunderscore recursion_stop} to a first auxiliary.

Split the function to be defined, and setup a manual clist loop over argument \#6 of the first auxiliary. The second auxiliary receives twice three arguments coming from splitting the function to be defined and the function to copy. Make sure that both functions contained a colon, otherwise we don’t know how to build conditionals, hence abort. Call the looping macro, with arguments \{⟨name1⟩\} {⟨signature1⟩} {⟨name2⟩} {⟨signature2⟩} ⟨copying function⟩ and followed by the comma list. At each step in the loop, make sure that the conditional form we copy is defined, and copy it, otherwise abort.

\(\text{End definition for \texttt{\textbackslash prg_set_eq_conditional:NNn}, \texttt{\textbackslash prg_new_eq_conditional:NNn}, and \texttt{\textbackslash prg_set_eq_conditional:NNNn}. These functions are documented on page 105.}\)
All that is left is to define the canonical boolean true and false. I think Michael originated the idea of expandable boolean tests. At first these were supposed to expand into either TT or TF to be tested using \if:w but this was later changed to 00 and 01, so they could be used in logical operations. Later again they were changed to being numerical constants with values of 1 for true and 0 for false. We need this from the get-go.

\begin{align*}
\c_true_bool &= 1 \\
\c_false_bool &= 0
\end{align*}

(End definition for \c_true_bool and \c_false_bool. These variables are documented on page 22.)
\cs_count_signature:N \cs_count_signature:N \langle \text{function} \rangle

Splits the \langle \text{function} \rangle into the \langle \text{name} \rangle (i.e. the part before the colon) and the \langle \text{signature} \rangle (i.e. after the colon). The \langle \text{number} \rangle of tokens in the \langle \text{signature} \rangle is then left in the input stream. If there was no \langle \text{signature} \rangle then the result is the marker value -1.

\cs_get_function_name:N \cs_get_function_name:N \langle \text{function} \rangle

Splits the \langle \text{function} \rangle into the \langle \text{name} \rangle (i.e. the part before the colon) and the \langle \text{signature} \rangle (i.e. after the colon). The \langle \text{name} \rangle is then left in the input stream without the escape character present made up of tokens with category code \texttt{0x12} (other).

\cs_get_function_signature:N \cs_get_function_signature:N \langle \text{function} \rangle

Splits the \langle \text{function} \rangle into the \langle \text{name} \rangle (i.e. the part before the colon) and the \langle \text{signature} \rangle (i.e. after the colon). The \langle \text{signature} \rangle is then left in the input stream made up of tokens with category code \texttt{0x12} (other).

\cs_tmp:w
\cs_to_str:N \cs_to_str:N \cs_to_str:w

This converts a control sequence into the character string of its name, removing the leading escape character. This turns out to be a non-trivial matter as there a different cases:

- The usual case of a printable escape character;
- the case of a non-printable escape characters, e.g., when the value of the \cs{escapechar} is negative;
- when the escape character is a space.

One approach to solve this is to test how many tokens result from \texttt{\token_to_str:N \a}. If there are two tokens, then the escape character is printable, while if it is non-printable then only one is present.

However, there is an additional complication: the control sequence itself may start with a space. Clearly that should not be lost in the process of converting to a string. So the approach adopted is a little more intricate still. When the escape character is printable, \texttt{\token_to_str:N \a} yields the escape character itself and a space. The character codes are different, thus the \texttt{\if:w} test is false, and \TeX reads \texttt{\cs_to_str:N} after turning the following control sequence into a string; this auxiliary removes the escape character, and stops the expansion of the initial \texttt{\tex_romannumeral:D}. The second case is that the escape character is not printable. Then the \texttt{\if:w} test is unfinished after reading the space from \texttt{\token_to_str:N \a}, and the auxiliary \texttt{\cs_to_str:w} is expanded, feeding a space as a second character for the test; the test is false, and \TeX skips to \texttt{\fi:}; then performs \texttt{\token_to_str:N}, and stops the \texttt{\tex_romannumeral:D} with \texttt{\c_zero_int}. The last case is that the escape character is itself a space. In this case, the \texttt{\if:w} test is true, and the auxiliary \texttt{\cs_to_str:w} comes into play, inserting \texttt{-\int_value:w}, which expands \texttt{\c_zero_int} to the character 0. The initial \texttt{\tex_romannumeral:D} then sees 0, which is not a terminated number, followed by the escape character, a space,
which is removed, terminating the expansion of \text{romannumeral:D}. In all three cases, \text{cs_to_str:N} takes two expansion steps to be fully expanded.

\begin{verbatim}
2451 \cs_set:Npn \cs_to_str:N \#1 \#2 \#3 \#4 \q_stop
2452 { \exp_after:wN \exp_after:wN \exp_after:wN _cs_split_function:auxii:w
2453 \exp_after:wN \exp_after:wN \exp_after:wN _cs_split_function:auxi:w
2454 \exp_after:wN \exp_after:wN \exp_after:wN \cs_to_str:N \#1 \q_mark \c_true_bool _cs_split_function:auxi:w
2455 \exp_after:wN \exp_after:wN \exp_after:wN \cs_to_str:N \#1 \q_mark \c_false_bool \q_stop
2456 \}
2457 \cs_set:Npn _cs_to_str:N \token_to_str:N #1 #2 \#3 #4 \q_stop
2458 \exp_after:wN \cs_set_protected:Npn __cs_tmp:w #1
2459 { \cs_set:Npn \cs_split_function:N ##1 #1 #2 \#3 #4 \q_stop
2460 \exp_after:wN __cs_split_function_auxi:w \#1 #2 \#3 #4 \q_stop
2461 \exp_after:wN __cs_split_function_auxii:w \#1 \#2 \#3 \#4 \q_stop
2462 \}
2463 \cs_set:Npn _cs_split_function:auxi:w \#1 \#2 \#3 \#4 \q_stop
2464 \exp_after:wN _cs_split_function:auxii:w \#1 \#2 \#3 \#4 \q_stop
2465 \}
2466 \exp_after:wN __cs_tmp:w \token_to_str:N : \end{verbatim}

We implement the expansion scheme using \text{romannumeral:D} terminating it with \text{c_zero_int} rather than using \text{exp:w} and \text{exp_end}: as we normally do. The reason is that the code heavily depends on terminating the expansion with \text{c_zero_int} so we make this dependency explicit.

\begin{verbatim}
2453 \text{romannumeral:D}
2454 \if:w \token_to_str:N _cs_to_str:w \fi:
2455 \exp_after:wN _cs_to_str:N \token_to_str:N \c_zero_int
2456 }
2457 \cs_set:Npn _cs_to_str:N \token_to_str:N \c_zero_int
2458 \exp_after:wN _cs_to_str:w \c_zero_int
2459 \end{verbatim}

If speed is a concern we could use \text{csstring} in luatex. For the empty csname that primitive gives an empty result while the current \text{cs_to_str:N} gives incorrect results in all engines (this is impossible to fix without huge performance hit).

(End definition for \text{cs_to_str:N}, _cs_to_str:N, and _cs_to_str:w. This function is documented on page 17.)

This function takes a function name and splits it into name with the escape char removed and argument specification. In addition to this, a third argument, a boolean \langle true \rangle or \langle false \rangle is returned with \langle true \rangle for when there is a colon in the function and \langle false \rangle if there is not.

We cannot use : directly as it has the wrong category code so an x-type expansion is used to force the conversion.

First ensure that we actually get a properly evaluated string by expanding \text{cs_to_str:N} twice. If the function contained a colon, the auxiliary takes as \#1 the function name, delimited by the first colon, then the signature \#2, delimited by \text{q_mark}, then \text{c_true_bool} as \#3, and \#4 cleans up until \text{q_stop}. Otherwise, the \#1 contains the function name and \text{q_mark} \text{c_true_bool}, \#2 is empty, \#3 is \text{c_false_bool}, and \#4 cleans up. The second auxiliary trims the trailing \text{q_mark} from the function name if present (that is, if the original function had no colon).

\begin{verbatim}
2468 \cs_set_protected:Npn __cs_tmp:w #1
2469 { \cs_set:Npn \cs_split_function:N #1 \#2 \#3 \#4 \q_stop
2470 { \exp_after:wN \exp_after:wN \exp_after:wN \cs_to_str:N #1 \q_mark \c_true_bool
2471 \#1 \q_mark \c_false_bool \q_stop
2472 }
2473 \cs_set:Npn _cs_split_function:auxi:w \#1 \#2 \#3 \#4 \q_stop
2474 \exp_after:wN _cs_split_function:auxii:w \#1 \#2 \#3 \#4 \q_stop
2475 \}
2476 \exp_after:wN __cs_tmp:w \token_to_str:N :
\end{verbatim}
5.9 Exist or free

A control sequence is said to exist (to be used) if it has an entry in the hash table and its meaning is different from the primitive \texttt{\relax} token. A control sequence is said to be free (to be defined) if it does not already exist.

Two versions for checking existence. For the \texttt{N} form we firstly check for \texttt{\scan_stop:} and then if it is in the hash table. There is no problem when inputting something like \texttt{\else:} or \texttt{\fi:} as TeX will only ever skip input in case the token tested against is \texttt{\scan_stop:}.

For the \texttt{c} form we firstly check if it is in the hash table and then for \texttt{\scan_stop:} so that we do not add it to the hash table unless it was already there. Here we have to be careful as the text to be skipped if the first test is false may contain tokens that disturb the scanner. Therefore, we ensure that the second test is performed after the first one has concluded completely.

The logical reversal of the above.
The \cs_if_exist_use:... functions cannot be implemented as conditionals because the true branch must leave both the control sequence itself and the true code in the input stream. For the c variants, we are careful not to put the control sequence in the hash table if it does not exist. In L\LaTeX{} we could use the \texttt{lastnamedcs} primitive.

\begin{verbatim}
\cs_if_exist_use:N \cs_if_exist_use:c \cs_if_exist_use:NTF \cs_if_exist_use:cT
\end{verbatim}

\subsection{Preliminaries for new functions}

We provide two kinds of functions that can be used to define control sequences. On the one hand we have functions that check if their argument doesn’t already exist, they are
called \ldots_new. The second type of defining functions doesn’t check if the argument is already defined.

Before we can define them, we need some auxiliary macros that allow us to generate error messages. The next few definitions here are only temporary, they will be redefined later on.

__kernel_msg_error:nnxx
__kernel_msg_error:nnx
__kernel_msg_error:nn

If an internal error occurs before \LaTeX{}3 has loaded \texttt{l3msg} then the code should issue a usable if terse error message and halt. This can only happen if a coding error is made by the team, so this is a reasonable response. Setting the \texttt{\newlinechar} is needed, to turn \texttt{^^J} into a proper line break in plain \TeX{}.

2548 \cs_set_protected:Npn __kernel_msg_error:nnxx #1#2#3#4
2549 { \tex_newlinechar:D = '\'^^J \scan_stop:
2550 \tex_errmessage:D
2551 { !!!~! ^^J
2552 Argh, internal-LaTeX3-error! ^^J ^^J
2553 Module - #1 , - message-name="#2": ^^J
2554 Arguments-"#3'-'and-'#4" ^^J ^^J
2555 This-is-one-for-The-LaTeX3-Project:-bailing-out }
2556 \tex_end:D
2557 }
2558 \cs_set_protected:Npn __kernel_msg_error:nnx #1#2#3
2559 { __kernel_msg_error:nnxx {#1} {#2} {#3} { } }
2560 \cs_set_protected:Npn __kernel_msg_error:nn #1#2
2561 { __kernel_msg_error:nnxx {#1} {#2} { } { } }

(End definition for __kernel_msg_error:nnxx, __kernel_msg_error:nnx, and __kernel_msg_error:nn.)

\msg_line_context:

Another one from \texttt{l3msg} which will be altered later.

2565 \cs_set:Npn \msg_line_context:
2566 { on-line- \tex_the:D \tex_inputlineno:D }

(End definition for \msg_line_context. This function is documented on page 151.)

\iow_log:x
\iow_term:x

We define a routine to write only to the log file. And a similar one for writing to both the log file and the terminal. These will be redefined later by \texttt{l3io}.

2567 \cs_set_protected:Npn \iow_log:x
2568 { \tex_immediate:D \tex_write:D -1 }
2569 \cs_set_protected:Npn \iow_term:x
2570 { \tex_immediate:D \tex_write:D 16 }

(End definition for \iow_log:x. This function is documented on page 160.)

__kernel_chk_if_free_cs:N
__kernel_chk_if_free_cs:c

This command is called by \cs_new:nopar:Npn and \cs_new_eq:NN etc. to make sure that the argument sequence is not already in use. If it is, an error is signalled. It checks if \texttt{\csname} is undefined or \texttt{\scan_stop:.} Otherwise an error message is issued. We have to make sure we don’t put the argument into the conditional processing since it may be an \texttt{\if...} type function!

2571 \cs_set_protected:Npn __kernel chk_if_free_cs:N #1
2572 { \cs_if_free:NF #1
2573 { ... }

335
__kernel_msg_error:nnxx \ { kernel } \ { command-already-defined } \{ \token_to_str:N \#1 \} \{ \token_to_meaning:N \#1 \}
\}
\cs_set_protected:Npn __kernel_chk_if_free_cs:c
{ \exp_args:Nc __kernel_chk_if_free_cs:N }
(End definition for __kernel_chk_if_free_cs:N.)

5.11 Defining new functions

\cs_new_nopar:Npn \cs_new_nopar:Npx
\cs_new:Npn \cs_new:Npx
\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npx
\cs_new_protected:Npn \cs_new_protected:Npx
__cs_tmp:w
Function which check that the control sequence is free before defining it.
\cs_set:Npn __cs_tmp:w #1#2
{ \cs_set_protected:Npn #1 ##1
__kernel_chk_if_free_cs:N ##1
#2 ##1}
__cs_tmp:w \cs_new_nopar:Npn \cs_gset_nopar:Npn
__cs_tmp:w \cs_new_nopar:Npx \cs_gset_nopar:Npx
__cs_tmp:w \cs_new:Npn \cs_gset:Npn
__cs_tmp:w \cs_new:Npx \cs_gset:Npx
__cs_tmp:w \cs_new_protected_nopar:Npn \cs_gset_protected_nopar:Npn
__cs_tmp:w \cs_new_protected_nopar:Npx \cs_gset_protected_nopar:Npx
__cs_tmp:w \cs_new_protected:Npn \cs_gset_protected:Npn
__cs_tmp:w \cs_new_protected:Npx \cs_gset_protected:Npx
(End definition for \cs_new_nopar:Npn and others. These functions are documented on page 11.)
\cs_set_nopar:cpn \cs_set_nopar:cpx
\cs_gset_nopar:cpn \cs_gset_nopar:cpx
\cs_new_nopar:cpn \cs_new_nopar:cpx
\cs_new_protected:cpn \cs_new_protected:cpx
Like \cs_set_nopar:Npn and \cs_new_nopar:Npn, except that the first argument consists of the sequence of characters that should be used to form the name of the desired control sequence (the c stands for csname argument, see the expansion module). Global versions are also provided.
\cs_set_nopar:cpn\{\{string\}\{rep-text\} turns \{string\} into a csname and then assigns \{rep-text\} to it by using \cs_set_nopar:Npn. This means that there might be a parameter string between the two arguments.
\cs_set:Npn __cs_tmp:w \#1\#2 { \exp_args:Nc \#1 \{ \exp_args:Nc \#2 \} }
__cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn
__cs_tmp:w \cs_set_nopar:cpx \cs_set_nopar:Npx
__cs_tmp:w \cs_gset_nopar:cpn \cs_gset_nopar:Npn
__cs_tmp:w \cs_gset_nopar:cpx \cs_gset_nopar:Npx
__cs_tmp:w \cs_new_nopar:cpn \cs_new_nopar:Npn
__cs_tmp:w \cs_new_nopar:cpx \cs_new_nopar:Npx
(End definition for \cs_set_nopar:Npn. This function is documented on page 11.)
Variants of the \texttt{\cs_set:Npn} versions which make a csname out of the first arguments. We may also do this globally.

\begin{verbatim}
\cs_set_protected_nopar:cpn \cs_set_protected_nopar:cpx
\cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:cpx
\cs_new_protected_nopar:cpn \cs_new_protected_nopar:cpx
\end{verbatim}

(End definition for \texttt{\cs_set:Npn}. This function is documented on page 11.)

Variants of the \texttt{\cs_set_protected_nopar:Npn} versions which make a csname out of the first arguments. We may also do this globally.

\begin{verbatim}
\cs_set_protected:cpn \cs_set_protected:cpx
\cs_gset_protected:cpn \cs_gset_protected:cpx
\cs_new_protected:cpn \cs_new_protected:cpx
\end{verbatim}

(End definition for \texttt{\cs_set_protected_nopar:Npn}. This function is documented on page 12.)

Variants of the \texttt{\cs_set_protected:Npn} versions which make a csname out of the first arguments. We may also do this globally.

\begin{verbatim}
\cs_set_eq:NN \cs_set_eq:cN \cs_set_eq:Nc \cs_set_eq:cc
\cs_gset_eq:NN \cs_gset_eq:cN \cs_gset_eq:Nc \cs_gset_eq:cc
\cs_new_eq:NN \cs_new_eq:cN \cs_new_eq:Nc \cs_new_eq:cc
\end{verbatim}

5.12 Copying definitions

These macros allow us to copy the definition of a control sequence to another control sequence.

For the definition of \texttt{\cs_space_char{~}} to work we need the \texttt{~} after the \texttt{=}. \texttt{\cs_set_eq:NN} is long to avoid problems with a literal argument of \texttt{\par}. While \texttt{\cs_new_eq:NN} will probably never be correct with a first argument of \texttt{\par}, define it long in order to throw an “already defined” error rather than “runaway argument”.

\begin{verbatim}
\cs_new_protected:Npn \cs_set_eq:NN \cs_set_eq:Nc \cs_set_eq:cc
\cs_gset_protected:cpn \cs_gset_protected:cpx \cs_gset_protected:cppn \cs_gset_protected:cppx
\cs_new_protected:cpn \cs_new_protected:cpx \cs_new_protected:cppn \cs_new_protected:cppx
\end{verbatim}

337
5.13 Undefining functions

The following function is used to free the main memory from the definition of some function that isn’t in use any longer. The \texttt{c} variant is careful not to add the control sequence to the hash table if it isn’t there yet, and it also avoids nesting \TeX\X functions in case \texttt{#1} is unbalanced in this matter.

\begin{verbatim}
\cs_new_protected:Npn \cs_undefine:N #1 { \cs_gset_eq:NN #1 \tex_undefined:D }
\cs_new_protected:Npn \cs_undefine:c #1 { \if_cs_exist:w #1 \cs_end: \exp_after:wN \use:n \else: \exp_after:wN \use_none:n \fi: { \cs_gset_eq:cN {#1} \tex_undefined:D }
\end{verbatim}

(End definition for \texttt{\cs_undefine:N}. This function is documented on page 15.)

5.14 Generating parameter text from argument count

\TeX\X provides shorthands to define control sequences and conditionals with a simple parameter text, derived directly from the signature, or more generally from knowing the number of arguments, between 0 and 9. This function expands to its first argument, untouched, followed by a brace group containing the parameter text \{\texttt{#1}...\texttt{#n}\}, where \texttt{n} is the result of evaluating the second argument (as described in \texttt{\int_eval:n}). If the second argument gives a result outside the range \[0, 9\], the third argument is returned instead, normally an error message. Some of the functions use here are not defined yet, but will be defined before this function is called.

\begin{verbatim}
\cs_set_protected:Npn __kernel_cs_parm_from_arg_count:nnF #1#2 { \exp_args:Nx __cs_parm_from_arg_count_test:nnF {\exp_after:wN \exp_not:n \if_case:w \int_eval:n {#2} { } \or: { ##1 } \or: { ##1##2 } \or: { ##1##2##3 } \or: { ##1##2##3##4 } \or: { ##1##2##3##4##5 } \or: { ##1##2##3##4##5##6 } \end{verbatim}

(End definition for \texttt{\cs_undefine:N}. This function is documented on page 15.)
5.15 Defining functions from a given number of arguments

Counting the number of tokens in the signature, i.e., the number of arguments the function should take. Since this is not used in any time-critical function, we simply use \texttt{\tl_count:n} if there is a signature, otherwise \texttt{-1} arguments to signal an error. We need a variant form right away.

\begin{verbatim}
\cs_new:Npn __cs_count_signature:N #1 { \exp_args:Nf __cs_count_signature:n { \cs_split_function:N #1 } }
\cs_new:Npn __cs_count_signature:n #1 { \int_eval:n { __cs_count_signature:nnN #1 } }
\cs_new:Npn __cs_count_signature:nnN #1#2#3 { \if_meaning:w \c_true_bool #3 \tl_count:n {#2} \else: -1 \fi: }
\cs_new_protected:Npn \cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:cNnn \cs_generate_from_arg_count:Ncnn
\end{verbatim}

We provide a constructor function for defining functions with a given number of arguments. For this we need to choose the correct parameter text and then use that when defining. Since \LaTeX{} supports from zero to nine arguments, we use a simple switch to choose the correct parameter text, ensuring the result is returned after finishing the conditional. If it is not between zero and nine, we throw an error.

1: function to define, 2: with what to define it, 3: the number of args it requires and 4: the replacement text

\begin{verbatim}
\cs_new_protected:Npn \cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:cNnn \cs_generate_from_arg_count:Ncnn
\end{verbatim}
A variant form we need right away, plus one which is used elsewhere but which is most logically created here.

\cs_new_protected:Npn \cs_generate_from_arg_count:cNnn { \exp_args:Nc \cs_generate_from_arg_count:NNnn }
\cs_new_protected:Npn \cs_generate_from_arg_count:Ncnn { \exp_args:NNc \cs_generate_from_arg_count:NNnn } (End definition for \cs_generate_from_arg_count:NNnn. This function is documented on page 14.)

5.16 Using the signature to define functions

We can now combine some of the tools we have to provide a simple interface for defining functions, where the number of arguments is read from the signature. For instance, \cs_set:Nn \foo_bar:nn {#1,#2}.

We want to define \cs_set:Nn as

\cs_set_protected:Npn \cs_set:Nn #1#2
{ \cs_generate_from_arg_count:NNnn #1 \cs_set:Npn { \@@_count_signature:N #1 } {#2} }

In short, to define \cs_set:Nn we need just use \cs_set:Npn, everything else is the same for each variant. Therefore, we can make it simpler by temporarily defining a function to do this for us.

\cs_set:Npn __cs_tmp:w #1#2#3
{ \cs_new_protected:cpx { cs_ #1 : #2 }
\cs_new_protected:Npn __cs_generate_from_signature:NNn #1 \cs_set:Nn { \@@_count_signature:N #1 } {#2} }

\cs_set:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
{ \exp_not:N __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
\exp_not:N \exp_not:N \cs:w cs_ #1 : #2 \cs_end: }

In short, to define \cs_set:Nn we need just use \cs_set:Npn, everything else is the same for each variant. Therefore, we can make it simpler by temporarily defining a function to do this for us.

\cs_set:Npn __cs_tmp:w #1#2#3
{ \cs_new_protected:cpx { cs_ #1 : #2 }
\cs_new_protected:Npn __cs_generate_from_signature:NNn #1\cs_set:Nn { \@@_count_signature:N #1 } {#2} }

\cs_set:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
{ \exp_not:N __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
\exp_not:N \exp_not:N \cs:w cs_ #1 : #2 \cs_end: }

340
Then we define the 24 variants beginning with \texttt{N}.

The 24 \texttt{c} variants simply use \texttt{\exp_args:Nc}.

\cs_set:cn \cs_set:cx \cs_set_nopar:cn \cs_set_nopar:cx \cs_set_protected:cn \cs_set_protected:cx \cs_set_protected_nopar:cn \cs_set_protected_nopar:cx \cs_gset:cn \cs_gset:cx \cs_gset_nopar:cn \cs_gset_nopar:cx \cs_set_protected:cn \cs_set_protected:cx \cs_new:cn \cs_new:cx \cs_new_nopar:cn \cs_new_nopar:cx \cs_new_protected:cn \cs_new_protected:cx \cs_new_protected_nopar:cn \cs_new_protected_nopar:cx

\textit{(End definition for \texttt{\cs_set:Nn} and others. These functions are documented on page 13.)}

5.17 Checking control sequence equality

Check if two control sequences are identical.

\cs_if_eq_p:NN \cs_if_eq_p:cc \cs_if_eq:NNTF \cs_if_eq:NcTF
\cs_if_eq:NcT \cs_if_eq:NcF \cs_if_eq:cNT \cs_if_eq:cNF
\cs_if_eq:cNTF \cs_if_eq:cNFF \cs_if_eq:cNF \cs_if_eq:cNNT

(End definition for \cs_set:Nn. This function is documented on page 13.)
5.18 Diagnostic functions

__kernel_chk_defined:NT

Error if the variable \#1 is not defined.

\cs_new_protected:Nm __kernel_chk_defined:NT \#1\#2

\cs_if_exist:NTF \#1

__kernel_msg_error:nnx \{ kernel \} \{ variable-not-defined \}

\token_to_str:N \#1

(End definition for __kernel_chk_defined:NT.)

__kernel_register_show:N
__kernel_register_show:c
__kernel_register_log:N
__kernel_register_log:c
__kernel_register_show_aux:NN
__kernel_register_show_aux:nNN

Simply using the \showthe primitive does not allow for line-wrapping, so instead use \tl_show:n and \tl_log:n (defined in l3tl and that performs line-wrapping). This displays \([^\text{variable}=\text{value}]\). We expand the value before-hand as otherwise some integers (such as \currentgrouplevel or \currentgrouptype) altered by the line-wrapping code would show wrong values.

\cs_new_protected:Nm __kernel_register_show:N
{ __kernel_register_show_aux:NN \tl_show:n }
\cs_new_protected:Nm __kernel_register_show:c
{ \exp_args:Nc __kernel_register_show:N }
\cs_new_protected:Nm __kernel_register_log:N
{ __kernel_register_show_aux:NN \tl_log:n }
\cs_new_protected:Nm __kernel_register_log:c
{ \exp_args:Nc __kernel_register_log:N }
\cs_new_protected:Nm __kernel_register_show_aux:NN \#1\#2
{ __kernel_chk_defined:NT \#2
{ \exp_args:No __kernel_register_show_aux:nNN
{ \tex_the:D \#2 } \#2 \#1
}
}
\cs_new_protected:Nm __kernel_register_show_aux:NN \#1\#2\#3
{ \exp_args:No \#3 \{ \token_to_str:N \#2 = \#1 \} }

(End definition for __kernel_register_show:N and others.)

\cs_show:N
\cs_show:c
\cs_log:N
\cs_log:c
__kernel_show:NN

Some control sequences have a very long name or meaning. Thus, simply using \TeX’s primitive \show could lead to overlong lines. The output of this primitive is mimicked to some extent, then the re-built string is given to \tl_show:n or \tl_log:n for line-wrapping. We must expand the meaning before passing it to the wrapping code as otherwise we would wrongly see the definitions that are in place there. To get correct escape characters, set the \escapechar in a group; this also localizes the assignment performed by x-expansion. The \cs_show:c and \cs_log:c commands convert their argument to a control sequence within a group to avoid showing \relax for undefined control sequences.

\cs_new_protected:Nm \cs_show:N \{ __kernel_show:NN \tl_show:n \}
\cs_new_protected:Nm \cs_show:c
5.19 Decomposing a macro definition

We sometimes want to test if a control sequence can be expanded to reveal a hidden value. However, we cannot just expand the macro blindly as it may have arguments and none might be present. Therefore we define these functions to pick either the prefix(es), the argument specification, or the replacement text from a macro. All of this information is returned as characters with catcode 12. If the token in question isn’t a macro, the token \scan_stop: is returned instead.
5.20 Doing nothing functions

\texttt{\textbackslash prg_do_nothing:}

This does not fit anywhere else!

\begin{verbatim}
\cs_new:Npn \prg_do_nothing: { }
\end{verbatim}

(End definition for \texttt{\textbackslash prg_do_nothing:}. This function is documented on page 9.)

5.21 Breaking out of mapping functions

\begin{verbatim}
\prg_break_point:Nn
\end{verbatim}

In inline mappings, the nesting level must be reset at the end of the mapping, even when the user decides to break out. This is done by putting the code that must be performed as an argument of \texttt{____prg_break_point:Nn}. The breaking functions are then defined to jump to that point and perform the argument of \texttt{____prg_break_point:Nn}, before the user's code (if any). There is a check that we close the correct loop, otherwise we continue breaking.

\begin{verbatim}
\cs_new_eq:NN \prg_break_point:Nn \use_ii:nn
\cs_new:Npn \prg_map_break:Nn #1#2#3 \prg_break_point:Nn #4#5
{ #5 \if_meaning:w #1 #4 \exp_after:wN \use_iii:nnn \fi: \prg_map_break:Nn #1 {#2} }
\end{verbatim}

(End definition for \texttt{\prg_break_point:Nn} and \texttt{\prg_map_break:Nn}. These functions are documented on page 112.)

\begin{verbatim}
\prg_break_point:
\prg_break:
\prg_break:n
\end{verbatim}

Very simple analogues of \texttt{\prg_break_point:Nn} and \texttt{\prg_map_break:Nn}, for use in fast short-term recursions which are not mappings, do not need to support nesting, and in which nothing has to be done at the end of the loop.

\begin{verbatim}
\cs_new_eq:NN \prg_break_point: \prg_do_nothing:
\cs_new:Npn \prg_break: #1 \prg_break_point: { }
\cs_new:Npn \prg_break:n #1#2 \prg_break_point: {#1}
\end{verbatim}

(End definition for \texttt{\prg_break_point:}, \texttt{\prg_break:}, and \texttt{\prg_break:n}. These functions are documented on page 113.)

5.22 Starting a paragraph

\texttt{\textbackslash mode_leave_vertical:}

The approach here is different to that used by \LaTeX 2ε or plain \TeX, which unbox a void box to force horizontal mode. That inserts the \texttt{\everypar} tokens before the re-inserted unboxing tokens. The approach here uses either the \texttt{\quitvmode} primitive or the equivalent protected macro. In vertical mode, the \texttt{\indent} primitive is inserted: this will switch to horizontal mode and insert \texttt{\everypar} tokens and nothing else. Unlike the
\LaTeX{} version, the availability of \TeX{} means using a mode test can be done at for example the start of an \texttt{\halign}.

\begin{verbatim}
\cs_new_protected:Npn \mode_leave_vertical:n {
 \if_mode_vertical:
 \exp_after:wN \tex_indent:D
 \fi:
}
\end{verbatim}

(End definition for \texttt{\mode_leave_vertical:n}. This function is documented on page 24.)

\section{\texttt{l3exp}an implementation}

\begin{verbatim}
\l__exp_internal_tl \exp_after:wN \exp_not:N \exp_not:n
\end{verbatim}

\texttt{\exp_} module has its private variable to temporarily store the result of \texttt{x}-type argument expansion. This is done to avoid interference with other functions using temporary variables.

(End definition for \texttt{\l__exp_internal_tl}.)

\texttt{\exp_after:wN, \exp_not:N, and \exp_not:n} These are defined in \texttt{l3basics}, as they are needed “early”. This is just a reminder of that fact!

(End definition for \texttt{\exp_after:wN, \exp_not:N, and \exp_not:n}. These functions are documented on page 33.)

\subsection{General expansion}

In this section a general mechanism for defining functions that handle arguments is defined. These general expansion functions are expandable unless \texttt{x} is used. (Any version of \texttt{x} is going to have to use one of the \texttt{\LaTeX{}3} names for \texttt{\cs_set:Npx} at some point, and so is never going to be expandable.)

The definition of expansion functions with this technique happens in section 6.8. In section 6.2 some common cases are coded by a more direct method for efficiency, typically using calls to \texttt{\exp_after:wN}.

\begin{verbatim}
\l__exp_internal_tl
\end{verbatim}

This scratch token list variable is defined in \texttt{l3basics}.

(End definition for \texttt{\l__exp_internal_tl}.)

This code uses internal functions with names that start with \texttt{\::} to perform the expansions. All macros are \texttt{long} since the tokens undergoing expansion may be arbitrary user input.

An argument manipulator \texttt{\::(Z)} always has signature \texttt{#1\::\#2\#3} where \texttt{#1} holds the remaining argument manipulations to be performed, \texttt{\::} serves as an end marker for the list of manipulations, \texttt{\#2} is the carried over result of the previous expansion steps and \texttt{\#3} is the argument about to be processed. One exception to this rule is \texttt{\::p}, which has to grab an argument delimited by a left brace.
#1 is the result of an expansion step, #2 is the remaining argument manipulations and #3 is the current result of the expansion chain. This auxiliary function moves #1 back after #3 in the input stream and checks if any expansion is left to be done by calling #2. In by far the most cases we need to add a set of braces to the result of an argument manipulation so it is more effective to do it directly here. Actually, so far only the \texttt{c} of the final argument manipulation variants does not require a set of braces.

\begin{verbatim}
\cs_new:Npn __exp_arg_next:nnn #1#2#3 { #2 \::: { #3 {#1} } }
\cs_new:Npn __exp_arg_next:Nnn #1#2#3 { #2 \::: { #3 #1 } }
\end{verbatim}

(End definition for __exp_arg_next:nnn and __exp_arg_next:Nnn.)

\texttt{:::} The end marker is just another name for the identity function.

\begin{verbatim}
\cs_new:Npn \::: #1 {#1}
\end{verbatim}

(End definition for \:::. This function is documented on page 37.)

\texttt{::n} This function is used to skip an argument that doesn’t need to be expanded.

\begin{verbatim}
\cs_new:Npn \::n #1 \::: #2#3 { #1 \::: { #2 {#3} } }
\end{verbatim}

(End definition for \::n. This function is documented on page 37.)

\texttt{::N} This function is used to skip an argument that consists of a single token and doesn’t need to be expanded. It is not wrapped in braces in the result.

\begin{verbatim}
\cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }
\end{verbatim}

(End definition for \::N. This function is documented on page 37.)

\texttt{::p} This function is used to skip an argument that is delimited by a left brace and doesn’t need to be expanded. It is not wrapped in braces in the result.

\begin{verbatim}
\cs_new:Npn \::p #1 \::: #2#3# { #1 \::: {#2#3} }
\end{verbatim}

(End definition for \::p. This function is documented on page 37.)

\texttt{::c} This function is used to skip an argument that is turned into a control sequence without expansion.

\begin{verbatim}
\cs_new:Npn \::c #1 \::: #2#3 { \exp_end:w __exp_arg_next:Nnn \cs:w #3 \cs_end: {#1} {#2} }
\end{verbatim}

(End definition for \::c. This function is documented on page 37.)

\texttt{::o} This function is used to expand an argument once.

\begin{verbatim}
\cs_if_exist:NTF \tex_expanded:D
\cs_new:Npn \::o #1 \::: #2#3
\{ \tex_expanded:D __exp_arg_next:Nnn \cs:w #3 {#1} {#2} \}
\end{verbatim}

(End definition for \::o. This function is documented on page 37.)

\texttt{::e} With the \texttt{expanded} primitive available, just expand. Otherwise defer to \texttt{\exp_args:Ne} implemented later.

\begin{verbatim}
\cs_if_exist:NTF \tex_expanded:D
\{ \cs_new:Npn \::e #1 \::: #2#3
\{ \tex_expanded:D \{ \exp_not:n {#1} \} \}
\end{verbatim}

(End definition for \::e. This function is documented on page 37.)
\exp_stop_f: This function is used to expand a token list until the first unexpandable token is
found. This is achieved through \exp:w \exp_end_continue_f:w that expands everything
in its way following it. This scanning procedure is terminated once the expansion
hits something non-expandable (if that is a space it is removed). We introduce
\exp_stop_f: to mark such an end-of-expansion marker. For example, f-expanding
\cs_set_eq:Nc \aaa { b \l_tmpa_tl b } where \l_tmpa_tl contains the characters
lur gives \tex_let:D \aaa = \blurb which then turns out to start with the non-
expandable token \tex_let:D. Since the expansion of \exp:w \exp_end_continue_f:w is
empty, we wind up with a fully expanded list, only \TeX{} has not tried to execute any of
the non-expandable tokens. This is what differentiates this function from the x argument
type.

\exp_stop_f: \cs_new:Npn \::f #1 \::: #2#3
\{ \exp_after:wN ___exp_arg_next:nnn
\exp_after:wN { \exp:w \exp_end_continue_f:w #3 } {#1} {#2} \}
\use:nn { \cs_new_eq:NN \exp_stop_f: } { ~ }
This function evaluates a register. Now a register might exist as one of two things: A parameter-less macro or a built-in TeX register such as \count. For the TeX registers we have to utilize a \the whereas for the macros we merely have to expand them once. The trick is to find out when to use \the and when not to. What we want here is to find out whether the token expands to something else when hit with \exp_after:wN. The technique is to compare the meaning of the token in question when it has been prefixed with \exp_not:N and the token itself. If it is a macro, the prefixed \exp_not:N temporarily turns it into the primitive \scan_stop:

\cs_new:Npn __exp_eval_register:N #1
\exp_after:wN \if_meaning:w \exp_not:N #1 #1
If the token was not a macro it may be a malformed variable from a c expansion in which case it is equal to the primitive \scan_stop:. In that case we throw an error. We could let TeX do it for us but that would result in the rather obscure

\texttt{! You can’t use ‘\relax’ after \the.}

which while quite true doesn’t give many hints as to what actually went wrong. We provide something more sensible.

\exp_after:wN \use_i_i:nnn
\fi:
The next bit requires some explanation. The function must be initiated by \exp:w and we want to terminate this expansion chain by inserting the \exp_end: token. However, we have to expand the register \#1 before we do that. If it is a TeX register, we need to execute the sequence \exp_after:wN \exp_end: \tex_the:D \#1 and if it is a macro we need to execute \exp_after:wN \exp_end: \#1. We therefore issue the longer of the two sequences and if the register is a macro, we remove the \tex_the:D.

\exp_after:wN __exp_eval_register:N \#1
\exp_after:wN __exp_eval_error_msg:w
\fi:
\if_meaning:w \scan_stop: #1
__exp_eval_error_msg:w
\fi:
The next bit requires some explanation. The function must be initiated by \exp:w and we want to terminate this expansion chain by inserting the \exp_end: token. However, we have to expand the register \#1 before we do that. If it is a TeX register, we need to execute the sequence \exp_after:wN \exp_end: \tex_the:D \#1 and if it is a macro we need to execute \exp_after:wN \exp_end: \#1. We therefore issue the longer of the two sequences and if the register is a macro, we remove the \tex_the:D.

\exp_after:wN __exp_eval_register:c \#1
\exp_after:wN __exp_eval_register:N \#1 \cs:w #1 \cs_end: \cs:w \#1 \cs_end: }
Clean up nicely, then call the undefined control sequence. The result is an error message looking like this:

\texttt{! Undefined control sequence.}<argument>\LaTeX3 error: Erroneous variable used!

\texttt{1.55 \tl_set:Nv \l_tmpa_tl \{undefined_tl\}}

\exp_after:wN __exp_eval_error_msg:w \#1 \tex_the:D \#2
\if\fi:
\if\fi:
__kernel_msg_expandable_error:nnn \kernel \{ bad-variable \} \{#2\}
\exp_end:
\}
\}

(End definition for __exp_eval_register:N and __exp_eval_error_msg:w.)
6.2 Hand-tuned definitions

One of the most important features of these functions is that they are fully expandable.

```latex
\exp_args:Nc
\exp_args:cc
\exp_args:Nnc
\exp_args:Ncc
\exp_args:Nccc
\exp_args:NNc
\exp_args:cc
\exp_args:N
\exp_args:N0
\exp_args:NNo
\exp_args:NNNo
\exp_args:Ne
\exp_args:Nf
\exp_args:NV
\exp_args:Nv
```

In \texttt{l3basics}.

(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 29.)

Here are the functions that turn their argument into csnames but are expandable.

```latex
\exp_args:NNc
\exp_args:Ncc
\exp_args:Nccc
\cs_new:Npn \exp_args:NNc #1#2#3
\begin{verbatim}
2987 \{ \exp_after:wN \#1 \exp_after:wN \#2 \cs:w #3 \cs_end: \}
\end{verbatim}
\cs_new:Npn \exp_args:Ncc #1#2#3
\begin{verbatim}
2989 \{ \exp_after:wN \#1 \cs:w \#2 \exp_after:wN \cs_end: \cs:w \#3 \cs_end: \}
\end{verbatim}
\cs_new:Npn \exp_args:Nccc #1#2#3#4
\begin{verbatim}
2992 \{ \exp_after:wN \#1 \cs:w \#2 \exp_after:wN \cs_end: \cs:w \#3 \exp_after:wN \cs_end: \cs:w \#4 \cs_end: \}
\end{verbatim}
```

(End definition for \exp_args:NNc, \exp_args:Ncc, and \exp_args:Nccc. These functions are documented on page 31.)

Those lovely runs of expansion!

```latex
\exp_args:No
\exp_args:NNo
\exp_args:NNNo
\cs_new:Npn \exp_args:No #1#2
\begin{verbatim}
2998 \{ \exp_after:wN \#1 \exp_after:wN \{ \#2 \} \}
\end{verbatim}
\cs_new:Npn \exp_args:NNo #1#2#3
\begin{verbatim}
3000 \{ \exp_after:wN \#1 \exp_after:wN \#2 \exp_after:wN \{ \#3 \} \}
\end{verbatim}
\cs_new:Npn \exp_args:NNNo #1#2#3#4
\begin{verbatim}
3002 \{ \exp_after:wN \#1 \exp_after:wN \#2 \exp_after:wN \#3 \exp_after:wN \{ \#4 \} \}
\end{verbatim}
```

(End definition for \exp_args:No, \exp_args:NNo, and \exp_args:NNNo. These functions are documented on page 30.)

When the \texttt{expanded} primitive is available, use it. Otherwise use \texttt{__exp_e:nn}, defined later, to fully expand tokens.

```latex
\exp_args:Ne
\cs_if_exist:NTF \tex_expanded:D
\begin{verbatim}
3003 \{ \cs_new:Npn \exp_args:Ne #1#2 { \exp_after:wN \#1 \exp_after:wN \{ \exp:w \exp_end_continue_f:w \#2 \} \}
\end{verbatim}
```

(End definition for \exp_args:Ne. This function is documented on page 30.)

```latex
\exp_args:Nf
\exp_args:NV
\exp_args:Nv
\cs_new:Npn \exp_args:Nf #1#2
\begin{verbatim}
3015 \{ \exp_after:wN \#1 \exp_after:wN \{ \exp:w \exp_end_continue_f:w \#2 \} \}
\end{verbatim}
```

350
Some more hand-tuned function with three arguments. If we forced that an o argument always has braces, we could implement \exp_args:Nco with less tokens and only two arguments.
(End definition for \exp_args:NNV and others. These functions are documented on page 31.)

\exp_args:NNV A few more that we can hand-tune.
\exp_args:NcNc \cs_new:Npn \exp_args:NNV #1#2#3#4
\exp_args:NcNo \cs_new:Npn \exp_args:NNV #1#2#3#4
\exp_args:Ncco \cs_new:Npn \exp_args:NNV #1#2#3#4

(End definition for \exp_args:NNV and others. These functions are documented on page 32.)
6.3 Last-unbraced versions

There are a few places where the last argument needs to be available unbraced. First
some helper macros.

\begin{verbatim}
\cs_new:Npn __exp_arg_last_unbraced:nn #1#2 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
\cs_new:Npn \::o_unbraced \::: #1#2 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {\exp:w __exp_eval_register:N #2} {#1} }
\cs_new:Npn \::V_unbraced \::: #1#2 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {\exp:w __exp_eval_register:c {#2}} {#1} }
\cs_if_exist:NTF \tex_expanded:D { \cs_new:Npn \::e_unbraced \::: #1#2 { \tex_expanded:D { \exp_not:n {#1} #2 } } }
\cs_new:Npn \::f_unbraced \::: #1#2 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {\exp:w \exp_end_continue_f:w #2} {#1} }
\cs_new_protected:Npn \::x_unbraced \::: #1#2 { \cs_set_nopar:Npx \l__exp_internal_tl { \exp_not:n {#1} #2 } \l__exp_internal_tl }
\end{verbatim}

Now the business end: most of these are hand-tuned for speed, but the general system is
in place.

\begin{verbatim}
\exp_last_unbraced:No \exp_last_unbraced:NV \exp_last_unbraced:Nv \exp_last_unbraced:Ne \exp_last_unbraced:Nf \exp_last_unbraced:NN \exp_last_unbraced:NNV \exp_last_unbraced:NNf \exp_last_unbraced:Nco \exp_last_unbraced:NcV \exp_last_unbraced:Nco \exp_last_unbraced:NNf \exp_last_unbraced:Nco \exp_last_unbraced:NNV \exp_last_unbraced:Nco \exp_last_unbraced:Nno \exp_last_unbraced:Noo \exp_last_unbraced:Nvo \exp_last_unbraced:Nvo \exp_last_unbraced:Nvo \exp_last_unbraced:NNn \exp_last_unbraced:NNn
\end{verbatim}
If #2 is a single token then this can be implemented as

\begin{verbatim}
\cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
{ \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 #3 }
\end{verbatim}

However, for robustness this is not suitable. Instead, a bit of a shuffle is used to ensure that #2 can be multiple tokens.

\begin{verbatim}
\cs_new:Npn \exp_last_two_unbraced:Noo #1#2#3
{ \exp_after:wN __exp_last_two_unbraced:noN \exp_after:wN {#3} {#2} #1 }
\cs_new:Npn __exp_last_two_unbraced:noN #1#2#3
{ \exp_after:wN #3 #2 #1 }
\end{verbatim}

(End definition for \exp_last_unbraced:Noo and others. These functions are documented on page 33.)

6.4 Preventing expansion

__kernel_exp_not:w

At the kernel level, we need the primitive behaviour to allow expansion before the brace group.

\begin{verbatim}
\cs_new_eq:NN __kernel_exp_not:w \tex_unexpanded:D
\end{verbatim}

(End definition for __kernel_exp_not:w.)

\exp_not:c

All these except \exp_not:c call the kernel-internal __kernel_exp_not:w namely

\begin{verbatim}
\exp_not:o \exp_not:e \exp_not:f \exp_not:V \exp_not:v
\end{verbatim}

(End definition for __kernel_exp_not:w.)
6.5 Controlled expansion

To trigger a sequence of “arbitrarily” many expansions we need a method to invoke \TeX’s expansion mechanism in such a way that (a) we are able to stop it in a controlled manner and (b) the result of what triggered the expansion in the first place is null, i.e., that we do not get any unwanted side effects. There aren’t that many possibilities in \TeX; in fact the one explained below might well be the only one (as normally the result of expansion is not null).

The trick here is to make use of the fact that \texttt{\texttt{\textbackslash tex\romannumeral:D}} expands the tokens following it when looking for a number and that its expansion is null if that number turns out to be zero or negative. So we use that to start the expansion sequence: \texttt{\exp:w} is set equal to \texttt{\texttt{\textbackslash tex\romannumeral:D}} in \texttt{l3basics}. To stop the expansion sequence in a controlled way all we need to provide is a constant integer zero as part of expanded tokens. As this is an integer constant it immediately stops \texttt{\texttt{\textbackslash tex\romannumeral:D}}’s search for a number. Again, the definition of \texttt{\exp_end:} as the integer constant zero is in \texttt{l3basics}. (Note that according to our specification all tokens we expand initiated by \texttt{\exp:w} are supposed to be expandable (as well as their replacement text in the expansion) so we will not encounter a “number” that actually result in a roman numeral being generated. Or if we do then the programmer made a mistake.)

If on the other hand we want to stop the initial expansion sequence but continue with an f-type expansion we provide the alphabetic constant \texttt{‘^^@} that also represents 0 but this time \TeX’s syntax for a ⟨number⟩ continues searching for an optional space (and it continues expansion doing that) — see \TeXbook page 269 for details.

\begin{verbatim}
\group_begin:
\tex_catcode:D '^^@ = 13
\cs_new_protected:Npn \exp_end_continue_f:w { '^^@ }
\group_end:
\end{verbatim}

If the above definition ever appears outside its proper context the active character ^^^@ will be executed so we turn this into an error. The test for existence covers the (unlikely) case that some other code has already defined ^^^@: this is true for example for \texttt{xmltex.tex}.

\begin{verbatim}
\cs_if_exist:NF \tex_expanded:D
\else:
\cs_new:Npn ^^^@
{ _kernel_msg_expandable_error:nn { kernel } { bad-exp-end-f } }
\fi:
\end{verbatim}

The same but grabbing an argument to remove spaces and braces.

\begin{verbatim}
\cs_new:Npn \exp_end_continue_f:nw #1 { '^^@ #1 }
\group_end;
\end{verbatim}

(End definition for \texttt{\exp:w} and others. These functions are documented on page 36.)

6.6 Emulating e-type expansion

When the \texttt{\texttt{\textbackslash expanded}} primitive is available it is used to implement e-type expansion; otherwise we emulate it.

\begin{verbatim}
\cs_if_exist:NF \tex_expanded:D
\end{verbatim}

356
Repeatedly expand tokens, keeping track of fully-expanded tokens in the second argument to __exp_e:nn: this function eventually calls __exp_e_end:nn to leave \exp_end: in the input stream, followed by the result of the expansion. There are many special cases: spaces, brace groups, \noexpand, \unexpanded, \the, \primitive. While we use brace tricks \if_false: { \fi:, the expansion of this function is always triggered by \exp:w so brace balance is eventually restored after that is hit with a single step of expansion. Otherwise we could not nest e-type expansions within each other.

\cs_new:Npn __exp_e:nn #1 __exp_e:nn #1
\if_false: { \fi:
\tl_if_head_is_N_type:nTF {#1}
{ __exp_e:N }
{ __exp_e_group:n }
{ \tl_if_empty:nTF {#1}
 { \exp_after:wN __exp_e_end:nn }
 { \exp_after:wN __exp_e_space:nn }
 \exp_after:wN { \if_false: } \fi:
 }
\}

\cs_new:Npn __exp_e_end:nn #1#2 \exp_end: #2

(End definition for __exp_e:nn and __exp_e_end:nn.)

__exp_e_space:nn For an explicit space character, remove it by f-expansion and put it in the (future) output.

\cs_new:Npn __exp_e_space:nn #1#2 \exp_args:Nf __exp_e:nn {#1} { #2 ~ }

(End definition for __exp_e_space:nn.)

__exp_e_group:n __exp_e_put:nn __exp_e_put:nnn For a group, expand its contents, wrap it in two pairs of braces, and call __exp_e_put:nnn. This function places the first item (the double-brace wrapped result) into the output. Importantly, \tl_head:n works even if the input contains quarks.

\cs_new:Npn __exp_e_group:n #1
\exp_after:wN __exp_e_put:nn
\exp_after:wN { \exp_after:wN { \exp_after:wN { \exp:w \if_false: } \fi: __exp_e:nn {#1} { } } }

(End definition for __exp_e_group:n, __exp_e_put:nn, and __exp_e_put:nnn.)
For an N-type token, call _exp_e:Nnn with arguments the (first token), the remaining tokens to expand and what’s already been expanded. If the (first token) is non-expandable, including \texttt{protected} (long or not) macros, it is put in the result by _exp_e_protected:Nnn. The four special primitives \texttt{unexpanded}, \texttt{noexpand}, \texttt{the}, \texttt{primitive} are detected; otherwise the token is expanded by _exp_e_expandable:Nnn.

\begin{verbatim}
\cs_new:Npn _exp_e:N #1
 \exp_after:wN _exp_e:Nnn #1
\exp_after:wN _exp_e:N #1 \fi:
\token_if_protected_macro:NT #1 { 1 ~ }
\token_if_protected_long_macro:NT #1 { 1 ~ }
\if_meaning:w \exp_not:n #1 2 ~ \fi:
\if_meaning:w \exp_not:n #1 3 ~ \fi:
\if_meaning:w \tex_the:D #1 4 ~ \fi:
\if_meaning:w \tex_primitive:D #1 5 ~ \fi: 0 ~
\exp_after:wN _exp_e_expandable:Nnn
\or: \exp_after:wN _exp_e_protected:Nnn
\or: \exp_after:wN _exp_e_unexpanded:Nnn
\or: \exp_after:wN _exp_e_noexpand:Nnn
\or: \exp_after:wN _exp_e_the:Nnn
\fi:
#1
\end{verbatim}

(End definition for _exp_e:N and others.)

We don’t try hard to make sensible error recovery since the error recovery of \tex_primitive:D when followed by something else than a primitive depends on the engine. The only valid case is when what follows is N-type. Then distinguish special primitives \unexpanded, \noexpand, \texttt{the}, \texttt{primitive} from other primitives. In the “other” case, the only reasonable way to check if the primitive that follows \tex_primitive:D is expandable is to expand and compare the before-expansion and after-expansion results. If they coincide then probably the primitive is non-expandable and should be put in the output together with \tex_primitive:D (one can cook up contrived counter-examples where the true \texttt{expanded} would have an infinite loop), and otherwise one should continue expanding.

\begin{verbatim}
\cs_new:Npn _exp_e_primitive:Nnn #1#2
 \exp_after:wN _exp_e_primitive_aux:NWw #1_exp_e_primitive_aux:NWw
_exp_e_primitive_other:Nnn
_exp_e_primitive_other_aux:Nnn
\end{verbatim}
__kernel_msg_expandable_error:nnn { kernel } { e-type }
__exp_e_primitive_aux:NW \c_empty_tl

__exp_e_primitive_aux:NW #1 \c_empty_tl

\cs_new:Npn __exp_e_primitive_aux:NNw #1 #2
{ \exp_after:wN __exp_e_primitive_aux:NNnn \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN { \if_false: } \fi: }

\cs_new:Npn __exp_e_primitive_other:NNnn #1 #2 #3
{ \str_if_eq:nnTF {#1} {#2 #3 #4} { __exp_e:nn {#4} {#5 #2 #3} } { __exp_e:nn {#1} {#5} } }

__exp_e_primitive:Nnn

The \noexpand{primitive} has no effect when followed by a token that is not N-type; otherwise __exp_e_put:nn can grab the next token and put it in the result unchanged.

__exp_e_noexpand:Nnn

(End definition for __exp_e_primitive:Nnn and others.)

(End definition for __exp_e_noexpand:Nnn.)
The \unexpanded primitive expands and ignores any space, \scan_stop, or token affected by \exp_not:N, then expects a brace group. Since we only support brace-balanced token lists it is impossible to support the case where the argument of \unexpanded starts with an implicit brace. Even though we want to expand and ignore spaces we cannot blindly \f-expand because tokens affected by \exp_not:N should discarded without being expanded further.

As usual distinguish four cases: brace group (the normal case, where we just put the item in the result), space (just \f-expand to remove the space), empty (an error), or N-type \langle token \rangle. In the last case call ___exp_e_unexpanded:nN triggered by an f-expansion. Having a non-expandable \langle token \rangle after \unexpanded is an error (we recover by passing \{} to \unexpanded: this is different from \TeX because the error recovery of \unexpanded changes the balance of braces), unless that \langle token \rangle is \scan_stop: or a space (recall that we don’t implement the case of an implicit begin-group token). An expandable \langle token \rangle is instead expanded, unless it is \noexpand. The latter primitive can be followed by an expandable N-type token (removed), by a non-expandable one (kept and later causing an error), by a space (removed by \f-expand), or by a brace group or nothing (later causing an error).

\begin{verbatim}
\cs_new:Npn ___exp_e_unexpanded:Nnn #1 \{ ___exp_e_unexpanded:nn \}
\cs_new:Npn ___exp_e_unexpanded:nn #1 \#1 \{
\tl_if_head_is_N_type:nTF {#1} \{
\exp_args:Nf ___exp_e_unexpanded:nn
\{ ___exp_e_unexpanded:N \#1 \#1 \}
\}\}
\tl_if_head_is_group:nTF {#1} \{
___exp_e_put:nn \}
\tl_if_empty:nTF {#1} \{
_\kernel_msg_expandable_error:nnn
\{ kernel \} \{ e-type \}
\{ \unexpanded missing-brace \}
___exp_e_end:nn
\}
\exp_args:Nf ___exp_e_unexpanded:nn \}
\}
___kernel_msg:nnn
\{ ___exp_e_unexpanded:nN \#1#2 \{
\exp_after:wN \if_meaning:w \exp_not:N \#2 \#2
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_i:nn
\fi:
\{
\token_if_eq_catcode:NNTF \#2 \c_space_token
\exp_stop_f: \}
\}
\end{verbatim}
Finally implement \token{the}. Followed by anything other than an \texttt{N}-type \langle token \rangle this causes an error (we just let \TeX{} make one), otherwise we test the \langle token \rangle. If the \langle token \rangle is expandable, expand it. Otherwise it could be any kind of register, or things like \texttt{numexpr}, so there is no way to deal with all cases. Thankfully, only \texttt{toks} data needs to be protected from expansion since everything else gives a string of characters. If the \langle token \rangle is \texttt{toks} we find a number and unpack using the \texttt{the_toks} functions. If it is a token register we unpack it in a brace group and call \texttt{__exp_e_put:nn} to move it to the result. Otherwise we unpack and continue expanding (useless but safe) since it is basically impossible to have a handle on where the result of \token{the} ends.
The calling function has applied \int_value:w so we collect digits with __exp_e_the_toks:n (which gets the token list as an argument) and __exp_e_the_toks:N (which gets the first token in case it is N-type). The digits are themselves collected into an \int_value:w argument to __exp_e_the_toks:wnn. Then that function unpacks the \toks\langle number\rangle into the result. We include ? because __exp_e_put:nnn removes one item from its second argument. Note that our approach is rather crude: in cases like \the\toks12-34 the first \int_value:w removes the space and we will incorrectly unpack the \the\toks1234.
3490 \exp_after:wN __exp_e_the_toks:n
3491 \exp_after:wN __exp_e_the_toks:n
3492 \exp_after:wN \{ \iffalse: \} \fi:
3493 \}
3494 \{
3495 \exp_after:wN \;
3496 \exp_after:wN \{ \iffalse: \} \fi: #1
3497 \}
3498 }

(End definition for __exp_e_the_toks:wnn, __exp_e_the_toks:n, and __exp_e_the_toks:N.)

We need to detect both \texttt{toks} registers like \texttt{toks@} in \LaTeX{} and parameters such as \texttt{everypar}, as the result of unpacking the register should not expand further. Registers are found by \texttt{token_if_toks_register:NTF} by inspecting the meaning. The list of parameters is finite so we just use a \texttt{cs_if_exist:cTF} test to look up in a table. We abuse \texttt{cs_to_str:N}'s ability to remove a leading escape character whatever it is.

\begin{verbatim}
\prg_new_conditional:Nnn __exp_e_if_toks_register:N #1 { TF } {
 \token_if_toks_register:NTF #1 { \prg_return_true: }
 {
 \cs_if_exist:cTF {
 __exp_e_the_
 \exp_after:wN \cs_to_str:N
 \token_to_meaning:N #1 :
 } { \prg_return_true: } { \prg_return_false: }
 }
}\end{verbatim}

\begin{verbatim}
\cs_new_eq:NN __exp_e_the_XeTeXinterchartoks: ?
\cs_new_eq:NN __exp_e_the_errhelp: ?
\cs_new_eq:NN __exp_e_the_everycr: ?
\cs_new_eq:NN __exp_e_the_everydisplay: ?
\cs_new_eq:NN __exp_e_the_everyeof: ?
\cs_new_eq:NN __exp_e_the_everyhbox: ?
\cs_new_eq:NN __exp_e_the_everyjob: ?
\cs_new_eq:NN __exp_e_the_everymath: ?
\cs_new_eq:NN __exp_e_the_everypar: ?
\cs_new_eq:NN __exp_e_the_everyvbox: ?
\cs_new_eq:NN __exp_e_the_pdfpageattr: ?
\cs_new_eq:NN __exp_e_the_pdfpagesattr: ?
\cs_new_eq:NN __exp_e_the_pdfpkmode: ?
\end{verbatim}

(End definition for __exp_e_if_toks_register:NTF and others.)

We are done emulating \texttt{e}-type argument expansion when \texttt{expanded} is unavailable.

6.7 Defining function variants

\texttt{\cs_generate_variant:Nn #1 _ : Base form of a function: \textit{e.g.}, \texttt{tl_set:Nn}}

\texttt{\cs_generate_variant:cn #1 :}
One or more variant argument specifiers; e.g., \{Nx,c,cx\}

After making sure that the base form exists, test whether it is protected or not and define _cs_generate_variant:N as either \cs_new:Px or \cs_new_protected:Px, which is then used to define all the variants (except those involving x-expansion, always protected).

Split up the original base function only once, to grab its name and signature. Then we wish to iterate through the comma list of variant argument specifiers, which we first convert to a string: the reason is explained later.

\begin{verbatim}
\cs_new_protected:Npx \cs_generate_variant:Nn #1#2
\{ _cs_generate_variant:N #1 \use:x \{
_cs_generate_variant:mmNN
\cs_split_function:N #1
\exp_not:N #1
\tl_to_str:n (#2),
\exp_not:N \scan_stop:,
\exp_not:N \q_recursion_stop
\}
\}
\cs_new_protected:Npx \cs_generate_variant:cn
\{ \exp_args:NC \cs_generate_variant:Nn \}
\end{verbatim}

(End definition for \cs_generate_variant:Nn. This function is documented on page 27.)

The goal here is to pick up protected parent functions. There are four cases: the parent function can be a primitive or a macro, and can be expandable or not. For non-expandable primitives, all variants should be protected; skipping the \texttt{\textbf{else}}: branch is safe because non-expandable primitives cannot be \TeX{} conditionals.

The other case where variants should be protected is when the parent function is a protected macro: then protected appears in the meaning before the first occurrence of \texttt{macro}. The \texttt{\textbf{ww}} auxiliary removes everything in the meaning string after the first \texttt{ma}. We use \texttt{ma} rather than the full \texttt{macro} because the meaning of the \texttt{\firstmark} primitive (and four others) can contain an arbitrary string after a leading \texttt{firstmark}: Then, look for \texttt{pr} in the part we extracted: no need to look for anything longer: the only strings we can have are an empty string, \texttt{\long/uni2423}, \texttt{\protected/uni2423}, \texttt{\protected\long/uni2423}, \texttt{\first}, \texttt{\top}, \texttt{\bot}, \texttt{\split\top}, or \texttt{\split\bot}, with \texttt{\textbf{w}} replaced by the appropriate escape character. If \texttt{pr} appears in the part before \texttt{ma}, the first \texttt{\q_mark} is taken as an argument of the \texttt{\textbf{ww}\textbf{N}N} auxiliary, and \texttt{#3} is \texttt{\cs_new_protected:Px}, otherwise it is \texttt{\cs_new_Npx}.
\exp_not:N \fi:
\exp_last_unbraced:NNNNO
\cs_new_protected:Nppm __cs_generate_variant:ww
 #1 { \tl_to_str:n { ma } } #2 \q_mark
 { __cs_generate_variant:wwNw #1 }
\exp_last_unbraced:NNNNO
\cs_new_protected:Nppm __cs_generate_variant:wwNw
 #1 { \tl_to_str:n { pr } } #2 \q_mark #3 #4 \q_stop
 { \cs_set_eq:NN __cs_tmp:w #3 }
__kernel_msg_error:nnx { kernel } { missing-colon }{ \token_to_str:c {#1} }
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
__cs_generate_variant:Nnnw #4 {#1}{#2}
\cs_new_protected:Nppm __cs_generate_variant:nnNN #1#2#3#4
 { \if_meaning:w \c_false_bool #3 __kernel_msg_error:nnx { kernel } { missing-colon }{ \token_to_str:c {#1} } \fi:
 __cs_generate_variant:Nnnw #4 (#1){#2}
\end{definition}

__cs_generate_variant:Nnnw #1: Base function.
 #2: Base name.
 #3: Base signature.
 #4: Beginning of variant signature.

First check whether to terminate the loop over variant forms. Then, for each variant
form, construct a new function name using the original base name, the variant signature
consisting of \l \ letters and the last \k − \l \ letters of the base signature (of length \k). For
example, for a base function \prop_put:Nnn \ which needs a \cV \ variant form, we want the
new signature to be \cVn .

There are further subtleties:

- In \\cs_generate_variant:Nn \foo:nnTF \{xxTF\}, we must define \foo:xxTF using
 \exp_args:Nxx, rather than a hypothetical \exp_args:NxxTF. Thus, we wish to
 trim a common trailing part from the base signature and the variant signature.

- In \\cs_generate_variant:Nn \foo:on \{ox\}, the function \foo:ox must be defined
 using \exp_args:Nxx, not \exp_args:Nox, to avoid double o expansion.

- Lastly, \\cs_generate_variant:Nn \foo:on \{xn\} must trigger an error, because
 we do not have a means to replace o-expansion by x-expansion. More generally, we
 can only convert N to c, or convert n to V, v, o, f, x.
All this boils down to a few rules. Only \texttt{n} and \texttt{N}-type arguments can be replaced by \texttt{\cs_generate_variant:Nn}. Other argument types are allowed to be passed unchanged from the base form to the variant: in the process they are changed to \texttt{n} except for \texttt{N} and \texttt{p}-type arguments. A common trailing part is ignored.

We compare the base and variant signatures one character at a time within x-expansion. The result is given to \texttt{__cs_generate_variant:wwNN} (defined later) in the form \texttt{⟨ processed variant signature ⟩\q_mark\langle errors\rangle\q_stop⟨ base function ⟩ ⟨ new function ⟩}. If all went well, \texttt{⟨ errors ⟩} is empty; otherwise, it is a kernel error message and some clean-up code.

Note the space after \texttt{#3} and after the following brace group. Those are ignored by \TeX\ when fetching the last argument for \texttt{__cs_generate_variant_loop:nWwN}, but can be used as a delimiter for \texttt{__cs_generate_variant_loop_end:nwwwNNnn}.

```latex
\cs_new_protected:Npn \__cs_generate_variant:Nnnw #1#2#3#4 ,
\begin{verbatim}
    \if_meaning:w \scan_stop: #4
        \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
    \fi:
    \use:x
    \exp_not:N \__cs_generate_variant:wwNN
    \__cs_generate_variant_loop:nNwN { }
    #4
    \__cs_generate_variant_loop_end:nwwNNnn
    \q_mark
    \{ - { } \fi: \__cs_generate_variant_loop_long:wNNnn } -
    { }
    \q_stop
    \exp_not:N #1 {#2} {#4}
\end{verbatim}
\end{verbatim}
\end{verbatim}
```

(End definition for \texttt{__cs_generate_variant:Nnnw}.)

\textbf{#1:} Last few consecutive letters common between the base and variant (more precisely, \texttt{__cs_generate_variant_same:N} \texttt{⟨ letter ⟩} for each letter).

\textbf{#2:} Next variant letter.

\textbf{#3:} Remainder of variant form.

\textbf{#4:} Next base letter.

The first argument is populated by \texttt{__cs_generate_variant_loop_same:w} when a variant letter and a base letter match. It is flushed into the input stream whenever the two letters are different: if the loop ends before, the argument is dropped, which means that trailing common letters are ignored.

The case where the two letters are different is only allowed if the base is \texttt{n} and the variant is \texttt{c}, or when the base is \texttt{n} and the variant is \texttt{O}, \texttt{V}, \texttt{f} or \texttt{x}. Otherwise, call \texttt{__cs_generate_variant_loop_invalid:NNwNNnn} to remove the end of the loop, get arguments at the end of the loop, and place an appropriate error message as a second argument of \texttt{__cs_generate_variant:wwNN}. If the letters are distinct and the base letter is indeed \texttt{n} or \texttt{N}, leave in the input stream whatever argument \texttt{#1} was collected, and the next variant letter \texttt{#2}, then loop by calling \texttt{__cs_generate_variant_loop:nWwN}.

The loop can stop in three ways.
• If the end of the variant form is encountered first, #2 is \texttt{__cs_generate_variant_loop_end:nwwwNNnn} (expanded by the conditional \texttt{if:w}), which inserts some tokens to end the conditional; grabs the \texttt{(base name)} as #7, the \texttt{(variant signature)} #8, the \texttt{(next base letter)} #1 and the part #3 of the base signature that wasn’t read yet; and combines those into the \texttt{(new function)} to be defined.

• If the end of the base form is encountered first, #4 is \texttt{~\{\}fi:} which ends the conditional (with an empty expansion), followed by \texttt{__cs_generate_variant_loop_long:wNNnn}, which places an error as the second argument of \texttt{__cs_generate_variant:wNNn}.

• The loop can be interrupted early if the requested expansion is unavailable, namely when the variant and base letters differ and the base is not the right one (n or N to support the variant). In that case too an error is placed as the second argument of \texttt{__cs_generate_variant:wNNn}.

Note that if the variant form has the same length as the base form, #2 is as described in the first point, and #4 as described in the second point above. The \texttt{__cs_generate_variant_loop_end:nwwwNNnn} breaking function takes the empty brace group in #4 as its first argument: this empty brace group produces the correct signature for the full variant.

3596 \texttt{\cs_new:Npn __cs_generate_variant_loop_nWnN #1#2#3 } { q_mark #4

3597 \texttt{\if:w #2 #4
3598 \exp_after:wN __cs_generate_variant_loop_same:w
3599 \else:
3600 \texttt{\if:w #4 __cs_generate_variant_loop_base:N #2 \else:
3601 \texttt{\if:w 0
3602 \texttt{\if:w N #4 \else: \if:w n #4 \else: 1 \fi: fi:
3603 \texttt{\if:w \scan_stop: __cs_generate_variant_loop_base:N #2 1 \fi:
3604 \texttt{0
3605 __cs_generate_variant_loop_special:NNwNNn #4#2
3606 \else:
3607 __cs_generate_variant_loop_invalid:NNwNNn #4#2
3608 \texttt{\fi:
3609 \texttt{\fi:
3610 \texttt{\fi:
3611 \texttt{\if:w #1
3612 \texttt{\prg_do_nothing:
3613 \texttt{__cs_generate_variant_loop_nWnN } }
3614 \texttt{__cs_generate_variant_loop_base:N #1
3615 }
3616 \texttt{\cs_new:Npn __cs_generate_variant_loop_nWnN #1#2#3 } { q_mark #4
3617 \texttt{\if:w c #1 N \else:
3618 \texttt{\if:w o #1 n \else:
3619 \texttt{\if:w V #1 n \else:
3620 \texttt{\if:w v #1 n \else:
3621 \texttt{\if:w f #1 n \else:
3622 \texttt{\if:w e #1 n \else:
3623 \texttt{\if:w x #1 n \else:
3624 \texttt{\if:w n #1 n \else:
3625 \texttt{\if:w N #1 N \else:
3626
367}
\scan_stop: \fi:
\cs_new:Npn __cs_generate_variant_loop_same:w #1 \prg_do_nothing: #2#3#4 { #3 { #1 __cs_generate_variant_same:N #2 } }
\cs_new:Npn __cs_generate_variant_loop_end:nwwwNNnn #1#2 \q_mark #3 ~ #4 \q_stop #5#6#7#8 { \exp_not:N \q_mark \exp_not:N \q_stop \exp_not:c { #7 : #8 #1 #3 } }
\cs_new:Npn __cs_generate_variant_loop_long:wNNnn #1 \q_stop #2#3#4#5 { \exp_not:n { \q_mark __kernel_msg_error:nnxx { kernel } { variant-too-long } {#5} { \token_to_str:N #3 } \use_none:nnn \q_stop #3 #3 } }
\cs_new:Npn __cs_generate_variant_loop_invalid:NNwNNnn #1#2 \fi: \fi: \fi: #3 \q_stop #4#5#6#7 { \fi: \fi: \fi: \exp_not:n { \q_mark __kernel_msg_error:nxnn { kernel } { invalid-variant } {#7} { \token_to_str:N #5 } {#1} {#2} \use_none:nnn \q_stop #5 #5 #5 } }
\cs_new:Npn __cs_generate_variant_loop_special:NNwNNnn #1#2#3 \q_stop #4#5#6#7 {
__cs_generate_variant_same:N

When the base and variant letters are identical, don’t do any expansion. For most argument types, we can use the n-type no-expansion, but the N and p types require a slightly different behaviour with respect to braces. For V-type this function could output N to avoid adding useless braces but that is not a problem.

\cs_new:Npn __cs_generate_variant_same:N #1
{\if:w N #1 #1 \else:\if:w p #1 #1 \else:\token_to_str:N n \if:w n #1 \else:__cs_generate_variant_loop_special:NNwNNnn #1#1 \fi:\fi:\fi:\fi:}

__cs_generate_variant:wwNN

If the variant form has already been defined, log its existence (provided log-functions is active). Otherwise, make sure that the \exp_args:N #3 form is defined, and if it contains x, change __cs_tmp:w locally to \cs_new_protected:Npx. Then define the variant by combining the \exp_args:N #3 variant and the base function.

\cs_new_protected:Npn __cs_generate_variant:wwNN #1 \q_mark #2 \q_stop #3#4
{ #2 \cs_if_free:NT #4
 \group_begin:
 __cs_generate_internal_variant:n {#1}
 __cs_tmp:w #4 \{ \exp_not:c { \exp_args:N #1 } \exp_not:N #3 \}
 \group_end:
}

__cs_generate_internal_variant:n
__cs_generate_internal_variant_loop:n

First test for the presence of x (this is where working with strings makes our lives easier), as the result should be protected, and the next variant to be defined using that internal variant should be protected (done by setting __cs_tmp:w). Then call __cs_generate_internal_variant:NNn with arguments \cs_new_protected:cpn \use:x (for protected) or \cs_new:cpn \tex_expanded:D (expandable) and the signature. If p appears in the signature, or if the function to be defined is expandable and the primitive
\expanded is not available, or if there are more than 8 arguments, call some fall-back code that just puts the appropriate \:: commands. Otherwise, call __cs_generate_internal_one_go:NNn to construct the \exp_args:N... function as a macro taking up to 9 arguments and expanding them using \use:x or \tex_expanded:D.

\cs_new_protected:Npx __cs_generate_internal_variant:n #1
\exp_last_unbraced:NNNNo
\cs_new_protected:Nnx __cs_generate_internal_variant:wwnNwn
\cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected:Npx
\use:x \token_to_str:N x \exp_not:N \q_mark
{ }
\cs_new:cpn \exp_not:N \tex_expanded:D \exp_not:N \q_stop
{#1}
\exp_last_unbraced:NNNNo
\cs_new_protected:Npx __cs_generate_internal_variant:wwnNwn #1
\exp_not:N __cs_generate_internal_variant:NNn \exp_not:N \q_mark #2 \q_mark #3#4#5#6 \q_stop #7
\cs_set_protected:Npn __cs_generate_internal_variant:wwnNwn #1
{ \token_to_str:N x } #2 \q_mark #3#4#5\q_mark #3
\if_catcode:w X \use_none:nnnnnnnn #3
\prg_do_nothing: \prg_do_nothing: \prg_do_nothing: \prg_do_nothing:
\prg_do_nothing: \prg_do_nothing: \prg_do_nothing: \prg_do_nothing: \prg_do_nothing: X
\exp_after:wN __cs_generate_internal_test:Nw \exp_after:wN \q_mark
\else:
\exp_after:wN __cs_generate_internal_test_aux:w \exp_after:wN \q_stop
\fi:
\q_mark
{ \use:x
 { \#1 \exp_args:N \#3 }
 __cs_generate_internal_variant_loop:n \#3 { : \use_i:nn }
}
\#1 \q_mark
\q_mark
{ \exp_not:n __cs_generate_internal_one_go:NNn \#1 \#2 \#3
\q_stop \#3}
\cs_new_protected:Npx __cs_generate internal_test_aux:w
\#1 \#2 \q_mark \#3 \#4 \q_stop \#3
This command grabs char by char outputting `::#1` (not expanded further). We avoid tests by putting a trailing : `\use_i:nn`, which leaves \cs_end: and removes the looping macro. The colon is in fact also turned into `::` so that the required structure for \exp_args:N... commands is correctly terminated.

(End definition for \cs_generate_internal_variant:n and \cs_generate_internal_variant-loop:n.)

\prg_generate_conditional_variant:Nnn
\prg_generate_variant:Nnn
\prg_generate_variant:w
\prg_generate_variant:n
\prg_generate_variant_p_form:nnn
\prg_generate_variant_T_form:nnn
\prg_generate_variant_F_form:nnn
\prg_generate_variant_TF_form:nnn
\cs_new_protected:Npn \prg_generate_conditional_variant:Nnn #1
\cs_new_protected:Npn __cs_generate_variant:nnNnn #1#2#3#4#5
\cs_new_protected:Npn __cs_generate_variant:w #1 , #2 \q_mark #3#4#5
\cs_new_protected:Npn __cs_generate_variant:n #1#2#3#4#5
\if_meaning:w \c_false_bool #3
__kernel_msg_error:nnx { kernel } { missing-colon }
\token_to_str:c {#1} }
\use_i_delimit_by_q_stop:nw
\fi:
\exp_after:wN __cs_generate_variant:w
\tl_to_str:n {#5} , \scan_stop: , \q_recursion_stop
\use_none_delimit_by_q_stop:w \q_mark {#1} {#2} {#4} \q_stop
\cs_new_protected:Npn __cs_generate_variant:n #1#2#3#4#5
\if_meaning:w \scan_stop: #1 \scan_stop:
\if_meaning:w \q_nil #1 \q_nil
\use_i:nnn
\fi:
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\else:
6.8 Definitions with the automated technique

Some of these could be done more efficiently, but the complexity of coding then becomes an issue. Notice that the auto-generated functions actually take no arguments themselves.

Here are the actual function definitions, using the helper functions above. The group is used because __cs_generate_internal_variant:n redefines __cs_tmp:w locally.

\cs_set_protected:Npn __cs_tmp:w #1
{ __cs_generate_internal_variant:n {##1} }

\cs_set_protected:Npn __cs_generate_internal_variant:n #1
{ __cs_generate_variant_p_form:nnn #1#2 }

\cs_set_protected:Npn __cs_generate_internal_variant_T_form:nnn #1#2
{ __cs_generate_variant:cn { #1 : #2 T } }

\cs_set_protected:Npn __cs_generate_internal_variant_F_form:nnn #1#2
{ __cs_generate_variant:cn { #1 : #2 F } }

\cs_set_protected:Npn __cs_generate_internal_variant_TF_form:nnn #1#2
{ __cs_generate_variant:cn { #1 : #2 TF } }

(End definition for \prg_generate_conditional_variant:Nnn and others. This function is documented on page 106.)

\exp_args:nn This function is used in the kernel hence we can use functions that are defined in later modules. It also does not need to be fast so use inline mappings. For each requested variant we check that there are no characters besides NnpcofeVvx, in particular that there are no spaces. Then we just call the internal function.

\cs_set_protected:Npn \exp_args_generate:n #1
{ \clist_map_inline:n { \tl_to_str:n {#1} } }

\cs_set_protected:Npn \exp_args_Nnc
{ \clist_map_inline:n { \tl_to_str:n {#1} } }

\cs_set_protected:Npn \exp_args_Nno
{ \clist_map_inline:n { \tl_to_str:n {#1} } }

\cs_set_protected:Npn \exp_args_NV
{ \clist_map_inline:n { \tl_to_str:n {#1} } }

\cs_set_protected:Npn \exp_args_Nv
{ \clist_map_inline:n { \tl_to_str:n {#1} } }

(End definition for \exp_args_generate:n. This function is documented on page 261.)
(End definition for \exp_args:\texttt{nc} and others. These functions are documented on page 31.)

\exp_args:\texttt{NNcf}
\exp_args:\texttt{NNno}
\exp_args:\texttt{NNnV}
\exp_args:\texttt{NNoo}
\exp_args:\texttt{NNVV}
\exp_args:\texttt{Ncno}
\exp_args:\texttt{NcnV}
\exp_args:\texttt{Noo}
\exp_args:\texttt{NVV}
\exp_args:\texttt{Ncno}
\exp_args:\texttt{Nnc}
\exp_args:\texttt{NnV}
\exp_args:\texttt{Nnnf}
\exp_args:\texttt{Nno}
\exp_args:\texttt{nnf}
\exp_args:\texttt{Noo}
\exp_args:\texttt{Nnf}
\exp_args:\texttt{Nff}
\exp_args:\texttt{Noo}
\exp_args:\texttt{Oof}
\exp_args:\texttt{Nffo}
\exp_args:\texttt{Ooo}
\exp_args:\texttt{Neeee}
\exp_args:\texttt{NNnx}
\exp_args:\texttt{NNx}
\exp_args:\texttt{Nox}
\exp_args:\texttt{ccx}
\exp_args:\texttt{Nnx}
\exp_args:\texttt{nnx}
\exp_args:\texttt{nox}
\exp_args:\texttt{Nnx}
\exp_args:\texttt{nnx}
\exp_args:\texttt{cxx}
\exp_args:\texttt{Nnx}
\exp_args:\texttt{nnx}
\exp_args:\texttt{nox}
\exp_args:\texttt{Nno}
\exp_args:\texttt{oonx}
\def \exp_args{\exp_args:nn\cf}

and others. These functions are documented on page 32.

\end{definition}

\section{13tl implementation}

Creating new token list variables is a case of checking for an existing definition and doing
the definition.

\begin{verbatim}
\cs_new_protected:Npn \tl_new:N #1
__kernel_chk_if_free_cs:N #1
\cs_gset_eq:NN #1 \c_empty_tl
\}
\cs_generate_variant:Nn \tl_new:N { c }
\end{verbatim}

Clearing a token list variable means setting it to an empty value. Error checking is sorted
out by the parent function.

\begin{verbatim}
\cs_new_protected:Npn \tl_clear:N #1
\cs_new_protected:Npn \tl_gclear:N #1
\end{verbatim}

Constants are also easy to generate.

\begin{verbatim}
\cs_new_protected:Npn \tl_const:Nn #1#2
__kernel_chk_if_free_cs:N #1
\cs_gset_nopar:Npx #1 { \exp_not:n {#2} }
\}
\cs_generate_variant:Nn \tl_const:Nn { c }
\end{verbatim}

\end{definition}

\section{Functions}

\texttt{\tl_new:N}
\texttt{\tl_new:c}

\begin{verbatim}
\cs_new_protected:Npn \tl_new:N #1
__kernel_chk_if_free_cs:N #1
\cs_gset_eq:NN #1 \c_empty_tl
\}
\end{verbatim}

\texttt{\tl_const:Nn}
\texttt{\tl_const:Nx}
\texttt{\tl_const:cn}
\texttt{\tl_const:cx}

\begin{verbatim}
\cs_new_protected:Npn \tl_const:Nn #1#2
__kernel_chk_if_free_cs:N #1
\cs_gset_nopar:Npx #1 {#2}
\}
\end{verbatim}

\texttt{\tl_clear:N}
\texttt{\tl_gclear:N}

\begin{verbatim}
\cs_new_protected:Npn \tl_clear:N #1
\cs_set_eq:NN #1 \c_empty_tl
\cs_gset_eq:NN #1 \c_empty_tl
\}
\end{verbatim}

\texttt{\tl_clear:c}
\texttt{\tl_gclear:c}

\begin{verbatim}
\cs_new_protected:Npn \tl_gclear:N #1
\cs_new_protected:Npn \tl_gclear:c #1
\end{verbatim}

\texttt{\tl_gclear:N}

\begin{verbatim}
\cs_new_protected:Npn \tl_gclear:N #1
\cs_set_eq:NN #1 \c_empty_tl
\cs_gset_eq:NN #1 \c_empty_tl
\}
\end{verbatim}

\texttt{\tl_gclear:c}

\begin{verbatim}
\cs_new_protected:Npn \tl_gclear:c #1
\cs_set_eq:NN #1 \c_empty_tl
\cs_gset_eq:NN #1 \c_empty_tl
\}
\end{verbatim}

\texttt{\tl_clear:N and \tl_gclear:N. These functions are documented on page 38.}
Clearing a token list variable means setting it to an empty value. Error checking is sorted out by the parent function.

\begin{lstlisting}[language=TeX]
\tl_clear_new:N \tl_clear_new:c
\tl_gclear_new:N \tl_gclear_new:c
\end{lstlisting}

(End definition for \tl_clear_new:N and \tl_gclear_new:N. These functions are documented on page 39.)

For setting token list variables equal to each other. To allow for patching, the arguments have to be explicit.

\begin{lstlisting}[language=TeX]
\tl_set_eq:NN \tl_set_eq:Nc \tl_set_eq:cN \tl_set_eq:cc
\tl_gset_eq:NN \tl_gset_eq:Nc \tl_gset_eq:cN \tl_gset_eq:cc
\end{lstlisting}

(End definition for \tl_set_eq:NN and \tl_gset_eq:NN. These functions are documented on page 39.)

Concatenating token lists is easy. When checking is turned on, all three arguments must be checked: a token list \texttt{#2} or \texttt{#3} equal to \texttt{\scan_stop} would lead to problems later on.

\begin{lstlisting}[language=TeX]
\tl_concat:NNN \tl_concat:ccc \tl_gconcat:NNN \tl_gconcat:ccc
\end{lstlisting}

(End definition for \tl_concat:NNN and \tl_gconcat:NNN. These functions are documented on page 39.)

Copies of the cs functions defined in \texttt{l3basics}.

\begin{lstlisting}[language=TeX]
\tl_if_exist_p:N \tl_if_exist_p:c \tl_if_exist:N \tl_if_exist:c
\end{lstlisting}

(End definition for \tl_if_exist:NTF. This function is documented on page 39.)

\subsection{Constant token lists}

\c_empty_tl Never full. We need to define that constant before using \tl_new:N.

\c_novalue_tl A special marker: as we don’t have \char_generate:nn yet, has to be created the old-fashioned way.
\group_end:
\tl_const:Nn \c_novalue_tl { ANoValue- }
\}

(End definition for \c_novalue_tl. This variable is documented on page 53.)

\c_space_tl
A space as a token list (as opposed to as a character).
\tl_const:Nn \c_space_tl { ~ }

(End definition for \c_space_tl. This variable is documented on page 53.)

7.3 Adding to token list variables
\tl_set:Nn
By using \exp_not:n token list variables can contain # tokens, which makes the token
list registers provided by \TeX more or less redundant. The \tl_set:No version is done
“by hand” as it is used quite a lot.
\tl_set:NV
\tl_set:Nf
\tl_set:Nx
\tl_set:cn
\tl_set:cV
\tl_set:co
\tl_set:cf
\tl_gset:Nn
\tl_gset:No
\tl_gset:Nv
\tl_gset:Nf
\tl_gset:Nx
\tl_gset:cn
\tl_gset:cV
\tl_gset:co
\tl_gset:cf
\cs_generate_variant:Nn \tl_set:Nn { NV , Nv , Nf }
\cs_generate_variant:Nn \tl_set:Nx { c, co , cV , cv , cf }
\cs_generate_variant:Nn \tl_gset:Nn { NV , Nv , Nf }
\cs_generate_variant:Nn \tl_gset:Nx { c, co , cV , cv , cf }

(End definition for \tl_set:Nn and \tl_gset:Nn. These functions are documented on page 39.)

\tl_put_left:Nn
\tl_put_left:NV
\tl_put_left:No
\tl_put_left:Nx
\tl_put_left:cn
\tl_put_left:cV
\tl_put_left:co
\tl_put_left:cf
\tl_gput_left:Nn
\tl_gput_left:NV
\tl_gput_left:No
\tl_gput_left:Nx
\tl_gput_left:cn
\tl_gput_left:cV
\tl_gput_left:co
\tl_gput_left:cf

Adding to the left is done directly to gain a little performance.
\tl_htt_gset:NN
\tl_put_left:NN
\tl_put_left:Nx
\tl_put_left:NV
\tl_put_left:nx
\tl_put_left:VN
\tl_put_left:No
\tl_put_left:Vx
\tl_put_left:no
\tl_put_left:vo
\tl_put_left:V0
\tl_gput_left:NN
\tl_gput_left:NV
\tl_gput_left:nx
\tl_gput_left:VN
\tl_gput_left:no
\tl_gput_left:vo
\tl_gput_left:V0

377
7.4 Reassigning token list category codes

The rescanning code needs a special token list containing the same character (chosen here to be a colon) with two different category codes: it cannot appear in the tokens being rescanned since all colons have the same category code.

\[\text{_c_tl_rescan_marker_tl}\]

\(\text{_c_tl_rescan_marker_tl}\)

(End definition for \texttt{_c_tl_rescan_marker_tl}.)

\(\text{_tl_set_rescan_multi:nNN}\)

In a group, after some initial setup explained below and the user setup \#3 (followed by \texttt{_scan_stop}; to be safe), there is a call to \texttt{___tl_set_rescan_multi:nNN}. This shared auxiliary defined later distinguishes single-line and multi-line “files”. In the simplest case of multi-line files, it calls (with the same arguments) \texttt{___tl_set_rescan_multi:nNN}, whose code...
is included here to help understand the approach. This function rescans its argument \#1, closes the group, and performs the assignment.

One difficulty when rescanning is that \texttt{scantokens} treats the argument as a file, and without the correct settings a \TeX error occurs:

\begin{verbatim}
! File ended while scanning definition of ...
\end{verbatim}

A related minor issue is a warning due to opening a group before the \texttt{scantokens} and closing it inside that temporary file; we avoid that by setting \texttt{tracingnesting}. The standard solution to the “File ended” error is to grab the rescanned tokens as a delimited argument of an auxiliary, here \texttt{__tl_rescan:NNw}, that performs the assignment, then let \TeX “execute” the end of file marker. As usual in delimited arguments we use \texttt{\prg_do_-nothing} to avoid stripping an outer set braces: this is removed by using \texttt{o}-expanding assignments. The delimiter cannot appear within the rescanned token list because it contains twice the same character, with different catcodes.

For \texttt{\tl_rescan:nn} we cannot simply call \texttt{__tl_rescan:NNnn \prg_do_-nothing: \use:n} because that would leave the end-of-file marker \texttt{after} the result of rescanning. If that rescanned result is code that looks further in the input stream for arguments, it would break.

For multi-line files the only subtlety is that \texttt{\newlinechar} should be equal to \texttt{\endlinechar} because \texttt{\newlinechar} characters become new lines and then become \texttt{\endlinechar} characters when writing to an abstract file and reading back. This equality is ensured by setting \texttt{\newlinechar} equal to \texttt{\endlinechar}. Prior to this, \texttt{\endlinechar} is set to -1 if it was 32 (in particular true after \texttt{\ExplSyntaxOn}) to avoid unreasonable line-breaks at every space for instance in error messages triggered by the user setup. Another side effect of reading back from the file is that spaces (catcode 10) are ignored at the beginning of lines, and spaces and tabs (character code 32 and 9) are ignored at the end of lines.

The two \texttt{\if_false: \fi:} are there to prevent alignment tabs to cause a change of tabular cell while rescanning. We put the “opening” one \texttt{after} \texttt{\group_begin:} so that if one accidentally \texttt{f}-expands \texttt{__tl_set_rescan:Nnn} braces remain balanced. This is essential in \texttt{e}-type arguments when \texttt{\expanded} is not available.

```latex
\cs_new_protected:Npn \tl_rescan:nn #1#2
\tl_set_rescan:Nnn \l__tl_internal_a_tl {#1} {#2}
\exp_after:wN \tl_clear:N \exp_after:wN \l__tl_internal_a_tl
\l__tl_internal_a_tl
\cs_new_protected:Npn \tl_set_rescan:Nnn { \__tl_set_rescan:NNnn \tl_set:No }
\cs_new_protected:Npn \tl_gset_rescan:Nnn { \__tl_set_rescan:NNnn \tl_gset:No }
\cs_new_protected:Npn \__tl_set_rescan:NNnn #1#2#3#4
\group_begin:
\if_false: { \fi: \int_set_eq:NN \tex_tracingnesting:D \c_zero_int
\int_compare:nNnT \tex_endlinechar:D = \c_zero_int
{ \int_set:Nn \tex_endlinechar:D { -1 } } \int_set_eq:NN \tex_newlinechar:D \tex_endlinechar:D
\scan_stop:
\exp_args:No \_\_tl_set_rescan:nNN \tl_to_str:n (#4) \#1 \#2
\end{verbatim}

379
The function \_\_\_tl_set_rescan:nn calls \_\_\_tl_set_rescan_multi:NN or \_\_\_tl_set_rescan_single:nnNN \{ ' \} depending on whether its argument is a single-line fragment of code/data or is made of multiple lines by testing for the presence of a \texttt{\newlinechar} character. If \texttt{\newlinechar} is out of range, the argument is assumed to be a single line.

For a single line, no \texttt{\endlinechar} should be added, so it is set to −1, and spaces should not be removed. Trailing spaces and tabs are a difficult matter, as \TeX{} removes these at a very low level. The only way to preserve them is to rescan not the argument but the argument followed by a character with a reasonable category code. Here, \texttt{11} (letter) and \texttt{12} (other) are accepted, as these are convenient, suitable for delimiting an argument, and it is very unlikely that none of the ASCII characters are in one of these categories. To avoid selecting one particular character to put at the end, whose category code may have been modified, there is a loop through characters from \texttt{'} (ASCII 39) to \texttt{~} (ASCII 127). The choice of starting point was made because this is the start of a very long range of characters whose standard category is letter or other, thus minimizing the number of steps needed by the loop (most often just a single one). If no valid character is found (very rare), fall-back on \_\_\_tl_set_rescan_multi:NN.

Otherwise, once a valid character is found (let us use \texttt{'} in this explanation) run some code very similar to \_\_\_tl_set_rescan_multi:NN but with \texttt{'} added at both ends of the input. Of course, we need to define the auxiliary \_\_\_tl_set_rescan_single:NNww on the fly to remove the additional \texttt{'} that is just before :: (by which we mean \_\_\_tl_rescan_marker_tl). Note that the argument must be delimited by \texttt{'} with the current catcode; this is done thanks to \texttt{\char_generate:nn}. Yet another issue is that the rescanned token list may contain a comment character, in which case the \texttt{'} we expected is not there. We fix this as follows: rather than just :: we set \texttt{\everyeof} to ::\{\texttt{(code1)}\} ::\{\texttt{(code2)}\} \verb|\q_stop|. The auxiliary \_\_\_tl_set_rescan_single:NNww runs the \texttt{\exp} expanding assignment, expanding either \texttt{(code1)} or \texttt{(code2)} before its the main argument \#3. In the typical case without comment character, \texttt{(code1)} is expanded, removing the leading \texttt{'}.
case with comment character, \(\text{\langle code2\rangle}\) is expanded, calling \(\text{\_\_tl_set_rescan_single-_aux:w}\), which removes the trailing \(\text{::\{\langle code1\rangle\}}\) and the leading '\.'.

\[
\text{\cs_new_protected:Npn \_\_tl_set_rescan:nNN #1}
\]

\[
\text{\int_compare:nNnTF \tex_newlinechar:D < 0}
\]

\[
\text{\{ \use_ii:nn }
\]

\[
\text{\exp_args:Nnf \tl_if_in:nnTF \{#1\}}
\]

\[
\text{\char_generate:nn \{ \tex_newlinechar:D \} \{ 12 \} }
\]

\[
\text{\} \_\_tl_set_rescan_multi:nNN }
\]

\[
\text{\int_set:Nn \tex_endlinechar:D \{ -1 \}}
\]

\[
\_\_tl_set_rescan_single:nnNN \{ \} #1
\]

\[
\text{\cs_new_protected:Npn \_\_tl_set_rescan_single:nnNN #1}
\]

\[
\int_compare:nNnTF \char_value_catcode:n \{#1\} / 2 = 6
\]

\[
\exp_args:Nof \_\_tl_set_rescan_single_aux:nnnNN
\]

\[
\text{\c__tl_rescan_marker_tl}
\]

\[
\char_generate:nn \{#1\} \{ \char_value_catcode:n \{#1\} \} 
\]

\[
\}
\]

\[
\int_compare:nNnTF \{#1\} < \{ \text{‘- } \}
\]

\[
\exp_args:Nf \_\_tl_set_rescan_single:nnNN
\]

\[
\int_eval:n \{ #1 + 1 \} \}
\]

\[
\_\_tl_set_rescan_multi:nNN 
\]

\[
\}
\]

\[
\text{\cs_new_protected:Npn \_\_tl_set_rescan_single_aux:nnnNN #1#2#3#4#5}
\]

\[
\tex_everyeof:D
\]

\[
\text{\#1 \use:none:n}
\]

\[
\text{\#2 \#1 \{ \exp:w \_\_tl_set_rescan_single_aux:w \}
\]

\[
\q_stop
\]

\[
\}
\]

\[
\text{\cs_set:Npn \_\_tl_rescan:NNw ##1##2##3 \#2 \#1 \#4 \#5 \q_stop}
\]

\[
\text{\group_end:}
\]

\[
\text{\#1 \#2 \{ \#4 \#3 \}}
\]

\[
\}
\]

\[
\text{\exp_after:wN \_\_tl_rescan:NNw}
\]

\[
\text{\exp_after:wN \#4}
\]

\[
\text{\exp_after:wN \#5}
\]

\[
\text{\tex_scantokens:D \{ \#2 \#3 \#2 \}
\]

\[
\}
\]

\[
\exp_args:Nno \use:nn
7.5 Modifying token list variables

All of the replace functions call \texttt{\_\_tl_replace:NnNNNnn} with appropriate arguments. The first two arguments are explained later. The next controls whether the replacement function calls itself (\texttt{\_\_tl_replace_next:w}) or stops (\texttt{\_\_tl_replace_wrap:w}) after the first replacement. Next comes an \texttt{x-type assignment function \_\_tl_set:Nx} or \texttt{\tl_gset:Nx} for local or global replacements. Finally, the three arguments \texttt{i\_var \{(pattern)\}} \texttt{\{(replacement)\}} provided by the user. When describing the auxiliary functions below, we denote the contents of the \texttt{(i\_var)} by \texttt{(token list)}. 

To implement the actual replacement auxiliary \texttt{\_\_tl_replace_auxii:nNNNnn} we need a \langle \texttt{delimiter} \rangle with the following properties:

- all occurrences of the \langle \texttt{pattern} \rangle \#6 in \langle \texttt{token list} \rangle \langle \texttt{delimiter} \rangle belong to the \langle \texttt{token list} \rangle and have no overlap with the \langle \texttt{delimiter} \rangle,

- the first occurrence of the \langle \texttt{delimiter} \rangle in \langle \texttt{token list} \rangle \langle \texttt{delimiter} \rangle is the trailing \langle \texttt{delimiter} \rangle.

We first find the building blocks for the \langle \texttt{delimiter} \rangle, namely two tokens \langle A \rangle and \langle B \rangle such that \langle A \rangle does not appear in \#6 and \#6 is not \langle B \rangle (this condition is trivial if \#6 has more than one token). Then we consider the delimiters \langle (A)^n \rangle and \langle (A)^n (B) (A)^n (B)^n \rangle, for \( n \geq 1 \), where \langle A \rangle^n denotes \( n \) copies of \langle A \rangle, and we choose as our \langle \texttt{delimiter} \rangle the first one which is not in the \langle \texttt{token list} \rangle.

Every delimiter in the set obeys the first condition: \#6 does not contain \langle A \rangle hence cannot be overlapping with the \langle \texttt{token list} \rangle and the \langle \texttt{delimiter} \rangle, and it cannot be within the \langle \texttt{delimiter} \rangle since it would have to be in one of the two \langle B \rangle hence be equal to this single token (or empty, but this is an error case filtered separately). Given the particular form of these delimiters, for which no prefix is also a suffix, the second condition is actually a consequence of the weaker condition that the \langle \texttt{delimiter} \rangle we choose does not appear in the \langle \texttt{token list} \rangle. Additionally, the set of delimiters is such that a \langle \texttt{token list} \rangle of \( n \) tokens can contain at most \( O(n^{1/2}) \) of them, hence we find a \langle \texttt{delimiter} \rangle with at most \( O(n^{1/2}) \) tokens in a time at most \( O(n^{3/2}) \). Bear in mind that these upper bounds are reached...
only in very contrived scenarios: we include the case \(\langle A\rangle\) in the list of delimiters to try, so that the \(\langle delimiter\rangle\) is simply \q_mark in the most common situation where neither the \(\langle token\ list\rangle\) nor the \(\langle pattern\rangle\) contains \q_mark.

Let us now ahead, optimizing for this most common case. First, two special cases: an empty \(\langle pattern\rangle\) \#6 is an error, and if \#1 is absent from both the \(\langle token\ list\rangle\) \#5 and the \(\langle pattern\rangle\) \#6 then we can use it as the \(\langle delimiter\rangle\) through \__tl_replace_auxii:nNNNnn \#1. Otherwise, we end up calling \__tl_replace:NnNNNnn repeatedly with the first two arguments \q_mark \{?\}, \? \{??\}, \?? \{???\}, and so on, until \#6 does not contain the control sequence \#1, which we take as our \(\langle A\rangle\). The argument \#2 only serves to collect \? characters for \#1. Note that the order of the tests means that the first two are done every time, which is wasteful (for instance, we repeatedly test for the emptiness of \#6). However, this is rare enough not to matter. Finally, choose \(\langle B\rangle\) to be \q_nil or \q_stop such that it is not equal to \#6.

The \__tl_replace_auxi:NnnNNNnn auxiliary receives \{\(\langle A\rangle\)\} and \{\(\langle A\rangle^n\langle B\rangle\)\} as its arguments, initially with \(n = 1\). If \(\langle A\rangle\langle A\rangle^n\langle B\rangle\)\(\langle A\rangle^n\langle B\rangle\)\) is in the \(\langle token\ list\rangle\) then increase \(n\) and try again. Once it is not anymore in the \(\langle token\ list\rangle\) we take it as our \(\langle delimiter\rangle\) and pass this to the auxii auxiliary.

\begin{verbatim}
\cs_new_protected:Npn \__tl_replace:NnNNNnn #1#2#3#4#5#6#7
\{\
  \tl_if_empty:nTF {#6}\{\
    \__kernel_msg_error:nnx { kernel } { empty-search-pattern }\}
  {\
    \tl_if_in:onTF { #5 #6 } {#1}\{\
      \tl_if_in:nnTF {#6} {#1}\{\
        \exp_args:Nc \__tl_replace:NnNNNnn {#2} {#2?} \}
      {\
        \quark_if_nil:nTF {#6}\{\
          \__tl_replace_auxi:NnnNNNnn #5 {#1} \{ #1 \q_stop \} \}
        {\
          \__tl_replace_auxi:NnnNNNnn #5 {#1} \{ #1 \q_nil \} \}
      }\}
    }\}
  {\
    \__tl_replace_auxii:nNNNnn {#1} \#3#4#5 \#6 \#7\}
}\}
\cs_new_protected:Npn \__tl_replace_auxi:NnnNNNnn #1#2#3\#4#5#6#7
{\}
\tl_if_empty:nTF {#6}\{\}
{\
  \__kernel_msg_error:nnx { kernel } { empty-search-pattern }\}
  {\
    \tl_to_str:n {#7}\}
}\}
\tl_if_in:onTF { #5 #6 } {#1}\{\
  \tl_if_in:nnTF {#6} {#1}\{\
    \exp_args:Nc \__tl_replace:NnNNNnn {#2} {#2?} \}
  {\
    \quark_if_nil:nTF {#6}\{\
      \__tl_replace_auxi:NnnNNNnn #5 {#1} \{ #1 \q_stop \} \}
    {\
      \__tl_replace_auxi:NnnNNNnn #5 {#1} \{ #1 \q_nil \} \}
  }\}
\}
{\
  \__tl_replace_auxii:nNNNnn {#1} \#3#4#5 \#6 \#7\}
\}
\end{verbatim}

The auxiliary \__tl_replace_auxii:nNNNnn receives the following arguments:

\{(delimiter)\} \{function\} \{assignment\}
\{tl var\} \{(pattern)\} \{(replacement)\}

All of its work is done between \group_align_safe_begin: and \group_align_safe_end: to avoid issues in alignments. It does the actual replacement within \#3 \#4 \{..\}, an
x-expanding ⟨assignment⟩ #3 to the ⟨tl var⟩ #4. The auxiliary \_tl_replace_next:w is called, followed by the ⟨token list⟩, some tokens including the ⟨delimiter⟩ #1, followed by the ⟨pattern⟩ #5. This auxiliary finds an argument delimited by #5 (the presence of a trailing #5 avoids runaway arguments) and calls \_tl_replace_wrap:w to test whether this #5 is found within the ⟨token list⟩ or is the trailing one.

If on the one hand it is found within the ⟨token list⟩, then #1 cannot contain the ⟨delimiter⟩ #1 that we worked so hard to obtain, thus \_tl_replace_wrap:w gets #1 as its own argument #1, and protects it against the x-expanding assignment. It also finds \exp_not:n as #2 and does nothing to it, thus letting through \exp_not:n {⟨replacement⟩} into the assignment. Note that \_tl_replace_next:w and \_tl_replace_wrap:w are always called followed by two empty brace groups. These are safe because no delimiter can match them. They prevent losing braces when grabbing delimited arguments, but require the use of \exp_not:o and \use_none:nn, rather than simply \exp_not:n. Afterwards, \_tl_replace_next:w is called to repeat the replacement, or \_tl_replace_wrap:w if we only want a single replacement. In this second case, #1 is the ⟨remaining tokens⟩ in the ⟨token list⟩ and #2 is some ⟨ending code⟩ which ends the assignment and removes the trailing tokens #5 using some \if_false: { \fi: } trickery because #5 may contain any delimiter.

If on the other hand the argument #1 of \_tl_replace_next:w is delimited by the trailing ⟨pattern⟩ #5, then #1 is “{ } { } ⟨token list⟩ ⟨delimiter⟩ ⟨ending code⟩”, hence \_tl_replace_wrap:w finds “{ } { } ⟨token list⟩” as #1 and the ⟨ending code⟩ as #2. It leaves the ⟨token list⟩ into the assignment and unbraces the ⟨ending code⟩ which removes what remains (essentially the ⟨delimiter⟩ and ⟨replacement⟩).

```latex
\cs_new_protected:Npn _tl_replace_auxii:nNNn \#1\#2\#3\#4\#5\#6
\begin{verbatim}
\group_align_safe_begin:
\cs_set:Npn _tl_replace_wrap:w \#1 \#1 \#2
{ \exp_not:o { \use_none:nn \#1 } \#2 }
\cs_set:Npx _tl_replace_next:w \#1 \#5
{ \exp_not:N _tl_replace_wrap:w \#1
 \exp_not:n { \#1 }
 \exp_not:n { \exp_not:n {\#5} }
 \exp_not:n { \#2 { } { } }
}
\group_align_safe_end:
\end{verbatim}
\cs_new_eq:NN _tl_replace_wrap:w ?
\cs_new_eq:NN _tl_replace_next:w ?
```

384
Removal is just a special case of replacement.

\[ \text{\texttt{\_tl_remove_once:Nn}} \]
\[ \text{\texttt{\_tl_gremove_once:Nn}} \]

\begin{verbatim}
\cs_new_protected:Npn \_tl_remove_once:Nn #1#2
  { \_tl_replace_once:Nnn #1 {#2} { } }
\cs_new_protected:Npn \_tl_gremove_once:Nn #1#2
  { \_tl_greplace_once:Nnn #1 {#2} { } }
\cs_generate_variant:Nn \_tl_remove_once:Nn { c }
\cs_generate_variant:Nn \_tl_gremove_once:Nn { c }
\end{verbatim}

(End definition for \texttt{\_tl_remove_once:Nn} and \texttt{\_tl_gremove_once:Nn}. These functions are documented on page 40.)

\[ \text{\texttt{\_tl_remove_all:Nn}} \]
\[ \text{\texttt{\_tl_gremove_all:Nn}} \]

\begin{verbatim}
\cs_new_protected:Npn \_tl_remove_all:Nn #1#2
  { \_tl_replace_all:Nnn #1 {#2} { } }
\cs_new_protected:Npn \_tl_gremove_all:Nn #1#2
  { \_tl_greplace_all:Nnn #1 {#2} { } }
\cs_generate_variant:Nn \_tl_remove_all:Nn { c }
\cs_generate_variant:Nn \_tl_gremove_all:Nn { c }
\end{verbatim}

(End definition for \texttt{\_tl_remove_all:Nn} and \texttt{\_tl_gremove_all:Nn}. These functions are documented on page 40.)

### 7.6 Token list conditionals

\[ \text{\texttt{\_tl_if_blank_p:n}} \]
\[ \text{\texttt{\_tl_if_blank_p:c}} \]
\[ \text{\texttt{\_tl_if_blank:nTF}} \]
\[ \text{\texttt{\_tl_if_blank:oTF}} \]
\[ \text{\texttt{\_tl_if_blank:p:NNw}} \]

\begin{verbatim}
\prg_new_conditional:Npnn \_tl_if_blank:nTF #1 { p , T , F , TF }
  {
    \_\_tl_if_blank_if:o { \use_none:n #1 ? }
    \prg_return_true:
    \else:
    \prg_return_false:
    \fi:
  }
\prg_generate_conditional_variant:Nnn \_tl_if_blank:nTF
  { c } { p , T , F , TF }
\end{verbatim}

(End definition for \texttt{\_tl_if_blank:nTF and \_tl_if_blank_p:NNw}. This function is documented on page 41.)

\[ \text{\texttt{\_tl_if_empty_p:N}} \]
\[ \text{\texttt{\_tl_if_empty_p:c}} \]
\[ \text{\texttt{\_tl_if_empty:NFF}} \]
\[ \text{\texttt{\_tl_if_empty:oFF}} \]
\[ \text{\texttt{\_tl_if_empty:p:NN}} \]
\[ \text{\texttt{\_tl_if_empty:cFF}} \]

\begin{verbatim}
\prg_new_conditional:Npnn \_tl_if_empty:NFF #1 { p , T , F , TF }
  {
    \if_meaning:w #1 \c_empty_tl
    \prg_return_true:
    \else:
    \prg_return_false:
    \fi:
  }
\prg_generate_conditional_variant:Nnn \_tl_if_empty:NFF
  { c } { p , T , F , TF }
\end{verbatim}

These functions check whether the token list in the argument is empty and execute the proper code from their argument(s).

\[ \text{\texttt{\_tl_if_empty:nTF}} \]
\[ \text{\texttt{\_tl_if_empty:oFF}} \]
\[ \text{\texttt{\_tl_if_empty:p:NN}} \]
\[ \text{\texttt{\_tl_if_empty:cFF}} \]

TEX skips spaces when reading a non-delimited arguments. Thus, a (token list) is blank if and only if \texttt{\use_none:n \langle token list \rangle} is empty after one expansion. The auxiliary \texttt{\_\_tl_if_empty_if:o} is a fast emptiness test, converting its argument to a string (after one expansion) and using the test \texttt{\if_meaning:w \q_nil ... \q_nil}.

\begin{verbatim}
\prg_new_conditional:Npnn \_\_tl_if_empty_if:o #1
  {
    \_\_tl_if_empty_if:o { \use_none:n #1 ? }
    \prg_return_true:
    \else:
    \prg_return_false:
    \fi:
  }
\end{verbatim}

(End definition for \texttt{\_tl_if_empty:nTF and \_tl_if_blank_p:NNw}. This function is documented on page 41.)
\tl_if_empty_p:n
\tl_if_empty_p:V
\tl_if_empty:n
\tl_if_empty:V
\tl_if_empty:NTF

Convert the argument to a string: this is empty if and only if the argument is. Then \if_meaning:w \q_nil \q_nil is true if and only if the string \q_nil is empty. It could be tempting to use \if_meaning:w \q_nil \q_nil directly. This fails on a token list starting with \q_nil of course but more troubling is the case where argument is a complete conditional such as \if_true: \else: \fi: because then \if_true: is used by \if_meaning:w, the test turns out false, the \else: executes the false branch, the \fi: ends it and the \q_nil at the end starts executing...

\tl_if_empty:n #1 { p , TF , T , F }
\exp_after:wN \if_meaning:w \exp_after:wN \q_nil
\tl_to_str:n (#1) \q_nil
\prg_return_true:
\else:
\prg_return_false:
\fi:
\prg_generate_conditional_variant:Nnn \tl_if_empty:n
{ V } { p , TF , T , F } (End definition for \tl_if_empty:nTF. This function is documented on page 42.)

\tl_if_empty:o
\tl_if_empty:oTF
\tl_if_empty:o
\tl_if_empty:o
\tl_if_eq_p:NN
\tl_if_eq_p:Nc
\tl_if_eq_p:cN
\tl_if_eq:NN
\tl_if_eq:Nc
\tl_if_eq:cc
\tl_if_eq:cc
\tl_if_eq:cc
\tl_if_eq:p:NN
\tl_if_eq:p:Nc
\tl_if_eq:p:cN
\tl_if_eq:NN
\tl_if_eq:Nc
\tl_if_eq:cc
\tl_if_eq:cc
\tl_if_eq:cc

\__tl_if_empty_if:o

The auxiliary function \__tl_if_empty_if:o is for use in various token list conditionals which reduce to testing if a given token list is empty after applying a simple function to it. The test for emptiness is based on \tl_if_empty:nTF, but the expansion is hard-coded for efficiency, as this auxiliary function is used in several places. We don’t put \prg_-
return_true: and so on in the definition of the auxiliary, because that would prevent an optimization applied to conditionals that end with this code.

\cs_new:Npn \__tl_if_empty_if:o #1
\exp_after:wN \if_meaning:w \exp_after:wN \q_nil
\__kernel_tl_to_str:w \exp_after:wN (#1) \q_nil
\prg_new_conditional:Nnn \tl_if_empty:o
#1 { p , TF , T , F } { V } { p , TF , T , F }
\{ \__tl_if_empty_if:o {#1}
\prg_return_true:
\else:
\prg_return_false:
\fi:
\prg_new_conditional:Nnn \tl_if_empty:o
\prg_generate_conditional_variant:Nnn \tl_if_empty:o
{ V } { p , TF , T , F } (End definition for \tl_if_empty:nTF and \tl_if_eq:p:NN. This function is documented on page 42.)

\tl_if_eq:p:NN
\tl_if_eq:p:Nc
\tl_if_eq:p:cN
\tl_if_eq:NN
\tl_if_eq:Nc
\tl_if_eq:cc
\tl_if_eq:p:NN
\tl_if_eq:p:Nc
\tl_if_eq:p:cN
\tl_if_eq:NN
\tl_if_eq:Nc
\tl_if_eq:cc

Returns \c_true_bool if and only if the two token list variables are equal.

\prg_new_conditional:Nnn \tl_if_eq:NN
#1 #2 { p , T , F , TF }
\prg_return_true:
\else:
\prg_return_false:

386
\prg_generate_conditional_variant:Nnn \tl_if_eq:NN
\{ Nc, c, cc \} \{ p, TF, T, F \}

(End definition for \tl_if_eq:NNTF. This function is documented on page \textit{42}.)

\tl_if_eq:nnTF \l__tl_internal_a_tl \l__tl_internal_b_tl
\prg_new_protected_conditional:Npn \tl_if_eq:nn #1#2 \{ T, F, TF \}
{ \group_begin:
  \tl_set:Nn \l__tl_internal_a_tl {#1}
  \tl_set:Nn \l__tl_internal_b_tl {#2}
  \exp_after:wN \group_end:
  \if_meaning:w \l__tl_internal_a_tl \l__tl_internal_b_tl
  \prg_return_true:
  \else:
  \prg_return_false:
  \fi:
}
\tl_new:N \l__tl_internal_a_tl
\tl_new:N \l__tl_internal_b_tl

(End definition for \tl_if_eq:nnTF, \l__tl_internal_a_tl, and \l__tl_internal_b_tl. This function is documented on page \textit{42}.)

\tl_if_in:nnTF \tl_if_in:cnTF \tl_if_in:onTF \tl_if_in:noTF
See \tl_if_in:nnTF for further comments. Here we simply expand the token list variable and pass it to \tl_if_in:nnTF.
\cs_new_protected:Npn \tl_if_in:NnT \{ \exp_args:No \tl_if_in:nnT \}
\cs_new_protected:Npn \tl_if_in:NnF \{ \exp_args:No \tl_if_in:nnF \}
\cs_new_protected:Npn \tl_if_in:NnTF \{ \exp_args:No \tl_if_in:nnTF \}
\prg_generate_conditional_variant:Nnn \tl_if_in:nn \tl_if_in:Nn
\{ c \} \{ T, F, TF \}

(End definition for \tl_if_in:nnTF. This function is documented on page \textit{42}.)

\tl_if_in:nnTF \tl_if_in:VnTF \tl_if_in:onTF \tl_if_in:noTF
Once more, the test relies on the emptiness test for robustness. The function \_\_\_\_tl_-
tmp:w removes tokens until the first occurrence of \#2. If this does not appear in \#1, then the final \#2 is removed, leaving an empty token list. Otherwise some tokens remain, and the test is false. See \tl_if_empty:nTF for details on the emptiness test.

Treating correctly cases like \tl_if_in:nnTF \{ a state \} \{ states \}, where \#1\#2 contains \#2 before the end, requires special care. To cater for this case, we insert \{}\{} between the two token lists. This marker may not appear in \#2 because of \TeX\ limitations on what can delimit a parameter, hence we are safe. Using two brace groups makes the test work also for empty arguments. The \if_false: constructions are a faster way to do \group_align_safe_begin: and \group_align_safe_end:. The \scan_stop: ensures that f-expanding \tl_if_in:nn does not lead to unbalanced braces.
\prg_new_protected_conditional:Npn \tl_if_in:nn #1#2 \{ T, F, TF \}
{ \scan_stop:
  \if_false: \{ \fi:
  \cs_set:Npn \_\_\_\_tl_tmp:w #1 \#2 \}
  \tl_if_empty:oTF \{ \_\_\_\_tl_tmp:w #1 \} \{ \} \#2 \}
Tests for -NoValue-: this is similar to \texttt{\tl_if_in:nn} but set up to be expandable and to check the value exactly. The question mark prevents the auxiliary from losing braces.

This test is similar to \texttt{\tl_if_empty:nTF}. Expanding \texttt{\use_none:nn} once yields an empty result if \texttt{#1} is blank, a single ? if \texttt{#1} has a single item, and otherwise yields some tokens ending with ??. Then, \texttt{\tl_to_str:n} makes sure there are no odd category codes. An earlier version would compare the result to a single ? using string comparison, but the Lua call is slow in LuaTEX. Instead, \texttt{\__tl_if_single:nnw} picks the second token in front of it. If \texttt{#1} is empty, this token is the trailing ? and the catcode test yields \texttt{false}. If \texttt{#1} has a single item, the token is ^ and the catcode test yields \texttt{true}. Otherwise, it is one of the characters resulting from \texttt{\tl_to_str:n}, and the catcode test yields \texttt{false}. Note that \texttt{\if_catcode:w} and \texttt{\__kernel_tl_to_str:w} are primitives that take care of expansion.
\tl_if_single_token_p:n
\tl_if_single_token:nTF

There are four cases: empty token list, token list starting with a normal token, with a brace group, or with a space token. If the token list starts with a normal token, remove it and check for emptiness. For the next case, an empty token list is not a single token. Finally, we have a non-empty token list starting with a space or a brace group. Applying f-expansion yields an empty result if and only if the token list is a single space.

\prg_new_conditional:Npn \tl_if_single_token:nTF #1 \{ p , T , F , TF \}
\{
\tl_if_head_is_N_type:nTF {#1}
\{ \tl_if_empty_if:o { \use_none:n #1 } \}
\{ \if_false: \}
\{ \tl_if_empty_if:o { \exp:w \exp_end_continue_f:w #1 } \}
\prg_return_true:
\else:
\prg_return_false:
\fi:
\}

(End definition for \tl_if_single_token:nTF. This function is documented on page 43.)

\tl_case:Nn
\tl_case:cn
\tl_case:NnTF
\__tl_case:nTF
\__tl_case:Nw
\__tl_case_end:nw

The aim here is to allow the case statement to be evaluated using a known number of expansion steps (two), and without needing to use an explicit “end of recursion” marker. That is achieved by using the test input as the final case, as this is always true. The trick is then to tidy up the output such that the appropriate case code plus either the true or false branch code is inserted.

\cs_new:Npn \tl_case:Nn \#1 \#2 \#3
\{ \exp:w \__tl_case:NnTF #1 (#2) { } { } \}
\cs_new:Npn \tl_case:NnT \#1 \#2 \#3
\{ \exp:w \__tl_case:NnTF #1 (#2) (#3) { } \}
\cs_new:Npn \tl_case:NnF \#1 \#2 \#3
\{ \exp:w \__tl_case:NnTF #1 (#2) { } (#3) \}
\cs_new:Npn \tl_case:NnTF \#1 \#2 \#3
\{ \exp:w \__tl_case:NnTF #1 (#2) { } {#3} \}
\cs_new:Npn \tl_case:NnTF \#1 \#2
\{ \exp:w \__tl_case:NnTF #1 (#2) { } \}
\cs_new:Npn \tl_case:NnTF \#1
\{ \exp:w \__tl_case:NnTF #1 { } \}

389
To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases searched for, then \texttt{#1} is the code to insert, \texttt{#2} is the next case to check on and \texttt{#3} is all of the rest of the cases code. That means that \texttt{#4} is the true branch code, and \texttt{#5} tidies up the spare \texttt{\q_mark} and the false branch. On the other hand, if none of the cases matched then we arrive here using the “termination” case of comparing the search with itself. That means that \texttt{#1} is empty, \texttt{#2} is the first \texttt{\q_mark} and so \texttt{#4} is the false code (the true code is mopped up by \texttt{#3}).

(End definition for \texttt{\tl_case:NnTF} and others. This function is documented on page 43.)

### 7.7 Mapping to token lists

Expandable loop macro for token lists. These have the advantage of not needing to test if the argument is empty, because if it is, the stop marker is read immediately and the loop terminated.

(End definition for \texttt{\tl_map_function:nN}, \texttt{\tl_map_function:NN}, and \texttt{\__tl_map_function:Nn}. These functions are documented on page 44.)

The inline functions are straightforward by now. We use a little trick with the counter \texttt{\g__kernel_prg_map_int} to make them nestable. We can also make use of \texttt{\__tl_map_function:Nn} from before.
Much like the function mapping.
\tl_map_tokens:nn \tl_map_tokens:Nn \tl_map_tokens:cn \__tl_map_tokens:nn
\tl_map_variable:nNn \tl_map_variable:NNn \tl_map_variable:cNn \__tl_map_variable:Nnn
\tl_map_variable:nNn (token list) ⟨tl var⟩ ⟨action⟩ assigns ⟨tl var⟩ to each element and executes ⟨action⟩. The assignment to ⟨tl var⟩ is done after the quark test so that this variable does not get set to a quark.
\cs_new_protected:Nnp \tl_map_variable:nNn #1#2#3
{ \__tl_map_variable:Nnn #2 {#3} #1 \prg_break_point:Nn \tl_map_break: { } }
\cs_new_protected:Nnp \__tl_map_variable:Nnn #1#2#3
{ \quark_if_recursion_tail_break:nN {#2} \tl_map_break: \use:n {#1} {#2} \__tl_map_variable:Nnn {#1} }
\cs_generate_variant:Nn \tl_map_variable:NNn { c }
(End definition for \tl_map_variable:nNn, \tl_map_variable:NNn, and \tl_map_variable:cNn. These functions are documented on page 44.)
\texttt{\tl_map_break:} The break statements use the general \texttt{\prg_map_break:Nn}.

\begin{verbatim}
\cs_new:Npn \tl_map_break: \prg_map_break:Nn \tl_map_break: \{ \}
\cs_new:Npn \tl_map_break:n \prg_map_break:Nn \tl_map_break: \{}
\end{verbatim}

(End definition for \texttt{\tl_map_break:} and \texttt{\tl_map_break:n}. These functions are documented on page 45.)

7.8 Using token lists

\texttt{\tl_to_str:n} Another name for a primitive: defined in \texttt{l3basics}.

\begin{verbatim}
\cs_generate_variant:Nn \tl_to_str:n { V }
\end{verbatim}

(End definition for \texttt{\tl_to_str:n}. This function is documented on page 46.)

\texttt{\tl_to_str:N} \texttt{\tl_to_str:c} These functions return the replacement text of a token list as a string.

\begin{verbatim}
\cs_new:Npn \tl_to_str:N #1 \exp_after:wN \__kernel_tl_to_str:w \__kernel_tl_to_str:w \exp_after:wN \{#1\} \cs_generate_variant:Nn \tl_to_str:N { c }
\end{verbatim}

(End definition for \texttt{\tl_to_str:N}. This function is documented on page 46.)

\texttt{\tl_use:N} \texttt{\tl_use:c} Token lists which are simply not defined give a clear \TeX error here. No such luck for ones equal to \texttt{\scan_stop:} so instead a test is made and if there is an issue an error is forced.

\begin{verbatim}
\cs_new:Npn \tl_use:N #1 { \tl_if_exist:NTF #1 {#1} { \__kernel_msg_expandable_error:nnn { kernel } { bad-variable } {#1} } }
\cs_generate_variant:Nn \tl_use:N { c }
\end{verbatim}

(End definition for \texttt{\tl_use:N}. This function is documented on page 46.)

7.9 Working with the contents of token lists

\texttt{\tl_count:n} \texttt{\tl_count:V} \texttt{\tl_count:o} \texttt{\tl_count:N} \texttt{\tl_count:c} \texttt{\__tl_count:n} Count number of elements within a token list or token list variable. Brace groups within the list are read as a single element. Spaces are ignored. \texttt{\__tl_count:n} grabs the element and replaces it by +1. The 0 ensures that it works on an empty list.

\begin{verbatim}
\cs_new:Npn \tl_count:n #1 \int_eval:n \{ 0 \tl_map_function:nN \__tl_count:n \}
\cs_new:Npn \tl_count:N #1 \int_eval:n \{ 0 \tl_map_function:NN \__tl_count:n \}
\end{verbatim}

392
The token count is computed through an \texttt{\int_eval:n} construction. Each 1+ is output to the left, into the integer expression, and the sum is ended by the \texttt{\exp_end:} inserted by \texttt{\__tl_act_end:wn} (which is technically implemented as \texttt{c_zero_int}). Somewhat a hack!

\begin{verbatim}
\cs_new:Npn \tl_count_tokens:n #1
\{
\int_eval:n
{\__tl_act:NNNnn\__tl_act_count_normal:nN\__tl_act_count_group:nn\__tl_act_count_space:n}\{\\}{\#1}\}
\}
\cs_new:Npn \__tl_act_count_normal:nN #1 #2 { 1 + }
\cs_new:Npn \__tl_act_count_space:n #1 { 1 + }
\cs_new:Npn \__tl_act_count_group:nn #1 #2 { 2 + \tl_count_tokens:n {#2} + }
\end{verbatim}

(End definition for \texttt{\tl_count_tokens:n} and others. This function is documented on page 47.)

Reversal of a token list is done by taking one item at a time and putting it after \texttt{\q_stop}.

\begin{verbatim}
\cs_new:Npn \tl_reverse_items:n #1
\{
\__tl_reverse_items:nwNwn #1 ?\q_mark \__tl_reverse_items:nwNwn\q_mark \__tl_reverse_items:wn\q_stop \} \q_stop \{ \}
\cs_new:Npn \__tl_reverse_items:nwNwn #1 #2 \q_mark #3 #4 \q_stop #5
\{
#3 #2
\q_mark \__tl_reverse_items:nwNwn\q_mark \__tl_reverse_items:wn\q_stop \{ \#1 \#5 \}
\}
\cs_new:Npn \__tl_reverse_items:wn #1 \q_stop #2
\{ \exp_not:o { \use_none:nn \#2 } \}
\end{verbatim}

(End definition for \texttt{\tl_reverse_items:n}, \texttt{\__tl_reverse_items:nwNwn}, and \texttt{\__tl_reverse_items:wn}. This function is documented on page 47.)

Trimming spaces from around the input is deferred to an internal function whose first argument is the token list to trim, augmented by an initial \texttt{\q_mark}, and whose second argument is a \texttt{continuation}, which receives as a braced argument \texttt{\use_none:n \q_mark \{trimmed token list\}}. In the case at hand, we take \texttt{\exp_not:o} as our continuation, so that space trimming behaves correctly within an \texttt{x-type} expansion.

\begin{verbatim}
\cs_new:Npn \tl_trim_spaces:n #1
\{
\__tl_trim_spaces:nn { \q_mark #1 } \exp_not:o \}
\cs_new:Npn \tl_trim_spaces:o
\\cs_new:Npn \tl_trim_spaces_apply:nN
\\cs_new:Npn \tl_trim_spaces_apply:oN
\\cs_new:Npn \tl_trim_spaces:N
\\cs_new:Npn \tl_gtrim_spaces:N
\\cs_new:Npn \tl_gtrim_spaces:c
\end{verbatim}

393
Trimming spaces from around the input is done using delimited arguments and quarks, and to get spaces at odd places in the definitions, we nest those in \_\_tl_tmp:w, which then receives a single space as its argument: #1 is \q_nil. Removing leading spaces is done with \_\_tl_trim_spaces_auxi:w, which loops until \q_mark matches the end of the token list: then ##1 is the token list and ##3 is \_\_tl_trim_spaces_auxii:w. This hands the relevant tokens to the loop \_\_tl_trim_spaces_auxii:w, responsible for trimming trailing spaces. The end is reached when \q_nil matches the one present in the definition of \_\_tl_trim_spaces:n. Then \_\_tl_trim_spaces_auxiv:w puts the token list into a group, with \use_none:n placed there to gobble a lingering \q_mark, and feeds this to the \langle continuation\rangle.

\_\_tl_trim_spaces:nn
\_\_tl_trim_spaces_auxi:w
\_\_tl_trim_spaces_auxii:w
\_\_tl_trim_spaces_auxiii:w
\_\_tl_trim_spaces_auxiv:w
The \_\_tl\_act... functions may be applied to any token list. Hence, we use two private quarks, to allow any token, even quarks, in the token list. Only \q__tl\_act\_mark and \q__tl\_act\_stop may not appear in the token lists manipulated by \_\_tl\_act:Nmnn functions. No quark module yet, so do things by hand.

\cs_new:nopar:Npn \q__tl\_act\_mark \{ \q__tl\_act\_mark \}
\cs_new:nopar:Npn \q__tl\_act\_stop \{ \q__tl\_act\_stop \}

To help control the expansion, \_\_tl\_act:NNNnn should always be proceeded by \exp:w and ends by producing \exp_end: once the result has been obtained. Then loop over tokens, groups, and spaces in \#5. The marker \q__tl\_act\_mark is used both to avoid losing outer braces and to detect the end of the token list more easily. The result is stored as an argument for the dummy function \_\_tl\_act\_result:n.

\cs_new:Nm \_\_tl\_act\_mark \q__tl\_act\_mark \{ \q__tl\_act\_mark \}
\cs_new:Nm \_\_tl\_act\_stop \{ \q__tl\_act\_stop \}

In the loop, we check how the token list begins and act accordingly. In the “normal” case, we may have reached \q__tl\_act\_mark, the end of the list. Then leave \exp_end: and the result in the input stream, to terminate the expansion of \exp:w. Otherwise, apply the relevant function to the “arguments”, \#3 and to the head of the token list. Then repeat the loop. The scheme is the same if the token list starts with a group or with a space. Some extra work is needed to make \_\_tl\_act\_space:wnN the space.

\cs_new:Nm \_\_tl\_act\_loop:w #1 \q__tl\_act\_stop

In the loop, we check how the token list begins and act accordingly. In the “normal” case, we may have reached \q__tl\_act\_mark, the end of the list. Then leave \exp_end: and the result in the input stream, to terminate the expansion of \exp:w. Otherwise, apply the relevant function to the “arguments”, \#3 and to the head of the token list. Then repeat the loop. The scheme is the same if the token list starts with a group or with a space. Some extra work is needed to make \_\_tl\_act\_space:wnN the space.

\cs_new:Nm \_\_tl\_act\_loop:w #1 \q__tl\_act\_stop

Typically, the output is done to the right of what was already output, using \_\_tl_act_output:n, but for the \_\_tl_act_reverse functions, it should be done to the left.

\_\_tl_act_output:n
\_\_tl_act_reverse:o
\_\_tl_act_reverse:V
\_\_tl_reverse_normal:n
\_\_tl_reverse_group_preserve:nn
\_\_tl_reverse_space:n

The goal here is to reverse without losing spaces nor braces. This is done using the general internal function \_\_tl_act:NNNnn. Spaces and “normal” tokens are output on the left of the current output. Grouped tokens are output to the left but without any reversal within the group. All of the internal functions here drop one argument: this is needed by \_\_tl_act:NNNnn when changing case (to record which direction the change is in), but not when reversing the tokens.

(End definition for \_\_tl_act:NNNnn and others.)
4639 \cs_generate_variant:Nn \tl_reverse:n { o , V }
4640 \cs_new:Npn \__tl_reverse_normal:nN #1#2
4641 { \__tl_act_reverse_output:n {#2} }
4642 \cs_new:Npn \__tl_reverse_group_preserve:nn #1#2
4643 { \__tl_act_reverse_output:n { {#2} } }
4644 \cs_new:Npn \__tl_reverse_space:n #1
4645 { \__tl_act_reverse_output:n { ~ } }

(End definition for \tl_reverse:n and others. This function is documented on page 47.)

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

This reverses the list, leaving \exp_stop_f: in front, which stops the f-expansion.

\cs_new_protected:Npn \tl_reverse:N #1
\cs_new_protected:Npn \tl_greverse:N #1
\cs_generate_variant:Nn \tl_reverse:N { c }
\cs_generate_variant:Nn \tl_greverse:N { c }

(End definition for \tl_reverse:N and \tl_greverse:N. These functions are documented on page 47.)

7.11 The first token from a token list

\tl_head:N
\tl_head:n
\tl_head:V
\tl_head:v
\tl_head:f
\__tl_head_auxi:nw
\__tl_head_auxii:n
\tl_head:w
\tl_tail:N
\tl_tail:n
\tl_tail:v
\tl_tail:f

Finding the head of a token list expandably always strips braces, which is fine as this is consistent with for example mapping to a list. The empty brace groups in \tl_-\tl_head:n ensure that a blank argument gives an empty result. The result is returned within the unexpanded primitive. The approach here is to use \if_false: to allow us to use } as the closing delimiter: this is the only safe choice, as any other token would not be able to parse it’s own code. Using a marker, we can see if what we are grabbing is exactly the marker, or there is anything else to deal with. Is there is, there is a loop. If not, tidy up and leave the item in the output stream. More detail in http://tex.stackexchange.com/a/70168.

\cs_new:Npn \tl_head:n #1
\cs_new:Npn \__tl_head_auxi:nw \tl_head:n #1
\cs_new:Npn \__tl_head_auxii:n \tl_head:n #1
\__kernel_exp_not:w
\if_false: { \if: \__tl_head_auxii:n #1 { } \q_stop }
\cs_new:Npn \__tl_head_auxi:nw \tl_head:n #1 \q_stop
\exp_after:wN \__tl_head_auxi:nw \tl_head:n { \exp_after:wN { \if_false: { \fi: {#1} }
\cs_new:Npn \__tl_head_auxii:n \tl_head:n #1
\exp_after:wN \__tl_head_auxi:nw \tl_head:n { \exp_after:wN { \if: \__tl_head_auxii:n #1 }
\exp_after:wN \__kernel_tl_to_str:w \exp_after:wN { \use_none:n #1 } \q_nil
\exp_after:wN \use_i:nn \tl_after:wN \tl_to_str:w \exp_after:wN { \use_none:n #1 } \q_nil
\exp_after:wN \use_i:nn \__kernel_tl_to_str:w \exp_after:wN \use_none:n #1
\if: {
\if_false: { \fi: \__tl_head_auxi:nw #1 } }
\cs_generate_variant:Nn \tl_head:n { V , v , f }

397
To correctly leave the tail of a token list, it’s important not to absorb any of the tail part as an argument. For example, the simple definition

```latex
\cs_new:Npn \tl_tail:n #1 { \tl_tail:w #1 \q_stop }
\cs_new:Npn \tl_tail:w #1#2 \q_stop
```

would give the wrong result for \texttt{\tl_tail:n \{ a \{ bc \} \}} (the braces would be stripped). Thus the only safe way to proceed is to first check that there is an item to grab (i.e. that the argument is not blank) and assuming there is to dispose of the first item. As with \texttt{\tl_head:n}, the result is protected from further expansion by \texttt{\unexpanded}.

While we could optimise the test here, this would leave some tokens “banned” in the input, which we do not have with this definition.

```latex
\cs_new:Npn \tl_tail:n #1
\{
__kernel_exp_not:w
\tl_if_blank:nTF {#1}
\{ \}
\{ \exp_after:wN \{ \use_none:n #1 \} \}
\}
\cs_generate_variant:Nn \tl_tail:n { V , v , f }
\cs_new:Npn \tl_tail:N { \exp_args:No \tl_tail:n }
```

(End definition for \texttt{\tl_head:N} and others. These functions are documented on page 49.)

Accessing the first token of a token list is tricky in three cases: when it has category code 1 (begin-group token), when it is an explicit space, with category code 10 and character code 32, or when the token list is empty (obviously).

Forgetting temporarily about this issue we would use the following test in \texttt{\tl_if_head_eq_charcode:nN}. Here, \texttt{\tl_head:w} yields the first token of the token list, then passed to \texttt{\exp_not:N}.

```latex
\if_charcode:w
\exp_after:wN \exp_not:N \tl_head:w #1 { ? \use_none:nn } \q_stop
\exp_not:N #2
```

The two first special cases are detected by testing if the token list starts with an \texttt{N}-type token (the extra ? sends empty token lists to the \texttt{true} branch of this test). In those cases, the first token is a character, and since we only care about its character code, we can use \texttt{\str_head:n} to access it (this works even if it is a space character). An empty argument results in \texttt{\tl_head:w} leaving two tokens: \texttt{?} which is taken in the \texttt{\if_charcode:w} test, and \texttt{\use_none:nn}, which ensures that \texttt{\prg_return_false:} is returned regardless of whether the charcode test was \texttt{true} or \texttt{false}.

```latex
\prg_new_conditional:Npnn \tl_if_head_eq_charcode:nN #1#2 \{ p , T , F , TF \}
\{
\if_charcode:w
\exp_not:N \#2
\tl_if_head_is_N_type:nTF { #1 ? }
\{
\exp_after:wN \exp_not:N
\tl_head:w #1 \q_nil \q_stop
\}
\}
```

398
\{ \str_head:n \{#1\} \}
\prg_return_true:
\else:
\prg_return_false:
\fi:
\}
\prg_generate_conditional_variant:Nnn \tl_if_head_eq_charcode:nN
\{ f \} \{ p , T , T , F \}
For \tl_if_head_eq_catcode:nN, again we detect special cases with a \tl_if_head_is_N_type:n. Then we need to test if the first token is a begin-group token or an explicit space token, and produce the relevant token, either \c_group_begin_token or \c_space_token. Again, for an empty argument, a hack is used, removing \prg_return_true: and \else: with \use_none:nn in case the catcode test with the (arbitrarily chosen) ? is true.
\prg_new_conditional:Npnn \tl_if_head_eq_catcode:nN #1#2 \{ p , T , F , TF \}
\{ \if_catcode:w \exp_not:N #2 \tl_if_head_is_N_type:nTF \{ #1 ? \}
\{ \exp_after:wN \exp_not:N \tl_head:w #1 \{ ? \use_none:nn \} \q_stop
\}
\{ \tl_if_head_is_group:nTF \{#1\}
\{ \c_group_begin_token \}
\{ \c_space_token \}
\}
\prg_return_true:
\else:
\prg_return_false:
\fi:
\}
\prg_generate_conditional_variant:Nnn \tl_if_head_eq_catcode:nN
\{ o \} \{ p , T , T , F \}
For \tl_if_head_eq_meaning:nN, again, detect special cases. In the normal case, use \tl_head:w, with no \exp_not:N this time, since \if_meaning:w causes no expansion. With an empty argument, the test is true, and \use_none:nn removes #2 and the usual \prg_return_true: and \else:. In the special cases, we know that the first token is a character, hence \if_charcode:w and \if_catcode:w together are enough. We combine them in some order, hopefully faster than the reverse. Tests are not nested because the arguments may contain unmatched primitive conditionals.
\prg_new_conditional:Npnn \tl_if_head_eq_meaning:nN #1#2 \{ p , T , F , TF \}
\{ \tl_if_head_is_N_type:nTF \{ #1 ? \}
\{ \_\tl_if_head_eq_meaning_normal:nN \}
\{ \_\tl_if_head_eq_meaning_special:nN \}
\{#1\} #2
\}
\cs_new:Npn \_\tl_if_head_eq_meaning_normal:nN #1 #2
\{ \exp_after:wN \if_meaning:w
A token list can be empty, can start with an explicit space character (catcode 10 and charcode 32), can start with a begin-group token (catcode 1), or start with an N-type argument. In the first two cases, the line involving \_\_tl_if_head_is_N_type:w produces " (and otherwise nothing). In the third case (begin-group token), the lines involving \exp_after:wN produce a single closing brace. The category code test is thus true exactly in the fourth case, which is what we want. One cannot optimize by moving one of the * to the beginning: if #1 contains primitive conditionals, all of its occurrences must be dealt with before the \if_catcode:w tries to skip the true branch of the conditional.
\tl_if_head_is_group_p:n
\tl_if_head_is_group:nTF
Pass the first token of \#1 through \token_to_str:N, then check for the brace balance. The extra ? caters for an empty argument. This could be made faster, but we need all brace tricks to happen in one step of expansion, keeping the token list brace balanced at all times.

\prg_new_conditional:Npnn \tl_if_head_is_group:n #1 { p , T , F , TF }
\begin{verbatim}
{ \if_catcode:w \exp_after:wN \use_none:n
    \exp_after:wN \{ \exp_after:wN \{ \token_to_str:N #1 ? \} \}
* *
    \prg_return_false:
\else:
    \prg_return_true:
\fi:
}
\end{verbatim}

(End definition for \tl_if_head_is_group:nTF. This function is documented on page 50.)

\tl_if_head_is_space_p:n
\tl_if_head_is_space:nTF
\__tl_if_head_is_space:w
The auxiliary’s argument is all that is before the first explicit space in \#1~. If that is a single ? the test yields true. Otherwise, that is more than one token, and the test yields false. The work is done within braces (with an \if_false: { \fi: ... } construction) both to hide potential alignment tab characters from \TeX{} in a table, and to allow for removing what remains of the token list after its first space. The \exp:w and \exp_end: ensure that the result of a single step of expansion directly yields a balanced token list (no trailing closing brace).

\prg_new_conditional:Npnn \tl_if_head_is_space:n #1 { p , T , F , TF }
\begin{verbatim}
{ \exp:w \if_false: { \fi: \__tl_if_head_is_space:w ? #1 ? ~ }
\cs_new:Npn \__tl_if_head_is_space:w #1 ~
{ \tl_if_empty:oTF { \use_none:n #1 }
{ \exp_after:wN \exp_end: \exp_after:wN \prg_return_true: }
{ \exp_after:wN \exp_end: \exp_after:wN \prg_return_false: }
\exp_after:wN \exp_end: \exp_after:wN \use_none:n \exp_after:wN \{ \if_false: \fi: }
}
\end{verbatim}

(End definition for \tl_if_head_is_space:nTF and \__tl_if_head_is_space:w. This function is documented on page 50.)

7.12 Using a single item

\tl_item:nn
\tl_item:Nn
\tl_item:cn
\__tl_item_aux:nn
\__tl_item:nn
The idea here is to find the offset of the item from the left, then use a loop to grab the correct item. If the resulting offset is too large, then \quark_if_recursion_tail_stop:n terminates the loop, and returns nothing at all.
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820

#1
\q_recursion_tail
\prg_break_point:
}
\cs_new:Npn \__tl_item_aux:nn #1#2
{
\int_compare:nNnTF {#1} < 0
{ \int_eval:n { \tl_count:n {#2} + 1 + #1 } }
{#1}
}
\cs_new:Npn \__tl_item:nn #1#2
{
\quark_if_recursion_tail_break:nN {#2} \prg_break:
\int_compare:nNnTF {#1} = 1
{ \prg_break:n { \exp_not:n {#2} } }
{ \exp_args:Nf \__tl_item:nn { \int_eval:n { #1 - 1 } } }
}
\cs_new:Npn \tl_item:Nn { \exp_args:No \tl_item:nn }
\cs_generate_variant:Nn \tl_item:Nn { c }

(End definition for \tl_item:nn and others. These functions are documented on page 51.)

\tl_rand_item:n Importantly \tl_item:nn only evaluates its argument once.
\tl_rand_item:N
4821 \cs_new:Npn \tl_rand_item:n #1
\tl_rand_item:c
4822
{
4823
\tl_if_blank:nF {#1}
4824
{ \tl_item:nn {#1} { \int_rand:nn { 1 } { \tl_count:n {#1} } } }
4825
}
4826 \cs_new:Npn \tl_rand_item:N { \exp_args:No \tl_rand_item:n }
4827 \cs_generate_variant:Nn \tl_rand_item:N { c }
(End definition for \tl_rand_item:n and \tl_rand_item:N. These functions are documented on page
51.)

\tl_range:Nnn
\tl_range:cnn
\tl_range:nnn
\__tl_range:Nnnn
\__tl_range:nnnNn
\__tl_range:nnNn
\__tl_range_skip:w
\__tl_range:w
\__tl_range_skip_spaces:n
\__tl_range_collect:nn
\__tl_range_collect:ff
\__tl_range_collect_space:nw
\__tl_range_collect_N:nN
\__tl_range_collect_group:nN

To avoid checking for the end of the token list at every step, start by counting the number
l of items and “normalizing” the bounds, namely clamping them to the interval [0, l] and
dealing with negative indices. More precisely, \__tl_range_items:nnNn receives the
number of items to skip at the beginning of the token list, the index of the last item
to keep, a function which is either \__tl_range:w or the token list itself. If nothing
should be kept, leave {}: this stops the f-expansion of \tl_head:f and that function
produces an empty result. Otherwise, repeatedly call \__tl_range_skip:w to delete #1
items from the input stream (the extra brace group avoids an off-by-one shift). For the
braced version \__tl_range_braced:w sets up \__tl_range_collect_braced:w which
stores items one by one in an argument after the semicolon. Depending on the first token
of the tail, either just move it (if it is a space) or also decrement the number of items left
to find. Eventually, the result is a brace group followed by the rest of the token list, and
\tl_head:f cleans up and gives the result in \exp_not:n.
4828
4829
4830
4831
4832
4833
4834

\cs_new:Npn \tl_range:Nnn { \exp_args:No \tl_range:nnn }
\cs_generate_variant:Nn \tl_range:Nnn { c }
\cs_new:Npn \tl_range:nnn { \__tl_range:Nnnn \__tl_range:w }
\cs_new:Npn \__tl_range:Nnnn #1#2#3#4
{
\tl_head:f
{

402


4889\{#2\}
4890\}
4891\{\__tl_range_collect:ff
4892{\exp_args:No \tl_if_head_is_N_type:nTF \{ \use_none:n #1 \}
4893{ \__tl_range_collect_N:nN }
4894{ \__tl_range_collect_group:nn }
4895\}
4896\}
4897\}
4898\}
4899\{ \int_eval:n \{ #2 - 1 \} \}
4900\}
4901\}
4902\}
4903\cs_new:Npn \__tl_range_collect_space:nw #1 ~ \{ { #1 \ } \}
4904\cs_new:Npn \__tl_range_collect_N:nN #1#2 \{ { #1 \ #2 \ } \}
4905\cs_new:Npn \__tl_range_collect_group:nn #1#2 \{ \{ #1 \ {#2} \} \}
4906\cs_generate_variant:Nn \__tl_range_collect:nn { ff }
4907(End definition for \tl_range:Nnn and others. These functions are documented on page 52.)
4908
4909\__tl_range_normalize:nn
4910This function converts an \langle index \rangle argument into an explicit position in the token list (a result of 0 denoting “out of bounds”). Expects two explicit integer arguments: the \langle index \rangle #1 and the string count #2. If #1 is negative, replace it by #1 + #2 + 1, then limit to the range [0, #2].
4911\cs_new:Npn \__tl_range_normalize:nn #1#2
4912\{ \int_eval:n
4913\{ \if_int_compare:w #1 < 0 \exp_stop_f:
4914\if_int_compare:w #1 < -#2 \exp_stop_f:
4915\else:
4916\#1 + \#2 + 1
4917\else:
4918\if_int_compare:w #1 < \#2 \exp_stop_f:
4919\#1
4920\else:
4921\#2
4922\fi:
4923\fi:
4924\}
4925\}
4926(End definition for \__tl_range_normalize:nn.)
4927
7.13 Viewing token lists
4928\tl_show:N
4929Showing token list variables is done after checking that the variable is defined (see \__-
4930\tl_show:c kernel_register_show:N).
4929 \cs_generate_variant:Nn \tl_log:N { \c }  
4930 \cs_new_protected:Npm \__tl_show:NN #1#2  
4931 { \_\_kernel_chk_defined:NT #2  
4932 { \exp_args:Nx #1 \{ \token_to_str:N #2 = \exp_not:o \{#2\} \}  
4933 }  
4934 )  
(End definition for \tl_show:N, \tl_log:N, and \__tl_show:NN. These functions are documented on page 53.)  
\tl_show:n \__tl_show:n \__tl_show:w  
Many show functions are based on \tl_show:n. The argument of \tl_show:n is line- 
wrapped using \iow_wrap:nnnN but with a leading >- and trailing period, both removed 
before passing the wrapped text to the \showtokens primitive. This primitive shows the 
result with a leading >- and trailing period.  
  
The token list \_\_tl_internal_a_tl containing the result of all these manipula-
tions is displayed to the terminal using \tex_showtokens:D and an odd \exp_after:wN 
which expand the closing brace to improve the output slightly. The calls to \_\_-
kernel_iow_with:NNn ensure that the \newlinechar is set to 10 so that the \iow_= newline: inserted by the line-wrapping code are correctly recognized by \TeX, and that 
\errorcontextlines is −1 to avoid printing irrelevant context.  
4950 \cs_new_protected:Npm \tl_show:n \#1  
4951 { \iow_wrap:nnnN \{ > \tl_to_str:n \{#1\} . \} \{ \} \_\_tl_show:n }  
4952 \cs_new_protected:Npm \_\_tl_show:n \#1  
4953 {  
4954 \_\_tl_set:Nf \_\_tl_internal_a_tl \{ \_\_tl_show:w \#1 \q_stop \}  
4955 \_\_kernel_iow_with:NNn \tex_newlinechar:D \{ 10 \}  
4956 {  
4957 \_\_kernel_iow_with:NNn \tex_errorcontextlines:D \{ -1 \}  
4958 {  
4959 \tex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN  
4960 \{ \exp_after:wN \_\_tl_internal_a_tl \}  
4961 \}  
4962 \}  
4963 \cs_new:NNm \_\_tl_show:w \#1 > \#2 . \q_stop \{#2\}  
(End definition for \tl_show:n, \_\_tl_show:n, and \_\_tl_show:w. This function is documented on page 53.)  
\tl_log:n  
Logging is much easier, simply line-wrap. The >- and trailing period is there to match 
the output of \tl_show:n.  
4955 \cs_new_protected:Npm \tl_log:n \#1  
4956 { \iow_wrap:nnnN \{ > \tl_to_str:n \{#1\} . \} \{ \} \_\_tl_log:n }  
(End definition for \tl_log:n. This function is documented on page 53.)  
7.14 Scratch token lists  
\g_tmpa_tl \g_tmpb_tl  
Global temporary token list variables. They are supposed to be set and used immediately, 
with no delay between the definition and the use because you can’t count on other macros 
not to redefine them from under you.  
4951 \_\_tl_new:N \g_tmpa_tl  
4952 \_\_tl_new:N \g_tmpb_tl  

405
\l_tmpa_tl These are local temporary token list variables. Be sure not to assume that the value you
put into them will survive for long—see discussion above.
\l_tmpb_tl
\l_tmpa_tl
\l_tmpb_tl

8 \texttt{l3str} implementation

\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{|package}}}}}}}}}}

8.1 Creating and setting string variables

A string is simply a token list. The full mapping system isn’t set up yet so do things by
hand.
\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{|package}}}}}}}}}}}

\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{|package}}}}}}}}}}}

\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{|package}}}}}}}}}}}

\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{|package}}}}}}}}}}}

Simply convert the token list inputs to \texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{\texttt{|strings}}}}}}}}}}}.
8.2 Modifying string variables

Start by applying \tl_to_str:n to convert the old and new token lists to strings, and also apply \tl_to_str:N to avoid any issues if we are fed a token list variable. Then the code is a much simplified version of the token list code because neither the delimiter nor the replacement can contain macro parameters or braces. The delimiter \q_mark cannot appear in the string to edit so it is used in all cases. Some \s-expansion is unnecessary. There is no need to avoid losing braces nor to protect against expansion. The ending code is much simplified and does not need to hide in braces.
8.3 String comparisons

More copy-paste!

```
\prg_new_eq:NNn \prg_new_eq:cn \prg_new_eq:NNn \prg_new_eq:cn
\prg_new_eq:NNn \prg_new_eq:cn \prg_new_eq:NNn \prg_new_eq:cn
\prg_new_eq:NNn \prg_new_eq:cn \prg_new_eq:NNn \prg_new_eq:cn
```

(End definition for \texttt{\str\_replace\_all:}\texttt{Nn} and \texttt{\str\_replace\_all:}\texttt{cn}. These functions are documented on page 57.)
String comparisons rely on the primitive `(pdf)strcmp` if available: LuaTeX does not have it, so emulation is required. As the net result is that we do not always use the primitive, the correct approach is to wrap up in a function with defined behaviour. That’s done by providing a wrapper and then redefining in the LuaTeX case. Note that the necessary Lua code is loaded in `l3bootstrap`. The need to detokenize and force expansion of input arises from the case where a `#` token is used in the input, e.g. `\__str_if_eq:nn {#} { \tl_to_str:n {#} }`, which otherwise would fail as `\textluaescapestring:D` does not double such tokens.

```latex
\cs_new:Npn __str_if_eq:nn #1#2 { \tex_strcmp:D {#1} {#2} }
\cs_if_exist:NT \tex_luatexversion:D
 \cs_set_eq:NN \lua_escape:e \text_luaescapestring:D
 \cs_set_eq:NN \lua_now:e \text_directlua:D
 \cs_set:Npn __str_if_eq:nn #1#2
 { \lua_now:e
 l3kernel.strcmp
 (" __str_escape:n {#1} " ,
 " __str_escape:n {#2} ")
 }
\cs_new:Npn __str_escape:n #1
 { \lua_escape:e { __kernel_tl_to_str:w { \use:e { {#1} } } } }
```

Modern engines provide a direct way of comparing two token lists, but returning a number. This set of conditionals therefore make life a bit clearer. The \texttt{nn} and \texttt{xx} versions are created directly as this is most efficient.

```latex
\prg_new_conditional:Npnn \str_if_eq:nn #1#2 { p , T , F , TF }
 { \if_int_compare:w __str_if_eq:nn { \exp_not:n {#1} } { \exp_not:n {#2} } = 0 \exp_stop_f:
 \prg_return_true:
 \else: \prg_return_false: \fi: }
\prg_generate_conditional_variant:Nnn \str_if_eq:nn
 { V , v , o , nV , no , VV , nv } { p , T , F , TF }
\prg_new_conditional:Npnn \str_if_eq:ee #1#2 { p , T , F , TF }
 { \if_int_compare:w __str_if_eq:nn {#1} {#2} = 0 \exp_stop_f:
 \prg_return_true:
 \else: \prg_return_false: \fi: }
```
Note that `\str_if_eq:NN` is different from `\tl_if_eq:NN` because it needs to ignore category codes.

```latex
\prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , TF , T , F }
\prg_generate_conditional_variant:Nnn \str_if_eq:NN { c , Nc , cc } { T , F , TF , p }
\prg_new_protected_conditional:Npnn \str_if_in:Nn #1#2 { T , F , TF }
\prg_generate_conditional_variant:Nnn \str_if_in:Nn { c } { T , F , TF }
\prg_new_protected_conditional:Npnn \str_if_in:nn #1#2 { T , F , TF }
```

Everything here needs to be detokenized but beyond that it is a simple token list test.

```latex
\prg_new_protected_conditional:Npnn \str_if_in:NnTF #1#2 { p , TF , T , F }
\prg_generate_conditional_variant:Nnn \str_if_in:NnTF { c } { T , F , TF }
\prg_new_protected_conditional:Npnn \str_if_in:nnTF #1#2 { p , TF , T , F }
```

Much the same as `\tl_case:nn(TF)` here: just a change in the internal comparison.

```latex
\cs_new:Npn \str_case:nn #1#2
\cs_new:Npn \str_case:Vn #1#2
\cs_new:Npn \str_case:on #1#2
\cs_new:Npn \str_case:nV #1#2
\cs_new:Npn \str_case:nn #1#2
\cs_new:Npn \str_case_e:nn #1#2
\cs_new:Npn \str_case:nnF #1#2
```

(End definition for `\str_if_eq:nnTF`. This function is documented on page 58.)

(End definition for `\str_if_eq:NnTF`. It would be faster to fine-tune the `T`, `F`, `TF` variants by calling the appropriate variant of `\tl_if_in:nnTF` directly but that takes more code.)

(End definition for `\str_if_eq:NN`. This function is documented on page 58.)

(End definition for `\str_if_eq:NnTF` and `\str_if_eq:nnTF`. These functions are documented on page 58.)
\begin{verbatim}
\exp:w
  \_str_case:nnTF {#1} {#2}
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \_str_case:nnTF #1#2#3#4
  { \__str_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \str_case:nn { V , o , nV , nv } { T , F , TF }
\end{verbatim}

\begin{verbatim}
\prg_generate_conditional_variant:Nnn \str_case:nn
  { V , o , nV , nv } { T , F , TF }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__str_case:nw #1#2#3
  { \str_if_eq:nnTF {#1} {#2}
    { \__str_case_end:nw {#3} }
    { \__str_case:nw {#1} } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \str_case_e:nn #1#2
  { \exp:w \__str_case_e:nnTF {#1} {#2} { } { } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \str_case_e:nnT #1#2#3
  { \exp:w \__str_case_e:nnTF {#1} {#2} {#3} { } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \str_case_e:nnF #1#2
  { \exp:w \__str_case_e:nnTF {#1} {#2} { } { } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \str_case_e:nnTF #1#2
  { \exp:w \__str_case_e:nnTF {#1} {#2} }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__str_case_e:nw #1#2#3
  { \str_if_eq:eeTF {#1} {#2}
    { \__str_case_end:nw {#3} }
    { \__str_case_e:nw {#1} } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__str_case_end:nw #1#2#3 \q_mark #4#5 \q_stop
  { \exp_end: #1 #4 }
\end{verbatim}

(End definition for \str_case:nnTF and others. These functions are documented on page 59.)

8.4 Mapping to strings

The inline and variable mappings are similar to the usual token list mappings but start out by turning the argument to an “other string”. Doing the same for the expandable function mapping would require \__kernel_str_to_other:n, quadratic in the string length. To deal with spaces in that case, \_str_map_function:w replaces the following
space by a braced space and a further call to itself. These are received by \__\texttt{str_map\_function}:Nn, which passes the space to \#1 and calls \__\texttt{str\_map\_function}:w to deal with the next space. The space before the braced space allows to optimize the \texttt{\_\_recursion\_tail} test. Of course we need to include a trailing space (the question mark is needed to avoid losing the space when \TeX{} tokenizes the line). At the cost of about three more auxiliaries this code could get a 9 times speed up by testing only every 9-th character for whether it is \texttt{\_\_recursion\_tail} (also by converting 9 spaces at a time in the \texttt{\_\_str\_map\_function}:nN case).

For the \texttt{map\_variable} functions we use a string assignment to store each character because spaces are made catcode 12 before the loop.

```latex
\cs_new:Npn \str_map_function:nN #1#2
\{\exp_after:wN __str_map_function:w \exp_after:wN __str_map_function:Nn \exp_after:wN #2 __kernel_tl_to_str:w {#1} \q_recursion_tail ? ~ \prg_break_point:Nn \str_map_break: \{ \}
\}
\cs_new:Npn \str_map_function:NN { \exp_args:No \str_map_function:nN }
\cs_new:Npn __str_map_function:w #1 ~ { #1 { ~ { ~ } __str_map_function:w } }
\cs_new:Npn __str_map_function:Nn #1#2 { \if_meaning:w \q_recursion_tail #2 \exp_after:wN \str_map_break: \fi: #1 #2 __str_map_function:Nn \#1 \}
\cs_generate_variant:Nn \str_map_function:NN { c }
\cs_new:Npn \str_map_inline:nn #1#2
\{ \int_gincr:N \g__kernel_prg_map_int \cs_gset_protected:cpn { __str_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2} \use:x
\{ \exp_not:w __str_map_inline:Nn \exp_not:w __kernel_str_to_other_fast:n {#1} \q_recursion_tail \prg_break_point:Nn \str_map_break: \{ \int_gdecr:N \g__kernel_prg_map_int \}
\}
\cs_new_protected:Npn \str_map_inline:Nn { \exp_args:No \str_map_inline:nn }
\cs_generate_variant:Nn \str_map_inline:Nn { c }
\cs_new:Npn __str_map_inline:NN #1#2
\{ \quark_if_recursion_tail_break:NN \#2 \str_map_break: \exp_args:No \#1 \{ \token_to_str:N \#2 \}
__str_map_inline:NN \#1 \}
\cs_new_protected:Npn \str_map_inline:Nn { \exp_args:No \str_map_inline:nn }
\cs_gset_protected:cpn { __str_map_ \int_use:N \g__kernel_prg_map_int :w } \#1 \{ \} \}
\cs_gset_protected:cpn { __str_map_ \int_use:N \g__kernel_prg_map_int :w } \#1 \{ \}
\\endinput
\endinput
```
8.5 Accessing specific characters in a string

First apply \tl_to_str:n, then replace all spaces by “other” spaces, 8 at a time, storing the converted part of the string between the \q_mark and \q_stop markers. The end is detected when \__str_to_other_loop:w finds one of the trailing A, distinguished from any contents of the initial token list by their category. Then \__str_to_other_end:w is called, and finds the result between \q_mark and the first A (well, there is also the need to remove a space).

\cs_new:Npn \__kernel_str_to_other:n #1
{ \exp_last:N \__str_to_other_loop:w \tl_to_str:n {#1} A A A A A A A A A \q_mark \q_stop }
\group_begin:
\tex_lccode:D \* = ' \ %
\tex_lccode:D \A = 'A \ %
\tex_lowercase:D
\group_end:
{ \group_begin:
\cs_new:Npn \__str_to_other_loop:w #1 A A A A A A \q_stop
\group_end:
\cs_new:Npn \__str_to_other_end:w
  \if_meaning:w A #8
  \__str_to_other_end:w
  \fi:
\__str_to_other_loop:w

(End definition for \str_map_function:NN and others. These functions are documented on page 59.)
The difference with `\__kernel_str_to_other:n` is that the converted part is left in the input stream, making these commands only restricted-expandable.

```
\cs_new:Npn __kernel_str_to_other_fast:n #1
\cs_generate_variant:Nn \str_item:Nn { c }
\cs_new:Npn \str_item:Nn #1#2
\exp_args:Nf \tl_to_str:n {\str_item:nn {\exp_args:No \str_item:nn} {#1} -
\cs_new:Npn __str_to_other_fast_end:w #1 * A #2 \textbackslash_q_stop {#1}
}
```

(End definition for `\__kernel_str_to_other_fast:n`, `\__kernel_str_to_other_fast_loop:w`, and `\__str_to_other_fast_end:w`.)
\exp_args:Nf \_\_str_item:nn
\{ \_\_kernel_str_to_other:n \{#1\} \} \{#2\}
\}
\cs_new:Npn \str_item_ignore_spaces:nn #1
\{ \exp_args:No \_\_str_item:nn \{tl_to_str:n \{#1\} \} \}
\cs_new:Npn \_\_str_item:nn #1#2
\{
\exp_after:wN \_\_str_item:w
\int_value:w \int_eval:n \{#2\} \exp_after:wN ;
\int_value:w \_\_str_count:n \{#1\} ;
#1 \q_stop
\}
\cs_new:Npn \_\_str_item:w #1; #2;
\{
\int_compare:nNnTF \{#1\} < 0
\{
\int_compare:nNnTF \{#1\} < {-#2}
\{
\exp_after:wN \use_i_delimit_by_q_stop:w
\exp:w \exp_after:wN \_\_str_skip_exp_end:w
\int_value:w \int_eval:n \{ #1 + #2 \} ;
\}
\}
\{
\int_compare:nNnTF \{#1\} > \{#2\}
\{
\exp_after:wN \use_i_delimit_by_q_stop:w
\exp:w \_\_str_skip_exp_end:w \{ \}
\}
\}
\}
\cs_new:Npn \_\_str_skip_exp_end:w #1;
\{
\if_int_compare:w #1 > 8 \exp_stop_f:
\exp_after:wN \_\_str_skip_loop:wNNNNNNNNNN\_\_str_skip_end:wNNNNNNNN\_\_str_skip_end:wNNNNNNNN\_\_str_skip_end:wNNNNNNNN
\exp_after:wN \_\_str_skip_end:w
\int_value:w \int_eval:w
\fi:
\}
\cs_new:Npn \_\_str_skip_end:w #1; \{\}
\exp_after:wN \use_i_delimit_by_q_stop:nw
\exp:w \__str_skip_exp_end:w
\int_value:w \int_eval:w { #1 ; { } \}
\难度函数是文档中的第62页。
Sanitize the string. Then evaluate the arguments. At this stage we also decrement the \texttt{start index}, since our goal is to know how many characters should be removed. Then limit the range to be non-negative and at most the length of the string (this avoids needing to check for the end of the string when grabbing characters), shifting negative numbers by the appropriate amount. Afterwards, skip characters, then keep some more, and finally drop the end of the string.
\_str\_range\_normalize:nn

This function converts an \textit{index} argument into an explicit position in the string (a result of 0 denoting “out of bounds”). Expects two explicit integer arguments: the \textit{index} \#1 and the string count \#2. If \#1 is negative, replace it by \#1 + \#2 + 1, then limit to the range [0, \#2].

\begin{verbatim}
\cs_new:Npn \__str\_range\_normalize:nn #1#2 
{ \int_eval:n 
  { \if_int_compare:w #1 < 0 \exp_stop_f: 
    \if_int_compare:w #1 < -#2 \exp_stop_f: 
      0
    \else: 
      #1 + #2 + 1
    \fi:
    \else:\n    \if_int_compare:w #1 < #2 \exp_stop_f: 
      #1
    \else:
      #2
    \fi:
  \fi: 
  \if_int_compare:w #1 < 0 \exp_stop_f: 
    \if_int_compare:w #1 < -#2 \exp_stop_f: 
      0
    \else: 
      #1 + #2 + 1
    \fi:
  \else:\n    \if_int_compare:w #1 < #2 \exp_stop_f: 
      #1
    \else:
      #2
    \fi:
  \fi: 
}
\end{verbatim}

(End definition for \texttt{\_str\_range\_normalize:nn}.)

\_str\_collect\_delimit\_by\_q\_stop:w
\_str\_collect\_loop:wn
\_str\_collect\_loop:wnNNNNNNN
\_str\_collect\_end:wn
\_str\_collect\_end:nnnnnnnnw

Collects $\max(#1,0)$ characters, and removes everything else until \texttt{\textbackslash q\_stop}. This is somewhat similar to \texttt{\_str\_skip\_exp\_end:w}, but accepts integer expression arguments. This time we can only grab 7 characters at a time. At the end, we use an \texttt{\if\_case:w} trick again, so that the 8 first arguments of \texttt{\_str\_collect\_end:nnnnnnnnw} are some \texttt{\or:}, followed by an \texttt{\fi:}, followed by \#1 characters from the input stream. Simply leaving this in the input stream closes the conditional properly and the \texttt{\or:} disappear.

\begin{verbatim}
\cs_new:Npn \__str\_collect\_delimit\_by\_q\_stop:w #1; 
{ \__str\_collect\_loop:wn #1 ; { } }
\cs_new:Npn \__str\_collect\_loop:wn #1 ; 
{ \if_int_compare:w #1 > 7 \exp_stop_f: 
  \exp_after:wN \__str\_collect\_loop:wnNNNNNNN 
\else: 
  \exp_after:wN \__str\_collect\_end:wn 
\fi:
  #1 ;
}
\cs_new:Npn \__str\_collect\_loop:wnNNNNNNN #1; #2 #3#4#5#6#7#8#9 
{ \exp_after:wN \__str\_collect\_loop:wnNNNNNNN 
  \int_value:w \int_eval:n \{ #1 - 7 \} ; 
  \{ #2 #3#4#5#6#7#8#9 \}
}
\cs_new:Npn \__str\_collect\_end:wn #1 ; 
{ }
\end{verbatim}

(End definition for \texttt{\_str\_collect\_end:nnnnnnnnw}.)
8.6 Counting characters

To speed up this function, we grab and discard 9 space-delimited arguments in each iteration of the loop. The loop stops when the last argument is one of the trailing $X\langle\text{number}\rangle$, and that $\langle\text{number}\rangle$ is added to the sum of 9 that precedes, to adjust the result.

```
\cs_new:Npn \str_count_spaces:N { \exp_args:No \str_count_spaces:n }
\cs_generate_variant:Nn \str_count_spaces:N { c }
\cs_new:Npn \str_count_spaces:n #1 { \int_eval:n { \exp_after:wN __str_count_spaces_loop:w \tl_to_str:n {#1} ~ X 7 ~ X 6 ~ X 5 ~ X 4 ~ X 3 ~ X 2 ~ X 1 ~ X 0 ~ X -1 ~ } }
\cs_new:Npn __str_count_spaces_loop:w #1~#2~#3~#4~#5~#6~#7~#8~#9~ { \if_meaning:w X #9 \use_i_delimit_by_q_stop:nw \fi: 9 + __str_count_spaces_loop:w }
```

(End definition for \str_count_spaces:N, \str_count_spaces:n, and \__str_count_spaces_loop:w. These functions are documented on page 61.)

```
__str_count:NNNNNNNN
__str_count:n
__str_count:aux
__str_count_loop:NNNNNNNN
\str_count:NN
\str_count:c
\str_count:n
\str_count_ignore_spaces:n
```

To count characters in a string we could first escape all spaces using \__kernel_str_to_other:n, then pass the result to \tl_count:n. However, the escaping step would be quadratic in the number of characters in the string, and we can do better. Namely, sum the number of spaces (\str_count_spaces:n) and the result of \tl_count:n, which ignores spaces. Since strings tend to be longer than token lists, we use specialized functions to count characters ignoring spaces. Namely, loop, grabbing 9 non-space characters at each step, and end as soon as we reach one of the 9 trailing items. The internal function \__str_count:n, used in \str_item:nn and \str_range:nnn, is similar to \str_count_ignore_spaces:n but expects its argument to already be a string or a string with spaces escaped.

```
\cs_new:Npn \str_count:N { \exp_args:No \str_count:n }
\cs_generate_variant:Nn \str_count:N { c }
\cs_new:Npn \str_count:n #1 { \exp_after:wN __str_count:n \tl_to_str:n {#1} ~ X 7 ~ X 6 ~ X 5 ~ X 4 ~ X 3 ~ X 2 ~ X 1 ~ X 0 ~ X -1 ~ } }
```

(End definition for \str_count:n, \str_count:n, and \__str_count:n. These functions are documented on page 61.)
The _ignore_spaces variant applies \tl_to_str:n then grabs the first item, thus skipping spaces. As usual, \str_head:N expands its argument and hands it to \str_head:n. To circumvent the fact that \TeX skips spaces when grabbing undelimited macro parameters, \__str_head:w takes an argument delimited by a space. If \#1 starts with a non-space character, \use_i_delimit_by_q_stop:nw leaves that in the input stream. On the other hand, if \#1 starts with a space, the \__str_head:w takes an empty argument, and the single (initially braced) space in the definition of \__str_head:w makes its way to the output. Finally, for an empty argument, the (braced) empty brace group in the definition of \str_head:n gives an empty result after passing through \use_i_delimit_by_q_stop:nw.
Getting the tail is a little bit more convoluted than the head of a string. We hit the front of the string with \reverse_if:N \if_charcode:w \scan_stop:. This removes the first character, and necessarily makes the test true, since the character cannot match \scan_stop:. The auxiliary function then inserts the required \fi: to close the conditional, and leaves the tail of the string in the input stream. The details are such that an empty string has an empty tail (this requires in particular that the end-marker X be unexpandable and not a control sequence). The \_ignore_spaces is rather simpler: after converting the input to a string, \_str_tail_auxii:w removes one undelimited argument and leaves everything else until an end-marker \q_mark. One can check that an empty (or blank) string yields an empty tail.

Case changing for programmatic reasons is done by first detokenizing input then doing a simple loop that only has to worry about spaces and everything else. The output is detokenized to allow data sharing with text-based case changing.

8.8 String manipulation
\cs_generate_variant:Nn \str_uppercase:n { f }
\cs_new:Npn \_str_change_case:nn #1
{
 \exp_after:wN \_str_change_case_aux:nn \exp_after:wN
 \tl_to_str:n {#1} 
}
\cs_new:Npn \_str_change_case_aux:nn #1#2
{
 \_str_change_case_loop:nw {#2} #1 \q_recursion_tail \q_recursion_stop
 \_str_change_case_result:n { }
}
\cs_new:Npn \_str_change_case_loop:nw #1#2 \q_recursion_stop
{
 \tl_if_head_is_space:nTF {#2}
 { \_str_change_case_space:n }
 { \_str_change_case_char:nN }
 {#1} #2 \q_recursion_stop
}
\exp_last_unbraced:NNNNo
\cs_new:Npn \_str_change_case_space:n #1 \c_space_tl
{
 \__str_change_case_output:nw { ~ }
 \__str_change_case_loop:nw {#1}
}
\cs_new:Npn \_str_change_case_char:nN #1#2
{
 \quark_if_recursion_tail_stop_do:Nn #2
 { \_str_change_case_end:wn }
 \__str_change_case_output:fw
 \use:c { char_str_#1 case:N } #2 }
\_str_change_case_loop:nw {#1}
\_str_change_case_result:n { }
(End definition for \str_foldcase:n and others. These functions are documented on page 65.)
\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str
For all of those strings, use \cs_to_str:N to get characters with the correct category code without worries
\str_const:Nx \c_ampersand_str { \cs_to_str:N \& }
\str_const:Nx \c_atsign_str { \cs_to_str:N @ }
\str_const:Nx \c_backslash_str { \cs_to_str:N \}
\str_const:Nx \c_left_brace_str { \cs_to_str:N { }
\str_const:Nx \c_right_brace_str { \cs_to_str:N } }
\str_const:Nx \c_circumflex_str { \cs_to_str:N ^ }
\str_const:Nx \c_colon_str { \cs_to_str:N : }
\str_const:Nx \c_dollar_str { \cs_to_str:N $ }
\str_const:Nx \c_hash_str { \cs_to_str:N \# }
\str_const:Nx \c_percent_str { \cs_to_str:N \% }
\str_const:Nx \c_tilde_str { \cs_to_str:N \~ }
\str_const:Nx \c_underscore_str { \cs_to_str:N _ }
8.9 Viewing strings

\str_show:n  Displays a string on the terminal.
\str_show:N  \cs_new_eq:NN \str_show:n \tl_show:n
\str_show:c  \cs_new_eq:NN \str_show:N \tl_show:N
\str_log:n  \cs_generate_variant:Nn \str_show:N { c }
\str_log:N  \cs_new_eq:NN \str_log:n \tl_log:n
\str_log:c  \cs_new_eq:NN \str_log:N \tl_log:N
\str_log:{c} \cs_generate_variant:Nn \str_log:N { c }

9  l3str-convert implementation

9.1 Helpers

9.1.1 Variables and constants
\__str_tmp:w  Internal scratch space for some functions.
\l__str_internal_int
\l__str_internal_tl
\g__str_result_tl

\c__str_replacement_char_int When converting, invalid bytes are replaced by the Unicode replacement character "FFFD.
\int_const:Nn \c__str_replacement_char_int { "FFFD }

(End definition for \c__str_replacement_char_int.)
(End definition for \l__str_tmp:w, \l__str_internal_int, and \l__str_internal_tl.)
(End definition for \g__str_result_tl.)
(End definition for \l_tmpa_str and others. These variables are documented on page 66.)
(End definition for \l_tmpb_str and others. These variables are documented on page 66.)
\c__str_max_byte_int \ The maximal byte number.
\int_const:Nn \c__str_max_byte_int { 255 }
(End definition for \c__str_max_byte_int.)

\g__str_alias_prop \ To avoid needing one file per encoding/escaping alias, we keep track of those in a property list.
\prop_new:N \g__str_alias_prop
\prop_gput:Nnn \g__str_alias_prop { latin1 } { iso88591 }
\prop_gput:Nnn \g__str_alias_prop { latin2 } { iso88592 }
\prop_gput:Nnn \g__str_alias_prop { latin3 } { iso88593 }
\prop_gput:Nnn \g__str_alias_prop { latin4 } { iso88594 }
\prop_gput:Nnn \g__str_alias_prop { latin5 } { iso88599 }
\prop_gput:Nnn \g__str_alias_prop { latin6 } { iso885910 }
\prop_gput:Nnn \g__str_alias_prop { latin7 } { iso885913 }
\prop_gput:Nnn \g__str_alias_prop { latin8 } { iso885914 }
\prop_gput:Nnn \g__str_alias_prop { latin9 } { iso885915 }
\prop_gput:Nnn \g__str_alias_prop { latin10 } { iso885916 }
\prop_gput:Nnn \g__str_alias_prop { utf16le } { utf16 }
\prop_gput:Nnn \g__str_alias_prop { utf16be } { utf16 }
\prop_gput:Nnn \g__str_alias_prop { utf32le } { utf32 }
\prop_gput:Nnn \g__str_alias_prop { utf32be } { utf32 }
\prop_gput:Nnn \g__str_alias_prop { hexadecimal } { hex }
(End definition for \g__str_alias_prop.)

\g__str_error_bool \ In conversion functions with a built-in conditional, errors are not reported directly to the user, but the information is collected in this boolean, used at the end to decide on which branch of the conditional to take.
\bool_new:N \g__str_error_bool
(End definition for \g__str_error_bool.)

str_byte str_error \ Conversions from one \langle encoding \rangle/\langle escaping \rangle pair to another are done within \texttt{x}-expanding assignments. Errors are signalled by raising the relevant flag.
\flag_new:n { str_byte }
\flag_new:n { str_error }
(End definition for \texttt{str_byte} and \texttt{str_error}. These variables are documented on page ??.)

9.2 String conditionals
\__str_if_contains_char:NNT \__str_if_contains_char:NNTF \__str_if_contains_char:nNTF \__str_if_contains_char_aux:NN \__str_if_contains_char_true:
\__str_if_contains_char:NNT \langle token list \rangle \langle char \rangle
Expects the \langle token list \rangle to be an \langle other string \rangle: the caller is responsible for ensuring that no (too-)special catcodes remain. Spaces with catcode 10 are ignored. Loop over the characters of the string, comparing character codes. The loop is broken if character codes match. Otherwise we return “false”.
\prg_new_conditional:Npn \__str_if_contains_char:NN #1#2 { T , TF }
{ \exp_after:wN \__str_if_contains_char_aux:NN \exp_after:wN #2
#1 { \prg_break:n { ? \fi: } }
\prg_break_point:
\prg_return_false:

423
\prg_new_conditional:Npn \__str_if_contains_char:nN #1#2 { TF }
{ \__str_if_contains_char_aux:NN #2 #1 { \prg_break:n { ? \fi: } } \prg_break_point: \prg_return_false: }
\cs_new:Npn \__str_if_contains_char_aux:NN #1#2
{ \if_charcode:w #1 #2 \exp_after:wN \__str_if_contains_char_true: \fi: \__str_if_contains_char_aux:NN #1 }
\cs_new:Npn \__str_if_contains_char_true:
{ \prg_break:n { \prg_return_true: \use_none:n } }
(End definition for \__str_if_contains_char:NNT and others.)
}\__str_octal_use:NTF
\__str_octal_use:NTF (token) {{true code}} {{false code}}
If the (token) is an octal digit, it is left in the input stream, followed by the (true code). Otherwise, the (false code) is left in the input stream.
\TeX{}hackers note: This function will fail if the escape character is an octal digit. We are thus careful to set the escape character to a known value before using it. \TeX{} dutifully detects octal digits for us: if #1 is an octal digit, then the right-hand side of the comparison is ‘1#1, greater than 1. Otherwise, the right-hand side stops as ‘1, and the conditional takes the false branch.
\prg_new_conditional:Npn \__str_octal_use:N #1 { TF }
{ \if_int_compare:w 1 < '1 \token_to_str:N #1 \exp_stop_f: #1 \prg_return_true: \else: \prg_return_false: \fi: }
(End definition for \__str_octal_use:NTF.)
\__str_hexadecimal_use:NTF \TeX{} detects uppercase hexadecimal digits for us (see \__str_octal_use:NTF), but not the lowercase letters, which we need to detect and replace by their uppercase counterpart.
\prg_new_conditional:Npn \__str_hexadecimal_use:N #1 { TF }
{ \if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f: #1 \prg_return_true: \else: \prg_return_false: \fi: \if_case:w \int_eval:n { \exp_after:wN ' \token_to_str:N #1 - 'a }
A \or: B \or: C \or: D \or: E \or: F
424
9.3 Conversions

9.3.1 Producing one byte or character

For each integer \( N \) in the range \([0, 255]\), we create a constant token list which holds three character tokens with category code other: the character with character code \( N \), followed by the representation of \( N \) as two hexadecimal digits. The value \(-1\) is given a default token list which ensures that later functions give an empty result for the input \(-1\).

\[
\text{\texttt{\_\_str_internal\_tl}} = \text{\texttt{\_\_str\_internal\_tl}}(0123456789ABCDEF) \quad \text{\texttt{\_\_str\_internal\_tl}}(12) \quad \text{\texttt{\_\_str\_internal\_tl}}(1)
\]

\[
\text{\texttt{\_\_str\_internal\_tl}}(\inteval{#1##1}) \quad \text{\texttt{\_\_str\_internal\_tl}}({#1##1})
\]

For each integer \( N \) in the range \([0, 255]\), we create a constant token list which holds three character tokens with category code other: the character with character code \( N \), followed by the representation of \( N \) as two hexadecimal digits. The value \(-1\) is given a default token list which ensures that later functions give an empty result for the input \(-1\).

\[
\text{\texttt{\_\_str\_internal\_tl}}(0123456789ABCDEF) \quad \text{\texttt{\_\_str\_internal\_tl}}(12) \quad \text{\texttt{\_\_str\_internal\_tl}}(1)
\]

\[
\text{\texttt{\_\_str\_internal\_tl}}(\inteval{#1##1}) \quad \text{\texttt{\_\_str\_internal\_tl}}({#1##1})
\]

Those functions must be used carefully: feeding them a value outside the range \([-1, 255]\] will attempt to use the undefined token list variable \(\text{\texttt{\_\_str\_byte\_\langle number\rangle\_tl}}\). Assuming that the argument is in the right range, we expand the corresponding token list, and pick either the byte (first token) or the hexadecimal representations (second and third tokens). The value \(-1\) produces an empty result in both cases.
\__str_output_byte_pair_be:n \__str_output_byte_pair_le:n \__str_output_byte_pair:nnN

Convert a number in the range \[0, 65535\] to a pair of bytes, either big-endian or little-endian.

\cs_new:Npn \__str_output_byte_pair_be:n #1
\exp_args:Nf \__str_output_byte_pair:nnN
\int_div_truncate:nn { #1 } \{ "100 \} \{#1 \} \use:nn
\cs_new:Npn \__str_output_byte_pair_le:n #1
\exp_args:Nf \__str_output_byte_pair:nnN
\int_div_truncate:nn { #1 } \{ "100 \} \{#1 \} \use_ii_i:nn
\cs_new:Npn \__str_output_byte_pair:nnN #1#2#3
#3
\__str_output_byte:n { #1 }
\__str_output_byte:n { #2 - #1 * "100 }

(End definition for \__str_output_byte_pair_be:n, \__str_output_byte_pair_le:n, and \__str_output_byte_pair:nnN.)

\__str_convert_gmap:N \__str_convert_gmap_loop:NN

This maps the function \#1 over all characters in \texttt{\g__str_result_tl}, which should be a byte string in most cases, sometimes a native string.

\cs_new_protected:Npn \__str_convert_gmap:N #1
\tl_gset:Nx \g__str_result_tl
\exp_after:wN \__str_convert_gmap_loop:NN
\exp_after:wN #1
\g__str_result_tl { ? \prg_break: }
\prg_break_point:

\cs_new:Npn \__str_convert_gmap_loop:NN #1#2
\use_none:n #2
#1#2
\__str_convert_gmap_loop:NN #1

(End definition for \__str_convert_gmap:N and \__str_convert_gmap_loop:NN.)

\__str_convert_gmap_internal:N \__str_convert_gmap_internal_loop:Nw

This maps the function \#1 over all character codes in \texttt{\g__str_result_tl}, which must be in the internal representation.

\cs_new_protected:Npn \__str_convert_gmap_internal:N #1
\tl_gset:Nx \g__str_result_tl
\exp_after:wN \__str_convert_gmap_internal_loop:Nww

9.3.2 Mapping functions for conversions

This maps the function \#1 over all characters in \texttt{\g__str_result_tl}, which should be a byte string in most cases, sometimes a native string.

\cs_new_protected:Npn \__str_convert_gmap:N #1
\tl_gset:Nx \g__str_result_tl
\exp_after:wN \__str_convert_gmap_loop:NN
\exp_after:wN #1
\g__str_result_tl { ? \prg_break: }
\prg_break_point:

\cs_new:Npn \__str_convert_gmap_loop:NN #1#2
\use_none:n #2
#1#2
\__str_convert_gmap_loop:NN #1

(End definition for \__str_convert_gmap:N and \__str_convert_gmap_loop:NN.)

\__str_convert_gmap_internal:N \__str_convert_gmap_internal_loop:Nw

This maps the function \#1 over all character codes in \texttt{\g__str_result_tl}, which must be in the internal representation.

\cs_new_protected:Npn \__str_convert_gmap_internal:N #1
\tl_gset:Nx \g__str_result_tl
\exp_after:wN \__str_convert_gmap_internal_loop:Nww

426
9.3.3 Error-reporting during conversion

When converting using the function \str_set_convert:Nnnn, errors should be reported to the user after each step in the conversion. Errors are signalled by raising some flag (typically @@_error), so here we test that flag: if it is raised, give the user an error, otherwise remove the arguments. On the other hand, in the conditional functions \str_set_convert:NnnnTF, errors should be suppressed. This is done by changing \__str_if_flag_error:nnx into \__str_if_flag_no_error:nnx locally.

\cs_new_protected:Npn \__str_if_flag_error:nnx #1
\cs_new_protected:Npn \__str_if_flag_no_error:nnx #1#2#3
\cs_new:Npn \__str_if_flag_times:nT #1#2

9.3.4 Framework for conversions

Most functions in this module expect to be working with “native” strings. Strings can also be stored as bytes, in one of many encodings, for instance utf8. The bytes themselves can be expressed in various ways in terms of \TeX tokens, for instance as pairs of hexadecimal digits. The questions of going from arbitrary Unicode code points to bytes, and from bytes to tokens are mostly independent.

Conversions are done in four steps:

• “unescape” produces a string of bytes;

(End definition for \__str_convert_gmap_internal:N and \__str_convert_gmap_internal_loop:Nw.)

(End definition for \__str_if_flag_error:nnx and \__str_if_flag_no_error:nnx.)

(End definition for \__str_if_flag_times:nT and \__str_if_flag_no_error:nnx.)

(End definition for \__str_if_flag_times:nT.)
• “decode” takes in a string of bytes, and converts it to a list of Unicode characters in an internal representation, with items of the form
\( \langle \text{bytes} \rangle \text{__s_tl} \langle \text{Unicode code point} \rangle \text{__s_tl} \)
where we have collected the \( \langle \text{bytes} \rangle \) which combined to form this particular Unicode character, and the \( \langle \text{Unicode code point} \rangle \) is in the range \([0, \text{10FFFF}]\).

• “encode” encodes the internal list of code points as a byte string in the new encoding;

• “escape” escapes bytes as requested.

The process is modified in case one of the encoding is empty (or the conversion function has been set equal to the empty encoding because it was not found): then the unescape or escape step is ignored, and the decode or encode steps work on tokens instead of bytes. Otherwise, each step must ensure that it passes a correct byte string or internal string to the next step.

The input string is stored in \( \text{\#g__str_result_tl} \), then we: unescape and decode; encode and escape; exit the group and store the result in the user’s variable. The various conversion functions all act on \( \text{\#g__str_result_tl} \). Errors are silenced for the conditional functions by redefining \( \text{\#_str_if_flag_error:n} \) locally.

```latex
\cs_new_protected:Npn \str_set_convert:Nnnn { __str_convert:nNNnnn { } \tl_set_eq:NN } \\
\cs_new_protected:Npn \str_gset_convert:Nnnn { __str_convert:nNNnnn { } \tl_gset_eq:NN } \\
\prg_new_protected_conditional:Npnn \str_set_convert:Nnnn #1#2#3#4 { T , F , TF }
\prg_new_protected_conditional:Npnn \str_gset_convert:Nnnn #1#2#3#4 { T , F , TF } \\
\cs_new_protected:Npn __str_convert:nNNnnn #1#2#3#4#5#6
{ \group_begin: \tl_gset:Nx \g__str_result_tl { __kernel_str_to_other_fast:n {#4} } \exp_after:wN __str_convert:wwwnn \tl_to_str:n /// \q_stop \langle \text{decode} \rangle \{ \text{unescape} \} \prg_do_nothing: 428
```

428
\_\_str_convert:wwwnn
\_\_str_convert:NNnNN

The task of \_\_str_convert:wwwnn is to split ⟨encoding⟩/⟨escaping⟩ pairs into their components, #1 and #2. Calls to \_\_str_convert:nnn ensure that the corresponding conversion functions are defined. The third auxiliary does the main work.

- #1 is the encoding conversion function;
- #2 is the escaping function;
- #3 is the escaping name for use in an error message;
- #4 is \prg_do_nothing for unescaping/decoding, and \use_ii_i:nn for encoding/escaping;
- #5 is the default encoding function (either “decode” or “encode”), for which there should be no escaping.

Let us ignore the native encoding for a second. In the unescaping/decoding phase, we want to do #2#1 in this order, and in the encoding/escaping phase, the order should be reversed: #4#2#1 does exactly that. If one of the encodings is the default (native), then the escaping should be ignored, with an error if any was given, and only the encoding, #1, should be performed.

\cs_new_protected:Npn \_\_str_convert:wwwnn #1 / #2 // #3 \q_stop #4#5
\_\_str_convert:nnn {enc} {#4} {#1}
\_\_str_convert:nnn {esc} {#5} {#2}
\exp_args:Ncc \_\_str_convert:NNnNN
\_\_str_convert:nn #4 #1: \_\_str_convert:nn #5 #2: \_\_str_convert:nn #1 #2 #3 #4 #5
\exp_after:wN \_\_str_convert:wwwnn
\tl_to_str:n {#6} // \q_stop
\{ encode \} \{ escape \}
\use_ii_i:nn
\_\_str_convert:encode:
\group_end:
#2 #3 \g__str_result_tl
}

(End definition for \str_set_convert:Nnnn and others. These functions are documented on page 67.)
The arguments of \_\_str_convert::nn are: enc or esc, used to build filenames, the type of the conversion (unescape, decode, encode, escape), and the encoding or escaping name. If the function is already defined, no need to do anything. Otherwise, filter out all non-alphanumerics in the name, and lowercase it. Feed that, and the same three arguments, to \_\_str_convert::nnn. The task is then to make sure that the conversion function #3_#1 corresponding to the type #3 and filtered name #1 is defined, then set our initial conversion function #3_#4 equal to that.

How do we get the #3_#1 conversion to be defined if it isn’t? Two main cases.

First, if #1 is a key in \g__str_alias_prop, then the value \l__str_internal_tl tells us what file to load. Loading is skipped if the file was already read, i.e., if the conversion command based on \l__str_internal_tl already exists. Otherwise, try to load the file; if that fails, there is an error, use the default empty name instead.

Second, #1 may be absent from the property list. The \cs_if_exist:cF test is automatically false, and we search for a file defining the encoding or escaping #1 (this should allow third-party .def files). If the file is not found, there is an error, use the default empty name instead.

In all cases, the conversion based on \l__str_internal_tl is defined, so we can set the #3_#1 function equal to that. In some cases (e.g., utf16be), the #3_#1 function is actually defined within the file we just loaded, and it is different from the \l__str_internal_tl-based function: we mustn’t clobber that different definition.

\cs_new_protected:Npn \_\_str_convert::nn #1#2#3
\begin{verbatim}
{ \cs_if_exist:cF { __str_convert_#2_#3: } 
  { \exp_args:Nx \_\_str_convert:nnnn 
    { \__str_convert_lowercase_alphanum:n {#3} } 
    {#1} {#2} {#3} 
  } 
}
\end{verbatim}

\cs_new_protected:Npn \_\_str_convert::nnn #1#2#3#4
\begin{verbatim}
{ \cs_if_exist:cF { __str_convert_#3_#1: } 
  { \prop_get:NnNF \g__str_alias_prop {#1} \l__str_internal_tl 
    { \tl_set:Nn \l__str_internal_tl {#1} } 
  } 
}
\end{verbatim}

\cs_if_exist:cF { __str_convert_#3_#1: } 
\begin{verbatim}
{ \file_if_exist:nTF { l3str-#2- \l__str_internal_tl .def } 
  { \group_begin: 
    \_\_str_load_catcodes: 
    \file_input:n { l3str-#2- \l__str_internal_tl .def } 
  \group_end: 
} 
{ \tl_clear:N \l__str_internal_tl 
  \_\_kernel_msg_error:nnxx { str } { unknown-#2 } {#4} {#1} 
} 
\cs_gset_eq:cc { __str_convert_#3_#1: } 
\end{verbatim}

430
\__str_load_catcodes: Since encoding files may be loaded at arbitrary places in a \TeX document, including within verbatim mode, we set the catcodes of all characters appearing in any encoding definition file.

\newcommand{\__str_load_catcodes}{
\begin{Verbatim}
\_\_\_\_\_\str_load_catcodes:
\end{Verbatim}
}\newcommand{\str_load_catcodes}{
\begin{Verbatim}
\_\_\_\_\_\str_load_catcodes:
\end{Verbatim}
}\newcommand{\__str_load_catcodes}{
\begin{Verbatim}
\_\_\_\_\_\str_load_catcodes:
\end{Verbatim}
}(End definition for \_\_\_\_\str_load_catcodes and \_\_\_\_\str_load_catcodes.)
9.3.5 Byte unescape and escape

Strings of bytes may need to be stored in auxiliary files in safe “escaping” formats. Each such escaping is only loaded as needed. By default, on input any non-byte is filtered out, while the output simply consists in letting bytes through.

In the case of 8-bit engines, every character is a byte. For Unicode-aware engines, test the character code; non-bytes cause us to raise the flag \texttt{str\_byte}. Spaces have already been given the correct category code when this function is called.

\begin{verbatim}
\bool_lazy_any:nTF
{ \sys_if_engine_luatex_p: \sys_if_engine_xetex_p: }
{ \cs_new:Npn \__str_filter_bytes:n #1
{ \__str_filter_bytes_aux:N #1
{ ? \prg_break: } \prg_break_point: }
\cs_new:Npn \__str_filter_bytes_aux:N #1
{ \use_none:n #1
\if_int_compare:w '#1 < 256 \exp_stop_f:
#1
\else:
\flag_raise:n { \str_byte }
\fi:
\__str_filter_bytes_aux:N }
\cs_new_eq:NN \__str_filter_bytes:n \use:n }
\end{verbatim}

\begin{verbatim}
\bool_lazy_any:nTF
{ \sys_if_engine_luatex_p: \sys_if_engine_xetex_p: }
{ \cs_new_protected:Npn \__str_convert_unescape_: \__str_convert_unescape_bytes:
{ \cs_new:Npn \__str_convert_unescape_: \__str_convert_unescape_bytes:
\begin{verbatim}
\bool_lazy_any:nTF
{ \sys_if_engine_luatex_p: \sys_if_engine_xetex_p: }
{ \cs_new_protected:Npn \__str_convert_unescape_: \__str_convert_unescape_bytes:

\end{verbatim}
\end{verbatim}

The simplest unescaping method removes non-bytes from $\g\__str_result_tl$. 

\begin{verbatim}
\bool_lazy_any:nTF
{ \sys_if_engine_luatex_p: \sys_if_engine_xetex_p: }
{ \cs_new_protected:Npn \__str_convert_unescape_: \__str_convert_unescape_bytes:

\end{verbatim}

432
The simplest form of escape leaves the bytes from the previous step of the conversion unchanged.

The conversion from an internal string to native character tokens basically maps \texttt{\char_\string generate:nn} through the code-points, but in non-Unicode-aware engines we use a fall-back character \texttt{?} rather than nothing when given a character code outside \([0, 255]\). We detect the presence of bad characters using a flag and only produce a single error after the x-expanding assignment.

\[
\begin{align*}
\text{\texttt{\char_generate:nn}}\text{ \texttt{#1} \texttt{\char_value:w '1} \texttt{\s_tl}}
\end{align*}
\]
\_\_str_convert_decode_clist: \_\_str_decode_clist_char:n

Convert each integer to the internal form. We first turn \texttt{\_\_str_result_tl} into a clist variable, as this avoids problems with leading or trailing commas.

\begin{verbatim}
\cs_new_protected:Npn \_\_str_convert_decode_clist:
\{ \clist_gset:No \g__str_result_tl \g__str_result_tl
\tl_gset:Nx \g__str_result_tl
\exp_args:No \clist_map_function:nN \g__str_result_tl \_\_str_decode_clist_char:n
\}
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \_\_str_decode_clist_char:n #1
\{ #1 \s__tl \int_eval:n {#1} \s__tl \}
\end{verbatim}

(End definition for \_\_str_convert_decode_clist: and \_\_str_decode_clist_char:n.)

\_\_str_convert_encode_clist: \_\_str_encode_clist_char:n

Convert the internal list of character codes to a comma-list of character codes. The first line produces a comma-list with a leading comma, removed in the next step (this also works in the empty case, since \texttt{\_\_str_tail:N} does not trigger an error in this case).

\begin{verbatim}
\cs_new_protected:Npn \_\_str_convert_encode_clist:
\{ \_\_str_convert_gmap_internal:N \_\_str_encode_clist_char:n
\tl_gset:Nx \g__str_result_tl { \tl_tail:N \g__str_result_tl \}
\}
\end{verbatim}

(End definition for \_\_str_convert_encode_clist: and \_\_str_encode_clist_char:n.)

9.3.8 8-bit encodings

This section will be entirely rewritten: it is not yet clear in what situations 8-bit encodings are used, hence I don’t know what exactly should be optimized. The current approach is reasonably efficient to convert long strings, and it scales well when using many different
encodings. An approach based on csnames would have a smaller constant load time for each individual conversion, but has a large hash table cost. Using a range of \count registers works for decoding, but not for encoding: one possibility there would be to use a binary tree for the mapping of Unicode characters to bytes, stored as a box, one per encoding.

Since the section is going to be rewritten, documentation lacks.

All the 8-bit encodings which \texttt{l3str} supports rely on the same internal functions.

All the 8-bit encoding definition file start with \texttt{\str_declare_eight_bit_encoding:nnn \{\{encoding name\}\} \{\{mapping\}\} \{\{missing bytes\}\}}. The \{\{mapping\}\} argument is a token list of pairs \{\{byte\}\} \{\{Unicode\}\} expressed in uppercase hexadecimal notation. The \{\{missing\}\} argument is a token list of \{\{byte\}\}. Every \{\{byte\}\} which does not appear in the \{\{mapping\}\} nor the \{\{missing\}\} lists maps to the same code point in Unicode.

\texttt{\cs_new_protected:Npn \str_declare_eight_bit_encoding:nnn #1#2#3}

\texttt{\tl_set:Nn \l__str_internal_tl }{#1}
\texttt{\cs_new_protected:cpn { __str_convert_decode_#1: } \{ \tl_use:c { c__str_encoding_#1_tl } \}}
\texttt{\cs_new_protected:cpn { __str_convert_encode_#1: } \{ \tl_use:c { c__str_encoding_#1_missing_tl } \}}
\texttt{\tl_const:cn { c__str_encoding_#1_tl } }{#2}
\texttt{\tl_const:cn { c__str_encoding_#1_missing_tl } }{#3}

(End definition for \texttt{\str_declare_eight_bit_encoding:nnn}. This function is documented on page \texttt{69}.)

\texttt{\cs_new_protected:Npm \__str_convert_decode_eight_bit:n #1}

\texttt{\int_zero:N \l__str_internal_int 
\exp_last_unbraced:Nx \__str_decode_eight_bit_load:nn
\tl_use:c { c__str_encoding_#1_tl }
\q_stop 
\prg_break: \{ \}
\flag_clear:n { str_error }
\__str_convert_gmap:N \__str_decode_eight_bit_char:N
\__str_if_flag_error:nnx { str_error } \{ \} \}

\texttt{\cs_new_protected:Npm \__str_decode_eight_bit_load:nn #1#2}

\texttt{\int_value:w "#1 sp \scan_stop:
\int_value:w "#2 sp \scan_stop:
\int_incr:N \l__str_internal_int
\exp_after:wN { \int_value:w "#2 }
\prg_break: 
\flag_clear:n { str_error }
\__str_convert_gmap:N \__str_decode_eight_bit_char:N
\__str_if_flag_error:nnx { str_error } \{ \} \}

435
\cs_new_protected:Npn \__str_decode_eight_bit_load_missing:n #1
\use_none_delimit_by_q_stop:w #1 \q_stop
\tex_dimen:D "#1 = \l__str_internal_int sp \scan_stop:
\tex_skip:D \l__str_internal_int = "#1 sp \scan_stop:
\tex_toks:D \l__str_internal_int \exp_after:wN
{ \int_use:N \c__str_replacement_char_int }
\int_incr:N \l__str_internal_int
\__str_decode_eight_bit_load_missing:n
\cs_new:Npn \__str_decode_eight_bit_char:N #1
\if_int_compare:w \tex_dimen:D '#1 < \l__str_internal_int
\else:
\if_int_compare:w \tex_skip:D \tex_dimen:D '#1 = '#1 \exp_stop_f:
\tex_the:D \tex_toks:D \tex_dimen:D
\fi:
\fi:
\int_value:w '#1 \s__tl
\__str_convert_encode_eight_bit:n #1
\__str_encode_eight_bit_load:nn
\__str_encode_eight_bit_char:n
\__str_encode_eight_bit_char_aux:n
\cs_new_protected:Npn \__str_convert_encode_eight_bit:n #1
\group_begin:
\int_zero:N \l__str_internal_int
\exp_last_unbraced:Nx \__str_encode_eight_bit_load:nn
{ \tl_use:c { c__str_encoding_#1_tl } }
\prg_break_point:
\flag_clear:n { str_error }
\__str_convert_gmap_internal:N \__str_encode_eight_bit_char:n
\__str_if_flag_error:nnx { str_error } { encode-8-bit } {#1}
\group_end:
\cs_new_protected:Npn \__str_encode_eight_bit_load:nn #1#2
\use_none_delimit_by_q_stop:w #1 \q_stop
\tex_dimen:D "#2 = \l__str_internal_int sp \scan_stop:
\tex_skip:D \l__str_internal_int = "#2 sp \scan_stop:
\exp_args:NNf \tex_toks:D \l__str_internal_int
\__str_output_byte:n { "#1 } \int_incr:N \l__str_internal_int
\__str_encode_eight_bit_load:nn
\cs_new_protected:Npn \__str_encode_eight_bit_char:n #1
\if_int_compare:w #1 > \c_max_register_int
\flag_raise:n { str_error }
\else:
\if_int_compare:w \tex_dimen:D #1 < \l__str_internal_int
\if_int_compare:w \tex_skip:D \tex_dimen:D #1 = #1 \exp_stop_f:
9.4 Messages

General messages, and messages for the encodings and escapings loaded by default ("native", and "bytes").

Message used when the "bytes" unescaping fails because the string given to \str_set_convert:Nnnn contains a non-byte. This cannot happen for the -8-bit engines.

Messages used for other escapings and encodings are defined in each definition file.
Those messages are used when converting to and from 8-bit encodings.

```
__kernel_msg_new:nnnn { str } { decode-8-bit }
{ Invalid-string-in-encoding-'#1'. }
__kernel_msg_new:nnnn { str } { encode-8-bit }
{ Unicode-string-cannot-be-converted-to-encoding-'#1'. }
```

9.5 Escaping definitions

Several of those encodings are defined by the pdf file format. The following byte storage methods are defined:

- **bytes** (default), non-bytes are filtered out, and bytes are left untouched (this is defined by default);
- **hex** or **hexadecimal**, as per the pdfTEX primitive \pdfescapehex
- **name**, as per the pdfTEX primitive \pdfescapename
- **string**, as per the pdfTEX primitive \pdfescapestring
- **url**, as per the percent encoding of urls.

9.5.1 Unescape methods

Take chars two by two, and interpret each pair as the hexadecimal code for a byte. Anything else than hexadecimal digits is ignored, raising the flag. A string which contains an odd number of hexadecimal digits gets 0 appended to it: this is equivalent to appending a 0 in all cases, and dropping it if it is alone.

```
\cs_new_protected:Npn __str_convert_unescape_hex:
__str_unescape_hex_auxi:N
__str_unescape_hex_auxii:N
\cs_new_protected:Npn __str_convert_unescape_hex:
{
\group_begin:
\flag_clear:n { str_error }
\int_set:Nn \tex_escapechar:D { 92 }
\tl_gset:Nx \g__str_result_tl
{ __str_output_byte:w " \exp_last_unbraced:Nf __str_unescape_hex_auxi:N
{ \tl_to_str:N \g__str_result_tl }
0 { ? 0 - 1 \prg_break: }
```

438
\begin{verbatim}
\prg_break_point:
  \_\_str_if_flag_error:nnx { str_error } { unescape-hex } { }
\_\_str_output_end:
\}
\__str_output_end:
\}
\cs_new:Npn \_\_str_unescape_hex_auxi:N #1
{ \use_none:n #1
  \_\_str_hexadecimal_use:NTF #1
  { \_\_str_unescape_hex_auxii:N }
  { \flag_raise:n { str_error }
    \_\_str_unescape_hex_auxii:N }
}
\cs_new:Npn \_\_str_unescape_hex_auxii:N #1
{ \use_none:n #1
  \_\_str_hexadecimal_use:NTF #1
  { \__str_output_end:
    \__str_output_byte:w " \_\_str_unescape_hex_auxi:N }
  { \flag_raise:n { str_error }
    \_\_str_unescape_hex_auxii:N }
}
\__kernel_msg_new:nnnn { str } { unescape-hex }
{ String-invalid-in-escaping-'hex':-only-hexadecimal-digits-allowed. }
{ Some-characters-in-the-string-you-asked-to-convert-are-not-
  hexadecimal-digits-(0-9,-A-F,-a-f)-nor-spaces. }
\__str_convert_unescape_name:
\__str_convert_unescape_url:
\__str_convert_unescape_hex:
\__str_convert_unescape_loop:wNN
\__str_unescape_hex_auxii:N #1
{ \use_none:n #1
  \_\_str_hexadecimal_use:NTF #1
  { \_\_str_output_end:
    \_\_str_output_byte:w \_\_str_unescape_hex_auxi:N }
  { \flag_raise:n { str_error }
    \_\_str_unescape_hex_auxii:N }
}
\__kernel_msg_new:nnnn { str } { unescape-hex }
{ String-invalid-in-escaping-'hex':-only-hexadecimal-digits-allowed. }
{ Some-characters-in-the-string-you-asked-to-convert-are-not-
  hexadecimal-digits-(0-9,-A-F,-a-f)-nor-spaces. }
\end{verbatim}

The \_\_str_convert_unescape_name: function replaces each occurrence of \# followed by two hexadecimal digits in \_\_str_result_tl by the corresponding byte. The \url function is identical, with escape character % instead of \#. Thus we define the two together. The arguments of \_\_str_tmp:w are the character code of \# or % in hexadecimal, the name of the main function to define, and the name of the auxiliary which performs the loop.

The looping auxiliary \#3 finds the next escape character, reads the following two characters, and tests them. The test \_\_str_hexadecimal_use:NTF leaves the uppercase digit in the input stream, hence we surround the test with \_\_str_output_byte:w and \_\_str_output_end:. If both characters are hexadecimal digits, they should be removed before looping: this is done by \use_i:nnn. If one of the characters is not a hexadecimal digit, then feed \#1 to \_\_str_output_byte:w to produce the escape character, raise the flag, and call the looping function followed by the two characters (remove \use_i:nnn).
The string escaping is somewhat similar to the name and url escapings, with escape character \. The first step is to convert all three line endings, ^\^J, ^\^M, and ^\^M^\^J to

```
\cs_set_protected:Npn __str_tmp:w #1#2#3
\cs_new_protected:cpn { __str_convert_unescape_#2: }
\group_begin:
\flag_clear:n { str_byte }
\flag_clear:n { str_error }
\int_set:Nn \tex_escapechar:D { 92 }
\tl_gset:Nx \g__str_result_tl
\exp_after:wN \g__str_result_tl
#1 ? { ? \prg_break: }
\prg_break_point:
__str_if_flag_error:nnx { str_byte } { non-byte } { #2 }
__str_if_flag_error:nnx { str_error } { unescape-#2 } { }
\group_end:
\cs_new:Npn #3 ##1#1##2##3
__str_filter_bytes:n {##1}
\use_none:n ##3
__str_output_byte:w
__str_hexadecimal_use:NTF ##2
__str_hexadecimal_use:NTF ##3
\fla
```
the common ^-J, as per the PDF specification. This step cannot raise the flag.

Then the following escape sequences are decoded.

\n Line feed (10)
\r Carriage return (13)
\t Horizontal tab (9)
\b Backspace (8)
\f Form feed (12)
\( Left parenthesis
\) Right parenthesis
\\ Backslash
\ddd (backslash followed by 1 to 3 octal digits) Byte ddd (octal), subtracting 256 in case of overflow.

If followed by an end-of-line character, the backslash and the end-of-line are ignored. If followed by anything else, the backslash is ignored, raising the error flag.
\_\_str_filter_bytes:n \{#1\}
\use_none:n \#4
\_\_str_output_byte:w ',
\_\_str_octal_use:NTF \#2
{ }
\_\_str_octal_use:NTF \#3
{ }
\_\_str_octal_use:NTF \#4
{ }
\if_int_compare:w \#2 > 3 \exp_stop_f:
- 256
\fi:
\_\_str_unescape_string_repeat:NNNNNN
{ }
\_\_str_unescape_string_repeat:NNNNNN ? }
{ }
\_\_str_unescape_string_repeat:NNNNNN ?? }
{ }
\str_case_e:nnF \{#2\}
{ }
{ \c_backslash_str } \{ 134 \}
{ ( ) } \{ 50 \}
{ ) } \{ 51 \}
{ r } \{ 15 \}
{ f } \{ 14 \}
{ n } \{ 12 \}
{ t } \{ 11 \}
{ b } \{ 10 \}
{ ^^J } \{ 0 - 1 \}
{ }
\flag_raise:n \{ str_error \}
0 - 1 \use_i:nn
\}
{ }
\_\_str_output_end:
\use_i:nn \_\_str_unescape_string_loop:wNNN \#2\#3\#4
\}
\cs_new:Npn \_\_str_unescape_string_repeat:NNNNNN \#1\#2\#3\#4\#5\#6
{ \_\_str_output_end: \_\_str_unescape_string_loop:wNNN }
\cs_new:Npn \_\_str_unescape_string_newlines:wN \#1 \^{}\#2
{ }
\_\_kernel_msg_new:nnnn \{ str \} \{ unescape-string \}
{ String-invalid-in-escaping-'string'. }
9.5.2 Escape methods

Currently, none of the escape methods can lead to errors, assuming that their input is made out of bytes.

Loop and convert each byte to hexadecimal.

For each byte, test whether it should be output as is, or be “hash-encoded”. Roughly, bytes outside the range \(["2A","7E]\) are hash-encoded. We keep two lists of exceptions: characters in \(\text{c__str_escape_name_not_str}\) are not hash-encoded, and characters in the \(\text{c__str_escape_name_str}\) are encoded.

Any character below (and including) space, and any character above (and including) \texttt{del}, are converted to octal. One backslash is added before each parenthesis and backslash.
This function is similar to \_\_str_convert_escape_name:; escaping different characters.
9.6 Encoding definitions

The native encoding is automatically defined. Other encodings are loaded as needed. The following encodings are supported:

- UTF-8;
- UTF-16, big-, little-endian, or with byte order mark;
- UTF-32, big-, little-endian, or with byte order mark;
- the ISO 8859 code pages, numbered from 1 to 16, skipping the nonexistent ISO 8859-12.

9.6.1 UTF-8 support

Loop through the internal string, and convert each character to its UTF-8 representation. The representation is built from the right-most (least significant) byte to the left-most (most significant) byte. Continuation bytes are in the range [128, 191], taking 64 different values, hence we roughly want to express the character code in base 64, shifting the first digit in the representation by some number depending on how many continuation bytes there are. In the range [0, 127], output the corresponding byte directly. In the range [128, 2047], output the remainder modulo 64, plus 128 as a continuation byte, then output the quotient (which is in the range [0, 31]), shifted by 192. In the next range, [2048, 65535], split the character code into residue and quotient modulo 64, output the residue as a first continuation byte, then repeat; this leaves us with a quotient in the range [0, 15], which we output shifted by 224. The last range, [65536, 1114111], follows the same pattern: once we realize that dividing twice by 64 leaves us with a number larger than 15, we repeat, producing a last continuation byte, and offset the quotient by 240 for the leading byte.

How is that implemented? \_\_str\_encode\_utf\_viii\_loop:wwnnw takes successive quotients as its first argument, the quotient from the previous step as its second argument (except in step 1), the bound for quotients that trigger one more step or not, and finally the offset used if this step should produce the leading byte. Leading bytes can be in the ranges [0, 127], [192, 223], [224, 239], and [240, 247] (really, that last limit should be 244 because Unicode stops at the code point 1114111). At each step, if the quotient \#1 is less than the limit \#3 for that range, output the leading byte (\#1 shifted by \#4) and stop. Otherwise, we need one more step: use the quotient of \#1 by 64, and \#1 as arguments for the looping auxiliary, and output the continuation byte corresponding to the remainder \#2 – 64\#1 + 128. The bizarre construction – 1 + 0 * removes the spurious initial continuation byte (better methods welcome).
When decoding a string that is purportedly in the UTF-8 encoding, four different errors can occur, signalled by a specific flag for each (we define those flags using \flag_clear_new:n rather than \flag_new:n, because they are shared with other encoding definition files).

- “Missing continuation byte”: a leading byte is not followed by the right number of continuation bytes.
- “Extra continuation byte”: a continuation byte appears where it was not expected, \textit{i.e.}, not after an appropriate leading byte.
- “Overlong”: a Unicode character is expressed using more bytes than necessary, for instance, “C080 for the code point 0, instead of a single null byte.
- “Overflow”: this occurs when decoding produces Unicode code points greater than 1114111.

We only raise one \LaTeX error message, combining all the errors which occurred. In the short message, the leading comma must be removed to get a grammatically correct sentence. In the long text, first remind the user what a correct UTF-8 string should look like, then add error-specific information.
In the UTF-8 encoding, each Unicode character consists in 1-4 bytes, with the following bit pattern:

\begin{verbatim}
\{ 
  \CodePoint- \ \ \ -128:-0xxxxxx \\ 
  \CodePoint- \ \ \ -2048:-110xxxxx-10xxxxxx \\ 
  \CodePoint- \ \ <-65536:-1110xxxx-10xxxxxx-10xxxxxx \\ 
  \CodePoint- <-1114112:-11110xxx-10xxxxxx-10xxxxxx-10xxxxxx \\
\}
\end{verbatim}

Bytes of the form 10xxxxxx are called continuation bytes.

\begin{verbatim}
\flag_if_raised:nT { str_missing }
  \{ 
    \\\ 
    A leading byte (in the range [192,255]) was not followed by the appropriate number of continuation bytes.
  \}
\flag_if_raised:nT { str_extra }
  \{ 
    \\\ 
    LaTeX came across a continuation byte when it was not expected.
  \}
\flag_if_raised:nT { str_overlong }
  \{ 
    \\\ 
    Every Unicode code point must be expressed in the shortest possible form. For instance, \texttt{'0xC0'-'0x83'} is not a valid representation for the code point 3.
  \}
\flag_if_raised:nT { str_overflow }
  \{ 
    \\\ 
    Unicode limits code points to the range [0,1114111].
  \}
\end{verbatim}

Decoding is significantly harder than encoding. As before, lower some flags, which are tested at the end (in bulk, to trigger at most one \TeX error, as explained above). We expect successive multi-byte sequences of the form \texttt{(start byte) (continuation bytes)}. The _start auxiliary tests the first byte:

- [0, "7F]: the byte stands alone, and is converted to its own character code;
- ["80,"BF]: unexpected continuation byte, raise the appropriate flag, and convert that byte to the replacement character \texttt{FFFD};
- ["C0,"FF]: this byte should be followed by some continuation byte(s).

In the first two cases, \texttt{\use_none_delimit_by_q_stop:w} removes data that only the third case requires, namely the limits of ranges of Unicode characters which can be expressed with 1, 2, 3, or 4 bytes.

We can now concentrate on the multi-byte case and the _continuation auxiliary. We expect #3 to be in the range ["80,"BF]. The test for this goes as follows: if the
character code is less than "80, we compare it to "C0, yielding false; otherwise to "C0, yielding true in the range ["80,"BF] and false otherwise. If we find that the byte is not a continuation range, stop the current slew of bytes, output the replacement character, and continue parsing with the _start auxiliary, starting at the byte we just tested. Once we know that the byte is a continuation byte, leave it behind us in the input stream, compute what code point the bytes read so far would produce, and feed that number to the _aux function.

The _aux function tests whether we should look for more continuation bytes or not. If the number it receives as #1 is less than the maximum #4 for the current range, then we are done: check for an overlong representation by comparing #1 with the maximum #3 for the previous range. Otherwise, we call the _continuation auxiliary again, after shifting the “current code point” by #4 (maximum from the range we just checked).

Two additional tests are needed: if we reach the end of the list of range maxima and we are still not done, then we are faced with an overflow. Clean up, and again insert the code point "FFFD for the replacement character. Also, every time we read a byte, we need to check whether we reached the end of the string. In a correct UTF-8 string, this happens automatically when the _start auxiliary leaves its first argument in the input stream: the end-marker begins with \prg_break:, which ends the loop. On the other hand, if the end is reached when looking for a continuation byte, the \use_none:n #3 construction removes the first token from the end-marker, and leaves the _end auxiliary, which raises the appropriate error flag before ending the mapping.

647: \cs_new_protected:cpn { __str_convert_decode_utf8: } { __str_convert_decode_utf8: }
648: \flag_clear:n { str_error }
649: \flag_clear:n { str_missing }
650: \flag_clear:n { str_overlong }
651: \flag_clear:n { str_overflow }
652: \tl_gset:Nx \g__str_result_tl { \__str_decode_utf_viii_start:N \g__str_result_tl { \prg_break: \__str_decode_utf_viii_end: } \prg_break_point: }
653: \__str_if_flag_error:nnx { str_error } { utf8-decode } { }
654: \cs_new:Npn \__str_decode_utf_viii_start:N #1 { \if_int_compare:w '#1 < "C0 \exp_stop_f: \s__tl \if_int_compare:w '#1 < "80 \exp_stop_f: \int_value:w #1 \else: \flag_raise:n { str_extra } \flag_raise:n { str_error } \int_use:N \c__str_replacement_char_int \fi: \else: \exp_after:wN \__str_decode_utf_viii_continuation:wwN \int_value:w \int_eval:n { '#1 - "C0 } \exp_after:wN \fi: }
\s__tl
\use_none_delimit_by_q_stop:w {"80} {"800} {"10000} \q_stop
\__str_decode_utf_viii_start:N
}
\cs_new:Npn \__str_decode_utf_viii_continuation:wwN
 #1 \s__tl #2 \__str_decode_utf_viii_start:N #3
{
 \use_none:n #3
 \if_int_compare:w '#3 <
   \if_int_compare:w '#3 < "80 \exp_stop_f: - \fi:
    "C0 \exp_stop_f:
 #3
 \exp_after:wN \__str_decode_utf_viii_aux:wNnnwN
 \int_value:w \int_eval:n { #1 * "40 + '#3 - "80 } \exp_after:wN
\else:
 \s__tl
 \flag_raise:n { str_missing }
 \flag_raise:n { str_error }
 \int_use:N \c__str_replacement_char_int
\fi:
 \s__tl
 #2
\__str_decode_utf_viii_start:N #3
}
\cs_new:Npn \__str_decode_utf_viii_aux:wNnnwN
 #1 \s__tl #2#3#4 #5 \__str_decode_utf_viii_start:N #6
{
 \if_int_compare:w #1 < #4 \exp_stop_f:
 \s__tl
 \if_int_compare:w #1 < #3 \exp_stop_f:
   \flag_raise:n { str_overlong }
 \flag_raise:n { str_error }
 \int_use:N \c__str_replacement_char_int
\fi:
 \s__tl
 #2 {#4} \__str_decode_utf_viii_start:N #5
 \if_int_compare:w #1 < #4 \exp_stop_f:
 \s__tl
 \if_int_compare:w #1 < #3 \exp_stop_f:
   \flag_raise:n { str_overlong }
 \flag_raise:n { str_error }
 \int_use:N \c__str_replacement_char_int
\fi:
\else:
 \if_meaning:w \q_stop #5
 \__str_decodeUtf_viii_Overflow:w #1
 \fi:
 \exp_after:wN \__str_decodeUtf_viii_continuation:wwN
 \int_value:w \int_eval:n { #1 - #4 } \exp_after:wN
\fi:
 \s__tl
 #2 {#4} #5
 \__str_decode_utf_viii_start:N
\else:
 \if_meaning:w \q_stop #5
 \__str_decodeUtf_viii_Overflow:w #1
 \fi:
 \exp_after:wN \__str_decodeUtf_viii_continuation:wwN
 \int_value:w \int_eval:n { #1 - #4 } \exp_after:wN
\fi:
 \s__tl
 #2 {#4} #5
 \__str_decode_utf_viii_start:N
\fi:
\fi:
\fi:
\flag_raise:n { str_overflow }
\flag_raise:n { str_error }
\int_use:N \c__str_replacement_char_int
}}
9.6.2 utf-16 support

The definitions are done in a category code regime where the bytes 254 and 255 used by the byte order mark have catcode 12.

When the endianness is not specified, it is big-endian by default, and we add a byte-order mark. Convert characters one by one in a loop, with different behaviours depending on the character code.

- \[0, "D7FF]\]: converted to two bytes;
- \["D800, "DFFF]\] are used as surrogates: they cannot be converted and are replaced by the replacement character;
- \["10000, "10FFFF]\]: converted to a pair of surrogates, each two bytes. The magic "D7C0 is "D800 − "10000/"400.

For the duration of this operation, \_str_tmp:w is defined as a function to convert a number in the range \[0, "FFFF]\] to a pair of bytes (either big endian or little endian), by feeding the quotient of the division of \#1 by \(*100, followed by \#1 to \_str_encode_utf_xvi_be:n or its le analog: those compute the remainder, and output two bytes for the quotient and remainder.

```latex
\cs_new:cpn { _str_convert_encode_utf16: } { __str_convert_encode_utf16:x } \cs_new:cpn { _str_convert_encode_utf16be: } { __str_convert_encode_utf16:x } \cs_new:cpn { _str_convert_encode_utf16le: } { __str_convert_encode_utf16:x } \cs_new_protected:Npn __str_convert_encode_utf16:x #1 { \flag_clear:n { str_error } \cs_set_eq:NN _str_tmp:w #1 __str_convert_gmap_internal:N __str_encode_utf_xvi_char:n }__str_if_flag_error:nnx { str_error } { utf16-encode } { }\end{verbatim}

\[450\]
When encoding a Unicode string to UTF-16, only one error can occur: code points in the range \([U+D800, U+DFFF]\), corresponding to surrogates, cannot be encoded. We use the all-purpose flag @@_error to signal that error.

When decoding a Unicode string which is purportedly in UTF-16, three errors can occur: a missing trail surrogate, an unexpected trail surrogate, and a string containing an odd number of bytes.
Code-point-in-[U+D800,-U+DFFF]: illegal \ \Code-point-in-[U+E000,-U+FFFF]: two bytes \Code-point-in-[U+10000,-U+10FFFF]:
 a-lead-surgeon-and-a-trail-surgeon \ }
Lead-surrogates-are-pairs-of-bytes-in-the-range-[0xD800,-0xDBFF],
and-trail-surgeon-are-in-the-range-[0xDC00,-0xDFFF].
\flag_if_raised:nT \{ \str_missing \}
 { \\\n A-lead-surgeon-was-not-followed-by-a-trail-surgeon.
 }
\flag_if_raised:nT \{ \str_extra \}
 { \\\n LaTeX-came-across-a-trail-surgeon-when-it-was-not-expected.
 }
\flag_if_raised:nT \{ \str_end \}
 { \\\n The-string-contained-an-odd-number-of-bytes.-This-is-invalid:-
 the-basic-code-unit-for-UTF-16-is-16-bits-(2-bytes).
 }
\flag_if_raised:nT \{ \str_missing \}
\flag_if_raised:nT \{ \str_extra \}
\flag_if_raised:nT \{ \str_end \}
\flag_if_raised:nT \{ \str_missing \}
\flag_if_raised:nT \{ \str_extra \}
\flag_if_raised:nT \{ \str_end \}
(End definition for \l__str_missing_flag, \l__str_extra_flag, and \l__str_end_flag.)
As for utf-8, decoding UTF-16 is harder than encoding it. If the endianness is unknown,
check the first two bytes: if those are "FE and "FF in either order, remove them and use
the corresponding endianness, otherwise assume big-endianness. The three endianness
cases are based on a common auxiliary whose first argument is 1 for big-endian and 2
for little-endian, and whose second argument, delimited by the scan mark \s_stop, is
expanded once (the string may be long; passing \g__str_result_tl as an argument
before expansion is cheaper).
The __str_decode_utf_xvi:Nw function defines __str_tmp:w to take two argu-
ments and return the character code of the first one if the string is big-endian, and the
second one if the string is little-endian, then loops over the string using __str_decode_-
utf_xvi_pair:NN described below.
\cs_new_protected:cpn \{ __str_convert_decode_utf16be: \}
{ __str_decode_utf_xvi_bom:NN __str_decode_utf_xvi:Nw }
\cs_new_protected:cpn \{ __str_convert_decode_utf16le: \}
{ __str_decode_utf_xvi_bom:NN __str_decode_utf_xvi:Nw }
\cs_new_protected:cpn \{ __str_convert_decode_utf16: \}
{ \exp_after:wN __str_decode_utf_xvi_bom:NN \g__str_result_tl \s_stop \s_stop \s_stop }
\cs_new_protected:Npn __str_decode_utf_xvi_bom:NN \#1\#2
{ \str_if_eq:nnTF \{ \#1\#2 \} { ^^ff ^^fe }
 { __str_decode_utf_xvi:Nw \#2 }
 { __str_decode_utf_xvi:Nw \#2 }
 { \str_if_eq:nnTF \{ \#1\#2 \} { ^^fe ^^ff } }
Bytes are read two at a time. At this stage, `\@_tmp:w #1#2` expands to the character code of the most significant byte, and we distinguish cases depending on which range it lies in:

- `["D8, "DB"]` signals a lead surrogate, and the integer expression yields 1 (\TeX rounds ties away from zero);
- `["DC, "DF"]` signals a trail surrogate, unexpected here, and the integer expression yields 2;
- any other value signals a code point in the Basic Multilingual Plane, which stands for itself, and the `_if_case:w` construction expands to nothing (cases other than 1 or 2), leaving the relevant material in the input stream, followed by another call to the `_pair` auxiliary.

The case of a lead surrogate is treated by the `_quad` auxiliary, whose arguments #1, #2, #4 and #5 are the four bytes. We expect the most significant byte of #4#5 to be in the range `["DC, "DF"]` (trail surrogate). The test is similar to the test used for continuation bytes in the UTF-8 decoding functions. In the case where #4#5 is indeed a trail surrogate, leave #1#2#4#5 _s_tl ⟨code point⟩ _s_tl, and remove the pair #4#5 before looping with `__str_decode_utf_xvi_pair:NN`. Otherwise, of course, complain about the missing surrogate.

The magic number "D7F7" is such that "D7F7*"400 = "D800"400 + "DC00"−10000. Every time we read a pair of bytes, we test for the end-marker `\q_nil`. When reaching the end, we additionally check that the string had an even length. Also, if the end is reached when expecting a trail surrogate, we treat that as a missing surrogate.
\int_eval:n { (__str_tmp:w #1#2 - "D6) / 4 } \scan_stop:

\or: \exp_after:wN __str_decode_utf_xvi_quad:NNwNN
\or: \exp_after:wN __str_decode_utf_xvi_extra:NNw
\fi:
#1#2 \s__tl
\int_eval:n { "100 * __str_tmp:w #1#2 + __str_tmp:w #2#1 } \s__tl
__str_decode_utf_xvi_pair:NN

\cs_new:Npn __str_decode_utf_xvi_quad:NNwNN
#1#2 #3 __str_decode_utf_xvi_pair:NN #4#5
{
\if_meaning:w \q_nil #5
__str_decode_utf_xvi_error:nNN { missing } #1#2
__str_decode_utf_xvi_pair_end:Nw #4
\fi:
\if_int_compare:w
\if_int_compare:w __str_tmp:w #4#5 < "DC \exp_stop_f:
 0 = 1
\else:
 __str_tmp:w #4#5 < "E0
\fi:
\exp_stop_f:
 #1 #2 #4 #5 \s__tl
\int_eval:n
{
 ("100 * __str_tmp:w #1#2 + __str_tmp:w #2#1 - "D7F7) * "400
 + "100 * __str_tmp:w #4#5 + __str_tmp:w #5#4
 }
\s__tl
\exp_after:wN \use_i:nnn
\else:
 __str_decode_utf_xvi_quad:NNwNN { missing } #1#2
\fi:
__str_decode_utf_xvi_pair:NN #4#5
}
\cs_new:Npn __str_decode_utf_xvi_pair:NN
#1 \fi:
{
\ifint_compare:w
\ifint_compare:w __str_tmp:w #1#1 < "00 \exp_stop_f:
 1 = 1
\else:
 __str_tmp:w #1#1 < "7F \exp_stop_f:
 #1 \prg_do_nothing:
\fi:
\exp_stop_f:
 #1 \s__tl
\exp_after:wN \use_i:nnn
\else:
 __str_decode_utf_xvi_pair:NN { missing } #1#2
\fi:
__str_decode_utf_xvi_pair:NN #4#5
}
\cs_new:Npn __str_decode_utf_xvi_pair_end:Nw #1 \fi:
{
\if_meaning:w \q_nil #1
\else:
 __str_decode_utf_xvi_error:nNN { end } #1 \prg_do_nothing:
\fi:
\prg_break:
}
\cs_new:Npn __str_decode_utf_xvi_extra:NNwNN #1#2 \s__tl #3 \s__tl
{ __str_decode_utf_xvi_extra:NNwNN { extra } #1#2 }
\cs_new:Npn __str_decode_utf_xvi_error:NNwNN #1#2#3
{ \flag_raise:n { str_error }
 \flag_raise:n { str_#1 }
 #2 #3 \s__tl
 \int_use:N \c__str_replacement_char_int \s__tl
}

(End definition for __str_decode_utf_xvi_pair:NN and others.)
Restore the original catcodes of bytes 254 and 255.

\group_end:

9.6.3 utf-32 support

The definitions are done in a category code regime where the bytes 0, 254 and 255 used by the byte order mark have catcode “other”.

\group_begin:
\char_set_catcode_other:N \^^00
\char_set_catcode_other:N \^^fe
\char_set_catcode_other:N \^^ff
__str_convert_encode_utf32:
__str_convert_encode_utf32be:
__str_convert_encode_utf32le:
__str_encode_utf_xxxii_be:n
__str_encode_utf_xxxii_be_aux:nn
__str_encode_utf_xxxii_le:n
__str_encode_utf_xxxii_le_aux:nn

Convert each integer in the comma-list \g__str_result_tl to a sequence of four bytes. The functions for big-endian and little-endian encodings are very similar, but the __str_output_byte:n instructions are reversed.

\cs_new_protected:cpn { __str_convert_encode_utf32: }
__str_convert_gmap_internal:N __str_encode_utf_xxxii_be:n
\tl_gput_left:Nx \g__str_result_tl { ^^00 ^^00 ^^fe ^^ff }
\cs_new_protected:cpn { __str_convert_encode_utf32be: }
__str_convert_gmap_internal:N __str_encode_utf_xxxii_be:n
\cs_new_protected:cpn { __str_convert_encode_utf32le: }
__str_convert_gmap_internal:N __str_encode_utf_xxxii_le:n
\cs_new:Npn __str_encode_utf_xxxii_be:n #1
\exp_args:Nf __str_encode_utf_xxxii_be_aux:nn
\{ \int_div_truncate:nn {#1} { "100 } \} \{#1\}
\cs_new:Npn __str_encode_utf_xxxii_be_aux:nn #1#2
\{ __str_output_byte_pair_be:n {#1} __str_output_byte:n { #2 - #1 * "100 } \}
\cs_new:Npn __str_encode_utf_xxxii_le:n #1
\exp_args:Nf __str_encode_utf_xxxii_le_aux:nn
\{ \int_div_truncate:nn {#1} { "100 } \} \{#1\}
\cs_new:Npn __str_encode_utf_xxxii_le_aux:nn #1#2
\{ __str_output_byte:n { #2 - #1 * "100 } __str_output_byte_pair_le:n \{#1\} \}
__str_output_byte:n \^^00

(End definition for __str_convert_encode_utf32: and others.)

str_overflow
str_end

There can be no error when encoding in UTF-32. When decoding, the string may not have length $4n$, or it may contain code points larger than "10FFFF. The latter case often happens if the encoding was in fact not UTF-32, because most arbitrary strings are not valid in UTF-32.
\flag_clear_new:n { str_overflow }
\flag_clear_new:n { str_end }
__kernel_msg_new:nnnn { str } { utf32-decode }
 {
 \str_if_flag_times:nT { str_overflow } { ,code point too large }
 \str_if_flag_times:nT { str_end } { ,truncated string }
 }
.

Invalid UTF-32-string:
\exp_last_unbraced:Nf \use_none:n
 {
 __str_if_flag_times:nT { str_overflow } { ,code point too large }
 __str_if_flag_times:nT { str_end } { ,truncated string }
 }
.

In the UTF-32 encoding, every Unicode character (in the range \[U+0000, U+10FFFF\]) is encoded as 4 bytes.

\flag_if_raised:nT { str_overflow }
 { \LaTeX came across a code point larger than 1114111, the maximum code point defined by Unicode. Perhaps the string was not encoded in the UTF-32 encoding? }
\flag_if_raised:nT { str_end }
 { \LaTeX The length of the string is not a multiple of 4. Perhaps the string was truncated? }

(End definition for str_overflow and str_end. These variables are documented on page ??.)

The structure is similar to UTF-16 decoding functions. If the endianness is not given, test the first 4 bytes of the string (possibly \s_stop if the string is too short) for the presence of a byte-order mark. If there is a byte-order mark, use that endianness, and remove the 4 bytes, otherwise default to big-endian, and leave the 4 bytes in place. The \str_decode_utf_xxxii:Nw auxiliary receives 1 or 2 as its first argument indicating endianness, and the string to convert as its second argument (expanded or not). It sets __str TMP:w to expand to the character code of either of its two arguments depending on endianness, then triggers the _loop auxiliary inside an x-expanding assignment to \g__str_result_tl.

The _loop auxiliary first checks for the end-of-string marker \s_stop, calling the _end auxiliary if appropriate. Otherwise, leave the (4 bytes) \s_tl behind, then check that the code point is not overflowing: the leading byte must be 0, and the following byte at most 16.

In the ending code, we check that there remains no byte: there should be nothing left until the first \s_stop. Break the map.
\exp_after:wN __str_decode_utf_xxxii_bom:NNNN \g__str_result_tl \s_stop \s_stop \s_stop \s_stop \s_stop
\cs_new_protected:Npn __str_decode_utf_xxxii_bom:NNNN #1#2#3#4
{
 \str_if_eq:nnTF { #1#2#3#4 } { ^^ff ^^fe ^^00 ^^00 }
 { __str_decode_utf_xxxii:Nw 2 }
 { \str_if_eq:nnTF { #1#2#3#4 } { ^^00 ^^00 ^^fe ^^ff }
 { __str_decode_utf_xxxii:Nw 1 }
 { __str_decode_utf_xxxii:Nw 1 #1#2#3#4 }
 }
}
\cs_new_protected:Npn __str_decode_utf_xxxii:Nw #1#2 \s_stop
{
 \flag_clear:n { str_overflow }
 \flag_clear:n { str_end }
 \flag_clear:n { str_error }
 \cs_set:Npn __str_tmp:w ##1 ##2 { ' ## #1 }
 \tl_gset:Nx \g__str_result_tl { \exp_after:wN __str_decode_utf_xxxii_loop:NNNN \s__tl \s__tl \s__tl
 __str_if_flag_error:nnx { str_error } { utf32-decode } { }
 \cs_new:Npn __str_decode_utf_xxxii_loop:NNNN #1#2#3#4
 {
 \if_meaning:w \s_stop #4
 \exp_after:wN __str_decode_utf_xxxii_end:w
 \else:
 \fi:
 #1#2#3#4 \s__tl
 \if_int_compare:w __str_tmp:w #1#4 > 0 \exp_stop_f:
 \flag_raise:n { str_overflow }
 \flag_raise:n { str_error }
 \int_use:N \c__str_replacement_char_int
 \else:
 \if_int_compare:w __str_tmp:w #2#3 > 16 \exp_stop_f:
 \flag_raise:n { str_overflow }
 \flag_raise:n { str_error }
 \int_use:N \c__str_replacement_char_int
 \else:
 \int_eval:n
 { __str_tmp:w #2#3*'10000 + _str_tmp:w #3#2*'100 + _str_tmp:w #4#1 }
 \fi:
 \fi:
 \s__tl
 __str_decode_utf_xxxii_loop:NNNN
 }
 \cs_new:Npn __str_decode_utf_xxxii_end:w #1 \s_stop
 { \tl_if_empty:nF {#1} }
 {\pspread{1cm}}

457
9.6.4 iso 8859 support

The iso-8859-1 encoding exactly matches with the 256 first Unicode characters. For other 8-bit encodings of the iso-8859 family, we keep track only of differences, and of unassigned bytes.

\begin{verbatim}
\str_declare_eight_bit_encoding:nnn { iso88591 } {
 { A1 } { 0104 }
 { A2 } { 02D8 }
 { A3 } { 0141 }
 { A5 } { 013D }
 { A6 } { 015A }
 { A9 } { 0160 }
 { AA } { 015E }
 { AB } { 0164 }
 { AC } { 0179 }
 { AE } { 017D }
 { AF } { 017B }
 { B1 } { 0105 }
 { B2 } { 02DB }
 { B3 } { 0142 }
 { B5 } { 013E }
 { B6 } { 015B }
 { B7 } { 02C7 }
 { B9 } { 0161 }
 { BA } { 015F }
 { BB } { 0165 }
 { BC } { 017A }
 { BD } { 02DD }
 { BE } { 017E }
 { BF } { 017C }
 { CO } { 0154 }
\end{verbatim}
\str_declare_eight_bit_encoding:nnn \{ iso88593 \}

\{ iso88592 \}

\{ C3 \} \{ 0102 \}
\{ C5 \} \{ 0139 \}
\{ C6 \} \{ 0106 \}
\{ C8 \} \{ 010C \}
\{ CA \} \{ 0118 \}
\{ CC \} \{ 011A \}
\{ CF \} \{ 010E \}
\{ D0 \} \{ 0110 \}
\{ D1 \} \{ 0143 \}
\{ D2 \} \{ 0147 \}
\{ D5 \} \{ 0150 \}
\{ D8 \} \{ 0158 \}
\{ D9 \} \{ 016E \}
\{ DB \} \{ 0170 \}
\{ DE \} \{ 0162 \}
\{ EO \} \{ 0155 \}
\{ E3 \} \{ 0103 \}
\{ E5 \} \{ 013A \}
\{ E6 \} \{ 0107 \}
\{ E8 \} \{ 010D \}
\{ EA \} \{ 0119 \}
\{ EC \} \{ 011B \}
\{ EF \} \{ 010F \}
\{ F0 \} \{ 0111 \}
\{ F1 \} \{ 0144 \}
\{ F2 \} \{ 0148 \}
\{ F5 \} \{ 0151 \}
\{ F8 \} \{ 0159 \}
\{ F9 \} \{ 016F \}
\{ FB \} \{ 0171 \}
\{ FE \} \{ 0163 \}
\{ FF \} \{ 02D9 \}

\}
\str_declare_eight_bit_encoding:nnn \{ iso88594 \}

{ A1 } \{ 0104 \}
{ A2 } \{ 0138 \}
{ A3 } \{ 0156 \}
{ A5 } \{ 0128 \}
{ A6 } \{ 013B \}
{ A9 } \{ 0160 \}
{ AA } \{ 0112 \}
{ AB } \{ 0122 \}
{ AC } \{ 0166 \}
{ AE } \{ 017D \}
{ B1 } \{ 0105 \}
{ B2 } \{ 02DB \}
{ B3 } \{ 0157 \}
{ B5 } \{ 0129 \}
{ B6 } \{ 013C \}
{ B7 } \{ 02C7 \}
{ B9 } \{ 0161 \}
{ BA } \{ 0113 \}
{ BB } \{ 0123 \}
{ BC } \{ 0167 \}
{ BD } \{ 014A \}
{ BE } \{ 017E \}
{ BF } \{ 014B \}
{ CO } \{ 0100 \}
{ C7 } \{ 012E \}
{ C8 } \{ 010C \}
{ CA } \{ 0118 \}
\str_declare_eight_bit_encoding:nnn { iso88595 }

{ A1 } { 0401 }
{ A2 } { 0402 }
{ A3 } { 0403 }
{ A4 } { 0404 }
{ A5 } { 0405 }
{ A6 } { 0406 }
{ A7 } { 0407 }
{ A8 } { 0408 }
{ A9 } { 0409 }
{ AA } { 040A }
{ AB } { 040B }
{ AC } { 040C }
{ AE } { 040E }
{ AF } { 040F }
{ B0 } { 0410 }
{ B1 } { 0411 }
{ B2 } { 0412 }
{ B3 } { 0413 }
{ B4 } { 0414 }
{ B5 } { 0415 }
{ B6 } { 0416 }
{ B7 } { 0417 }
{ B8 } { 0418 }
{ B9 } { 0419 }

461
| BA | 041A |
| BB | 041B |
| BC | 041C |
| BD | 041D |
| BE | 041E |
| BF | 041F |
| C0 | 0420 |
| C1 | 0421 |
| C2 | 0422 |
| C3 | 0423 |
| C4 | 0424 |
| C5 | 0425 |
| C6 | 0426 |
| C7 | 0427 |
| C8 | 0428 |
| C9 | 0429 |
| CA | 042A |
| CB | 042B |
| CC | 042C |
| CD | 042D |
| CE | 042E |
| CF | 042F |
| D0 | 0430 |
| D1 | 0431 |
| D2 | 0432 |
| D3 | 0433 |
| D4 | 0434 |
| D5 | 0435 |
| D6 | 0436 |
| D7 | 0437 |
| D8 | 0438 |
| D9 | 0439 |
| DA | 043A |
| DB | 043B |
| DC | 043C |
| DD | 043D |
| DE | 043E |
| DF | 043F |
| E0 | 0440 |
| E1 | 0441 |
| E2 | 0442 |
| E3 | 0443 |
| E4 | 0444 |
| E5 | 0445 |
| E6 | 0446 |
| E7 | 0447 |
| E8 | 0448 |
| E9 | 0449 |
| EA | 044A |
| EB | 044B |
| EC | 044C |
| ED | 044D |
| EE | 044E |
| EF | 044F |
\str_declare_eight_bit_encoding:nnn { iso88596 }
{
 { AC } { 060C }
 { BB } { 061B }
 { BF } { 061F }
 { C1 } { 0621 }
 { C2 } { 0622 }
 { C3 } { 0623 }
 { C4 } { 0624 }
 { C5 } { 0625 }
 { C6 } { 0626 }
 { C7 } { 0627 }
 { C8 } { 0628 }
 { C9 } { 0629 }
 { CA } { 062A }
 { CB } { 062B }
 { CC } { 062C }
 { CD } { 062D }
 { CE } { 062E }
 { CF } { 062F }
 { D0 } { 0630 }
 { D1 } { 0631 }
 { D2 } { 0632 }
 { D3 } { 0633 }
 { D4 } { 0634 }
 { D5 } { 0635 }
 { D6 } { 0636 }
 { D7 } { 0637 }
 { D8 } { 0638 }
 { D9 } { 0639 }
 { DA } { 063A }
 { E0 } { 0640 }
 { E1 } { 0641 }
}
\{ E2 \} \{ 0642 \}
\{ E3 \} \{ 0643 \}
\{ E4 \} \{ 0644 \}
\{ E5 \} \{ 0645 \}
\{ E6 \} \{ 0646 \}
\{ E7 \} \{ 0647 \}
\{ E8 \} \{ 0648 \}
\{ E9 \} \{ 0649 \}
\{ EA \} \{ 064A \}
\{ EB \} \{ 064B \}
\{ EC \} \{ 064C \}
\{ ED \} \{ 064D \}
\{ EE \} \{ 064E \}
\{ EF \} \{ 064F \}
\{ F0 \} \{ 0650 \}
\{ F1 \} \{ 0651 \}
\{ F2 \} \{ 0652 \}

\}
\{
 \{ A1 \}
 \{ A2 \}
 \{ A3 \}
 \{ A5 \}
 \{ A6 \}
 \{ A7 \}
 \{ A8 \}
 \{ A9 \}
 \{ AA \}
 \{ AB \}
 \{ AE \}
 \{ AF \}
 \{ B0 \}
 \{ B1 \}
 \{ B2 \}
 \{ B3 \}
 \{ B4 \}
 \{ B5 \}
 \{ B6 \}
 \{ B7 \}
 \{ B8 \}
 \{ B9 \}
 \{ BA \}
 \{ BC \}
 \{ BD \}
 \{ BE \}
 \{ CO \}
 \{ DB \}
 \{ DC \}
 \{ DD \}
 \{ DE \}
 \{ DF \}
\}

\langle /iso88596 \rangle
\langle *iso88597 \rangle
\str_declare_eight_bit_encoding:nnn { iso88597 }
{
 { A1 } { 2018 }
 { A2 } { 2019 }
 { A4 } { 20AC }
 { A5 } { 20AF }
 { AA } { 037A }
 { AF } { 2015 }
 { B4 } { 0384 }
 { B5 } { 0385 }
 { B6 } { 0386 }
 { B8 } { 0388 }
 { B9 } { 0389 }
 { BA } { 038A }
 { BC } { 038C }
 { BE } { 038E }
 { BF } { 038F }
 { C0 } { 0390 }
 { C1 } { 0391 }
 { C2 } { 0392 }
 { C3 } { 0393 }
 { C4 } { 0394 }
 { C5 } { 0395 }
 { C6 } { 0396 }
 { C7 } { 0397 }
 { C8 } { 0398 }
 { C9 } { 0399 }
 { CA } { 039A }
 { CB } { 039B }
 { CC } { 039C }
 { CD } { 039D }
 { CE } { 039E }
 { CF } { 039F }
 { D0 } { 03A0 }
 { D1 } { 03A1 }
 { D3 } { 03A3 }
 { D4 } { 03A4 }
 { D5 } { 03A5 }
 { D6 } { 03A6 }
 { D7 } { 03A7 }
 { D8 } { 03A8 }
 { D9 } { 03A9 }
 { DA } { 03AA }
 { DB } { 03AB }
 { DC } { 03AC }
 { DD } { 03AD }
 { DE } { 03AE }
 { DF } { 03AF }
 { E0 } { 03B0 }
 { E1 } { 03B1 }
 { E2 } { 03B2 }
 { E3 } { 03B3 }
 { E4 } { 03B4 }
 { E5 } { 03B5 }
}
\str_declare_eight_bit_encoding:nnn { iso88598 }
\str_DECLARE_EIGHT_BIT_ENCODING:nnnn { iso88599 }{
\str_declare_eight_bit_encoding:nnn { iso885910 }
{ ... }
\str_declare_eight_bit_encoding:nnn { iso885911 }

{ A1 } { OE01 }
{ A2 } { OE02 }
{ A3 } { OE03 }
{ A4 } { OE04 }
{ A5 } { OE05 }
{ A6 } { OE06 }
{ A7 } { OE07 }
{ A8 } { OE08 }
{ A9 } { OE09 }
{ AA } { OE0A }
{ AB } { OE0B }
{ AC } { OE0C }
{ AD } { OE0D }
{ AE } { OE0E }
{ AF } { OE0F }
{ B0 } { OE10 }
{ B1 } { OE11 }
{ B2 } { OE12 }
{ B3 } { OE13 }
{ B4 } { OE14 }
{ B5 } { OE15 }
{ B6 } { OE16 }
{ B7 } { OE17 }
{ B8 } { OE18 }
{ B9 } { OE19 }
{ BA } { OE1A }
{ BB } { OE1B }
{ BC } { OE1C }
{ BD } { OE1D }
{ BE } { OE1E }
{ BF } { OE1F }
{ C0 } { OE20 }
{ C1 } { OE21 }
{ C2 } { OE22 }
{ C3 } { OE23 }
{ C4 } { OE24 }
{ C5 } { OE25 }
{ C6 } { OE26 }
{ C7 } { OE27 }
{ C8 } { OE28 }
{ C9 } { OE29 }
{ CA } { OE2A }
\textbf{str DECLARE_EIGHT_BIT_ENCODING:nnn \{ iso885913 \}}
{
{ A1 } \{ 201D \}
{ A5 } \{ 201E \}
{ A8 } \{ 00D8 \}
{ AA } \{ 0156 \}
{ AF } \{ 00C6 \}
{ B4 } \{ 201C \}
{ B8 } \{ 00F8 \}
{ BA } \{ 0157 \}
{ BF } \{ 00E6 \}
{ C0 } \{ 0104 \}
{ C1 } \{ 012E \}
{ C2 } \{ 0100 \}
{ C3 } \{ 0106 \}
{ C6 } \{ 0118 \}
{ C7 } \{ 0112 \}
{ C8 } \{ 010C \}
{ CA } \{ 0179 \}
{ CB } \{ 0116 \}
{ CC } \{ 0122 \}
{ CD } \{ 0136 \}
{ CE } \{ 012A \}
{ CF } \{ 013B \}
{ D0 } \{ 0160 \}
{ D1 } \{ 0143 \}
{ D2 } \{ 0145 \}
{ D4 } \{ 014C \}
{ D8 } \{ 0172 \}
{ D9 } \{ 0141 \}
{ DA } \{ 015A \}
{ DB } \{ 016A \}
{ DD } \{ 017B \}
{ DE } \{ 017D \}
{ E0 } \{ 0105 \}
{ E1 } \{ 012F \}
{ E2 } \{ 0101 \}
{ E3 } \{ 0107 \}
{ E6 } \{ 0119 \}
{ E7 } \{ 0113 \}
{ E8 } \{ 010D \}
{ EA } \{ 017A \}
{ EB } \{ 0117 \}
{ EC } \{ 0123 \}
{ ED } \{ 0137 \}
{ EE } \{ 012B \}
{ EF } \{ 013C \}
{ F0 } \{ 0161 \}
{ F1 } \{ 0144 \}
{ F2 } \{ 0146 \}
{ F4 } \{ 014D \}
{ F8 } \{ 0173 \}
{ F9 } \{ 0142 \}
{ FA } \{ 015B \}
}
\str_declare_eight_bit_encoding:nnn { iso885913 }
{
}{ A1 } { 1E02 }
{ A2 } { 1E03 }
{ A4 } { 010A }
{ A5 } { 010B }
{ A6 } { 1E0A }
{ A8 } { 1E80 }
{ AA } { 1E82 }
{ AB } { 1E0B }
{ AC } { 1EF2 }
{ AF } { 0178 }
{ B0 } { 1E1E }
{ B1 } { 1E1F }
{ B2 } { 0120 }
{ B3 } { 0121 }
{ B4 } { 1E40 }
{ B5 } { 1E41 }
{ B7 } { 1E56 }
{ B8 } { 1E81 }
{ B9 } { 1E57 }
{ BA } { 1E83 }
{ BB } { 1E60 }
{ BC } { 1EF3 }
{ BD } { 1E84 }
{ BE } { 1E85 }
{ BF } { 1E61 }
{ D0 } { 0174 }
{ D7 } { 1E6A }
{ DE } { 0176 }
{ F0 } { 0175 }
{ F7 } { 1E6B }
{ FE } { 0177 }
}
{
}
{/iso885913}
\str_declare_eight_bit_encoding:nnn { iso885914 }
{
{ FB } { 016B }
{ FD } { 017C }
{ FE } { 017E }
{ FF } { 2019 }
}
{
}
{/iso885914}
\str_declare_eight_bit_encoding:nnn { iso885915 }
{
{ A4 } { 20AC }
{ A6 } { 0160 }
{ A8 } { 0161 }
{ B4 } { 017D }
}
\strDeclareEightBitEncoding\{iso885915\}
\strDeclareEightBitEncoding\{iso885916\}
10 l3quark implementation

The following test files are used for this code: m3quark001.lvt.

10.1 Quarks

Allocate a new quark.

```
\quark_new:N
\cs_new_protected:Npn \quark_new:N #1
\__kernel_chk_if_free_cs:N #1
\cs_gset_nopar:Npn #1 {#1}
```

(End definition for \quark_new:N. This function is documented on page 70.)

Some “public” quarks. \q_stop is an “end of argument” marker, \q_nil is an empty value and \q_no_value marks an empty argument.

```
\q_nil
\q_mark
\q_no_value
\q_stop
```

(End definition for \q_nil and others. These variables are documented on page 71.)

Quarks for ending recursions. Only ever used there! \q_recursion_tail is appended to whatever list structure we are doing recursion on, meaning it is added as a proper list item with whatever list separator is in use. \q_recursion_stop is placed directly after the list.

```
\q_recursion_tail
\q_recursion_stop
```

(End definition for \q_recursion_tail and \q_recursion_stop. These variables are documented on page 71.)

When doing recursions, it is easy to spend a lot of time testing if the end marker has been found. To avoid this, a dedicated end marker is used each time a recursion is set up. Thus if the marker is found everything can be wrapper up and finished off. The simple case is when the test can guarantee that only a single token is being tested. In this case, there is just a dedicated copy of the standard quark test. Both a gobbling version and one inserting end code are provided.

```
\cs_new:Npn \quark_if_recursion_tail_stop:N #1
\if_meaning:w \q_recursion_tail #1
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
\quark_if_recursion_tail_stop_do:Nn
```
\if_meaning:w \q_recursion_tail #1
\exp_after:wN \use_i_delimit_by_q_recursion_stop:nw
\else:
\exp_after:wN \use_none:n
\fi:
}

(End definition for \quark_if_recursion_tail_stop:n and \quark_if_recursion_tail_stop_do:nn. These functions are documented on page 72.)

\quark_if_recursion_tail_stop:n
\quark_if_recursion_tail_stop:o
\quark_if_recursion_tail_stop_do:nn
\quark_if_recursion_tail_stop_do:on
__quark_if_recursion_tail:w
See \quark_if_nil:nTF for the details. Expanding __quark_if_recursion_tail:w once in front of the tokens chosen here gives an empty result if and only if #1 is exactly \q_recursion_tail.

\cs_new:Npn \quark_if_recursion_tail_stop:n #1 { \tl_if_empty:oTF { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! } { \use_none_delimit_by_q_recursion_stop:w } }

\cs_new:Npn \quark_if_recursion_tail_stop_do:nn #1 { \tl_if_empty:oTF { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! } { \use_i_delimit_by_q_recursion_stop:nw } { \use_none:n } }

\cs_new:Npn __quark_if_recursion_tail:w #1 \q_recursion_tail #2 ? #3 ?! { #1 #2 }
\cs_generate_variant:Nn \quark_if_recursion_tail_stop:n { o }
\cs_generate_variant:Nn \quark_if_recursion_tail_stop_do:nn { o }

(End definition for \quark_if_recursion_tail_stop:n, \quark_if_recursion_tail_stop_do:nn, and __quark_if_recursion_tail:w. These functions are documented on page 72.)

\quark_if_recursion_tail_break:NN
\quark_if_recursion_tail_break:nN
Analogues of the \quark_if_recursion_tail_stop... functions. Break the mapping using #2.

\cs_new:Npn \quark_if_recursion_tail_break:NN #1#2 { \if_meaning:w \q_recursion_tail #1 \exp_after:wN \q_recursion_tail_stop_do:nn \fi: }
\cs_new:Npn \quark_if_recursion_tail_break:nN #1#2 { \tl_if_empty:oT { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! } {#2} }

(End definition for \quark_if_recursion_tail_break:NN and \quark_if_recursion_tail_break:nN. These functions are documented on page 72.)

475
Here we test if we found a special quark as the first argument. We better start with \texttt{\textbackslash q_no_value} as the first argument since the whole thing may otherwise loop if \texttt{#1} is wrongly given a string like \texttt{aabc} instead of a single token.\footnote{It may still loop in special circumstances however!}

\begin{verbatim}
\newconditional[p]{\quark_if_nil:N}{\if_meaning:w \q_nil #1 \prg_return_true: \else: \prg_return_false: \fi:}
\newconditional[p]{\quark_if_no_value:N}{\if_meaning:w \q_no_value #1 \prg_return_true: \else: \prg_return_false: \fi:}
\generateconditionalvariant[\quark_if_no_value:N]{c}
\end{verbatim}

Let us explain \texttt{\quark_if_nil:n(TF)}. Expanding \texttt{__quark_if_nil:w} once is safe thanks to the trailing \texttt{\q_nil \textbackslash !}. The result of expanding once is empty if and only if both delimited arguments \texttt{#1} and \texttt{#2} are empty and \texttt{#3} is delimited by the last tokens \texttt{\textbackslash !}. Thanks to the leading {}, the argument \texttt{#1} is empty if and only if the argument of \texttt{\quark_if_nil:n} starts with \texttt{\q_nil}. The argument \texttt{#2} is empty if and only if this \texttt{\q_nil} is followed immediately by \texttt{\textbackslash ?} or by \texttt{\{}?, coming either from the trailing tokens in the definition of \texttt{\quark_if_nil:n}, or from its argument. In the first case, \texttt{__quark_if_nil:w} is followed by \texttt{\textbackslash q_nil {} \textbackslash ? \textbackslash ! \textbackslash q_nil \textbackslash \textbackslash !}, hence \texttt{#3} is delimited by the final \texttt{\textbackslash !}, and the test returns true as wanted. In the second case, the result is not empty since the first \texttt{\textbackslash ?} in the definition of \texttt{\quark_if_nil:n} stop \texttt{#3}. The auxiliary here is the same as \texttt{__tl_if_empty_if:o}, with the same comments applying.

\begin{verbatim}
\newconditional[p]{\quark_if_nil:n}{__quark_if_empty_if:o}{__quark_if_nil:w {} #1 {} \textbackslash ! \textbackslash q_nil \textbackslash \textbackslash !}
\newconditional[p]{\quark_if_no_value:n}{__quark_if_empty_if:o}{__quark_if_no_value:w {} #1 {} \textbackslash ! \textbackslash q_no_value \textbackslash \textbackslash !}
\end{verbatim}
\else:
 \prg_return_false:
\fi:
}
\cs_new:Npn __quark_if_no_value:w #1 \q_no_value #2 ? #3 ? ! { #1 #2 }
\prg_generate_conditional_variant:Nnn \quark_if_nil:n { V , o } { p , TF , T , F }
\cs_new:Npn __quark_if_empty_if:o #1 {
 \exp_after:wN \if_meaning:w \exp_after:wN \q_nil __kernel_tl_to_str:w \exp_after:wN {#1} \q_nil __kernel_tl_to_str:w \exp_after:wN \q_nil
}

(End definition for \quark_if_nil:nTF and others. These functions are documented on page 71.)

10.2 Scan marks

\g__scan_marks_tl The list of all scan marks currently declared.
\tl_new:N \g__scan_marks_tl

(End definition for \g__scan_marks_tl. This function is documented on page 73.)

\scan_new:N Check whether the variable is already a scan mark, then declare it to be equal to \scan_stop: globally.
\cs_new_protected:Npn \scan_new:N #1 {
 \tl_if_in:NnTF \g__scan_marks_tl { #1 } {
 __kernel_msg_error:nnx { kernel } { scanmark-already-defined } { \token_to_str:N #1 }
 } {
 \tl_gput_right:Nn \g__scan_marks_tl {#1}
 \cs_new_eq:NN #1 \scan_stop:
 }
}

(End definition for \scan_new:N. This function is documented on page 73.)

\s_stop We only declare one scan mark here, more can be defined by specific modules.
\tl_new:N \s_stop

(End definition for \s_stop. This variable is documented on page 74.)

\use_none_delimit_by_s_stop:w Similar to \use_none_delimit_by_q_stop:w.
\cs_new:Npn \use_none_delimit_by_s_stop:w #1 \s_stop { }

(End definition for \use_none_delimit_by_s_stop:w. This function is documented on page 74.)

\use_none_delimit_by_q_stop:w

\tl_new:N \g__scan_marks_tl
\tl_new:N \s_stop
11 l3seq implementation

The following test files are used for this code: m3seq002,m3seq003.

A sequence is a control sequence whose top-level expansion is of the form “__seq_item:n \{item\}”, with a leading scan mark followed by \item items of the same form. An earlier implementation used the structure “\seq elt:w \{item\} \seq elt_end: \ldots \seq elt:w \{item\} \seq elt_end:”. This allowed rapid searching using a delimited function, but was not suitable for items containing \{, \} and # tokens, and also lead to the loss of surrounding braces around items

__seq_item:n * __seq_item:n \{item\}

The internal token used to begin each sequence entry. If expanded outside of a mapping or manipulation function, an error is raised. The definition should always be set globally.

__seq_push_item_def:n __seq_push_item_def:x

Saves the definition of __seq_item:n and redefines it to accept one parameter and expand to \{code\}. This function should always be balanced by use of __seq_pop_item_def:n.

__seq_pop_item_def:

Restores the definition of __seq_item:n most recently saved by __seq_push_item_def:n. This function should always be used in a balanced pair with __seq_push_item_def:n.

\s__seq

This private scan mark.

__seq_item:n

The delimiter is always defined, but when used incorrectly simply removes its argument and hits an undefined control sequence to raise an error.

__seq_internal_a_tl __seq_internal_b_tl

Scratch space for various internal uses.

__seq_tmp:w

Scratch function for internal use.
\c_empty_seq
A sequence with no item, following the structure mentioned above.

\seq_new:N \seq_new:c
Sequences are initialized to \c_empty_seq.

\seq_clear:N \seq_clear:c
Clearing a sequence is similar to setting it equal to the empty one.

\seq_clear_new:N \seq_clear_new:c \seq_gclear_new:N \seq_gclear_new:c
Once again we copy code from the token list functions.

\seq_set_eq:NN \seq_set_eq:cN \seq_set_eq:Nc \seq_set_eq:cc
Copying a sequence is the same as copying the underlying token list.
Setting a sequence from a comma-separated list is done using a simple mapping.

\cs_new_protected:Npn \seq_set_from_clist:NN #1 #2
\tl_set:Nx #1 { \s__seq \clist_map_function:NN #2 __seq_wrap_item:n }
\cs_generate_variant:Nn \seq_set_from_clist:NN { Nc , cc }
\cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc , cc , cc }
\cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }

Almost identical to \seq_set_from_clist:Nn.

\cs_new_protected:Npn \seq_const_from_clist:Nn #1 #2
\tl_const:Nx #1 { \s__seq \clist_map_function:nN {#2} __seq_wrap_item:n }
\cs_generate_variant:Nn \seq_const_from_clist:Nn { c }

When the separator is empty, everything is very simple, just map __seq_wrap_item:n through the items of the last argument. For non-trivial separators, the goal is to split a given token list at the marker, strip spaces from each item, and remove one set of outer braces if after removing leading and trailing spaces the item is enclosed within braces. After \tl_replace_all:Nnn, the token list \l__seq_internal_a_tl is a repetition of the pattern __seq_set_split_auxi:w \prg_do_nothing: ⟨item with spaces⟩ __seq_set_split_end:. Then, x-expansion causes __seq_set_split_auxi:w to trim spaces, and leaves its result as __seq_set_split_auxii:w ⟨trimmed item⟩ __seq_set_split_end:. This is then converted to the l3seq internal structure by another x-expansion. In the first step, we insert \prg_do_nothing: to avoid losing braces too early: that would cause space trimming to act within those lost braces. The second step is solely there to strip braces which are outermost after space trimming.
When concatenating sequences, one must remove the leading \texttt{\s__seq} of the second sequence. The result starts with \texttt{\s__seq} (of the first sequence), which stops f-expansion.

(End definition for \texttt{\seq_set_split:Nnn} and others. These functions are documented on page 76.)

\texttt{\seq_concat:NNN} \hfill \texttt{\seq_concat:ccc}
\texttt{\seq_gconcat:NNN} \hfill \texttt{\seq_gconcat:ccc}
(End definition for \texttt{\seq_concat:NNN} and \texttt{\seq_gconcat:NNN}. These functions are documented on page 76.)

\texttt{\seq_if_exist_p:N} \hfill \texttt{\seq_if_exist_p:c} \hfill \texttt{\seq_if_exist:NpF} \hfill \texttt{\seq_if_exist:cFp}
(End definition for \texttt{\seq_if_exist:NpF} and \texttt{\seq_if_exist:cFp}. These functions are documented on page 76.)
11.2 Appending data to either end

\seq_put_left:Nn When adding to the left of a sequence, remove \s__seq. This is done by __seq_put_left_aux:w, which also stops f-expansion.
\seq_put_left:Nv \cs_new_protected:Npn \seq_put_left:Nn \#1 \#2
\seq_put_left:Nx \tl_set:Nx \#1
\seq_put_left:cV \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx \cs_new_protected:Npn \seq_gput_left:Nn \#1 \#2
\seq_put_left:cn \tl_gset:Nx \#1
\seq_put_left:cv \exp_not:n \s__seq __seq_item:n \#2
\seq_put_left:cv \exp_not:f \exp_after:wN __seq_put_left_aux:w \#1
\seq_put_left:co \seq_gput_left:Nn
\seq_put_left:cx

Since there is no trailing marker, adding an item to the right of a sequence simply means wrapping it in __seq_item:n.

\seq_put_right:Nn \cs_new_protected:Npn \seq_put_right:Nn \#1 \#2
\seq_put_right:Nv \{ \tl_put_right:Nn \#1 \{ __seq_item:n \#2 \} \}
\seq_put_right:Nx \cs_new_protected:Npn \seq_put_right:Nn \#1 \#2
\seq_put_right:cn \{ \tl_gput_right:Nn \#1 \{ __seq_item:n \#2 \} \}
\seq_put_right:cV \cs_generate_variant:Nn \seq_put_right:Nn \#1 \#2
\seq_put_right:cv \cs_generate_variant:Nn \seq_put_right:Nn \#1 \#2
\seq_put_right:co \cs_generate_variant:Nn \seq_put_right:Nn \#1 \#2
\seq_put_right:cx \cs_generate_variant:Nn \seq_put_right:Nn \#1 \#2
\seq_gput_right:Nn
\seq_gput_right:Nv \cs_new:Npn __seq_wrap_item:n \#1 \exp_not:n __seq_item:n \#1
\seq_gput_right:Nx \cs_generate_variant:Nn __seq_wrap_item:n \#1 \#2
\seq_gput_right:cn \cs_generate_variant:Nn __seq_wrap_item:n \#1 \#2
\seq_gput_right:cV \cs_generate_variant:Nn __seq_wrap_item:n \#1 \#2
\seq_gput_right:cv \cs_generate_variant:Nn __seq_wrap_item:n \#1 \#2
\seq_gput_right:co \cs_generate_variant:Nn __seq_wrap_item:n \#1 \#2
\seq_gput_right:cx \cs_generate_variant:Nn __seq_wrap_item:n \#1 \#2
__seq_wrap_item:n

This function converts its argument to a proper sequence item in an x-expansion context.

\cs_new:Npn __seq_wrap_item:n \#1 \exp_not:n __seq_item:n \#1
\seq_gput_right:Nn
\seq_gput_right:Nv
\seq_gput_right:Nx
\seq_gput_right:cn
\seq_gput_right:cV
\seq_gput_right:cv
\seq_gput_right:co
\seq_gput_right:cx

11.3 Modifying sequences

__seq_wrap_item:n

(End definition for __seq_wrap_item:n. These functions are documented on page 76.)
An internal sequence for the removal routines.

Removing duplicates means making a new list then copying it.

The idea of the code here is to avoid a relatively expensive addition of items one at a time to an intermediate sequence. The approach taken is therefore similar to that in __seq_pop_right:NNN, using a “flexible” x-type expansion to do most of the work. As \tl__if_eq:nnT is not expandable, a two-part strategy is needed. First, the x-type expansion uses \str_if_eq:nnT to find potential matches. If one is found, the expansion is halted and the necessary set up takes place to use the \tl__if_eq:NNT test. The x-type is started again, including all of the items copied already. This happens repeatedly until the entire sequence has been scanned. The code is set up to avoid needing and intermediate scratch list: the lead-off x-type expansion (#1 \#2 \#3) ensures that nothing is lost.
Previously, \seq_reverse:N was coded by collecting the items in reverse order after an \exp_stop_f: marker.

\begin{verbatim}
\cs_new_protected:Npn \seq_reverse:N #1
\{\cs_set_eq:NN \@@_item:n \@@_reverse_item:nw
\tl_set:Nf #2 { #2 \exp_stop_f: }
\}
\cs_new:Npn \@@_reverse_item:nw #1 #2 \exp_not:n #3
\{\exp_stop_f:
\@@_item:n {#1}
\}
\end{verbatim}

At first, this seems optimal, since we can forget about each item as soon as it is placed after \exp_stop_f:. Unfortunately, \TeX{}’s usual tail recursion does not take place in this case: since the following __seq_reverse_item:nw only reads tokens until \exp_stop_f:, and never reads the \@@_item:n {#1} left by the previous call, \TeX{} cannot remove that previous call from the stack, and in particular must retain the various macro parameters in memory, until the end of the replacement text is reached. The stack is thus only flushed after all the __seq_reverse_item:nw are expanded. Keeping track of the arguments of all those calls uses up a memory quadratic in the length of the sequence. \TeX{} can then not cope with more than a few thousand items.

Instead, we collect the items in the argument of \exp_not:n. The previous calls are cleanly removed from the stack, and the memory consumption becomes linear.

\begin{verbatim}
\cs_new_protected:Npn \seq_reverse:N
\{__seq_reverse:NN \tl_set:Nx \}
\cs_new_protected:Npn \seq_greverse:N
\{__seq_reverse:NN \tl_gset:Nx \}
\cs_new_protected:Npn __seq_reverse:NN #1 #2
\{\cs_set_eq:NN __seq_tmp:w __seq_item:n
\cs_set_eq:NN __seq_item:n __seq_reverse_item:nwn
#1 #2 { #2 \exp_not:n { } }
\cs_set_eq:NN __seq_item:n __seq_tmp:w
\}
\end{verbatim}

(End definition for \seq_remove_all:Nn, \seq_gremove_all:Nn, and __seq_remove_all_aux:Nn. These functions are documented on page 79.)
\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

11.4 Sequence conditionals

Similar to token lists, we compare with the empty sequence.

\seq_shuffle:N
\seq_shuffle:c
\seq_gshuffle:N
\seq_gshuffle:c
__seq_shuffle:NN
__seq_shuffle_item:n
\g__seq_internal_seq

We apply the Fisher–Yates shuffle, storing items in \toks registers. We use the primitive \tex_uniformdeviate:D for speed reasons. Its non-uniformity is of order its argument divided by 2^{28}, not too bad for small lists. For sequences with more than 13 elements there are more possible permutations than possible seeds ($13! > 2^{28}$) so the question of uniformity is somewhat moot. The integer variables are declared in \l3int: load-order issues.

\cs_if_exist:NTF \tex_uniformdeviate:D

\begin{verbatim}
\cs_new_protected:Npn \seq_shuffle:N { __seq_shuffle:NN \seq_set_eq:NN }
\cs_new_protected:Npn \seq_gshuffle:N { __seq_shuffle:NN \seq_gset_eq:NN }
\cs_new_protected:Npn __seq_shuffle:NN #1#2
\{ \int_zero:N \l__seq_internal_a_int
__seq_push_item_def:
\cs_gset_eq:NN __seq_item:n __seq_shuffle_item:n #2
__seq_pop_item_def:
\seq_gset_from_inline_x:Nnn \g__seq_internal_seq
\{ \int_step_function:nN { \l__seq_internal_a_int } \}
\\tex_the:D \tex_toks:D ##1
\}
\end{verbatim}
\cs_new_protected:Npn _seq_shuffle_item:n
 \{ \int_incr:N \l__seq_internal_a_int
 \int_set:Nn \l__seq_internal_b_int
 \{ 1 + \tex_uniformdeviate:D \l__seq_internal_a_int \}
 \tex_toks:D \l__seq_internal_a_int
 = \tex_toks:D \l__seq_internal_b_int
 \tex_toks:D \l__seq_internal_b_int \}
\}

\cs_new_protected:Npn \seq_shuffle:N \#1
 \{ __kernel_msg_error:nnn { kernel } { fp-no-random } { \seq_shuffle:N \#1 } \}
\cs_new_eq:NN \seq_gshuffle:N \seq_shuffle:N
\cs_generate_variant:Nn \seq_shuffle:N { c }
\cs_generate_variant:Nn \seq_gshuffle:N { c }
(End definition for \seq_shuffle:N and others. These functions are documented on page 80.)

\seq_if_in:Nn \T \F \TF
\seq_if_in:NV \T \F
\seq_if_in:Nv \T \F
\seq_if_in:No \T \F
\seq_if_in:Nx \T \F
\seq_if_in:cn \T \F
\seq_if_in:cV \T \F
\seq_if_in:cv \T \F
\seq_if_in:co \T \F
\seq_if_in:cx \T \F
__seq_if_in:
The approach here is to define _seq_item:n to compare its argument with the test
sequence. If the two items are equal, the mapping is terminated and \group_end: \prg-
return_true: is inserted after skipping over the rest of the recursion. On the other hand,
if there is no match then the loop breaks, returning \prg_return_false:. Everything
is inside a group so that _seq_item:n is preserved in nested situations.
\prg_new_protected_conditional:Nppn \seq_if_in:Nn \#1#2
\{ \T , \F , \TF \}
\cs_set_protected:Npn __seq_item:n ##1
 \{ \tl_set:Nn \l__seq_internal_b_tl {##1}
 \if_meaning:w \l__seq_internal_a_tl \l__seq_internal_b_tl
 \exp_after:wN __seq_if_in: \fi:
 \}
\prg_return_false:
\prg_break_point:
(End definition for \seq_if_in:NnTF and _seq_if_in:. This function is documented on page 80.)

486
11.5 Recovering data from sequences

The two pop functions share their emptiness tests. We also use a common emptiness test for all branching get and pop functions.

\begin{verbatim}
\cs_new_protected:Npn __seq_pop:NNNN #1#2#3#4
 \if_meaning:w #3 \c_empty_seq
 \tl_set:Nn #4 { \q_no_value }
 \else:
 #1#2#3#4
 \fi:
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __seq_pop_TF:NNNN #1#2#3#4
 \if_meaning:w #3 \c_empty_seq
 \prg_return_false:
 \else:
 #1#2#3#4
 \fi:
\end{verbatim}

(End definition for __seq_pop:NNNN and __seq_pop_TF:NNNN.)

Getting an item from the left of a sequence is pretty easy: just trim off the first item after __seq_item:n at the start. We append a \q_no_value item to cover the case of an empty sequence

\begin{verbatim}
\cs_new_protected:Npn \seq_get_left:NN #1#2
 \tl_set:Nx #2
 \exp_after:wN __seq_get_left:wnw
 #1 __seq_item:n { \q_no_value } \q_stop
\end{verbatim}

\begin{verbatim}
\cs_generate_variant:Nn \seq_get_left:NN { c }
\end{verbatim}

(End definition for \seq_get_left:NN and __seq_get_left:wnw. This function is documented on page 77.)

The approach to popping an item is pretty similar to that to get an item, with the only difference being that the sequence itself has to be redefined. This makes it more sensible to use an auxiliary function for the local and global cases.

\begin{verbatim}
\cs_new_protected:Npn \seq_pop_left:NN __seq_pop_left:NNN \tl_set:Nn
\cs_new_protected:Npn \seq_gpop_left:NN __seq_pop_left:NNN \tl_gset:Nn
\cs_new_protected:Npn __seq_pop_left:NNN #1#2#3
 \exp_after:wN __seq_pop_left:wnwNNN #2 \q_stop #1#2#3
\cs_new_protected:Npn __seq_pop_left:wnwNNN #1 __seq_item:n #2#3 \q_stop #4#5#6
\end{verbatim}

487
First remove \texttt{__seq_item:n} and prepend \texttt{__seq_item:n}. The first argument of \texttt{__seq_get_right_loop:nw} is the last item found, and the second argument is empty until the end of the loop, where it is code that applies \texttt{\exp_not:n} to the last item and ends the loop.

\begin{verbatim}
\cs_new_protected:Npn \seq_get_right:NN #1#2
\tl_set:Nx #2 { \use_i_ii:nnn \exp_after:wN __seq_get_right_loop:nw \q_no_value #1 __seq_get_right_end:NnN __seq_item:n }
\end{verbatim}

(End definition for \texttt{\seq_get_right:NN} and others. These functions are documented on page 77.)

The approach to popping from the right is a bit more involved, but does use some of the same ideas as getting from the right. What is needed is a “flexible length” way to set a token list variable. This is supplied by the \texttt{\{ \if_false: \fi: \} \if_false: \fi:} construct. Using an \texttt{x}-type expansion and a “non-expanding” definition for \texttt{__seq_item:n}, the left-most \texttt{n __seq_item:n} entries in a sequence of \texttt{n} items are stored back in the sequence. That needs a loop of unknown length, hence using the strange \texttt{\if_false:} way of including braces. When the last item of the sequence is reached, the closing brace for the assignment is inserted, and \texttt{\tl_set:Nn __seq_item:n} is inserted in front of the final entry. This therefore does the pop assignment. One more iteration is performed, with an empty argument and \texttt{\use_none:nn}, which finally stops the loop.

\begin{verbatim}
\cs_new_protected:Npm \seq_pop_right:NN
\cs_new_protected:Npm \seq_gpop_right:NN
\cs_new_protected:Npm \seq_pop_right_loop:nw
\end{verbatim}

(End definition for \texttt{\seq_pop_right:NN}, \texttt{__seq_get_right_loop:nw}, and \texttt{__seq_get_right_end:NnN}. This function is documented on page 77.)
\exp_after:wN \use_i:nnn
\exp_after:wN __seq_pop_right_loop:nn
 #2
 { \if_false: { \fi: }
 \tl_set:Nx #3
 }
 { } \use_none:nn
\cs_set_eq:NN __seq_item:n __seq_tmp:w}
\cs_new:Npn __seq_pop_right_loop:nn #1#2
 { #2 { \exp_not:n {#1} } __seq_pop_right_loop:nn}
\cs_generate_variant:Nn \seq_pop_right:NN { c }
\cs_generate_variant:Nn \seq_gpop_right:NN { c }

(End definition for \seq_pop_right:NN and others. These functions are documented on page 77.)

\seq_get_left:NNTF \seq_get_left:cNTF \seq_get_right:NNTF \seq_get_right:cNTF

Getting from the left or right with a check on the results. The first argument to __-
seq_pop_TF:NNNN is left unused.
\prg_new_protected_conditional:Npnn \seq_get_left:NN #1#2 { T , F , TF }
 { __seq_pop_TF:NNNN \prg_do_nothing: \seq_get_left:NN #1#2 }
\prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
 { __seq_pop_TF:NNNN \prg_do_nothing: \seq_get_right:NN #1#2 }
\prg_generate_conditional_variant:Nnn \seq_get_left:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_get_right:NN { c } { T , F , TF }

(End definition for \seq_get_left:NNTF and \seq_get_right:NNTF. These functions are documented on
page 78.)

\seq_pop_left:NNTF \seq_pop_left:cNTF \seq_gpop_left:NNTF \seq_gpop_left:cNTF
\seq_pop_right:NNTF \seq_pop_right:cNTF \seq_gpop_right:NNTF \seq_gpop_right:cNTF

More or less the same for popping.
\prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2
 { T , F , TF }
\prg_new_protected_conditional:Npnn \seq_gpop_left:NN #1#2
 { __seq_pop_TF:NNNN __seq_pop_left:NNN \tl_set:Nn #1 #2 }
\prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2
 { T , F , TF }
\prg_new_protected_conditional:Npnn \seq_gpop_right:NN #1#2
 { __seq_pop_TF:NNNN __seq_pop_right:NNN \tl_set:Nx #1 #2 }
\prg_new_protected_conditional:Npnn \seq_pop_gop_left:NN #1#2
 { T , F , TF }
\prg_new_protected_conditional:Npnn \seq_pop_gop_right:NN #1#2
 { __seq_pop_TF:NNNN __seq_pop_right:NNN \tl_set:Nx #1 #2 }
\prg_generate_conditional_variant:Nnn \seq_pop_left:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_gpop_left:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_pop_right:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_gpop_right:NN { c } { T , F , TF }

489
The idea here is to find the offset of the item from the left, then use a loop to grab the correct item. If the resulting offset is too large, then the argument delimited by __seq_item:n is \prg_break: instead of being empty, terminating the loop and returning nothing at all.

```
cs_new:Npn \seq_item:Nn #1
{ \exp_after:wN \__seq_item:wNn \s__seq #1 \q_stop #1 }
cs_new:Npn \__seq_item:wNn \s__seq \s__seq_item:n \s__seq_item:nw \s__seq_item:wNn \s__seq_item:wNnn \s__seq_item:wNnd \s__seq_item:wNn

\exp_args:Nf \__seq_item:nw
\exp_args:Nf \__seq_item:n { \int_eval:n { \seq_count:N #2 + 1 + #1 } } \s__seq_item:nw
\prg_break:
\prg_break_point:
```

```
cs_new:Npn \__seq_item:nN #1#2
{ \int_compare:nNnTF {#1} < 0
{ \int_eval:n { \seq_count:N #2 + 1 + #1 } } \s__seq_item:nN
{ \int_compare:nNnTF {#1} = 1
{ \prg_break:n { \exp_not:n {#3} } } \s__seq_item:nN
{ \exp_args:Nf \__seq_item:nw { \int_eval:n { #1 - 1 } } }
```

```
cs_new:Npn \__seq_item:nwn #1#2 \__seq_item:n #3
{ #2
\int_compare:nNnTF {#1} = 1
{ \prg_break:n { \exp_not:n {#3} } } \s__seq_item:nwn
{ \exp_args:Nf \__seq_item:nw { \int_eval:n { #1 - 1 } } }
```

```
cs_generate_variant:Nn \seq_item:Nn \seq_item:cn \seq_item:wn \seq_item:nN \seq_item:nwn
```

(End definition for \seq_item:Nn and others. This function is documented on page 77.)

```
cs_new:Npn \seq_rand_item:N #1
{ \seq_if_empty:NF #1
{ \seq_item:Nn #1 { \int_rand:nn { 1 } { \seq_count:N #1 } } }
```

```
cs_new:Npn \seq_rand_item:c
{ \seq_if_empty:NF \seq_item:c #1
{ \int_rand:nn { 1 } { \seq_count:N \seq_item:c } } \seq_item:c
```

```
cs_generate_variant:Nn \seq_rand_item:N { c }
```

(End definition for \seq_rand_item:N. This function is documented on page 78.)

11.6 Mapping to sequences

```
cs_new:Npn \seq_map_break:
{ \prg_map_break:Nn \seq_map_break: { } }
cs_new:Npn \seq_map_break:n
{ \prg_map_break:Nn \seq_map_break: }
```

(End definition for \seq_map_break:Nn and others. These functions are documented on page 78.)

```
```

```
```

11.6 Mapping to sequences

Importantly, \seq_item:Nn only evaluates its argument once.

```
cs_new:Npn \seq_map_break: { \prg_map_break:Nn \seq_map_break: { } }
cs_new:Npn \seq_map_break:n { \prg_map_break:Nn \seq_map_break: }
```

```
```

490
The idea here is to apply the code of \texttt{#2} to each item in the sequence without altering the definition of \texttt{__seq_item:n}. The argument delimited by \texttt{__seq_item:n} is almost always empty, except at the end of the loop where it is \texttt{\prg_break:}. This allows to break the loop without needing to do a (relatively-expensive) quark test.

\begin{verbatim}
\cs_new:Npn \seq_map_function:NN \ seq_map_function:cN \ seq_map_function:NNn
\end{verbatim}

The definition of \texttt{__seq_item:n} needs to be saved and restored at various points within the mapping and manipulation code. That is handled here: as always, this approach uses global assignments.

\begin{verbatim}
\cs_new_protected:Npn __seq_push_item_def:n
__seq_push_item_def:x
__seq_pop_item_def:
\end{verbatim}
The idea here is that __seq_item:n is already “applied” to each item in a sequence, and so an in-line mapping is just a case of redefining __seq_item:n.

\cs_new_protected:Npn \seq_map_inline:Nn #1#2
__seq_push_item_def:n {#2}
#1
\prg_break_point:Nn \seq_map_break: { __seq_pop_item_def: }
\seq_map_inline:Nn { c }

(End definition for \seq_map_inline:Nn. This function is documented on page 80.)

This is based on the function mapping but using the same tricks as described for \prop_map_tokens:Nn. The idea is to remove the leading \s__seq and apply the tokens such that they are safe with the break points, hence the \use:n.

\cs_new:Npn \seq_map_tokens:Nn #1#2
\exp_last_unbraced:Nno \use_i:nn { __seq_map_tokens:nw {#2} } #1
\prg_break: __seq_item:n { } \prg_break_point:
\prg_break_point:Nn \seq_map_break: { }
\seq_map_tokens:Nn { c }
\cs_new:Npn \seq_map_tokens:Nn #1#2 __seq_item:n #3
{ #2 \use:n {#1} {#3} __seq_map_tokens:nw {#1} }

(End definition for \seq_map_tokens:Nn and __seq_map_tokens:nw. This function is documented on page 81.)

This is just a specialised version of the in-line mapping function, using an x-type expansion for the code set up so that the number of # tokens required is as expected.

\cs_new_protected:Npn \seq_map_variable:NNn #1#2#3
__seq_push_item_def:x
{ \tl_set:Nn \exp_not:N #2 {##1} \exp_not:n {#3} }
__seq_item:n { #2 }
__seq_map_tokens:nw {#1}
\prg_break_point:Nn \seq_map_break: { __seq_pop_item_def: }

(End definition for \seq_map_variable:NNn. This function is documented on page 81.)

Since counting the items in a sequence is quite common, we optimize it by grabbing 8 items at a time and correspondingly adding 8 to an integer expression. At the end of the loop, #9 is __seq_count_end:w instead of being empty. It removes 8+ and instead
places the number of __seq_item:n that __seq_count:w grabbed before reaching the end of the sequence.

\cs_new:Npn \seq_count:N #1
\int_eval:n { \exp_after:wN \use_i:nn \exp_after:wN __seq_count:w #1
__seq_count_end:w __seq_item:n 7
__seq_count_end:w __seq_item:n 6
__seq_count_end:w __seq_item:n 5
__seq_count_end:w __seq_item:n 4
__seq_count_end:w __seq_item:n 3
__seq_count_end:w __seq_item:n 2
__seq_count_end:w __seq_item:n 1
__seq_count_end:w __seq_item:n 0
\prg_break_point:
}\cs_new:Npn __seq_count:w #1 __seq_item:n #2 __seq_item:n #3 __seq_item:n #4 __seq_item:n #5 __seq_item:n #6 __seq_item:n #7 __seq_item:n #8 __seq_item:n #9 __seq_item:n { __seq_item:n #9 8 + __seq_count:w }
\cs_new:Npn __seq_count_end:w 8 + __seq_count:w #1#2 \prg_break_point: {#1}
\cs_generate_variant:Nn \seq_count:N { c }
(End definition for __seq_count:N, __seq_count:w, and __seq_count_end:w. This function is documented on page 82.)

11.7 Using sequences

\seq_use:NNnn
\seq_use:cnn
__seq_use:NNNnn
__seq_use_setup:w
__seq_use:nnnn
\seq_use:nn
\seq_use:Nn
\seq_use:cn

See \clist_use:NNnn for a general explanation. The main difference is that we use __seq_item:n as a delimiter rather than commas. We also need to add __seq_item:n at various places, and __seq.

\cs_new:Npn __seq_item:n #1 __seq_item:n #2 __seq_item:n #3 __seq_item:n #4 __seq_item:n #5 __seq_item:n #6 __seq_item:n #7 __seq_item:n #8 __seq_item:n #9 __seq_item:n { __seq_item:n #9 8 + __seq_count:w }
\cs_new:Npn __seq_count_end:w 8 + __seq_count:w #1\#2 \prg_break_point: {#1}
\cs_generate_variant:Nn \seq_count:N { c }

__kernel_msg expandable_error:nnn
11.8 Sequence stacks

The same functions as for sequences, but with the correct naming.

\seq_push:Nn Pushing to a sequence is the same as adding on the left.
\seq_push:NV
\seq_push:No
\seq_push:Nx
\seq_push:cn
\seq_push:cV
\seq_push:co
\seq_push:cx
\seq_gpush:Nn
\seq_gpush:NV
\seq_gpush:No
\seq_gpush:Nx
\seq_gpush:cn
\seq_gpush:cV
\seq_gpush:co
\seq_gpush:cx

(End definition for \seq_push:Nn and \seq_gpush:Nn. These functions are documented on page 84.)

\seq_get:NN In most cases, getting items from the stack does not need to specify that this is from the
\seq_get:cN left. So alias are provided.
\seq_pop:NN
\seq_pop:cN
\seq_gpop:NN
\seq_gpop:cN

494
\textbf{11.9 Viewing sequences}

\textbf{11.10 Scratch sequences}

(End definition for \textbackslash seq_get:NN, \textbackslash seq_pop:NN, and \textbackslash seq_gpop:NN. These functions are documented on page 83.)
12 l3int implementation

The following test files are used for this code: m3int001,m3int002,m3int03.

\c_max_register_int

Done in l3basics.

(END definition for \c_max_register_int. This variable is documented on page 99.)

__int_to_roman:w
\if_int_compare:w

Done in l3basics.

(END definition for __int_to_roman:w and \if_int_compare:w. This function is documented on page 100.)

\or:

Done in l3basics.

(END definition for \or:. This function is documented on page 100.)

\int_value:w
__int_eval:w
__int_eval_end:
\if_int_odd:w
\if_case:w

Here are the remaining primitives for number comparisons and expressions.

(END definition for \int_value:w and others. These functions are documented on page 100.)

12.1 Integer expressions

\int_eval:n
\int_eval:w

Wrapper for __int_eval:w can be used in an integer expression or directly in the input stream. When debugging, use parentheses to catch early termination.

(END definition for \int_eval:n and \int_eval:w. These functions are documented on page 88.)

\int_sign:n
__int_sign:Nw

See \int_abs:n. Evaluate the expression once (and when debugging is enabled, check that the expression is well-formed), then test the first character to determine the sign. This is wrapped in \int_value:w...\exp_stop_f: to ensure a fixed number of expansions and to avoid dealing with closing the conditionals.

(END definition for \int_sign:n and __int_sign:Nw. These functions are documented on page 100.)
Functions for min, max, and absolute value with only one evaluation. The absolute value is obtained by removing a leading sign if any. All three functions expand in two steps.

\begin{verbatim}
\cs_new:Npn \int_abs:n #1
\int_value:w \exp_after:wN __int_abs:N
\int_value:w __int_eval:w #1 __int_eval_end:
\exp_stop_f:
\end{verbatim}

\begin{verbatim}
\cs_set:Npn \int_max:nn #1#2
\int_value:w \exp_after:wN __int_maxmin:wwN
\int_value:w __int_eval:w #1 \exp_after:wN ;
\int_value:w __int_eval:w #2 ;>
\exp_stop_f:
\end{verbatim}

\begin{verbatim}
\cs_set:Npn \int_min:nn #1#2
\int_value:w \exp_after:wN __int_maxmin:wwN
\int_value:w __int_eval:w #1 \exp_after:wN ;
\int_value:w __int_eval:w #2 ;<
\exp_stop_f:
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __int_maxmin:wwN #1 ; #2 ; #3
\if_int_compare:w #1 #3 #2 ~ #1
\else:
#2
\fi:
\end{verbatim}

As __int_eval:w rounds the result of a division we also provide a version that truncates the result. We use an auxiliary to make sure numerator and denominator are only evaluated once: this comes in handy when those are more expressions are expensive to evaluate (e.g., \tl_count:n). If the numerator \#1\#2 is 0, then we divide 0 by the denominator (this ensures that 0/0 is correctly reported as an error). Otherwise, shift the numerator \#1\#2 towards 0 by \(|\#3\#4|−1)/2, which we round away from zero. It turns out that this quantity exactly compensates the difference between \texttt{-\textsc{\textsc{\textsc{-}tex}}}'s rounding and the truncating behaviour that we want. The details are thanks to Heiko Oberdiek: getting things right in all cases is not so easy.

\begin{verbatim}
\cs_new:Npn \int_div_truncate:nn #1#2
\int_value:w __int_eval:w
\exp_after:wN __int_div_truncate:NwNw
\int_value:w __int_eval:w #1 \exp_after:wN ;
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \int_div_round:nn #1#2
\int_value:w __int_eval:w
\exp_after:wN __int_div_round:nn
\int_value:w __int_eval:w #1 \exp_after:wN ;
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \int_mod:nn #1#2
\int_value:w __int_eval:w
\exp_after:wN __int_mod:ww
\int_value:w __int_eval:w #1 \exp_after:wN ;
\end{verbatim}

(End definition for \texttt{\int_sign:n} and \texttt{\int_sign:Nw}. This function is documented on page 89.)
\int_value:w __int_eval:w #2 ;
__int_eval:w #2 ;
__int_eval_end:
\cs_new:Npn __int_div_truncate:NwNw #1#2; #3#4;
{
\if_meaning:w 0 #1
0
\else:
(#1#2
\if_meaning:w - #1 + \else: - \fi:
(\if_meaning:w - #3 - \fi: #3#4 - 1) / 2
) \fi:
/ #3#4
}

\cs_new:Npn \int_div_round:nn #1#2
{ \int_value:w __int_eval:w (#1) / (#2) __int_eval_end: }

Finally there’s the modulus operation.
\cs_new:Npn \int_mod:nn #1#2
{ \int_value:w __int_eval:w \exp_after:wN __int_mod:ww
\int_value:w __int_eval:w #1 \exp_after:wN ;
\int_value:w __int_eval:w #2 ;
__int_eval_end: }
\cs_new:Npn __int_mod:ww #1; #2;
{ #1 - (__int_div_truncate:NwNw #1#2; #2;) * #2 }

(End definition for __int_div_truncate:nn and others. These functions are documented on page 89.)

__kernel_int_add:nnn
Equivalent to \int_eval:n {#1+#2+#3} except that overflow only occurs if the final result overflows $[-2^{31} + 1, 2^{31} - 1]$. The idea is to choose the order in which the three numbers are added together. If #1 and #2 have opposite signs (one is in $[-2^{31} + 1, -1]$ and the other in $[0, 2^{31} - 1]$) then \#1+\#2 cannot overflow so we compute the result as \#1+\#2+\#3. If they have the same sign, then either \#3 has the same sign and the order does not matter, or \#3 has the opposite sign and any order in which \#3 is not last will work. We use \#1+\#3+\#2.
\cs_new:Npn __kernel_int_add:nnn #1#2#3
{ \int_value:w __int_eval:w \if_int_compare:w #2 < \c_zero_int \exp_after:wN \reverse_if:N \fi:
\if_int_compare:w #1 < \c_zero_int + #2 + #3 \else: + #3 + #2 \fi:
__int_eval_end:
}

(End definition for __kernel_int_add:nnn.)
12.2 Creating and initialising integers

Two ways to do this: one for the format and one for the \texttt{L\LaTeX} package. In plain \TeX, \texttt{\newcount} (and other allocators) are \texttt{\outer}: to allow the code here to work in “generic” mode this is therefore accessed by name. (The same applies to \texttt{\newbox}, \texttt{\newdimen} and so on.)

\begin{verbatim}
\int_new:N \int_new:c

\CS_new_protected:Npn \int_new:N #1
{ __kernel_chk_if_free_cs:N #1 \cs:w newcount \cs_end: #1 }
\end{verbatim}

(End definition for \texttt{\int_new:N}. This function is documented on page 89.)

\begin{verbatim}
\int_const:Nn \int_const:cn __int_constdef:Nw \c__int_max_constdef_int

As stated, most constants can be defined as \texttt{\chardef} or \texttt{\mathchardef} but that’s engine dependent. As a result, there is some set up code to determine what can be done. No full engine testing just yet so everything is a little awkward. We cannot use \texttt{\int_gset:Nn} because (when \texttt{check-declarations} is enabled) this runs some checks that constants would fail.

\begin{verbatim}
\cs_new_protected:Npn \int_const:Nn #1#2
{ \int_compare:nNnTF {#2} < \c_zero_int
{ \int_new:N #1 \tex_global:D }
{ \int_compare:nNnTF {#2} > \c__int_max_constdef_int
{ \int_new:N #1 \tex_global:D }
{ __kernel_chk_if_free_cs:N #1 \tex_global:D __int_constdef:Nw }
}
#1 = __int_eval:w #2 __int_eval_end: }
\end{verbatim}

\begin{verbatim}
\cs_generate_variant:Nn \int_const:Nn { c }
\if_int_odd:w 0 \cs_if_exist:NT \tex_luatexversion:D { 1 }
\cs_if_exist:NT \tex_omathchardef:D { 1 }
\cs_if_exist:NT \tex_XeTeXversion:D { 1 } ~
\cs_if_exist:NTF \tex_omathchardef:D { \cs_new_eq:NN __int_constdef:Nw \tex_omathchardef:D }
\else:
\cs_new_eq:NN __int_constdef:Nw \tex_mathchardef:D \c__int_max_constdef_int ~
\fi
\end{verbatim}

499
Functions that reset an ⟨integer⟩ register to zero.

\begin{verbatim}
\int_zero:N \int_zero:c \int_gzero:N \int_gzero:c
\end{verbatim}

Functions that reset an ⟨integer⟩ register to zero. These functions are documented on page 90.

\begin{verbatim}
\cs_new_protected:Npn \int_zero:N #1 { #1 = \c_zero_int }
\cs_new_protected:Npn \int_gzero:N #1 { \tex_global:D #1 = \c_zero_int }
\cs_generate_variant:Nn \int_zero:N { c }
\cs_generate_variant:Nn \int_gzero:N { c }
\end{verbatim}

Create a register if needed, otherwise clear it.

\begin{verbatim}
\int_zero_new:N \int_zero_new:c \int_gzero_new:N \int_gzero_new:c
\end{verbatim}

Create a register if needed, otherwise clear it. These functions are documented on page 90.

\begin{verbatim}
\int_set_eq:NN \int_set_eq:cN \int_set_eq:Nc \int_set_eq:cc
\int_gset_eq:NN \int_gset_eq:cN \int_gset_eq:Nc \int_gset_eq:cc
\end{verbatim}

Setting equal means using one integer inside the set function of another. Check that assigned integer is local/global. No need to check that the other one is defined as \TeX{} does it for us.

\begin{verbatim}
\cs_new_protected:Npn \int_set_eq:NN #1#2 { #1 = #2 }
\cs_generate_variant:Nn \int_set_eq:NN { c , Nc , cc }
\cs_new_protected:Npn \int_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
\cs_generate_variant:Nn \int_gset_eq:NN { c , Nc , cc }
\end{verbatim}

Setting equal means using one integer inside the set function of another. Check that assigned integer is local/global. No need to check that the other one is defined as \TeX{} does it for us. These functions are documented on page 90.

\begin{verbatim}
\int_if_exist_p:N \int_if_exist_p:c \int_if_exist:NTF \int_if_exist:cTF
\end{verbatim}

Copies of the \cs{} functions defined in \texttt{l3basics}.

\begin{verbatim}
\prg_new_eq_conditional:NNn \int_if_exist:N \cs_if_exist:N
\prg_new_eq_conditional:NNn \int_if_exist:c \cs_if_exist:c
\end{verbatim}

Copies of the \cs{} functions defined in \texttt{l3basics}. This function is documented on page 90.

\subsection{12.3 Setting and incrementing integers}

Adding and subtracting to and from a counter.

\begin{verbatim}
\int_add:Nn \int_add:cn \int_gadd:Nn \int_gadd:cn
\int_sub:Nn \int_sub:cn \int_gsub:Nn \int_gsub:cn
\end{verbatim}

Adding and subtracting to and from a counter. These functions are documented on page 90.
8631 \cs_generate_variant:Nn \int_gadd:Nn \ \int_sub:Nn \ \int_gsub:Nn \

(End definition for \int_add:Nn and others. These functions are documented on page 90.)

\int_incr:N \int_decr:N \int_gincr:N \int_gdecr:N

Incrementing and decrementing of integer registers is done with the following functions.

\cs_new_protected:Npn \int_incr:N #1 { \tex_advance:D #1 \c_one_int }
\cs_new_protected:Npn \int_decr:N #1 { \tex_advance:D #1 - \c_one_int }
\cs_new_protected:Npn \int_gincr:N #1 { \tex_global:D \tex_advance:D #1 \c_one_int }
\cs_new_protected:Npn \int_gdecr:N #1 { \tex_global:D \tex_advance:D #1 - \c_one_int }
\cs_generate_variant:Nn \int_incr:N { c }
\cs_generate_variant:Nn \int_decr:N { c }
\cs_generate_variant:Nn \int_gincr:N { c }
\cs_generate_variant:Nn \int_gdecr:N { c }

(End definition for \int_incr:N and others. These functions are documented on page 90.)

\int_set:Nn \int_set:cn \int_gset:Nn \int_gset:cn

As integers are register-based \TeX{} issues an error if they are not defined.

\cs_new_protected:Npn \int_set:Nn #1#2 { #1 __int_eval:w #2 __int_eval_end: }
\cs_new_protected:Npn \int_gset:Nn #1#2 { \tex_global:D #1 __int_eval:w #2 __int_eval_end: }
\cs_generate_variant:Nn \int_set:Nn { c }
\cs_generate_variant:Nn \int_gset:Nn { c }

(End definition for \int_set:Nn and \int_gset:Nn. These functions are documented on page 91.)

12.4 Using integers

\int_use:N \int_use:c

Here is how counters are accessed:

\cs_new_eq:NN \int_use:N \tex_the:D
\cs_generate_variant:Nn \int_use:N { c }
\cs_new:Npn \int_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End definition for \int_use:N. This function is documented on page 91.)

12.5 Integer expression conditionals

__int_compare_error: __int_compare_error:Nw

Those functions are used for comparison tests which use a simple syntax where only one set of braces is required and additional operators such as \texttt{!=} and \texttt{>=} are supported. The tests first evaluate their left-hand side, with a trailing __int_compare_error:. This marker is normally not expanded, but if the relation symbol is missing from the test’s argument, then the marker inserts \texttt{=} (and itself) after triggering the relevant \TeX{} error. If the first token which appears after evaluating and removing the left-hand side is not a known relation symbol, then a judiciously placed __int_compare_error:Nw gets expanded, cleaning up the end of the test and telling the user what the problem was.

\cs_new_protected:Nnn __int_compare_error:
\cs_new_protected:Nn __int_compare_error:Nw
Comparison tests using a simple syntax where only one set of braces is required, additional operators such as $!=\text{ and } >=$ are supported, and multiple comparisons can be performed at once, for instance $0 < 5 <= 1$. The idea is to loop through the argument, finding one operand at a time, and comparing it to the previous one. The looping auxiliary ___int_compare:Nw reads one \langle operand \rangle and one \langle comparison \rangle symbol, and leaves roughly
\langle operand \rangle \prg_return_false: \fi: \reverse_if:N \if_int_compare:w \langle operand \rangle \langle comparison \rangle __int_compare:Nw
in the input stream. Each call to this auxiliary provides the second operand of the last call’s \texttt{\if_int_compare:w}. If one of the \langle comparisons \rangle is false, the true branch of the \TeX conditional is taken (because of \texttt{\reverse_if:N}), immediately returning false as the result of the test. There is no \TeX conditional waiting the first operand, so we add an \texttt{\if_false:} and expand by hand with \texttt{\int_value:w}, thus skipping \texttt{\prg_return_false:} on the first iteration.

Before starting the loop, the first step is to make sure that there is at least one relation symbol. We first let \TeX evaluate this left hand side of the (in)equality using ___int_eval:w. Since the relation symbols $<, >, = \text{ and } !$ are not allowed in integer expressions, they would terminate the expression. If the argument contains no relation symbol, ___int_compare_error: is expanded, inserting $=$ and itself after an error. In all cases, ___int_compare:w receives as its argument an integer, a relation symbol, and some more tokens. We then setup the loop, which is ended by the two odd-looking items e and {$=\text{nd}_d$}, with a trailing \texttt{\q_stop} used to grab the entire argument when necessary.

\begin{verbatim}
\prg_new_conditional:Nppnn \int_compare:n #1 { p , T , F , TF }
\{ \exp_after:wN ___int_compare:w \int_value:w ___int_eval:w #1 ___int_compare_error: \}
\cs_new:Npn ___int_compare:w #1 ___int_compare_error: \}
\{ \exp_after:wN \if_false: ___int_compare:w #1 ___int_compare_error: \}
\end{verbatim}
The goal here is to find an \langle operand \rangle and a \langle comparison \rangle. The \langle operand \rangle is already evaluated, but we cannot yet grab it as an argument. To access the following relation symbol, we remove the number by applying __int_to_roman:w, after making sure that the argument becomes non-positive: its roman numeral representation is then empty. Then probe the first two tokens with __int_compare:NNw to determine the relation symbol, building a control sequence from it (\token_to_str:N gives better errors if \#1 is not a character). All the extended forms have an extra = hence the test for that as a second token. If the relation symbol is unknown, then the control sequence is turned by \TeX into \can_stop:, ignored thanks to \unexpanded, and __int_compare_error:Nw raises an error.

\cs_new:Npn __int_compare:Nw #1#2 \q_stop
\exp_after:wN __int_compare:NNw
__int_to_roman:w - 0 \#2 \q_mark
#1#2 \q_stop
\cs_new:Npn __int_compare:NNw #1#2#3 \q_mark
__kernel_exp_not:w
\use:c
{__int_compare_ \token_to_str:N \#1
\if_meaning:w = \#2 \= \fi:
__int_compare_\if_int_compare:w \#2 \= \fi:
__int_compare_error:Nw \#1
}

When the last \langle operand \rangle is seen, __int_compare:NNw receives e and =nd_ as arguments, hence calling __int_compare_end_=:NNw to end the loop: return the result of the last comparison (involving the operand that we just found). When a normal relation is found, the appropriate auxiliary calls __int_compare:NNN where \#1 is \if_int_compare:w or \reverse_if:N \if_int_compare:w, \#2 is the \langle operand \rangle, and \#3 is one of <, =, or >. As announced earlier, we leave the \langle operand \rangle for the previous conditional. If this conditional is true the result of the test is known, so we remove all tokens and return false. Otherwise, we apply the conditional \#1 to the \langle operand \rangle \#2 and the comparison \#3, and call __int_compare:NNw to look for additional operands, after evaluating the following expression.

\cs_new:cpn { __int_compare_end_=:NNw } \#1\#2\#3 e \#4 \q_stop
\{\#3 \exp_stop_f:
\prg_return_false: \else: \prg_return_true: \fi:
\}
\cs_new:Npn __int_compare:nnN #1#2#3
{\#2 \exp_stop_f:
\prg_return_false: \exp_after:wN \use_none_delimit_by_q_stop:w
\fi:
\if_int_compare:w #1 \#2 \= \fi:
\exp_after:wN __int_compare:Nw \int_value:w __int_eval:w
\}

The actual comparisons are then simple function calls, using the relation as delimiter for a delimited argument and discarding __int_compare_error:Nw \langle token \rangle responsible for
error detection.

\cs_new:cpn { __int_compare_=:NNw } #1#2#3 =
{ __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
\cs_new:cpn { __int_compare_<:NNw } #1#2#3 <
{ __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} < }
\cs_new:cpn { __int_compare_:>:NNw } #1#2#3 >
{ __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} > }
\cs_new:cpn { __int_compare_==:NNw } #1#2#3 ==
{ __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
\cs_new:cpn { __int_compare_!=:NNw } #1#2#3 !=
{ __int_compare:nnN { \if_int_compare:w } {#3} = }
\cs_new:cpn { __int_compare_<=:NNw } #1#2#3 <=
{ __int_compare:nnN { \if_int_compare:w } {#3} > }
\cs_new:cpn { __int_compare_>=:NNw } #1#2#3 >=
{ __int_compare:nnN { \if_int_compare:w } {#3} < }

(End definition for \int_compare:nTF and others. This function is documented on page 92.)

\int_compare_p:nNn
\int_compare:nNnTF
More efficient but less natural in typing.

\prg_new_conditional:Npnn \int_compare:nNn #1#2#3 { p , T , F , TF }
{ \if_int_compare:w __int_eval:w #1 #2 __int_eval:w #3 __int_eval_end:
\prg_return_true:
\else:
\prg_return_false:
\fi:}

(End definition for \int_compare:nNnTF. This function is documented on page 91.)

\int_case:nn
\int_case:nnTF
\int_case:nw
__int_case:nnTF
__int_case:nw
__int_case_end:nw
For integer cases, the first task to fully expand the check condition. The over all idea is then much the same as for \tl_case:nn(TF) as described in l3tl.

\cs_new:Npn \int_case:nnTF #1#2#3#4
{ __int_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }

504
\int_if_odd:n A predicate function.
\int_if_odd:nTF
\int_if_even:p:n
\int_if_even:nTF
\prg_new_conditional:Npnn \int_if_odd:n #1 { p , T , F , TF}
{ \if_int_odd:w __int_eval:w #1 __int_eval_end:
\prg_return_true:
\else:
\prg_return_false:
\fi:
\prg_new_conditional:Npnn \int_if_even:n #1 { p , T , F , TF}
{ \reverse_if:N \if_int_odd:w __int_eval:w #1 __int_eval_end:
\prg_return_true:
\else:
\prg_return_false:
\fi:
(End definition for \int_case:nnTF and others. This function is documented on page 93.)

12.6 Integer expression loops
\int_while_do:nn These are quite easy given the above functions. The while versions test first and then execute the body. The do_while does it the other way round.
\int_until_do:nn
\int_do_while:nn
\int_do_until:nn
\cs_new:Npn \int_while_do:nn #1#2
{ \int_compare:nT {#1}
 { \int_compare:Nn {#1} {#2} \int_while_do:nn {#1} {#2} }
}\cs_new:Npn \int_until_do:nn #1#2
{ \int_compare:nF {#1}
 { \int_compare:Nn {#1} {#2} \int_until_do:nn {#1} {#2} }
}\cs_new:Npn \int_do_while:nn #1#2
{ \int_compare:nT {#1}
 \int_do_while:nn {#1} {#2}
}\cs_new:Npn \int_do_until:nn #1#2
{
\cs_new:Npn \int_do_while:nn #1#2
{
\cs_new:Npn \int_do_until:nn #1#2
{
(End definition for \int_if_odd:nTF and \int_if_even:nTF. These functions are documented on page 93.)

505
12.7 Integer step functions

Before all else, evaluate the initial value, step, and final value. Repeating a function by steps first needs a check on the direction of the steps. After that, do the function for the start value then step and loop around. It would be more symmetrical to test for a step size of zero before checking the sign, but we optimize for the most frequent case (positive step).

```latex
\cs_new:Npn \int_step_function:nN #1#2#3
{ \int_compare:nNnT {#1} #2 {#3} 
  { \int_do:nn {#1} {#2} {#3} } 
  \int_step_function:nN #1#2#3 
}
\cs_new:Npn \int_step_function:nnN #1#2#3
{ \int_compare:nNnF {#1} #2 {#3} 
  { \int_until:nn {#1} {#2} {#3} } 
  \int_step_function:nnN #1#2#3 
}
\cs_new:Npn \int_step_function:nNN #1#2#3
{ \int_compare:nNnT {#1} #2 {#3} 
  { \int_do:nn {#1} {#2} {#3} } 
  \int_step_function:nNN #1#2#3 
}
\cs_new:Npn \int_step_function:nnNN #1#2#3#4
{ \int_compare:nNnF {#1} #2 {#3} 
  { \int_until:nn {#1} {#2} {#3} {#4} } 
  \int_step_function:nnNN #1#2#3#4 
}
```

(End definition for \int_while_do:nNnn and others. These functions are documented on page 94.)
The approach here is to build a function, with a global integer required to make the nesting safe (as seen in other in line functions), and map that function using \int_step_function:nN and others. We put a \prg_break_point:Nn so that map_break functions from other modules correctly decrement \g__kernel_prg_map_int before looking for their own break point. The first argument is \scan_stop:, so that no breaking function recognizes this break point as its own.
12.8 Formatting integers

\int_to_arabic:n
Nothing exciting here.

\int_to_symbols:nnn, __int_to_symbols:nnnn
For conversion of integers to arbitrary symbols the method is in general as follows. The
input number (#1) is compared to the total number of symbols available at each place
(#2). If the input is larger than the total number of symbols available then the modulus
is needed, with one added so that the positions don’t have to number from zero. Using
an \f-type expansion, this is done so that the system is recursive. The actual conversion
function therefore gets a ‘nice’ number at each stage. Of course, if the initial input was
small enough then there is no problem and everything is easy.
\cs_new:Npn __int_to_symbols:nnnn \#1\#2\#3\#4
 \{
 \exp_args:Nf \int_to_symbols:nnn
 \{ \int_div_truncate:nn \{ \#2 - 1 \} \{\#3\} \} \{\#3\} \{\#4\}
 \#1
 \}

(End definition for \int_to_symbols:nnn and __int_to_symbols:nnnn. This function is documented on page 96.)

\int_to_alph:n \int_to_Alph:n

These both use the above function with input functions that make sense for the alphabet in English.

\cs_new:Npn \int_to_alph:n \#1
 \{
 \int_to_symbols:nnn \{\#1\} \{26\}
 \{
 \{1\} \{a\}
 \{2\} \{b\}
 \{3\} \{c\}
 \{4\} \{d\}
 \{5\} \{e\}
 \{6\} \{f\}
 \{7\} \{g\}
 \{8\} \{h\}
 \{9\} \{i\}
 \{10\} \{j\}
 \{11\} \{k\}
 \{12\} \{l\}
 \{13\} \{m\}
 \{14\} \{n\}
 \{15\} \{o\}
 \{16\} \{p\}
 \{17\} \{q\}
 \{18\} \{r\}
 \{19\} \{s\}
 \{20\} \{t\}
 \{21\} \{u\}
 \{22\} \{v\}
 \{23\} \{w\}
 \{24\} \{x\}
 \{25\} \{y\}
 \{26\} \{z\}
 \}
 \}
\cs_new:Npn \int_to_Alph:n \#1
 \{
 \int_to_symbols:nnn \{\#1\} \{26\}
 \{
 \{1\} \{A\}
 \{2\} \{B\}
 \{3\} \{C\}
 \{4\} \{D\}
 \{5\} \{E\}
 \{6\} \{F\}
 \}
 \}
Converting from base ten (#1) to a second base (#2) starts with computing #1: if it is a complicated calculation, we shouldn’t perform it twice. Then check the sign, store it, either - or \c_empty_tl, and feed the absolute value to the next auxiliary function.

\begin{verbatim}
\cs_new:Npn \int_to_base:nn #1 { \exp_args:Nf __int_to_base:nn { \int_eval:n {#1} } }
\cs_new:Npn \int_to_Base:nn #1 { \exp_args:Nf __int_to_Base:nn { \int_eval:n {#1} } }
\cs_new:Npn __int_to_base:nn #1#2 { \int_compare:nNnTF {#1} < #2 { \exp_args:No __int_to_base:nnN { \use_none:n #1 } {#2} - } { __int_to_base:nnN {#1} {#2} \c_empty_tl } }
\cs_new:Npn __int_to_Base:nn #1#2 { \int_compare:nNnTF {#1} < #2 { \exp_args:No __int_to_Base:nnN { \use_none:n #1 } {#2} - } { __int_to_Base:nnN {#1} {#2} \c_empty_tl } }
\cs_new:Npn __int_to_letter:n { __int_to_base:nnN { \use_none:n #1 } 26 }
\cs_new:Npn __int_to_Letter:n { __int_to_base:nnN { \use_none:n #1 } 26 }
\end{verbatim}

Here, the idea is to provide a recursive system to deal with the input. The output is built up after the end of the function. At each pass, the value in #1 is checked to see if it is less than the new base (#2). If it is, then it is converted directly, putting the sign back in front. On the other hand, if the value to convert is greater than or equal to the new base then the modulus and remainder values are found. The modulus is converted to a symbol and put on the right, and the remainder is carried forward to the next round.

\begin{verbatim}
\cs_new:Npn __int_to_base:nnN #1#2#3 { \int_compare:nNnTF {#1} < {#2} { \exp_args:No __int_to_base:nnN { \use_none:n #1 } {#2} - } { __int_to_base:nnN {#1} {#2} \c_empty_tl } }
\cs_new:Npn __int_to_Base:nnN #1#2#3 { \int_compare:nNnTF {#1} < {#2} { \exp_args:No __int_to_Base:nnN { \use_none:n #1 } {#2} - } { __int_to_Base:nnN {#1} {#2} \c_empty_tl } }
\end{verbatim}
Convert to a letter only if necessary, otherwise simply return the value unchanged. It would be cleaner to use \texttt{\int_case:nn}, but in our case, the cases are contiguous, so it is forty times faster to use the \texttt{\if_case:w} primitive. The first \texttt{\exp_after:wN} expands the conditional, jumping to the correct case, the second one expands after the resulting character to close the conditional. Since \texttt{#1} might be an expression, and not directly a single digit, we need to evaluate it properly, and expand the trailing \texttt{\fi}:.
\or: g
\or: h
\or: i
\or: j
\or: k
\or: l
\or: m
\or: n
\or: o
\or: p
\or: q
\or: r
\or: s
\or: t
\or: u
\or: v
\or: w
\or: x
\or: y
\or: z
\else: \int_value:w __int_eval:w #1 \exp_after:wN __int_eval_end:
\fi:
\cs_new:Npn __int_to_Letter:n #1
{\exp_after:wN \exp_after:wN
\if_case:w __int_eval:w #1 - 10 __int_eval_end:
A
\or: B
\or: C
\or: D
\or: E
\or: F
\or: G
\or: H
\or: I
\or: J
\or: K
\or: L
\or: M
\or: N
\or: O
\or: P
\or: Q
\or: R
\or: S
\or: T
\or: U
\or: V
\or: W
\or: X
\or: Y
\or: Z
\else: \int_value:w __int_eval:w #1 \exp_after:wN __int_eval_end:
512
\int_to_bin:n \int_to_hex:n \int_to_Hex:n \int_to_oct:n \int_to_roman:n \int_to_Roman:n

Wrappers around the generic function.

\cs_new:Npn \int_to_bin:n #1 { \int_to_base:nn {#1} { 2 } }
\cs_new:Npn \int_to_hex:n #1 { \int_to_base:nn {#1} { 16 } }
\cs_new:Npn \int_to_Hex:n #1 { \int_to_base:nn {#1} { 16 } }
\cs_new:Npn \int_to_oct:n #1 { \int_to_base:nn {#1} { 8 } }

(End definition for \int_to_bin:n and others. These functions are documented on page 97.)

__int_to_roman:_w __int_to_Roman:_w
__int_to_roman_i:w __int_to_roman_v:w __int_to_roman_x:w __int_to_roman_l:w
__int_to_roman_c:w __int_to_roman_d:w __int_to_roman_m:w __int_to_roman_Q:w
__int_to_Roman_i:w __int_to_Roman_v:w __int_to_Roman_x:w __int_to_Roman_l:w
__int_to_Roman_c:w __int_to_Roman_d:w __int_to_Roman_m:w __int_to_Roman_Q:w

The __int_to_roman:w primitive creates tokens of category code 12 (other). Usually, what is actually wanted is letters. The approach here is to convert the output of the primitive into letters using appropriate control sequence names. That keeps everything expandable. The loop is terminated by the conversion of the Q.

\cs_new:Npn \int_to_roman:n #1 { \exp_after:wN __int_to_roman:N __int_to_roman:w \int_eval:n {#1} Q }
\cs_new:Npn __int_to_roman:N #1 { \use:c { __int_to_roman_ #1 :w } __int_to_roman:N }
\cs_new:Npn \int_to_Roman:n #1 { \exp_after:wN __int_to_Roman_aux:N __int_to_roman:w \int_eval:n {#1} Q }
\cs_new:Npn __int_to_Roman_aux:N #1 { \use:c { __int_to_Roman_ #1 :w } __int_to_Roman_aux:N }
\cs_new:Npn __int_to_roman_i:w { i }
\cs_new:Npn __int_to_roman_v:w { v }
\cs_new:Npn __int_to_roman_x:w { x }
\cs_new:Npn __int_to_roman_l:w { l }
\cs_new:Npn __int_to_roman_c:w { c }
\cs_new:Npn __int_to_roman_d:w { d }
\cs_new:Npn __int_to_roman_m:w { m }
\cs_new:Npn __int_to_roman_Q:w { Q }
\cs_new:Npn __int_to_Roman_i:w { I }
\cs_new:Npn __int_to_Roman_v:w { V }
\cs_new:Npn __int_to_Roman_x:w { X }
\cs_new:Npn __int_to_Roman_l:w { L }
\cs_new:Npn __int_to_Roman_c:w { C }

(End definition for \int_to_bin:n and others. These functions are documented on page 97.)
12.9 Converting from other formats to integers

Called as __int_pass_signs:wn \{ signs and digits \} \q_stop \{ \texttt{code} \}, this function leaves in the input stream any sign it finds, then inserts the \texttt{code} before the first non-sign token (and removes \texttt{\q_stop}). More precisely, it deletes any + and passes any - to the input stream, hence should be called in an integer expression.

\begin{verbatim}
\cs_new:Npn __int_pass_signs:wn #1
\if:w + \if:w - \exp_not:N #1 \exp_not:N #1
\exp_after:wN __int_pass_signs:wn
\else:
\exp_after:wN __int_pass_signs_end:wn
\exp_after:wN #1
\exp_not:N \q_stop
\fi:
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __int_pass_signs_end:wn #1 \q_stop #2 { #2 #1 }
\end{verbatim}

(End definition for __int_pass_signs:wn and __int_pass_signs_end:wn.)

\begin{verbatim}
\int_from_alph:n
__int_from_alph:nN
__int_from_alph:N
\end{verbatim}

First take care of signs then loop through the input using the recursion quarks. The __int_from_alph:nN auxiliary collects in its first argument the value obtained so far, and the auxiliary __int_from_alph:N converts one letter to an expression which evaluates to the correct number.

\begin{verbatim}
\cs_new:Npn \int_from_alph:n #1
\int_eval:n
\exp_after:wN __int_pass_signs:wn \tl_to_str:n {#1} \q_stop \{ __int_from_alph:nN \{ 0 \} \} \q_recursion_tail \q_recursion_stop
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __int_from_alph:nN #1#2
\quark_if_recursion_tail_stop_do:Nn #2 \{#1\}
\exp_args:Nf __int_from_alph:N
\{ __int_eval:n \{ #1 * 26 + __int_from_alph:N #2 \} \}
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __int_from_alph:N #1
\{ #1 - \int_compare:nNnTF \{ #1 \} < \{ 91 \} \{ 64 \} \{ 96 \} \}
\end{verbatim}

(End definition for \int_from_alph:n, __int_from_alph:nN, and __int_from_alph:N. This function is documented on page 97.)

\begin{verbatim}
\int_from_base:nn
__int_from_base:nnN
__int_from_base:N
\end{verbatim}

Leave the signs into the integer expression, then loop through characters, collecting the value found so far in the first argument of __int_from_base:nnN. To convert a single character, __int_from_base:N checks first for digits, then distinguishes lower from
upper case letters, turning them into the appropriate number. Note that this auxiliary
does not use \texttt{\int_eval:n}, hence is not safe for general use.

\begin{verbatim}
cs_new:Npn \int_from_base:nn #1#2
 {
 \int_eval:n
 {
 \exp_after:wN __int_pass_signs:wn \tl_to_str:n {#1}
 \q_stop { __int_from_base:nn { 0 } {#2} }
 \q_recursion_tail \q_recursion_stop
 }
 }
\end{verbatim}

\begin{verbatim}
cs_new:Npn __int_from_base:nnN #1#2#3
 {
 \quark_if_recursion_tail_stop_do:Nn #3 {#1}
 \exp_args:Nf __int_from_base:nnN
 { \int_eval:n { #1 * #2 + __int_from_base:N #3 } }
 {#2}
 }
\end{verbatim}

\begin{verbatim}
cs_new:Npn __int_from_base:N #1
 {
 \int_compare:nNnTF { '#1 } < { 58 }
 {#1}
 { '#1 - \int_compare:nNnTF { '#1 } < { 91 } { 55 } { 87 } }
 }
\end{verbatim}

(End definition for \texttt{\int_from_base:nn}, \texttt{__int_from_base:nnN}, and \texttt{__int_from_base:N}. This function is documented on page 98.)

\begin{verbatim}
\int_from_bin:n
\int_from_hex:n
\int_from_oct:n
\end{verbatim}

Wrappers around the generic function.

\begin{verbatim}
cs_new:Npn \int_from_bin:n #1
 { \int_from_base:nn {#1} { 2 } }
cs_new:Npn \int_from_hex:n #1
 { \int_from_base:nn {#1} { 16 } }
cs_new:Npn \int_from_oct:n #1
 { \int_from_base:nn {#1} { 8 } }
\end{verbatim}
(End definition for \texttt{\int_from_bin:n}, \texttt{\int_from_hex:n}, and \texttt{\int_from_oct:n}. These functions are documented on page 98.)

\begin{verbatim}
c__int_from_roman_i_int
c__int_from_roman_v_int
c__int_from_roman_x_int
c__int_from_roman_l_int
c__int_from_roman_c_int
c__int_from_roman_d_int
c__int_from_roman_m_int
c__int_from_roman_I_int
c__int_from_roman_V_int
c__int_from_roman_X_int
c__int_from_roman_L_int
c__int_from_roman_C_int
c__int_from_roman_D_int
c__int_from_roman_M_int
\end{verbatim}

Constants used to convert from Roman numerals to integers.

\begin{verbatim}
c__int_from_roman_i_int
\int_const:cn { c__int_from_roman_i_int } { 1 }
c__int_from_roman_v_int
\int_const:cn { c__int_from_roman_v_int } { 5 }
c__int_from_roman_x_int
\int_const:cn { c__int_from_roman_x_int } { 10 }
c__int_from_roman_l_int
\int_const:cn { c__int_from_roman_l_int } { 50 }
c__int_from_roman_c_int
\int_const:cn { c__int_from_roman_c_int } { 100 }
c__int_from_roman_d_int
\int_const:cn { c__int_from_roman_d_int } { 500 }
c__int_from_roman_m_int
\int_const:cn { c__int_from_roman_m_int } { 1000 }
c__int_from_roman_I_int
\int_const:cn { c__int_from_roman_I_int } { 1 }
c__int_from_roman_V_int
\int_const:cn { c__int_from_roman_V_int } { 5 }
c__int_from_roman_X_int
\int_const:cn { c__int_from_roman_X_int } { 10 }
c__int_from_roman_L_int
\int_const:cn { c__int_from_roman_L_int } { 50 }
c__int_from_roman_C_int
\int_const:cn { c__int_from_roman_C_int } { 100 }
c__int_from_roman_D_int
\int_const:cn { c__int_from_roman_D_int } { 500 }
c__int_from_roman_M_int
\int_const:cn { c__int_from_roman_M_int } { 1000 }
\end{verbatim}
The method here is to iterate through the input, finding the appropriate value for each letter and building up a sum. This is then evaluated by \TeX. If any unknown letter is found, skip to the closing parenthesis and insert \(0-1\) afterwards, to replace the value by \(-1\).

\begin{verbatim}
\cs_new:Npn \int_from_roman:n #1
{ \int_eval:n { 0 \exp_after:wN __int_from_roman:NN \tl_to_str:n {#1} \q_recursion_tail \q_recursion_tail \q_recursion_stop }
\}
\cs_new:Npn __int_from_roman:NN #1#2
{ \quark_if_recursion_tail_stop:N #1 \int_if_exist:cF { c__int_from_roman_ #1 _int } { __int_from_roman_error:w } \quark_if_recursion_tail_stop_do:Nn #2 { + \use:c { c__int_from_roman_ #1 _int } } \int_if_exist:cF { c__int_from_roman_ #2 _int } { __int_from_roman_error:w } \int_compare:nNnTF { \use:c { c__int_from_roman_ #1 _int } } {<} { \use:c { c__int_from_roman_ #2 _int } } { + \use:c { c__int_from_roman_ #2 _int } - \use:c { c__int_from_roman_ #1 _int } } __int_from_roman:NN
\}
\cs_new:Npn __int_from_roman_error:w #1 \q_recursion_stop #2
{ \int_eval:n { #1 * 0 - 1 } }
\end{verbatim}

(End definition for \c__int_from_roman_i_int and others.)

12.10 Viewing integer

Diagnostics.

\begin{verbatim}
\cs_new_eq:NN \int_show:N __kernel_register_show:N
\cs_generate_variant:Nn \int_show:N { c }
\cs_new_eq:NN \int_show:c __kernel_register_show:c
\end{verbatim}

(End definition for \int_show:N and \c__int_show:nN. This function is documented on page 99.)
\int_show:n\quad We don’t use the \TeX{} primitive \texttt{showthe} to show integer expressions: this gives a more unified output.
\begin{verbatim}
\cs_new_protected:Npn \int_show:n
\{ \msg_show_eval:Nn \int_eval:n \}
\end{verbatim}
\textit{(End definition for \texttt{\int_show:n}. This function is documented on page 99.)}

\int_log:N\quad Diagnostics.
\begin{verbatim}
\cs_new_eq:NN \int_log:N __kernel_register_log:N
\cs_generate_variant:Nn \int_log:N { c }
\end{verbatim}
\textit{(End definition for \texttt{\int_log:N}. This function is documented on page 99.)}

\int_log:n\quad Similar to \texttt{\int_show:n}.
\begin{verbatim}
\cs_new_protected:Npn \int_log:n
\{ \msg_log_eval:Nn \int_eval:n \}
\end{verbatim}
\textit{(End definition for \texttt{\int_log:n}. This function is documented on page 99.)}

12.11 Random integers
\int_rand:nn\quad Defined in \texttt{l3fp-random}.
\textit{(End definition for \texttt{\int_rand:nn}. This function is documented on page 98.)}

12.12 Constant integers
\c_zero_int\quad The zero is defined in \texttt{l3basics}.
\begin{verbatim}
\int_const:Nn \c_one_int { 1 }
\end{verbatim}
\textit{(End definition for \texttt{\c_zero_int} and \texttt{\c_one_int}. These variables are documented on page 99.)}

\c_max_int\quad The largest number allowed is $2^{31} - 1$.
\begin{verbatim}
\int_const:Nn \c_max_int { 2 147 483 647 }
\end{verbatim}
\textit{(End definition for \texttt{\c_max_int}. This variable is documented on page 99.)}

\c_max_char_int\quad The largest character code is 1114111 (hexadecimal 10FFFF) in X\LaTeX{} and Lua\TeX{} and 255 in other engines. In many places \texttt{\pTeX} and \texttt{upTeX} support larger character codes but for instance the values of \texttt{\lccode} are restricted to [0, 255].
\begin{verbatim}
\int_const:Nn \c_max_char_int
\{ \if_int_odd:w 0 \cs_if_exist:NT \tex_luatexversion:D { 1 }
\cs_if_exist:NT \tex_XeTeXversion:D { 1 } ~
\else: \"FF \fi: \}
\end{verbatim}
\textit{(End definition for \texttt{\c_max_char_int}. This variable is documented on page 99.)}
12.13 Scratch integers

We provide two local and two global scratch counters, maybe we need more or less.

\l_tmpa_int \l_tmpb_int \g_tmpa_int \g_tmpb_int

(End definition for \l_tmpa_int and others. These variables are documented on page 99.)

12.14 Integers for earlier modules

\l_int_internal_a_int \l_int_internal_b_int

(End definition for \l_int_internal_a_int and \l_int_internal_b_int.)

13 l3flag implementation

The following test files are used for this code: m3flag001.

13.1 Non-expandable flag commands

The height h of a flag (initially zero) is stored by setting control sequences of the form \flag \langle name \rangle \langle integer \rangle to \relax for $0 \leq \langle integer \rangle < h$. When a flag is raised, a “trap” function \flag \langle name \rangle is called. The existence of this function is also used to test for the existence of a flag.

\flag_new:n

For each flag, we define a “trap” function, which by default simply increases the flag by 1 by letting the appropriate control sequence to \relax. This can be done expandably!

\flag_clear:n __flag_clear:wn

Undefine control sequences, starting from the 0 flag, upwards, until reaching an undefined control sequence. We don’t use \cs_undefine:c because that would act globally. When the option check-declarations is used, check for the function defined by \flag_new:n.

__flag_clear:wn

Undefine control sequences, starting from the 0 flag, upwards, until reaching an undefined control sequence. We don’t use \cs_undefine:c because that would act globally. When the option check-declarations is used, check for the function defined by \flag_new:n.

\if_cs_exist:w flag-#1 \cs_end:
\cs_set_eq:cN { flag-#1 } \tex_undefined:D
\exp_after:wN __flag_clear:wn
\flag_clear_new:n
As for other datatypes, clear the \langle flag \rangle or create a new one, as appropriate.

\cs_new_protected:Npn \flag_clear_new:n #1 { \flag_if_exist:nTF {#1} { \flag_clear:n } { \flag_new:n } {#1} }

(End definition for \flag_clear:n and __flag_clear:wn. This function is documented on page 102.)

\flag_show:n \flag_log:n
__flag_show:Nn
Show the height (terminal or log file) using appropriate l3msg auxiliaries.

\cs_new_protected:Npn \flag_show:n { __flag_show:Nn \tl_show:n }
\cs_new_protected:Npn \flag_log:n { __flag_show:Nn \tl_log:n }
\cs_new_protected:Npn __flag_show:Nn #1#2 { \exp_args:Nc __kernel_chk_defined:NT { flag~#2 } { \exp_args:Nx #1 { \tl_to_str:n { flag~#2~height } = \flag_height:n {#2} } } }

(End definition for \flag_show:n, \flag_log:n, and __flag_show:Nn. These functions are documented on page 102.)

13.2 Expandable flag commands

\flag_if_exist_p:n \flag_if_exist:nTF
A flag exist if the corresponding trap \langle flag \rangle:n is defined.

\prg_new_conditional:Npnn \flag_if_exist:n #1 { p , T , F , TF } { \cs_if_exist:cTF { flag~#1 } { \prg_return_true: } { \prg_return_false: } }

(End definition for \flag_if_exist:nTF. This function is documented on page 103.)

\flag_if_raised_p:n \flag_if_raised:nTF
Test if the flag has a non-zero height, by checking the \langle flag \rangle:0 control sequence.

\prg_new_conditional:Npnn \flag_if_raised:n #1 { p , T , F , TF } { \ifcs_exist:w \flag~#1~0 \cs_end: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \flag_if_raised:nTF. This function is documented on page 103.)
\flag_height:n
\flag_raise:n

Extract the value of the flag by going through all of the control sequences starting from 0.

\flag_raise:n Simply apply the trap to the height, after expanding the latter.

14 l3prg implementation

The following test files are used for this code: m3prg001.lvt, m3prg002.lvt, m3prg003.lvt.

14.1 Primitive conditionals

Those two primitive \TeXX conditionals are synonyms.

14.2 Defining a set of conditional functions

These are all defined in l3basics, as they are needed “early”. This is just a reminder!

{/initex | package}
14.3 The boolean data type

Boolean variables have to be initiated when they are created. Other than that there is not much to say here.

\bool_new:N
\bool_new:c

Boolean variables have to be initiated when they are created. Other than that there is not much to say here.

\cs_new_protected:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool }
\cs_generate_variant:Nn \bool_new:N { c }

(End definition for \bool_new:N. This function is documented on page 106.)

\bool_const:Nn
\bool_const:cn

A merger between \tl_const:Nn and \bool_set:Nn.

\cs_new_protected:Npn \bool_const:Nn #1#2
__kernel_chk_if_free_cs:N #1
\tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
\}
\cs_generate_variant:Nn \bool_const:Nn { c }

(End definition for \bool_const:Nn. This function is documented on page 107.)

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c
\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

Setting is already pretty easy. When check-declarations is active, the definitions are patched to make sure the boolean exists. This is needed because booleans are not based on token lists nor on \TeX registers.

\cs_new_protected:Npn \bool_set_true:N #1
{ \cs_set_eq:NN #1 \c_true_bool }
\cs_new_protected:Npn \bool_set_false:N #1
{ \cs_set_eq:NN #1 \c_false_bool }
\cs_new_protected:Npn \bool_gset_true:N #1
{ \cs_gset_eq:NN #1 \c_true_bool }
\cs_new_protected:Npn \bool_gset_false:N #1
{ \cs_gset_eq:NN #1 \c_false_bool }
\cs_generate_variant:Nn \bool_set_true:N { c }
\cs_generate_variant:Nn \bool_set_false:N { c }
\cs_generate_variant:Nn \bool_gset_true:N { c }
\cs_generate_variant:Nn \bool_gset_false:N { c }

(End definition for \bool_set_true:N and others. These functions are documented on page 107.)

\bool_set_eq:NN
\bool_set_eq:cn
\bool_gset_eq:NN
\bool_gset_eq:cc

The usual copy code. While it would be cleaner semantically to copy the \cs_set_eq:NN family of functions, we copy \tl_set_eq:NN because that has the correct checking code.

\cs_new_protected:Npn \bool_set_eq:NN \tl_set_eq:NN
\cs_new_protected:Npn \bool_gset_eq:NN \tl_gset_eq:NN
\cs_generate_variant:Nn \bool_set_eq:NN { Nc, cN, cc }
\cs_generate_variant:Nn \bool_gset_eq:NN { Nc, cN, cc }

(End definition for \bool_set_eq:NN and \bool_gset_eq:NN. These functions are documented on page 107.)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

This function evaluates a boolean expression and assigns the first argument the meaning \c_true_bool or \c_false_bool. Again, we include some checking code. It is important to evaluate the expression before applying the \chardef primitive, because that primitive sets the left-hand side to \scan_stop: before looking for the right-hand side.

\cs_new_protected:Npn \bool_set:Nn #1 #2
{}
\exp_last_unbraced:NNNf
\text_chardef:D #1 = { \bool_if_p:n {#2} }

\cs_new_protected:Npn \bool_gset:Nn #1#2
{\exp_last_unbraced:NNNNf
\tex_global:D \tex_chardef:D #1 = { \bool_if_p:n {#2} } }

\cs_generate_variant:Nn \bool_set:Nn { c }
\cs_generate_variant:Nn \bool_gset:Nn { c }

\bool_if_p:N \bool_if_p:c \bool_if:N \bool_if:c TF
Straight forward here. We could optimize here if we wanted to as the boolean can just
be input directly.

\prg_new_conditional:Npnn \bool_if:N #1 { p , T , F , TF }
{\if_bool:N #1 \prg_return_true: \else: \prg_return_false: \fi: }

\prg_generate_conditional_variant:Nnn \bool_if:N { c } { p , T , F , TF }

\bool_if:NTF
\bool_show:n \bool_show:c \bool_log:n \bool_log:c __bool_to_str:n
Show the truth value of the boolean, as \texttt{true} or \texttt{false}.

\cs_new_protected:Npn \bool_show:N { __bool_show:NN \tl_show:n }
\cs_generate_variant:Nn \bool_show:N { c }
\cs_new_protected:Npn \bool_log:N { __bool_show:NN \tl_log:n }
\cs_generate_variant:Nn \bool_log:N { c }
\cs_new_protected:Npn __bool_show:NN #1#2
{__kernel_chk_defined:NT #2 { \exp_args:Nx #1 { \token_to_str:N #2 = __bool_to_str:n {#2} } } }

\l_tmpa_bool \l_tmpb_bool \g_tmpa_bool \g_tmpb_bool
A few booleans just if you need them.
14.4 Boolean expressions

\bool_if_p:n Evaluating the truth value of a list of predicates is done using an input syntax somewhat similar to the one found in other programming languages with (and) for grouping, ! for logical “Not”, && for logical “And” and || for logical “Or”. However, they perform eager evaluation. We shall use the terms Not, And, Or, Open and Close for these operations.

Any expression is terminated by a Close operation. Evaluation happens from left to right in the following manner using a GetNext function:

- If an Open is seen, start evaluating a new expression using the Eval function and call GetNext again.
- If a Not is seen, remove the ! and call a GetNext function with the logic reversed.
- If none of the above, reinsert the token found (this is supposed to be a predicate function) in front of an Eval function, which evaluates it to the boolean value \langle true \rangle or \langle false \rangle.

The Eval function then contains a post-processing operation which grabs the instruction following the predicate. This is either And, Or or Close. In each case the truth value is used to determine where to go next. The following situations can arise:

\langle true \rangle \text{And} Current truth value is true, logical And seen, continue with GetNext to examine truth value of next boolean (sub-)expression.

\langle false \rangle \text{And} Current truth value is false, logical And seen, stop using the values of predicates within this sub-expression until the next Close. Then return \langle false \rangle.

\langle true \rangle \text{Or} Current truth value is true, logical Or seen, stop using the values of predicates within this sub-expression until the nearest Close. Then return \langle true \rangle.

\langle false \rangle \text{Or} Current truth value is false, logical Or seen, continue with GetNext to examine truth value of next boolean (sub-)expression.

\langle true \rangle \text{Close} Current truth value is true, Close seen, return \langle true \rangle.

\langle false \rangle \text{Close} Current truth value is false, Close seen, return \langle false \rangle.
To speed up the case of a single predicate, f-expand and check whether the result is one token (possibly surrounded by spaces), which must be \c_true_bool or \c_false_bool. We use a version of \tl_if_single:nTF optimized for speed since we know that an empty \#1 is an error. The auxiliary __bool_if_p_aux:w removes the trailing parenthesis and gets rid of any space. For the general case, first issue a \group_align_safe_begin: as we are using & & as syntax shorthand for the And operation and we need to hide it for \TeX{}: This group is closed after __bool_get_next:NN returns \c_true_bool or \c_false_bool. That function requires the trailing parenthesis to know where the expression ends.

\cs_new:Npn \bool_if_p:n { \exp_args:Nf __bool_if_p:n } \cs_new:Npn __bool_if_p:n #1 \group_align_safe_begin: \exp:w \exp_end_continue_f:w % (__bool_get_next:NN \use_i:nnnn #1) \group_align_safe_end: \exp_after:wN \use_i:nnnn __bool_if_p_aux:w #1 \use_i:nnnn #2\#3 \{\#2\} (End definition for \bool_if_p:n, __bool_if_p:n, and __bool_if_p_aux:w. This function is documented on page 109.)

__bool_get_next:NN The GetNext operation. Its first argument is \use_i:nnnn, \use_ii:nnnn, \use_iii:nnnn, or \use_iv:nnnn (we call these “states”). In the first state, this function eventually expand to the truth value \c_true_bool or \c_false_bool of the expression which follows until the next unmatched closing parenthesis. For instance “__bool_-get_next:NN \use_i:nnnn \c_true_bool&&\c_true_bool)” (including the closing parenthesis) expands to \c_true_bool. In the second state (after a !) the logic is reversed. We call these two states “normal” and the next two “skipping”. In the third state (after \c_true_bool||) it always returns \c_true_bool. In the fourth state (after \c_false_bool&&) it always returns \c_false_bool and also stops when encountering ||, not only parentheses. This code itself is a switch: if what follows is neither ! nor , we assume it is a predicate.

\cs_new:Npn __bool_get_next:NN #1#2 \{ \use:c \{ __bool_-if_meaning:w !#2 ! \else: __bool_get_next:NN \use_i:nnnn \c_true_bool&&\c_true_bool) \} \use_i:nnnn \c_true_bool \fi: \fi: \fi: :Nw \#1 \#2 \} (End definition for __bool_get_next:NN.)

__bool_!:Nw The Not operation reverses the logic: it discards the ! token and calls the GetNext operation with the appropriate first argument. Namely the first and second states are interchanged, but after \c_true_bool|| or \c_false_bool&& the ! is ignored.

524
\cs_new:cpn { __bool_!:Nw } #1#2
\exp_after:wN __bool_get_next:NN \use_i:nnnn \use_i:nnnn \use_iii:nnnn \use_iv:nnnn
\}

(End definition for __bool_!:Nw.)

__bool_(:Nw The Open operation starts a sub-expression after discarding the open parenthesis. This
is done by calling GetNext (which eventually discards the corresponding closing paren-
thesis), with a post-processing step which looks for And, Or or Close after the group.
\cs_new:cpn { __bool_(:Nw } #1#2
\exp_after:wN __bool_choose:NNN \exp_after:wN #1 \int_value:w __bool_get_next:NN \use_i:nnnn
\}

(End definition for __bool_(:Nw.)

__bool_p:Nw If what follows GetNext is neither ! nor (, evaluate the predicate using the primitive
\int_value:w. The canonical true and false values have numerical values 1 and 0
respectively. Look for And, Or or Close afterwards.
\cs_new:cpn { __bool_p:Nw } #1
\exp_after:wN __bool_choose:NNN \exp_after:wN #1 \int_value:w

(End definition for __bool_p:Nw.)

__bool_choose:NNN The arguments are #1: a function such as \use_i:nnnn, #2: 0 or 1 encoding the current
truth value, #3: the next operation, And, Or or Close. We distinguish three cases
according to a combination of #1 and #2. Case 2 is when #1 is \use_iii:nnnn (state 3),
__bool_0: namely after \c_true_bool ||. Case 1 is when #1 is \use_i:nnnn and #2 is true
__bool_1: or when #1 is \use_i:nnnn and #2 is false, for instance for !\c_false_bool. Case 0
__bool_2: includes the same with true/false interchanged and the case where #1 is \use_iv:nnnn
__bool_&: namely after \c_false_bool &&.
__bool_0: When seeing) the current subexpression is done, leave the appropriate boolean.
__bool_1: When seeing & in case 0 go into state 4, equivalent to having seen \c_false_bool &&.
__bool_2: In case 1, namely when the argument is true and we are in a normal state continue in
the normal state 1. In case 2, namely when skipping alternatives in an Or, continue in
the same state. When seeing | in case 0, continue in a normal state; in particular stop
skipping for \c_false_bool && because that binds more tightly than ||. In the other
two cases start skipping for \c_true_bool ||.
\cs_new:Npn __bool_choose:NNN \#1\#2#3
\{ \use:c
\{ __bool_ \token_to_str:N #3 _
\#1 \#2 \{ \if_meaning:w 0 \#2 1 \else: 0 \fi: \} 2 0 :
\}
\}
\cs_new:cpn { __bool_0: } \{ \c_false_bool
\cs_new:cpn { __bool_1: } \{ \c_true_bool
\cs_new:cpn { __bool_2: } \{ \c_false_bool
\cs_new:cpn { __bool_&: } \{ \c_true_bool
\cs_new:cpn { __bool_0: } & \{ __bool_get_next:NN \use_iv:nnnn
\}

525
Go through the list of expressions, stopping whenever an expression is \texttt{false}. If the end is reached without finding any \texttt{false} expression, then the result is \texttt{true}.

\textbf{\texttt{_bool_lazy_all_p:n}}

\textbf{\texttt{_bool_lazy_all:nTF}}

\textbf{\texttt{_bool_lazy_all:n}}

(End definition for \texttt{_bool_choose:NNN} and others.)

\textbf{\texttt{\bool_lazy_all_p:n}}

\textbf{\texttt{\bool_lazy_all:nTF}}

\textbf{\texttt{\bool_lazy_all:n}}

\textbf{\texttt{\bool_lazy_any_p:n}}

\textbf{\texttt{\bool_lazy_any:nTF}}

\textbf{\texttt{\bool_lazy_any:n}}

(End definition for \texttt{\bool_lazy_all:nTF} and \texttt{_bool_lazy_all:n}. This function is documented on page 109.)

\textbf{\texttt{\bool_lazy_and_p:nn}}

\textbf{\texttt{\bool_lazy_and:nnTF}}

\textbf{\texttt{\bool_lazy_and:nn}}

(End definition for \texttt{\bool_lazy_and:nnTF}. This function is documented on page 109.)

\textbf{\texttt{\bool_lazy_any_p:n}}

\textbf{\texttt{\bool_lazy_any:nTF}}

\textbf{\texttt{\bool_lazy_any:n}}

Go through the list of expressions, stopping whenever an expression is \texttt{true}. If the end is reached without finding any \texttt{true} expression, then the result is \texttt{false}.

(End definition for \texttt{\bool_lazy_any:NNN} and others.)

526
\else:
\prg_return_false:
\fi:
\fi:
\cs_new:Npn __bool_lazy_any:n #1
{
\quark_if_recursion_tail_stop_do:nn {#1} { \c_false_bool }
\bool_if:nT {#1}
{ \use_i_delimit_by_q_recursion_stop:nw { \c_true_bool } }
__bool_lazy_any:n
}

(End definition for \bool_lazy_any:nTF and __bool_lazy_any:n. This function is documented on page 110.)

\bool_lazy_or_p:nn
\bool_lazy_or:nnTF
\prg_new_conditional:Npnn \bool_lazy_or:nn #1#2 { p , T , F , TF }
{
\if_predicate:w
\bool_if:nTF {#1} { \c_true_bool } { \bool_if_p:n {#2} }
\prg_return_true:
\else:
\prg_return_false:
\fi:
}

(End definition for \bool_lazy_or:nnTF. This function is documented on page 110.)

\bool_not_p:n
\bool_xor_p:nn
\bool_xor:nnTF
\cs_new:Npn \bool_not_p:n #1 { \bool_if_p:n { ! (#1) } }

(End definition for \bool_not_p:n. This function is documented on page 110.)

\bool_xor_p:nn
\bool_xor:nnTF
\prg_new_conditional:Npnn \bool_xor:nn #1#2 { p , T , F , TF }
{
\bool_if:nT {#1} \reverse_if:N
\if_predicate:w \bool_if_p:n {#2}
\prg_return_true:
\else:
\prg_return_false:
\fi:
}

(End definition for \bool_xor:nnTF. This function is documented on page 110.)
14.5 Logical loops

A while loop where the boolean is tested before executing the statement. The “while” version executes the code as long as the boolean is true; the “until” version executes the code as long as the boolean is false.

\bool_while_do:Nn
\bool_until_do:Nn

A do-while loop where the body is performed at least once and the boolean is tested after executing the body. Otherwise identical to the above functions.

\bool_do_while:Nn
\bool_do_until:Nn

Loop functions with the test either before or after the first body expansion.

\bool_while_do:nn
\bool_until_do:nn

(End definition for \bool_while_do:nn and others. These functions are documented on page 111.)
14.6 Producing multiple copies

This function uses a cascading csname technique by David Kastrup (who else :-)

The idea is to make the input 25 result in first adding five, and then 20 copies of the code to be replicated. The technique uses cascading csnames which means that we start building several csnames so we end up with a list of functions to be called in reverse order. This is important here (and other places) because it means that we can for instance make the function that inserts five copies of something to also hand down ten to the next function in line. This is exactly what happens here: in the example with 25 then the next function is the one that inserts two copies but it sees the ten copies handed down by the previous function. In order to avoid the last function to insert say, 100 copies of the original argument just to gobble them again we define separate functions to be inserted first. These functions also close the expansion of \exp:w, which ensures that \prg_replicate:nn only requires two steps of expansion.

This function has one flaw though: Since it constantly passes down ten copies of its previous argument it severely affects the main memory once you start demanding hundreds of thousands of copies. Now I don’t think this is a real limitation for any ordinary use, and if necessary, it is possible to write \prg_replicate:nn \{1000\} \{\prg_replicate:nn \{1000\} \{code\}\}. An alternative approach is to create a string of m’s with \exp:w which can be done with just four macros but that method has its own problems since it can exhaust the string pool. Also, it is considerably slower than what we use here so the few extra csnames are well spent I would say.

\prg_replicate:nn
__prg_replicate:N
__prg_replicate_first:N
__prg_replicate_0:n
__prg_replicate_1:n
__prg_replicate_2:n
__prg_replicate_3:n
__prg_replicate_4:n
__prg_replicate_5:n
__prg_replicate_6:n
__prg_replicate_7:n
__prg_replicate_8:n
__prg_replicate_9:n
__prg_replicate_first_--:n
__prg_replicate_first_0:n
__prg_replicate_first_1:n
__prg_replicate_first_2:n
__prg_replicate_first_3:n
__prg_replicate_first_4:n
__prg_replicate_first_5:n
__prg_replicate_first_6:n
__prg_replicate_first_7:n
__prg_replicate_first_8:n
__prg_replicate_first_9:n

Then comes all the functions that do the hard work of inserting all the copies. The first function takes :n as a parameter.

\cs_new:Npn \prg_replicate:nn #1
\{ \exp:w \exp_after:wN __prg_replicate_first:N \int_value:w \int_eval:n \{#1\} \cs_end: \}
\cs_new:Npn __prg_replicate_ :n #1 { \cs_end: }
\cs_new:Npn __prg_replicate_0:n __prg_replicate:N \{#1\}
\cs_new:Npn __prg_replicate_1:n __prg_replicate_first:N \#1
\cs_new:Npn __prg_replicate_2:n \{ \cs_end: \{#1#1#1#1#1#1#1#1#1\} \#1\}
\cs_new:Npn __prg_replicate_3:n \{ \cs_end: \{#1#1#1#1#1#1#1#1\} #1\#1\}
\cs_new:Npn __prg_replicate_4:n \{ \cs_end: \{#1#1#1#1#1#1#1\} #1\#1\#1\}
\cs_new:Npn __prg_replicate_5:n \{ \cs_end: \{#1#1#1#1#1#1\} #1\#1\#1\#1\}
\cs_new:Npn __prg_replicate_6:n \{ \cs_end: \{#1#1#1#1#1\} #1\#1\#1\#1\#1\}
\cs_new:Npn __prg_replicate_7:n \{ \cs_end: \{#1#1#1#1\} #1\#1\#1\#1\#1\#1\}
\cs_new:Npn __prg_replicate_8:n \{ \cs_end: \{#1#1#1\} #1\#1\#1\#1\#1\#1\#1\}
\cs_new:Npn __prg_replicate_9:n \{ \cs_end: \{#1\} #1\#1\#1\#1\#1\#1\#1\#1\#1\}

529
Users shouldn’t ask for something to be replicated once or even not at all but...

14.7 Detecting \TeX’s mode

\mode_if_vertical_p:
\mode_if_vertical:TF

For testing vertical mode. Strikes me here on the bus with David, that as long as we are just talking about returning true and false states, we can just use the primitive conditionals for this and gobbling the \exp_end: in the input stream. However this requires knowledge of the implementation so we keep things nice and clean and use the return statements.

\mode_if_horizontal_p:
\mode_if_horizontal:TF

For testing horizontal mode.

\mode_if_inner_p:
\mode_if_inner:TF

For testing inner mode.

\mode_if_math_p:
\mode_if_math:TF

For testing math mode. At the beginning of an alignment cell, this should be used only inside a non-expandable function.
14.8 Internal programming functions

\TeX’s alignment structures present many problems. As Knuth says himself in *\TeX: The Program*: “It’s sort of a miracle whenever \texttt{\halign} or \texttt{\valign} work, […]” One problem relates to commands that internally issues a \texttt{\cr} but also peek ahead for the next character for use in, say, an optional argument. If the next token happens to be a & with category code 4 we get some sort of weird error message because the underlying \texttt{\futurelet} stores the token at the end of the alignment template. This could be a &_ giving a message like !Misplaced \texttt{\cr}. or even worse: it could be the \texttt{\endtemplate} token causing even more trouble! To solve this we have to open a special group so that \TeX\ still thinks it’s on safe ground but at the same time we don’t want to introduce any brace group that may find its way to the output. The following functions help with this by using code documented only in Appendix D of *The \TeX\book…We place the \texttt{\if_false: \{ \fi:} part at that place so that the successive expansions of \texttt{\group_align_safe_begin/end:} are always brace balanced.

\begin{verbatim}
\cs_new:Npn \group_align_safe_begin:
\{ \if_int_compare:w \if_false: \{ \fi: \fi: \}
\cs_new:Npn \group_align_safe_end:
\{ \if_int_compare:w \{ = \c_zero_int \} \fi: \}
\end{verbatim}

(End definition for \texttt{\group_align_safe_begin:} and \texttt{\group_align_safe_end:}. These functions are documented on page 113.)

\g__kernel_prg_map_int A nesting counter for mapping.
\int_new:N \g__kernel_prg_map_int

(End definition for \texttt{\g__kernel_prg_map_int}.)

\prg_break_point:Nn \prg_map_break:Nn
These are defined in \texttt{l3basics}, as they are needed “early”. This is just a reminder that is the case!

(End definition for \texttt{\prg_break_point:Nn} and \texttt{\prg_map_break:Nn}. These functions are documented on page 112.)

\prg_break_point: \prg_break: \prg_break:n
Also done in \texttt{l3basics} as in format mode these are needed within \texttt{l3alloc}.

(End definition for \texttt{\prg_break_point:}, \texttt{\prg_break:}, and \texttt{\prg_break:n}. These functions are documented on page 113.)

15 \texttt{l3sys} implementation

\begin{verbatim}
__sys_const:nn
\end{verbatim}

15.1 Kernel code

15.1.1 Detecting the engine

__sys_const:nn
Set the \texttt{T}, \texttt{F}, \texttt{TF}, \texttt{p} forms of \#1 to be constants equal to the result of evaluating the boolean expression \#2.

\begin{verbatim}
\cs_new_protected:Npn __sys_const:nn \#1\#2
\end{verbatim}

531
\bool_if:TF {#2}
{
\cs_new_eq:cN { #1 :T } \use:n
\cs_new_eq:cN { #1 :F } \use_none:n
\cs_new_eq:cN { #1 :TF } \use_i:nn
\cs_new_eq:cN { #1 _p: } \c_true_bool
}
\bool_if:FN {#2}
{
\cs_new_eq:cN { #1 :T } \use_none:n
\cs_new_eq:cN { #1 :F } \use:n
\cs_new_eq:cN { #1 :TF } \use_ii:nn
\cs_new_eq:cN { #1 _p: } \c_false_bool
}
\endinput

(set definition for __sys_const:nn.)
\sys_if_engine_luatex_p: \sys_if_engine_luatex:TF
\sys_if_engine_pdfTeX_p: \sys_if_engine_pdfTeX:TF
\sys_if_engine_ptex_p: \sys_if_engine_ptex:TF
\sys_if_engine_upTeX_p: \sys_if_engine_upTeX:TF
\sys_if_engine_xetex_p: \sys_if_engine_xetex:TF
\c_sys_engine_str
\str_const:Nx \c_sys_engine_str
\{ \cs_if_exist:NT \tex_luatexversion:D { luatex }
\cs_if_exist:NT \tex_pdftexversion:D { pdftex }
\cs_if_exist:NT \tex_kanjiskip:D
\cs_if_exist:NTF \tex_enablecjktoken:D { uptex } { ptex }
\cs_if_exist:NT \tex_XeTeXversion:D { xetex }
\}
\tl_map_inline:nn { { luatex } { pdftex } { ptex } { uptex } { xetex } }
\{ __sys_const:nn { sys_if_engine_ #1 }
\{ \str_if_eq_p:Vn \c_sys_engine_str {#1} \}
\}
\endinput
(set definition for \sys_if_engine_luatex:TF and others. These functions are documented on page 114.)

15.1.2 Randomness

This candidate function is placed there because \sys_if_rand_exist:TF is used in l3fp-rand.
\sys_if_rand_exist_p: \sys_if_rand_exist:TF
__sys_const:nn { sys_if_rand_exist }
{ \cs_if_exist_p:N \tex_uniformdeviate:D }
\endinput
(set definition for \sys_if_rand_exist:TF. This function is documented on page 267.)
15.1.3 Platform

Setting these up requires the file module (file lookup), so is actually implemented there.

(End definition for \sys_if_platform_unix:TF, \sys_if_platform_windows:TF, and \c_sys_platform_str. These functions are documented on page 115.)

15.1.4 Configurations

Loading the backend code is pretty simply: check that the backend is valid, then load it up.

\cs_new_protected:Npn \sys_load_backend:n #1
__sys_load_backend_check:N
\c_sys_backend_str

\sys_load_backend:n
__sys_load_backend_check:N
\c_sys_backend_str

\cs_new_protected:Npn __sys_load_backend_check:N #1
\sys_if_engine_xetex:TF
\str_case:VnF #1
\sys_if_output_pdf:TF
\str_case:VnF #1
\sys_if_platform_unix:TF
\sys_if_platform_windows:TF
\c_sys_platform_str
\sys_if_platform_unix:TF
\sys_if_platform_windows:TF
\c_sys_platform_str

533
\str_case:VnF #1
{
 { dvipdfmx } { }
 { dvips } { }
 { dvisvgm } { }
}
{
{__kernel_msg_error:nxx { sys } { wrong-backend }
 #1 { dvips }
 \tl_gset:Nn #1 { dvips }
}}

(End definition for \sys_load_backend:n, __sys_load_backend_check:N, and \c_sys_backend_str. These functions are documented on page 117.)
\g__sys_debug_bool
\g__sys_deprecation_bool
\bool_new:N \g__sys_debug_bool
\bool_new:N \g__sys_deprecation_bool
(End definition for \g__sys_debug_bool and \g__sys_deprecation_bool.)
\sys_load_debug:
\sys_load_deprecation:
Simple.
\cs_new_protected:Npn \sys_load_debug:
{
 \bool_if:NF \g__sys_debug_bool
 { __kernel_sys_configuration_load:n { l3debug } }
 \bool_gset_true:N \g__sys_debug_bool
}
\cs_new_protected:Npn \sys_load_deprecation:
{
 \bool_if:NF \g__sys_deprecation_bool
 { __kernel_sys_configuration_load:n { l3deprecation } }
 \bool_gset_true:N \g__sys_deprecation_bool
}
(End definition for \sys_load_debug: and \sys_load_deprecation:. These functions are documented on page 117.)

15.1.5 Access to the shell
\l__sys_internal_tl
\tl_new:N \l__sys_internal_tl
(End definition for \l__sys_internal_tl.)
\c__sys_marker_tl
The same idea as the marker for rescanning token lists.
\tl_const:Nx \c__sys_marker_tl { : \token_to_str:N : }
(End definition for \c__sys_marker_tl.)
Setting using a shell is at this level just a slightly specialised file operation, with an additional check for quotes, as these are not supported.

\cs_new_protected:Npn \sys_get_shell:nnN \#1\#2\#3
\sys_get_shell:nnNF {\#1} {\#2} \#3
{ \tl_set:Nn \#3 { \q_no_value } }
\prg_new_protected_conditional:Npnn \sys_get_shell:nnN \#1\#2\#3 { T , F , TF }
\sys_if_shell:TF
{ \exp_args:Nno __sys_get:mm { \tl_to_str:n {\#1} } {\#2} \#3 }
{ \prg_return_false: }
\cs_new_protected:Npn __sys_get:mm #1#2#3
{ \tl_if_in:nnTF {#1} { " } { __kernel_msg_error:nnx { kernel } { quote-in-shell } {#1} \prg_return_false: }
{ \group_begin:
\iffalse: { \fi:
\int_set_eq:NN \tex_tracingnesting:D \c_zero_int
\exp_args:Nno \tex_everyeof:D { \c__sys_marker_tl }
#2 \scan_stop:
\exp_after:wN __sys_get_do:Nw
\exp_after:wN \#3
\exp_after:wN \prg_do_nothing:
\exp_after:wN \prg_return_true:
\group_end:
\tl_set:No \#1 \#2 }
\exp_args:Nno \use:nm
{ \cs_new_protected:Npn __sys_get_do:Nw \#1#2 }
{ \c__sys_marker_tl }
{ }
\group_end:
\tl_set:Nn \#1 \#2 }
\prg_return_false:
\group_end:
\tl_set:Nn \#1 \#2 }
(End definition for \sys_get_shell:nnNTF and others. These functions are documented on page 116.)

\c__sys_shell_stream_int
This is not needed for Lua\TeX: shell escape there isn't done using a \TeX interface.
\sys_if_engine_luatex:F
\int_const:Nn \c__sys_shell_stream_int { 18 }
(End definition for \c__sys_shell_stream_int.)

\sys_shell_now:n
Execute commands through shell escape immediately.
\sys_if_engine_luatex:TF
15.2 Dynamic (every job) code

\sys_everyjob: __sys_everyjob:n \g__sys_everyjob_tl

\cs_new_protected:Npn \sys_everyjob:n __sys_everyjob:n \g__sys_everyjob_tl
{ \tl_use:N \g__sys_everyjob_tl \tl_gclear:N \g__sys_everyjob_tl }
\cs_new_protected:Npn __sys_everyjob:n __sys_everyjob:n \g__sys_everyjob_tl
{ \tl_gput_right:Nn \g__sys_everyjob_tl {#1} }
\cs_generate_variant:Nn \sys_everyjob:n { x }

(End definition for \sys_everyjob:n, __sys_everyjob:n, and \g__sys_everyjob_tl. This function is documented on page ??.)

15.2.1 The name of the job

\c_sys_jobname_str

Inherited from the \LaTeX3 name for the primitive. This has to be the primitive as it’s set in \everyjob. If the user does

\pdflatex \input some-file-name
then \texttt{everyjob} is inserted before \texttt{jobname} is changed from \texttt{texput}, and thus we would have the wrong result.

\begin{verbatim}
_sys_everyjob:n
{ \cs_new_eq:NN \c_sys_jobname_str \tex_jobname:D }
\end{verbatim}

(End definition for \texttt{c_sys_jobname_str}. This variable is documented on page 114.)

\subsection{Time and date}

\texttt{\c_sys_minute_int} \texttt{\c_sys_hour_int} \texttt{\c_sys_day_int} \texttt{\c_sys_month_int} \texttt{\c_sys_year_int}

Copies of the information provided by \TeX. There is a lot of defensive code in package mode: someone may have moved the primitives, and they can only be recovered if we have \texttt{primitive} and it is working correctly. For \texttt{IniTeX} of course that is all redundant but does no harm.

\begin{verbatim}
_sys_everyjob:n
{ \group_begin:
\cs_set:Npn __sys_tmp:w #1
{ \str_if_eq:eeTF { \cs_meaning:N #1 } { \token_to_str:N #1 }
{ \#1 }
{ \cs_if_exist:NTF \tex_primitive:D
{ \bool_lazy_and:nnTF
{ \sys_if_engine_xetex_p: }
{ \int_compare_p:nNn { \exp_after:wN \use_none:n \tex_XeTeXrevision:D } < { 99999 }
}{ 0 }
{ \tex_primitive:D #1 }
}{ 0 }
}
{ \tex_primitive:D #1 }
{ 0 }
\}
\int_const:Nn \c_sys_minute_int
{ \int_mod:nn { __sys_tmp:w \time } { 60 } }
\int_const:Nn \c_sys_hour_int
{ \int_div_truncate:nn { __sys_tmp:w \time } { 60 } }
\int_const:Nn \c_sys_day_int
{ __sys_tmp:w \day }
\int_const:Nn \c_sys_month_int
{ __sys_tmp:w \month }
\int_const:Nn \c_sys_year_int
{ __sys_tmp:w \year }
\group_end:
\end{verbatim}

(End definition for \texttt{c_sys_minute_int} and others. These variables are documented on page 114.)

\subsection{Random numbers}

\texttt{\sys_rand_seed}: Unpack the primitive. When random numbers are not available, we return zero after an error (and incidentally make sure the number of expansions needed is the same as with random numbers available).
\sys_gset_rand_seed:n The primitive always assigns the seed globally.
\c_sys_shell_escape_int Expose the engine’s shell escape status to the user.
Performs a check for whether shell escape is enabled. The first set of functions returns true if either of restricted or unrestricted shell escape is enabled, while the other two sets of functions return true in only one of these two cases.

\begin{verbatim}
\sys_if_shell_p: \sys_if_shell:TF
\sys_if_shell_unrestricted_p: \sys_if_shell_unrestricted:TF
\sys_if_shell_restricted_p: \sys_if_shell_restricted:TF

__sys_everyjob:n\{_sys_const:nn { sys_if_shell } \{ \int_compare_p:nNn \c_sys_shell_escape_int > 0 \} _sys_const:nn { sys_if_shell_unrestricted } \{ \int_compare_p:nNn \c_sys_shell_escape_int = 1 \} _sys_const:nn { sys_if_shell_restricted } \{ \int_compare_p:nNn \c_sys_shell_escape_int = 2 \} \}
\end{verbatim}

(End definition for \sys_if_shell:TF, \sys_if_shell_unrestricted:TF, and \sys_if_shell_restricted:TF. These functions are documented on page 116.)

15.2.5 Held over from \libfile\g_file_curr_name_str

See comments about \c_sys_jobname_str: here, as soon as there is file input/output, things get “tided up”.

\begin{verbatim}
__sys_everyjob:n\{_sys_const:nn \{sys_if_shell\} \{_sys_const:nn \{sys_if_shell_unrestricted\} \{_sys_const:nn \{sys_if_shell_restricted\} \}
\end{verbatim}

(End definition for \g_file_curr_name_str. This variable is documented on page 163.)

15.3 Last-minute code

A simple hook to finalise the system-dependent layer. This is forced by the backend loader, which is forced by the main loader, so we do not need to include that here.

\begin{verbatim}
\sys_finalise:n_sys_finalise:n\g__sys_finalise_tl
\cs_new_protected:Npn \sys_finalise:n #1\{\tl_gput_right:Nn \g__sys_finalise_tl \{#1\} \}
\tl_new:N \g__sys_finalise_tl
\end{verbatim}

(End definition for \sys_finalise:, _sys_finalise:n, and \g__sys_finalise_tl. This function is documented on page 117.)

15.3.1 Detecting the output

This is a simple enough concept: the two views here are complementary.

\begin{verbatim}
\sys_if_output_dvi_p: \sys_if_output_dvi:TF
\sys_if_output_pdf_p: \sys_if_output_pdf:TF
\c_sys_output_str
\str_const:Nx \c_sys_output_str
\{\int_compare:nNnTF \{\cs_if_exist_use:NF \tex_pdfoutput:D \{ 0 \} \} > \{ 0 \} \{ pdf \} \{ dvi \}
\end{verbatim}

539
__sys_const:nn { sys_if_output_dvi }
{ \str_if_eq\:Vn \c_sys_output_str { dvi } }
__sys_const:nn { sys_if_output_pdf }
{ \str_if_eq\:Vn \c_sys_output_str { pdf } }
}

(End definition for \sys_if_output_dvi:TF, \sys_if_output_pdf:TF, and \c_sys_output_str. These functions are documented on page 115.)

15.3.2 Configurations
\g___sys_backend_tl

As the backend has to be checked and possibly adjusted, the approach here is to create a variable and use that in a one-shot to set a constant.

\tl_new:N \g__sys_backend_tl
__sys_finalise:n
{
\tl_gset:Nx \g__sys_backend_tl
{
\sys_if_engine_xetex:TF
{ xdvipdfmx }
{ \sys_if_output_pdf:TF
{ pdfmode }
{ dvips }
}
}
}

If there is a class option set, and recognised, we pick it up: these will over-ride anything set automatically but will themselves be over-written if there is a package option.

__sys_finalise:n
{
\cs_if_exist:NT \@classoptionslist
{
\cs_if_eq:NNF \@classoptionslist \scan_stop:
{
\clist_map_inline:Nn \@classoptionslist
{
\str_case:nnT {#1}
{
{ dvipdfmx }
{ \tl_gset:Nn \g__sys_backend_tl { dvipdfmx } }
{ dvips }
{ \tl_gset:Nn \g__sys_backend_tl { dvips } }
{ dvisvgm }
{ \tl_gset:Nn \g__sys_backend_tl { dvisvgm } }
{ pdftex }
{ \tl_gset:Nn \g__sys_backend_tl { pdftex } }
{ zetex }
{ \tl_gset:Nn \g__sys_backend_tl { xdvipdfmx } }
}
{ \clist_remove_all:Nn \@unusedoptionlist {#1} }
}
}
}
}

The following test files are used for this code: m3clist002.

\c_empty_clist An empty comma list is simply an empty token list.
\l__clist_internal_clist Scratch space for various internal uses. This comma list variable cannot be declared as such because it comes before \clist_new:N
__clist_tmp:w A temporary function for various purposes.

__clist_sanitize:n
__clist_sanitize:Nn
The auxiliary __clist_sanitize:Nn receives a delimiter (\c_empty_tl the first time, afterwards a comma) and that item as arguments. Unless we are done with the loop it calls __clist_wrap_item:w to unbrace the item (using a comma delimiter is safe since #2 came from removing spaces from an argument delimited by a comma) and possibly re-brace it if needed.

16.1 Removing spaces around items
__clist_trim_next:w Called as \exp:w __clist_trim_next:w \prg_do_nothing: ⟨comma list⟩ ... it expands to ⟨⟨trimmed item⟩⟩ where the ⟨trimmed item⟩ is the first non-empty result from removing spaces from both ends of comma-delimited items in the ⟨comma list⟩. The \prg_do_nothing: marker avoids losing braces. The test for blank items is a somewhat optimized \tl_if_empty:oTF construction; if blank, another item is sought, otherwise trim spaces.
__clist_sanitizem
__clist_sanitizem:n The auxilliary __clist_sanitizem:n receives a delimiter (\c_empty_tl the first time, afterwards a comma) and that item as arguments. Unless we are done with the loop it calls __clist_wrap_item:w to unbrace the item (using a comma delimiter is safe since #2 came from removing spaces from an argument delimited by a comma) and possibly re-brace it if needed.
\exp_after:wN __clist_sanitize:Nn \exp_after:wN \c_empty_tl \exp:w __clist_trim_next:w \prg_do_nothing: #1 , \q_recursion_tail , \q_recursion_stop \}
\cs_new:Npn __clist_sanitize:Nn #1#2 {
\quark_if_recursion_tail_stop:n {#2} #1 __clist_wrap_item:w #2 , \exp_after:wN __clist_sanitize:Nn \exp_after:wN \prg_do_nothing: \}

(End definition for __clist_sanitize:n and __clist_sanitize:Nn.)

__clist_if_wrap:nTF __clist_if_wrap:w True if the argument must be wrapped to avoid getting altered by some clist operations.
That is the case whenever the argument

- starts or end with a space or contains a comma,
- is empty, or
- consists of a single braced group.

All l3clist functions go through the same test when they need to determine whether to brace an item, so it is not a problem that this test has false positives such as “\q_mark ?”. If the argument starts or end with a space or contains a comma then one of the three arguments of __clist_if_wrap:w will have its end delimiter (partly) in one of the three copies of #1 in __clist_if_wrap:nTF; this has a knock-on effect meaning that the result of the expansion is not empty; in that case, wrap. Otherwise, the argument is safe unless it starts with a brace group (or is empty) and it is empty or consists of a single n-type argument.

\prg_new_conditional:Npn __clist_if_wrap:n __clist_if_wrap:w __clist_if_wrap:n #1 { TF } { \tl_if_empty:oTF { __clist_if_wrap:w \q_mark ? #1 - \q_mark ? - #1 \q_mark , - \q_mark #1 , } { \tl_if_head_is_group:nTF { #1 { } } { \tl_if_empty:nTF { #1 } { \prg_return_true: } { \tl_if_empty:oTF { \use_none:n #1 } { \prg_return_true: } { \prg_return_false: } } } } { \prg_return_true: } { \prg_return_true: } \cs_new:Npn __clist_if_wrap:w #1 \q_mark ? ~ #2 ~ \q_mark #3 , { }
Safe items are put in \texttt{\exp_not:n}, otherwise we put an extra set of braces.

\begin{verbatim}
\clist_wrap_item:w #1 ,
\end{verbatim}

Creating and initializing a constant comma list is done by sanitizing all items (stripping spaces and braces).

\begin{verbatim}
\clist_const:Nn #1#2
\end{verbatim}

Clearing comma lists is just the same as clearing token lists.

\begin{verbatim}
\clist_clear:N
\clist_gclear:N
\end{verbatim}

Once again a copy from the token list functions.

\begin{verbatim}
\clist_clear_new:N
\clist_gclear_new:N
\end{verbatim}

Once again, these are simple copies from the token list functions.

\begin{verbatim}
\clist_set_eq:NN
\clist_set_eq:cc
\end{verbatim}
Setting a comma list from a comma-separated list is done using a simple mapping. Safe items are put in \exp_not:n, otherwise we put an extra set of braces. The first comma must be removed, except in the case of an empty comma-list.

\cs_new_protected:Npn \clist_set_from_seq:NN { __clist_set_from_seq:NNNN \clist_clear:N \tl_set:Nx }
\cs_new_protected:Npn \clist_gset_from_seq:NN { __clist_set_from_seq:NNNN \clist_gclear:N \tl_gset:Nx }
\cs_new_protected:Npn __clist_set_from_seq:NNNN #1#2#3#4
{ \seq_if_empty:NTF #4
 { #1 #3 }
 { #2 #3
 \exp_after:wN \use_none:n \exp:w \exp_end_continue_f:w
 \seq_map_function:NN #4 __clist_set_from_seq:n }
}
\cs_generate_variant:Nn \clist_set_from_seq:NN { Nc }
\cs_generate_variant:Nn \clist_set_from_seq:NN { c , cc }
\cs_generate_variant:Nn \clist_gset_from_seq:NN { Nc }
\cs_generate_variant:Nn \clist_gset_from_seq:NN { c , cc }

(End definition for \clist_set_from_seq:NN and others. These functions are documented on page 119.)

Concatenating comma lists is not quite as easy as it seems, as there needs to be the correct addition of a comma to the output. So a little work to do.

\cs_new_protected:Npn \clist_concat:NNN { __clist_concat:NNNN \tl_set:Nx }
\cs_new_protected:Npn \clist_gconcat:NNN { __clist_concat:NNNN \tl_gset:Nx }
\cs_new_protected:Npn __clist_concat:NNNN #1#2#3#4
{ #1 #2
 \exp_not:o #3
 \seq_if_empty:NF #3 { \seq_map_function:NN __clist_set_from_seq:n }
}
\cs_generate_variant:Nn \clist_concat:NNN { ccc }
\cs_generate_variant:Nn \clist_gconcat:NNN { ccc }

(End definition for \clist_concat:NNN, \clist_gconcat:NNN, and __clist_concat:NNNN. These functions are documented on page 119.)
COPPIES OF THE CS FUNCTIONs DEFINED IN L3BASICS.

\section*{16.3 Adding data to comma lists}

Everything is based on concatenation after storing in \texttt{__clist_internal_clist}. This avoids having to worry here about space-trimming and so on.

(End definition for \texttt{__clist_put_left:NNN}. These functions are documented on page 120.)
16.4 Comma lists as stacks

Getting an item from the left of a comma list is pretty easy: just trim off the first item using the comma. No need to trim spaces as comma-list variables are assumed to have “cleaned-up” items. (Note that grabbing a comma-delimited item removes an outer pair of braces if present, exactly as needed to uncover the underlying item.)

```latex
\cs_new_protected:Npn \clist_get:NN #1 #2
\if_meaning:w #1 \c_empty_clist
\tl_set:Nn #2 { \q_no_value }
\else:
\exp_after:wN \__clist_get:wN #1 , \q_stop #2
\fi:
\cs_new_protected:Npn \__clist_get:wN #1 , #2 \q_stop #3
{ \tl_set:Nn #3 {#1} }
\cs_generate_variant:Nn \clist_get:NN { c }
```

(End definition for \clist_get:NN and __clist_get:wN. This function is documented on page 125.)

An empty clist leads to \q_no_value, otherwise grab until the first comma and assign to the variable. The second argument of __clist_pop:wwNNN is a comma list ending in a comma and \q_mark, unless the original clist contained exactly one item: then the argument is just \q_mark. The next auxiliary picks either \exp_not:n or \use_none:n as #2, ensuring that the result can safely be an empty comma list.

```latex
\cs_new_protected:Npn \clist_pop:NN { \__clist_pop:NNN \tl_set:Nx }
\cs_new_protected:Npn \clist_gpop:NN { \__clist_pop:NNN \tl_gset:Nx }
\cs_new_protected:Npn \__clist_pop:NNN #1 #2 #3 #4 #5
{ \tl_set:Nn #5 {#1} #3 #4 #5 }
\cs_new_protected:Npn \__clist_pop:wwNNN #1 , #2 \q_stop #3 #4 #5
{ \tl_set:Nn #5 {#1} #3 #4 #5 }
\cs_new_protected:Npn \__clist_pop:wwNNN #1 , #2 \q_stop #3 #4 #5
{ \tl_set:Nn #5 {#1} #3 #4 #5 }
\cs_new_protected:Npn \__clist_pop:wwNNN #1 , #2 \q_stop \prg_do_nothing:
\exp_not:o , \q_mark \use_none:n \q_stop
\cs_generate_variant:Nn \clist_pop:NN { c }
\cs_generate_variant:Nn \clist_gpop:NN { c }
```
The same, as branching code: very similar to the above.

\prg_new_protected_conditional:Npnn \clist_get:NN #1 #2 { T , F , TF }
{ \if_meaning:w #1 \c_empty_clist \prg_return_false: \else: \exp_after:wN __clist_get:wN #1 , \q_stop #2 \prg_return_true: \fi: \exp_after:wN __clist_get:wN \tl_set:Nx #1 #2 }
\prg_generate_conditional_variant:Nnn \clist_get:NN { c } { T , F , TF }
\prg_new_protected_conditional:Npnn \clist_pop:NN #1 #2 { T , F , TF }
{ __clist_pop_TF:NNN \tl_set:Nx #1 #2 }
\prg_generate_conditional_variant:Nnn \clist_pop:NN { c } { T , F , TF }
\prg_new_protected_conditional:Npnn \clist_gpop:NN #1 #2 { T , F , TF }
{ __clist_pop_TF:NNN \tl_gset:Nx #1 #2 }
\cs_new_protected:Npn __clist_pop_TF:NNN #1 #2 #3
{ \if_meaning:w #2 \c_empty_clist \prg_return_false: \else: \exp_after:wN __clist_pop:wwNNN #2 , \q_mark \q_stop #1 #2 #3 \prg_return_true: \fi: \exp_after:wN __clist_pop:wwNNN \tl_set:Nx #1 #2 #3 }
\prg_generate_conditional_variant:Nnn \clist_gpop:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \clist_gpop:NN { c } { T , F , TF }

Pushing to a comma list is the same as adding on the left.

\cs_new_eq:NN \clist_push:Nn \clist_put_left:Nn
\cs_new_eq:NN \clist_push:NV \clist_put_left:NV
\cs_new_eq:NN \clist_push:No \clist_put_left:No
\cs_new_eq:NN \clist_push:Nx \clist_put_left:Nx
\cs_new_eq:NN \clist_push:cn \clist_put_left:cn
\cs_new_eq:NN \clist_push:cV \clist_put_left:cV
\cs_new_eq:NN \clist_push:co \clist_put_left:co
\cs_new_eq:NN \clist_push:cx \clist_put_left:cx
\cs_new_eq:NN \clist_gpush:Nn \clist_gput_left:Nn
\cs_new_eq:NN \clist_gpush:NV \clist_gput_left:NV
\cs_new_eq:NN \clist_gpush:No \clist_gput_left:No
\cs_new_eq:NN \clist_gpush:Nx \clist_gput_left:Nx
\cs_new_eq:NN \clist_gpush:cn \clist_gput_left:cn
\cs_new_eq:NN \clist_gpush:cV \clist_gput_left:cV
\cs_new_eq:NN \clist_gpush:co \clist_gput_left:co
\cs_new_eq:NN \clist_gpush:cx \clist_gput_left:cx

An internal comma list and a sequence for the removal routines.

\l__clist_internal_remove_clist
\l__clist_internal_remove_seq
\seq_new:N \l__clist_internal_remove_seq

16.5 Modifying comma lists
Removing duplicates means making a new list then copying it.\[\text{list_remove_duplicates:N}\]
\[\text{list_remove_duplicates:c}\]
\[\text{list_gremove_duplicates:N}\]
\[\text{list_gremove_duplicates:c}\]
\[\text{__clist_remove_duplicates:NN}\]

The method used here for safe items is very similar to \[\text{tl_replace_all:Nnn}\]. However, if the item contains commas or leading/trailing spaces, or is empty, or consists of a single brace group, we know that it can only appear within braces so the code would fail; instead just convert to a sequence and do the removal with l3seq code (it involves somewhat elaborate code to do most of the work expandably but the final token list comparisons non-expandably).

For “safe” items, build a function delimited by \langle \text{item} \rangle that should be removed, surrounded with commas, and call that function followed by the expanded comma list, and another copy of the \langle \text{item} \rangle. The loop is controlled by the argument grabbed by \langle \text{item} \rangle when the item was found, the \texttt{q_mark} delimiter used is the one inserted by \texttt{__clist_tmp:w}, and \texttt{use_none_delimit_by_q_stop:w} is deleted. At the end, the final \langle \text{item} \rangle is grabbed, and the argument of \texttt{__clist_tmp:w} contains \texttt{q_mark}: in that case, \texttt{__clist_remove_all:w} removes the second \texttt{q_mark} (inserted by \texttt{__clist_tmp:w}), and lets \texttt{use_none_delimit_by_q_stop:w} act.

No brace is lost because items are always grabbed with a leading comma. The result of the first assignment has an extra leading comma, which we remove in a second assignment. Two exceptions: if the clist lost all of its elements, the result is empty, and we shouldn’t remove anything; if the clist started up empty, the first step happens to turn it into a single comma, and the second step removes it.
\clist_reverse:N \clist_greverse:N
\clist_reverse:c \clist_greverse:c
\clist_reverse:w \clist_greverse:w

Use \clist_reverse:n in an \texttt{x}-expanding assignment. The extra work that \clist-_reverse:n does to preserve braces and spaces would not be needed for the well-controlled case of \texttt{N}-type comma lists, but the slow-down is not too bad.

\clist_reverse:n \clist_greverse:n
\clist_reverse:w \clist_greverse:w

The reversed token list is built one item at a time, and stored between \texttt{\q_stop} and \texttt{\q_mark}, in the form of \texttt{?⟨item⟩}, followed by zero or more instances of \texttt{⟨item⟩}.” We start from a comma list \texttt{⟨item1⟩,...,⟨itemn⟩}”. During the loop, the auxiliary \texttt{\clist_reverse:w} receives \texttt{?⟨item⟩} as \texttt{#1}, \texttt{⟨itemn⟩} as \texttt{#2}, \texttt{\clist_reverse:w} as \texttt{#3}, what remains until \texttt{\q_stop} as \texttt{#4}, and \texttt{⟨itemn−1⟩,...,⟨item⟩},” as \texttt{#5}. The auxiliary moves \texttt{#1} just before \texttt{#5}, with a comma, and calls itself \texttt{#3}. After the last item is moved, \texttt{\clist_reverse:w} receives \texttt{\q_mark \clist_reverse:w} as its argument \texttt{#1}, thus \texttt{\clist_reverse_end:w} as its argument \texttt{#3}. This second auxiliary cleans up until the marker !, removes the trailing comma (introduced when the first item was moved after \texttt{\q_stop}), and leaves its argument \texttt{#1}
within \exp_not:n. There is also a need to remove a leading comma, hence \exp_not:o
and \use_none:n.

\begin{verbatim}
\cs_new:Npn \clist_reverse:n #1
{\
 __clist_reverse:wwNww ? #1 , \
 \q_mark __clist_reverse:wwNww ! , \
 \q_mark __clist_reverse_end:ww \
 \q_stop ? \q_mark
}
\cs_new:Npn __clist_reverse:wwNww #1 , #2 \q_mark #3 #4 \q_stop ? #5 \q_mark
{ #3 ? #2 \q_mark #3 #4 \q_stop #1 , #5 \q_mark }
\cs_new:Npn __clist_reverse_end:ww #1 #2 , \q_mark
{ \exp_not:o { \use_none:n #2 } }
\end{verbatim}

(End definition for \clist_reverse:n, __clist_reverse:wwNww, and __clist_reverse_end:ww. This
function is documented on page 121.)

\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

Implemented in \l3sort.

(End definition for \clist_sort:Nn and \clist_gsort:Nn. These functions are documented on page
121.)

16.6 Comma list conditionals

Simple copies from the token list variable material.

\begin{verbatim}
\prg_new_eq_conditional:NNNn \clist_if_empty:N \tl_if_empty:N
{ p , T , F , TF }
\prg_new_eq_conditional:NNNn \clist_if_empty:c \tl_if_empty:c
{ p , T , F , TF }
\end{verbatim}

(End definition for \clist_if_empty:NTF. This function is documented on page 122.)

\begin{verbatim}
\prg_new_conditional:Npnn \clist_if_empty:n #1 { p , T , F , TF }
{\
 __clist_if_empty_n:w ? #1 \
 , \q_mark \prg_return_false:
 , \q_mark \prg_return_true:
 \q_stop
}
\cs_new:Npn __clist_if_empty_n:w #1 , \
{\tl_if_empty:oTF { \use_none:nn #1 ? }
 \{ __clist_if_empty_n:w ? \}
 \{ __clist_if_empty_n:wNw \}
}
\cs_new:Npn __clist_if_empty_n:wNw #1 \q_mark #2#3 \q_stop {#2}
\end{verbatim}

As usual, we insert a token (here ?) before grabbing any argument: this avoids losing
braces. The argument of \tl_if_empty:OTF is empty if #1 is ? followed by blank spaces
(besides, this particular variant of the emptiness test is optimized). If the item of the
comma list is blank, grab the next one. As soon as one item is non-blank, exit: the second
auxiliary grabs \prg_return_false: as #2, unless every item in the comma list was blank
and the loop actually got broken by the trailing \q_mark \prg_return_false: item.

\begin{verbatim}
\prg_new_conditional:Nnn \clist_if_empty:n #1 { p , T , F , TF }
{\
 __clist_if_empty_n:w ? #1 \
 , \q_mark \prg_return_false:
 , \q_mark \prg_return_true:
 \q_stop
}
\cs_new:Npn __clist_if_empty_n:w #1 , \
{\tl_if_empty:oTF { \use_none:nn #1 ? }
 \{ __clist_if_empty_n:w ? \}
 \{ __clist_if_empty_n:wNw \}
}
\cs_new:Npn __clist_if_empty_n:wNw #1 \q_mark #2#3 \q_stop {#2}
\end{verbatim}
For “safe” items, we simply surround the comma list, and the item, with commas, then use the same code as for \tl_if_in:N. For “unsafe” items we follow the same route as \seq_if_in:N, mapping through the list a comparison function. If found, return \texttt{true} and remove \texttt{\prg_return_false:}.

\begin{verbatim}
\prg_new_protected_conditional:Npnn \clist_if_in:Nn #1#2 { T , F , TF }
\prg_new_protected_conditional:Npnn \clist_if_in:nn #1#2 { T , F , TF }
\cs_new_protected:Npn __clist_if_in_return:nnN #1#2#3
\prg_generate_conditional_variant:Nnn \clist_if_in:Nn { \clist_if_in:nnTF , __clist_if_in_return:nnN } { T , F , TF }
\prg_generate_conditional_variant:Nnn \clist_if_in:nn { __clist_if_in_return:nnN } { T , F , TF }
\end{verbatim}

(End definition for \clist_if_empty:nTF, __clist_if_empty_n:w, and __clist_if_empty_n:wN. This function is documented on page 122.)

16.7 Mapping to comma lists

If the variable is empty, the mapping is skipped (otherwise, that comma-list would be seen as consisting of one empty item). Then loop over the comma-list, grabbing one comma-delimited item at a time. The end is marked by \texttt{\q_recursion_tail}. The auxiliary function \texttt{__clist_map_function:Nw} is also used in \texttt{\clist_map_inline:Nn}.
\cs_new:Npn \clist_map_function:NN #1 #2
\clist_if_empty:FN \exp_last_unbraced:NNo __clist_map_function:Nw #2 #1 , \q_recursion_tail , \prg_break_point:Nn \clist_map_break: { }
\enddefinition

\cs_new:Npn __clist_map_function:Nw #1 { #2 , \prg_break_point:Nn \clist_map_break: { } }
\enddefinition

\cs_new:Npn __clist_map_function_n:Nn #1 #2
\quark_if_recursion_tail_break:nN \exp_after:wN __clist_map_function_n:Nn \exp_after:wN __clist_map_unbrace:Nw
\prg_do_nothing: #1 , \q_recursion_tail , \prg_break_point:Nn \clist_map_break: { }
\enddefinition

\cs_new:Npn __clist_map_unbrace:Nw #1 #2 { #1 {#2} }
\enddefinition

\clist_map_function:nN __clist_map_function_n:Nn __clist_map_unbrace:Nw

The n-type mapping function is a bit more awkward, since spaces must be trimmed from each item. Space trimming is again based on __clist_trim_next:w. The auxiliary __clist_map_function:n:Nn receives as arguments the function, and the next non-empty item (after space trimming but before brace removal). One level of braces is removed by __clist_map_unbrace:Nw.

\cs_new:Npn \clist_map_function:nN #1 #2
\exp_after:wN __clist_map_function:n:Nn \exp_after:wN __clist_map_unbrace:Nw
\prg_do_nothing: #1 , \q_recursion_tail , \prg_break_point:Nn \clist_map_break: { }
\enddefinition

\cs_new:Npn __clist_map_unbrace:Nw #1 #2 , { #1 {#2} }
\enddefinition

\clist_map_inline:Nn __clist_map_function:n:Nn __clist_map_unbrace:Nw

Inline mapping is done by creating a suitable function “on the fly”: this is done globally to avoid any issues with \TeX’s groups. We use a different function for each level of nesting.

Since the mapping is non-expandable, we can perform the space-trimming needed by the n version simply by storing the comma-list in a variable. We don’t need a different comma-list for each nesting level: the comma-list is expanded before the mapping starts.

\cs_new_protected:Npn \clist_map_inline:Nn __clist_map_function:n:Nn __clist_map_unbrace:Nw

This function is documented on page 122.

\clist_map_inline:cn \clist_map_inline:nn

\endinput
As for other comma-list mappings, filter out the case of an empty list. Same approach as \clist_map_function:Nn, additionally we store each item in the given variable. As for inline mappings, space trimming for the n variant is done by storing the comma list in a variable. The quark test is done before assigning the item to the variable: this avoids storing a quark which the user wouldn’t expect. The strange \use:n avoids unlikely problems when #2 would contain \q_recursion_stop.

\clist_map_variable:NNn
\clist_map_variable:nNn
__clist_map_variable:Nnw

(End definition for \clist_map_variable:NNn and \clist_map_variable:nNn. These functions are documented on page 123.)

\clist_map_break:
\clist_map_break:n

The break statements use the general \prg_map_break:Nn mechanism.
10407 \cs_new:Npn \clist_map_break:
10408 \{ \prg_map_break:Nn \clist_map_break: \{ \} \}
10409 \cs_new:Npn \clist_map_break:n
10410 \{ \prg_map_break:Nn \clist_map_break: \}

(End definition for \clist_map_break: and \clist_map_break:n. These functions are documented on page 123.)

\clist_count:N \clist_count:c \clist_count:n __clist_count:n __clist_count:w

Counting the items in a comma list is done using the same approach as for other token count functions: turn each entry into a +1 then use integer evaluation to actually do the mathematics. In the case of an n-type comma-list, we could of course use \clist_map_function:nN, but that is very slow, because it carefully removes spaces. Instead, we loop manually, and skip blank items (but not {}, hence the extra spaces).

10411 \cs_new:Npn \clist_count:N \#1
10412 \{ \int_eval:n
10413 \{ \clist_map_function:NN \#1 __clist_count:n \}
10414 \}
10415 \cs_generate_variant:Nn \clist_count:N { c }
10416 \cs_new:Npx \clist_count:n \#1
10417 \{ \exp_not:N \int_eval:n
10418 \{ 0 \exp_not:N __clist_count:w \c_space_tl \#1 \exp_not:n \{ , \q_recursion_tail , \q_recursion_stop \}
10419 \}
10420 \}
10421 \cs_new:Npn __clist_count:n \#1 \{ + 1 \}
10422 \cs_new:Npx __clist_count:w \c_space_tl
10423 \#1 \exp_not:n \{ , \q_recursion_tail , \q_recursion_stop \}
10424 \}
10425 \}
10426 \}
10427 \}
10428 \}
10429 \}
10430 \}
10431 \}
10432 \}
10433 \}
10434 \}
10435 \}

(End definition for \clist_count:N and others. These functions are documented on page 124.)

\clist_use:Nnnn \clist_use:cnnn __clist_use:wwn
__clist_use:nwwwwnwn __clist_use:nwwn \clist_use:Nn \clist_use:cn

16.8 Using comma lists

\clist_use:Nnnn \clist_use:cnnn __clist_use:wwn __clist_use:nwwwwnwn __clist_use:nwwn \clist_use:Nn \clist_use:cn

First check that the variable exists. Then count the items in the comma list. If it has none, output nothing. If it has one item, output that item, brace stripped (note that space-trimming has already been done when the comma list was assigned). If it has two, place the \langle separator between two \rangle in the middle.

Otherwise, __clist_use:nwwwwnwn takes the following arguments; 1: a \langle separator \rangle, 2, 3, 4: three items from the comma list (or quarks), 5: the rest of the comma list, 6: a \langle continuation \rangle function (use_ii or use_iii with its \langle separator \rangle argument), 7: junk, and 8: the temporary result, which is built in a brace group following \q_stop. The \langle separator \rangle and the first of the three items are placed in the result, then we use the \langle continuation \rangle, placing the remaining two items after it. When we begin this loop, the
three items really belong to the comma list, the first \texttt{\textmark} is taken as a delimiter to the \texttt{use_ii} function, and the continuation is \texttt{use_ii} itself. When we reach the last two items of the original token list, \texttt{\textmark} is taken as a third item, and now the second \texttt{\textmark} serves as a delimiter to \texttt{use_ii}, switching to the other (continuation), \texttt{use_iii}, which uses the \texttt{(separator between final two)}.

\begin{verbatim}
\cs_new:Npn \clist_use:Nnnn #1#2#3#4
{ \clist_if_exist:NTF #1
 { \int_case:nnF { \clist_count:N #1 }
 { 0 } { }
 { 1 } { \exp_after:wN __clist_use:wwn #1 , , { } }
 { 2 } { \exp_after:wN __clist_use:wwn #1 , {#2} }
 }
 }
\exp_after:wN __clist_use:nnnnn
\exp_after:wN \exp_after:wN { \exp_after:wN } #1 , \textmark , { __clist_use:nwwnnn {#3} }
\textmark , { __clist_use:nwn {#4} }
\textmark , { }
__kernel_msg_expandable_error:nnn
{ kernel } { bad-variable } {#1}
}
\cs_generate_variant:Nn \clist_use:Nnnn { c }
\cs_new:Npn __clist_use:wwn #1 , #2 , #3 { \exp_not:n { #1 #3 #2 } }
\cs_new:Npn __clist_use:nwwwwnwn #1#2 , #3 , #4 , #5 \textmark , #6\textmark , #7 \q_stop #8
{ #6 {#3} , {#4} , #5 \textmark , {#6} #7 \q_stop { #8 #1 #2 } }
\cs_new:Npn __clist_use:nwn #1#2 , #3 \q_stop #4
{ \exp_not:n { #4 #1 #2 } }
\cs_new:Npn __clist_use:Nn #1#2
{ \clist_use:Nnnn #1 {#2} {#2} {#2} }
\cs_generate_variant:Nn \clist_use:Nn { c }
\end{verbatim}

(End definition for \texttt{\clist_use:Nnnn} and others. These functions are documented on page 124.)

\subsection*{16.9 Using a single item}

To avoid needing to test the end of the list at each step, we first compute the (\textit{length}) of the list. If the item number is 0, less than \textit{−(length)}, or more than \textit{(length)}, the result is empty. If it is negative, but not less than \textit{−(length)}, add \textit{(length)} + 1 to the item number before performing the loop. The loop itself is very simple, return the item if the counter reached 1, otherwise, decrease the counter and repeat.
\clist_item:nn
__clist_item:n:nw
__clist_item_n_loop:nw
__clist_item_n_end:n
__clist_item_n_strip:n
__clist_item_n_strip:w

This starts in the same way as \clist_item:nn by counting the items of the comma list. The final item should be space-trimmed before being brace-striped, hence we insert a couple of odd-looking \prg_do_nothing: to avoid losing braces. Blank items are ignored.

\cs_new:Npn \clist_item:nn #1#2
__clist_item:ffnN
\clist_count:n {#1}
\int_eval:n {#2}
__clist_item_n:nw
__clist_item_n_end:n
__clist_item_n_strip:n
__clist_item_n_strip:w
The \texttt{N}-type function is not implemented through the \texttt{n}-type function for efficiency: for instance comma-list variables do not require space-trimming of their items. Even testing for emptiness of an \texttt{n}-type comma-list is slow, so we count items first and use that both for the emptiness test and the pseudo-random integer. Importantly, \texttt{clist_item:Nn} and \texttt{clist_item:nn} only evaluate their argument once.

\begin{verbatim}
\cs_new:Npn \clist_rand_item:n #1 { \exp_args:Nf __clist_rand_item:nn { \clist_count:n {#1} } {#1} }
\cs_new:Npn __clist_rand_item:nn #1#2 {
\int_compare:nNnF {#1} = 0 {
\clist_item:nn {#2} { \int_rand:nn { 1 } {#1} } }
}\cs_new:Npn \clist_rand_item:N #1 {
\clist_if_empty:NF #1 {
\clist_item:Nn #1 { \int_rand:nn { 1 } { \clist_count:N #1 } } }
}\cs_generate_variant:Nn \clist_rand_item:N { c }
\end{verbatim}

(End definition for \texttt{clist_rand_item:n}, \texttt{clist_rand_item:N}, and \texttt{__clist_rand_item:nn}. These functions are documented on page \pageref{page:126}.)

\section{16.10 Viewing comma lists}

\begin{verbatim}
\cs_new_protected:Npn \clist_show:N { __clist_show:NN \msg_show:nnxxxx }
\cs_generate_variant:Nn \clist_show:N { c }
\cs_new_protected:Npn \clist_log:N { __clist_show:NN \msg_log:nnxxxx }
\cs_generate_variant:Nn \clist_log:N { c }
\cs_new_protected:Npn __clist_show:NN #1#2 {
__kernel_chk_defined:NT #2 {
#1 { LaTeX/kernel } { show-clist }
{ \token_to_str:N #2 }
{ \clist_map_function:NN #2 \msg_show_item:n }
} { }
}\end{verbatim}

(End definition for \texttt{clist_show:N}, \texttt{clist_log:N}, and \texttt{__clist_show:NN}. These functions are documented on page \pageref{page:126}.)
A variant of the above: no existence check, empty first argument for the message.

\cs_new_protected:Npn \clist_show:n { __clist_show:Nn \msg_show:nnxxxx }
\cs_new_protected:Npn \clist_log:n { __clist_show:Nn \msg_log:nnxxxx }
\cs_new_protected:Npn __clist_show:Nn #1#2
{ #1 \{ \LaTeX/kernel \} \{ show-clist \}
\{ } \{ \clist_map_function:nN \msg_show_item:n \} \{ } \{ }
\}

(End definition for \clist_show:n, \clist_log:n, and __clist_show:Nn. These functions are documented on page 127.)

16.11 Scratch comma lists

Temporary comma list variables.

\clist_new:N \l_tmpa_clist
\clist_new:N \l_tmpb_clist
\clist_new:N \g_tmpa_clist
\clist_new:N \g_tmpb_clist

(End definition for \l_tmpa_clist and others. These variables are documented on page 127.)

17 \l3token implementation

\char_set_catcode:nn \char_value_catcode:n \char_show_value_catcode:n

Simple wrappers around the primitives.

\cs_new_protected:Npm \char_set_catcode:nn \#1#2
\{ \tex_catcode:D \int_eval:n {#1} = \int_eval:n {#2} \exp_stop_f: \}
\cs_new:Npm \char_value_catcode:n \#1
\{ \exp_args:Nf \tl_show:n \{ \char_value_catcode:n \#1 \} \}
\cs_new_protected:Npm \char_set_catcode_escape:N \#1
\{ \char_set_catcode:nn \#1 \{ 0 \} \}
\cs_new_protected:Npm \char_set_catcode_group_begin:N \#1
\{ \char_set_catcode:nn \#1 \{ 1 \} \}
\cs_new_protected:Npm \char_set_catcode_group_end:N \#1
\{ \char_set_catcode:nn \#1 \{ 2 \} \}
\cs_new_protected:Npm \char_set_catcode_math_toggle:N \#1
\{ \char_set_catcode:nn \#1 \{ 3 \} \}
\cs_new_protected:Npm \char_set_catcode_math_superscript:N \#1
\{ \char_set_catcode:nn \#1 \{ 4 \} \}

(End definition for \char_set_catcode:nn, \char_value_catcode:n, and \char_show_value_catcode:n. These functions are documented on page 131.)
\char_set_catcode_escape:n \char_set_catcode_group_begin:n \char_set_catcode_group_end:n \char_set_catcode_math_toggle:n \char_set_catcode_alignment:n \char_set_catcode_end_line:n \char_set_catcode_parameter:n \char_set_catcode_math_superscript:n \char_set_catcode_math_subscript:n \char_set_catcode_letter:n \char_set_catcode_other:n \char_set_catcode_active:n \char_set_catcode_comment:n \char_set_catcode_invalid:n

(End definition for \char_set_catcode_escape:n and others. These functions are documented on page 130.)
\char_set_catcode_comment:n #1
\char_set_catcode_invalid:n #1
\char_set_mathcode:nn
\char_value_mathcode:n
\char_show_value_mathcode:n
\char_set_lccode:nn
\char_value_lccode:n
\char_show_value_lccode:n
\char_set_uccode:nn
\char_value_uccode:n
\char_show_value_uccode:n
\char_set_sfcode:nn
\char_value_sfcode:n
\char_show_value_sfcode:n
\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc
\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc
\l_char_active_seq
\l_char_special_seq
\char_set_catcode_comment:n
\char_set_catcode_invalid:n
\l_char_active_seq
\l_char_special_seq
\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc
\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc
(End definition for \char_set_catcode_invalid:n and others. These functions are documented on page 130.)

Pretty repetitive, but necessary!

Two sequences for dealing with special characters. The first is characters which may be active, the second longer list is for “special” characters more generally. Both lists are escaped so that for example bulk code assignments can be carried out. In both cases, the order is by ASCII character code (as is done in for example \ExplSyntaxOn).

Four simple functions with very similar definitions, so set up using an auxiliary. These are similar to Lua\TeX’s \letcharcode primitive.

(End definition for \char_set_mathcode:nn and others. These functions are documented on page 132.)
For efficiency in 8-bit engines, we use the faster primitive approach to making roman numerals.

\char_generate:nn
\char_generate_aux:nn
\char_generate_aux:nnv
\char_generate_auxii:nnv
\l__char_tmp_tl
\char_generate_invalid_catcode:

The aim here is to generate characters of (broadly) arbitrary category code. Where possible, that is done using engine support (Xe\TeX, \luatex). There are though various issues which are covered below. At the interface layer, turn the two arguments into integers up-front so this is only done once.

\cs_new:Npn \char_generate:nn #1#2
\exp:w \exp_after:wN __char_generate_aux:w
\int_value:w \int_eval:n {#1} \exp_after:wN ;
\int_value:w \int_eval:n {#2} ;

Before doing any actual conversion, first some special case filtering. Spaces are out here as \luatex emulation only makes normal (charcode 32 spaces). However, \^\@ is filtered out separately as that can’t be done with macro emulation either, so is flagged up separately. That done, hand off to the engine-dependent part.

\cs_new:Npn __char_generate_aux:w #1 ; #2 ;
\if_int_compare:w #2 = 10 \exp_stop_f:
\exp_stop_f:
\else:
\else:
\fi:
\else:
\fi:
\if_int_odd:w 0

(End definition for \char_set_active_eq:NN and others. These functions are documented on page 128.)
Engine-dependent definitions are now needed for the implementation. For LuaTeX and XeTeX there is engine-level support. They can do cases that macro emulation can’t. All of those are filtered out here using a primitive-based boolean expression to avoid fixing the category code of the null character used in the false branch (for 8-bit engines). The final level is the basic definition at the engine level: the arguments here are integers so there is no need to worry about them too much. Older versions of XeTeX cannot generate active characters so we filter that: at some future stage that may change: the slightly odd ordering of auxiliaries reflects that.

\group_begin:
{\package}
\char_set_catcode_active:N \^^L
\cs_set:Npn ^^L \{ \}
\{\package\}
\char_set_catcode_other:n \{ 0 \}
\if_int_odd:w \0
\sys_if_engine_luatex:T \{ 1 \}
\sys_if_engine_xetex:T \{ 1 \} \exp_stop_f:
\sys_if_engine_luatex:TF
{\cs_new:Npn __char_generate_aux:nnw \#1\#2\#3 \exp_end:}
{\#3}
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\lua_now:e \{ \l3kernel.charcat(\#1, \#2) \}
\}
{\cs_new:Npn __char_generate_aux:nnw \#1\#2\#3 \exp_end:}
{\#3}
\exp_after:wN \exp_end:
\tex_Ucharcat:D \#1 \exp_stop_f: \#2 \exp_stop_f:
\}

562
For engines where \texttt{Ucharcat} isn’t available or emulated, we have to work in macros, and cover only the 8-bit range. The first stage is to build up a \texttt{tl} containing \texttt{^-@} with each category code that can be accessed in this way, with an error set up for the other cases. This is all done such that it can be quickly accessed using a \texttt{\if_case:w} low-level conditional. There are a few things to notice here. As \texttt{~L} is \texttt{\outer} we need to locally set it to avoid a problem. To get open/close braces into the list, they are set up using \texttt{\if_false:} pairing and are then \texttt{x}-type expanded together into the desired form.

\begin{verbatim}
\tl_set:Nn \l__char_tmp_tl { \exp_not:N \or: }
\char_set_catcode_group_begin:n { 0 } % {
\tl_put_right:Nn \l__char_tmp_tl { ^-@ \if_false: } }
\char_set_catcode_group_end:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ \fi: \exp_not:N \or: ^-@ } %
\tl_set:Nx \l__char_tmp_tl { \l__char_tmp_tl }
\char_set_catcode_math_toggle:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\char_set_catcode_math_superscript:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\char_set_catcode_math_subscript:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\char_set_catcode_space:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\char_set_catcode_letter:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\char_set_catcode_other:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\char_set_catcode_active:n { 0 }
\tl_put_right:Nn \l__char_tmp_tl { ^-@ }
\end{verbatim}
Convert the above temporary list into a series of constant token lists, one for each character code, using \texttt{\lowercasex:D} to convert "^@" in each case. The x-type expansion ensures that \texttt{\lowercasex:D} receives the contents of the token list. In package mode, "^L" is awkward hence this is done in three parts. Notice that at this stage "^@" is active.

\begin{verbatim}
\cs_set_protected:Npn __char_tmp:n #1
\begin{Verbatim}
\int_step_function:nnN { 0 } { 11 } __char_tmp:n
\group_begin:
\tl_replace_once:Nnn \l__char_tmp_tl { ^^@ } { \ERROR }
__char_tmp:n { 12 }
\group_end:
\int_step_function:nnN { 13 } { 255 } __char_tmp:n
\end{Verbatim}
\end{verbatim}

As \TeX{} is very unhappy if it finds an alignment character inside a primitive \texttt{\halign} even when skipping false branches, some precautions are required. \TeX{} is happy if the token is hidden between braces within \texttt{\if\false: \ ... \fi:}.

As \TeX{} is very unhappy if it finds an alignment character inside a primitive \texttt{\halign} even when skipping false branches, some precautions are required. \TeX{} is happy if the token is hidden between braces within \texttt{\if\false: \ ... \fi:}.

\begin{verbatim}
\cs_new:Npn __char_generate_aux:nnw #1#2#3 \exp_end:
\begin{Verbatim}
\if\false: { \fi:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\if_case:w #2
\exp_last_unbraced:Nv \exp_stop_f:
\else:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
\if\false: { \fi:
\fi:
\end{Verbatim}
\end{verbatim}

\begin{verbatim}
\char_to_utfviii_bytes:n
__char_to_utfviii_bytes_auxi:n
__char_to_utfviii_bytes_auxii:Nn
__char_to_utfviii_bytes_output:Nn
__char_to_utfviii_bytes_output:nn
__char_to_utfviii_bytes_output:nnn
__char_to_utfviii_bytes_output:nnnn
__char_to_utfviii_bytes_end:
\end{verbatim}

This code converts a codepoint into the correct UTF-8 representation. In terms of the algorithm itself, see \url{https://en.wikipedia.org/wiki/UTF-8} for the octet pattern.
\cs_new:Npn __char_to_utfviii_bytes_auxi:n #1
\{
 \if_int_compare:w #1 > \numexpr80\exp_stop_f:
 \if_int_compare:w #1 < \numexpr800\exp_stop_f:
 __char_to_utfviii_bytes_outputi:nw
 \{ __char_to_utfviii_bytes_auxi:NNn C {#1} \{ 64 \} \}
 __char_to_utfviii_bytes_outputii:nw
 \{ __char_to_utfviii_bytes_auxii:n \{#1\} \}
 \else:
 __char_to_utfviii_bytes_outputi:nw
 \{ __char_to_utfviii_bytes_outputiii:nw
 \{ __char_to_utfviii_bytes_auxiii:n
 \{ \int_div_truncate:nn {#1} \{ 64 \} \}
 \} __char_to_utfviii_bytes_outputiv:nw
 \{ __char_to_utfviii_bytes_auxiv:n \{#1\} \}
 \fi:
 \fi:
 __char_to_utfviii_bytes_end: \{ \} \{ \} \{ \}
\}

\cs_new:Npn __char_to_utfviii_bytes_auxii:Nnn #1#2#3
\{ \numexpr#10 + \int_div_truncate:nn {#2} {#3} \}

\cs_new:Npn __char_to_utfviii_bytes_auxiii:n #1
\{ \int_mod:nn {#1} { 64 } + 128 \}

\cs_new:Npn __char_to_utfviii_bytes_outputi:nw #1 #2 __char_to_utfviii_bytes_end: \{ \} \{ \} \{ \}
\cs_new:Npn __char_to_utfviii_bytes_outputii:nw #1 #2 __char_to_utfviii_bytes_end: \{ \} \{ \} \{ \}
\cs_new:Npn __char_to_utfviii_bytes_outputiii:nw #1 __char_to_utfviii_bytes_end: \{ \} \{ \} \{ \}
\cs_new:Npn __char_to_utfviii_bytes_outputiv:nw #1 __char_to_utfviii_bytes_end: \{ \} \{ \} \{ \}
Look up any NFD and recursively produce the result.

To ensure that the category codes produced are predictable, every character is regenerated even if it is otherwise unchanged. This makes life a little interesting when we might have multiple output characters: we have to grab each of them and case change them in reverse order to maintain f-type expandability.
\cs_new:Npn \char_lowercase:N #1
\cs_new:Npn \char_uppercase:N #1
\cs_new:Npn \char_titlecase:N #1
\cs_new:Npn \char_foldcase:N #1
\cs_new:Npn __char_change_case:nNN { lower } \char_value_lccode:n #1
\cs_new:Npn __char_change_case:nNN { upper } \char_value_uccode:n #1
\cs_new:Npn __char_change_case_multi:vN { c__char_titlecase_ \token_to_str:N #1 _tl } #1
\cs_new:Npn __char_change_case:NNN #1#2#3
\exp_args:Nf __char_change_case:nN { #2 { '#3 } } #3
\cs_new:Npn __char_change_case:NNN #1#2#3
\exp_args:Nnf \use:nn
{ __char_change_case:NN #1 #2 }
{ __char_change_case:NN #1 #3 }
\cs_new:Npn __char_change_case:NNNN #1#2#3#4
\exp_args:Nnff \use:nnn
{ __char_change_case:NN #1 #2 }
{ __char_change_case:NN #1 #3 }
{ __char_change_case:NNNN #1 #2#3#4 \\
\int_compare:nNnTF {#1} = 0
{ #2 }
{ \char_generate:nn {#1} { __char_change_case_catcode:N #2 } }
\cs_new:Npn __char_change_case_multi:vN
{ c__char_titlecase_ \token_to_str:N #1 _tl } #1
\cs_new:Npn __char_change_case_multi:NNNNw #1#2#3#4#5 \q_stop
\quark_if_no_value:NTF #4
{ __char_change_case:NNN #1 #2#3#4 \\
\int_compare:nNnTF {#1} = 0
{ #2 }
{ \char_generate:nn {#1} { __char_change_case_catcode:N #2 } }
\cs_new:Npn __char_change_case_multi:nN #1#2
{ __char_change_case_multi:NNNNw #2 #1 \q_no_value \q_no_value \q_stop }
\cs_generate_variant:Nn __char_change_case_multi:nN { v }
\cs_new:Npn __char_change_case_multi:nNn #1#2#3#4#5 \q_stop
\quark_if_no_value:NTF #4
{ __char_change_case:NNN #1 #2#3#4 \\
\int_compare:nNnTF {#1} = 0
{ #2 }
{ \char_generate:nn {#1} { __char_change_case_catcode:N #2 } }
\cs_new:Npn __char_change_case_multi:nN #1#2
{ __char_change_case_multi:NNNNw #2 #1 \q_no_value \q_no_value \q_stop }
\cs_generate_variant:Nn __char_change_case_multi:nN { v }
\cs_new:Npn __char_change_case_multi:nNn #1#2#3#4#5 \q_stop
\quark_if_no_value:NTF #4
}
Same story for the string version, except category code is easier to follow. This of course makes this version significantly faster.

```latex
\cs_new:Npn \char_str_lowercase:N #1
{ \__char_str_change_case:nNN { lower } \char_value_lccode:n #1 }
\cs_new:Npn \char_str_uppercase:N #1
{ \__char_str_change_case:nNN { upper } \char_value_uccode:n #1 }
\cs_new:Npn \char_str_titlecase:N #1
{ \tl_if_exist:cTF { c__char_titlecase_ \token_to_str:N #1 _tl } \tl_to_str:c { c__char_titlecase_ \token_to_str:N #1 _tl } \char_str_uppercase:N #1 }
\cs_new:Npn \char_str_foldcase:N #1
{ \__char_str_change_case:nNN { fold } \char_value_lccode:n #1 }
\tl_if_exist:cTF { c__char_titlecase_ \token_to_str:N #1 _tl } \tl_to_str:c { c__char_titlecase_ \token_to_str:N #1 _tl } \char_str_uppercase:N #1
\tl_if_exist:cTF { c__char_ #1 case_ \token_to_str:N #3 _tl }
\c_catcode_other_space_tl
Create a space with category code 12: an “other” space.
\tl_const:Nx \c_catcode_other_space_tl \{ \char_generate:nn \{ \char_code:~ \} \{ 12 \} \}
(End definition for \c_catcode_other_space_tl. This function is documented on page 129.)

17.3 Generic tokens

\token_to_meaning:N \token_to_meaning:c \token_to_str:N \token_to_str:c
\c_group_begin_token \c_group_end_token \c_math_toggle_token \c_alignment_token \c_parameter_token
\c_math_superscript_token \c_math_subscript_token \c_space_token \c_catcode_letter_token \c_catcode_other_token

We define these useful tokens. For the brace and space tokens things have to be done by hand: the formal argument spec. for \cs_new_eq:NN does not cover them so we do things by hand. (As currently coded it would work with \cs_new_eq:NN but that’s not really a great idea to show off: we want people to stick to the defined interfaces and that includes us.) So that these few odd names go into the log when appropriate there is a need to hand-apply the \__kernel_chk_if_free_cs:N check.

\group_begin:
\__kernel_chk_if_free_cs:N \c_group_begin_token \tex_global:D \tex_let:D \c_group_begin_token { \_\kernel_chk_if_free_cs:N \c_group_end_token \tex_global:D \tex_let:D \c_group_end_token } \char_set_catcode_math_toggle:N \* \char_set_catcode_alignment:N \*
\cs_new_eq:NN \c_math_toggle_token \* \cs_new_eq:NN \c_alignment_token \*
\cs_new_eq:NN \c_parameter_token \# \cs_new_eq:NN \c_math_superscript_token \~\char_set_catcode_math_subscript:N \*
\cs_new_eq:NN \c_math_subscript_token \* \_\kernel.chk_if_free_cs:N \c_space_token \use:n \{ \tex_global:D \tex_let:D \c_space_token = - \} -
\cs_new_eq:NN \c_catcode_letter_token a

(End definition for \token_to_meaning:N and \token_to_str:N. These functions are documented on page 133.)
\cs_new_eq:NN \c_catcode_other_token 1
\group_end:

(End definition for \c_group_begin_token and others. These functions are documented on page 133.)

\c_catcode_active_tl
Not an implicit token!
\group_begin:
\char_set_catcode_active:N \*
\tl_const:Nn \c_catcode_active_tl \exp_not:N *
\group_end:

(End definition for \c_catcode_active_tl. This variable is documented on page 132.)

\section{Token conditionals}

\token_if_group_begin_p:N  
\token_if_group_begin:NTF
Check if token is a begin group token. We use the constant \c_group_begin_token for this.
\prg_new_conditional:Nppn \token_if_group_begin:N #1 \exp_not:N \c_group_begin_token
\prg_return_true:N \else: \prg_return_false:N \fi:

(End definition for \token_if_group_begin:NTF. This function is documented on page 134.)

\token_if_group_end_p:N  
\token_if_group_end:NTF
Check if token is an end group token. We use the constant \c_group_end_token for this.
\prg_new_conditional:Nppn \token_if_group_end:N #1 \exp_not:N \c_group_end_token
\prg_return_true:N \else: \prg_return_false:N \fi:

(End definition for \token_if_group_end:NTF. This function is documented on page 134.)

\token_if_math_toggle_p:N  
\token_if_math_toggle:NTF
Check if token is a math shift token. We use the constant \c_math_toggle_token for this.
\prg_new_conditional:Nppn \token_if_math_toggle:N #1 \exp_not:N \c_math_toggle_token
\prg_return_true:N \else: \prg_return_false:N \fi:

(End definition for \token_if_math_toggle:NTF. This function is documented on page 134.)

\token_if_alignment_p:N  
\token_if_alignment:NTF
Check if token is an alignment tab token. We use the constant \c_alignment_token for this.
\prg_new_conditional:Nppn \token_if_alignment:N #1 \exp_not:N \c_alignment_token
\prg_return_true:N \else: \prg_return_false:N \fi:

(End definition for \token_if_alignment:NTF. This function is documented on page 134.)
Check if token is a parameter token. We use the constant \c_parameter_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_parameter:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_parameter_token
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End definition for \token_if_parameter:NTF. This function is documented on page 134.)

Check if token is a math superscript token. We use the constant \c_math_superscript_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_math_superscript:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_math_superscript_token
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End definition for \token_if_math_superscript:NTF. This function is documented on page 134.)

Check if token is a math subscript token. We use the constant \c_math_subscript_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_math_subscript:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_math_subscript_token
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End definition for \token_if_math_subscript:NTF. This function is documented on page 134.)

Check if token is a space token. We use the constant \c_space_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_space:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_space_token
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End definition for \token_if_space:NTF. This function is documented on page 134.)

Check if token is a letter token. We use the constant \c_catcode_letter_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_letter:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End definition for \token_if_letter:NTF. This function is documented on page 135.)
Check if token is an other char token. We use the constant `\c_catcode_other_token` for this.

```latex
\begin{verbatim}
\prg_new_conditional:Npnn \token_if_other:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_catcode_other_token
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}
```

(End definition for `\token_if_other:NTF`. This function is documented on page 135.)

Check if token is an active char token. We use the constant `\c_catcode_active_tl` for this. A technical point is that `\c_catcode_active_tl` is in fact a macro expanding to `\exp_not:N *`, where * is active.

```latex
\begin{verbatim}
\prg_new_conditional:Npnn \token_if_active:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_catcode_active_tl
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}
```

(End definition for `\token_if_active:NTF`. This function is documented on page 135.)

Check if the tokens #1 and #2 have same meaning.

```latex
\begin{verbatim}
\prg_new_conditional:Npnn \token_if_eq_meaning:NN #1#2 { p , T , F , TF }
{ \if_meaning:w #1 #2
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}
```

(End definition for `\token_if_eq_meaning:NNTF`. This function is documented on page 135.)

Check if the tokens #1 and #2 have same category code.

```latex
\begin{verbatim}
\prg_new_conditional:Npnn \token_if_eq_catcode:NN #1#2 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \exp_not:N #2
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}
```

(End definition for `\token_if_eq_catcode:NNTF`. This function is documented on page 135.)

Check if the tokens #1 and #2 have same character code.

```latex
\begin{verbatim}
\prg_new_conditional:Npnn \token_if_eq_charcode:NN #1#2 { p , T , F , TF }
{ \if_charcode:w \exp_not:N #1 \exp_not:N #2
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}
```

(End definition for `\token_if_eq_charcode:NNTF`. This function is documented on page 135.)

When a token is a macro, `\token_to_meaning:N` always outputs something like `\long macro:#1->#1` so we could naively check to see if the meaning contains `->`. However, this can fail the five `\...mark` primitives, whose meaning has the form `\...mark:<user material>`. The problem is that the `<user material>` can contain `->

However, only characters, macros, and marks can contain the colon character. The idea is thus to grab until the first `;`, and analyse what is left. However, macros can have
any combination of `\long`, `\protected` or `\outer` (not used in \LaTeX3) before the string `macro`: We thus only select the part of the meaning between the first `ma` and the first following `:`. If this string is `cro`, then we have a macro. If the string is `rk`, then we have a mark. The string can also be `cro parameter character` for a colon with a weird category code (namely the usual category code of `#`). Otherwise, it is empty.

This relies on the fact that `\long`, `\protected`, `\outer` cannot contain `ma`, regardless of the escape character, even if the escape character is `m`...

Both `ma` and `:` must be of category code 12 (other), so are detokenized.

\begin{verbatim}
\use:x
{
\prg_new_conditional:Npnn \exp_not:N \token_if_macro:N \#1
{ p , T , F , TF }
{ \exp_not:N \exp_after:wN \exp_not:N \__token_if_macro_p:w
\exp_not:N \token_to_meaning:N \#1 \tl_to_str:n { ma : }
\exp_not:N \q_stop }
\cs_new:Npn \exp_not:N \__token_if_macro_p:w
##1 \tl_to_str:n { ma } ##2 \c_colon_str ##3 \exp_not:N \q_stop
}
{ \str_if_eq:nnTF { #2 } { cro } { \prg_return_true: } { \prg_return_false: }
}
(End definition for `\token_if_macro:NTF` and `\__token_if_macro_p:w` This function is documented on page 135.)
\end{verbatim}

\begin{verbatim}
\token_if_cs:p:N
\token_if_cs:NTF
Check if token has same catcode as a control sequence. This follows the same pattern as for `\token_if_letter:N` etc. We use `\scan_stop:` for this.
\begin{verbatim}
\prg_new_conditional:Npnn \exp_not:N \token_if_cs:N \#1
{ p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \scan_stop:
\prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}
(End definition for `\token_if_cs:NTF`. This function is documented on page 135.)
\end{verbatim}

\begin{verbatim}
\token_if_expandable:p:N
\token_if_expandable:NTF
Check if token is expandable. We use the fact that \TeX temporarily converts `\exp_not:N \token` into `\scan_stop:` if \token is expandable. An undefined token is not considered as expandable. No problem nesting the conditionals, since the third `\#1` is only skipped if it is non-expandable (hence not part of \TeX's conditional apparatus).
\begin{verbatim}
\prg_new_conditional:Npnn \exp_not:N \token_if_expandable:N \#1
{ p , T , F , TF }
{ \exp_after:wN \if_meaning:w \exp_not:N #1 \q_stop
\prg_return_false: \else:
\if_cs_exist:N #1 \prg_return_true: \else: \prg_return_false: \fi:
\end{verbatim}
\end{verbatim}

\end{document}
These auxiliary functions are used below to define some conditionals which detect whether the \texttt{meaning} of their argument begins with a particular string. Each auxiliary takes an argument delimited by a string, a second one delimited by \texttt{q_stop}, and returns the first one and its delimiter. This result is eventually compared to another string.

Each of these conditionals tests whether its argument’s \texttt{meaning} starts with a given string. This is essentially done by having an auxiliary grab an argument delimited by the string and testing whether the argument was empty. Of course, a copy of this string must first be added to the end of the \texttt{meaning} to avoid a runaway argument in case it does not contain the string. Two complications arise. First, the escape character is not fixed, and cannot be included in the delimiter of the auxiliary function (this function cannot be defined on the fly because tests must remain expandable): instead the first argument of the auxiliary (plus the delimiter to avoid complications with trailing spaces) is compared using \texttt{str_if_eq:eeTF} to the result of applying \texttt{token_to_str:N} to a control sequence. Second, the \texttt{meaning} of primitives such as \texttt{dimen} or \texttt{dimendef} starts in the same way as registers such as \texttt{dimen123}, so they must be tested for.

Characters used as delimiters must have catcode 12 and are obtained through \texttt{tl_to_str:n}. This requires doing all definitions within \texttt{x}-expansion. The temporary function \texttt{\_\_token_tmp:w} used to define each conditional receives three arguments: the name of the conditional, the auxiliary’s delimiter (also used to name the auxiliary), and the string to which one compares the auxiliary’s result. Note that the \texttt{meaning} of a protected long macro starts with \texttt{protected} \texttt{long macro}, with no space after \texttt{protected} but a space after \texttt{long}, hence the mixture of \texttt{token_to_str:N} and \texttt{tl_to_str:n}.

For the first five conditionals, \texttt{cs_if_exist:cT} turns out to be \texttt{false}, and the code boils down to a string comparison between the result of the auxiliary on the \texttt{meaning} of the conditional’s argument \texttt{\textdollar\textdollar\textdollar\textdollar\textdollar}, and \texttt{#3}. Both are evaluated at run-time, as this is important to get the correct escape character.
The other five conditionals have additional code that compares the argument \texttt{#1} to two \LaTeX{} primitives which would wrongly be recognized as registers otherwise. Despite using \LaTeX{}'s primitive conditional construction, this does not break when \texttt{#1} is itself a conditional, because branches of the conditionals are only skipped if \texttt{#1} is one of the two primitives that are tested for (which are not \LaTeX{} conditionals).

\begin{verbatim}
\group_begin:
\cs_set_protected:Npn \_token_tmp:w #1#2#3
{ \use:x
\prg_new_conditional:Npnn \exp_not:c { token_if_ #1 :N } \texttt{#1}
{ p , T , F , TF }
{ \cs_if_exist:cT { tex_ #2 :D }
{ \exp_not:N \if_meaning:w \texttt{#1} \exp_not:c { tex_ #2 :D }
\exp_not:N \prg_return_false:
{ \exp_not:N \else:
\exp_not:N \if_meaning:w \texttt{#1} \exp_not:c { tex_ #2 def:D }
\exp_not:N \prg_return_false:
\exp_not:N \else:
\exp_not:N \str_if_eq:eeTF
{ \exp_not:N \exp_after:wN
\exp_not:c { __token_delimit_by_ #2 :w }
\exp_not:N \token_to_meaning:N \texttt{#1}?
\tl_to_str:n {#2} \exp_not:N \q_stop
{ \exp_not:n {#3} }
{ \exp_not:N \prg_return_true: }
\exp_not:N \prg_return_false: }
\cs_if_exist:cT { tex_ #2 :D }
{ \exp_not:N \fi:
\exp_not:N \fi:
}
}
\exp_not:N \else:
\exp_not:N \exp_after:wN
\exp_not:c { __token_delimit_by_ #2 :w }
\exp_not:N \token_to_meaning:N \texttt{#1}
\exp_not:N \q_stop
}
\exp_not:N \str_if_eq:eeTF
{ \exp_not:N \exp_after:wN
\exp_not:c { __token_delimit_by_ #2 :w }
\exp_not:N \token_to_meaning:N \texttt{#1}
\exp_not:N \q_stop
}
{ \exp_not:n {#3} }
{ \exp_not:N \prg_return_true: }
{ \exp_not:N \prg_return_false: }
\cs_if_exist:cT { tex_ #2 :D }
{ \exp_not:N \fi:
\exp_not:N \fi:
}
}
\__token_tmp:w { chardef } { char" } { \token_to_str:N \char" }
\__token_tmp:w { mathchardef } { char" } { \token_to_str:N \mathchar" }
\__token_tmp:w { long_macro } { macro } { \tl_to_str:n { \long } macro }
\__token_tmp:w { protected_macro } { macro }
{ \tl_to_str:n { \protected } macro }
\__token_tmp:w { protected_long_macro } { macro }
{ \token_to_str:N \protected \tl_to_str:n { \long } macro }
\__token_tmp:w { dim_register } { dimen } { \token_to_str:N \dimen }
\__token_tmp:w { int_register } { count } { \token_to_str:N \count }
\__token_tmp:w { muskip_register } { muskip } { \token_to_str:N \muskip }
\__token_tmp:w { skip_register } { skip } { \token_to_str:N \skip }
\__token_tmp:w { toks_register } { toks } { \token_to_str:N \toks }
\group_end:
\end{verbatim}
We filter out macros first, because they cause endless trouble later otherwise.

Primitives are almost distinguished by the fact that the result of `$\text{token_to_meaning}$` is formed from letters only. Every other token has either a space (e.g., the letter `A`), a digit (e.g., `\count123`) or a double quote (e.g., `\char"A`).

Ten exceptions: on the one hand, `$\text{undefined}$` is not a primitive, but its meaning is `undefined`, only letters; on the other hand, `$\text{space}$`, `$\text{italiccorr}$`, `$\text{hyphen}$`, `$\text{firstmark}$`, `$\text{topmark}$`, `$\text{botmark}$`, `$\text{splitfirstmark}$`, `$\text{splitbotmark}$`, and `$\nullfont$` are primitives, but have non-letters in their meaning.

We start by removing the two first (non-space) characters from the meaning. This removes the escape character (which may be nonexistent depending on `$\text{endlinechar}$`), and takes care of three of the exceptions: `$\text{space}$`, `$\text{italiccorr}$` and `$\text{hyphen}$`, whose meaning is at most two characters. This leaves a string terminated by some `:`, and `$\text{q_stop}$`.

The meaning of each one of the five `$\ldots$mark` primitives has the form `<letters>:<user material>`. In other words, the first non-letter is a colon. We remove everything after the first colon.

We are now left with a string, which we must analyze. For primitives, it contains only letters. For non-primitives, it contains either `"`, or a space, or a digit. Two exceptions remain: `$\text{undefined}$`, which is not a primitive, and `$\nullfont$`, which is a primitive.

Spaces cannot be grabbed in an un delimited way, so we check them separately. If there is a space, we test for `$\nullfont$`. Otherwise, we go through characters one by one, and stop at the first character less than `'A` (this is not quite a test for “only letters”, but is close enough to work in this context). If this first character is `:` then we have a primitive, or `$\text{undefined}$`, and if it is `"` or a digit, then the token is not a primitive.
17.5 Peeking ahead at the next token

Peeking ahead is implemented using a two part mechanism. The outer level provides a defined interface to the lower level material. This allows a large amount of code to be shared. There are four cases:

1. peek at the next token;
2. peek at the next non-space token;
3. peek at the next token and remove it;
4. peek at the next non-space token and remove it.
Storage tokens which are publicly documented: the token peeked.

\l_peek_token
\g_peek_token

\_peek_search_token
The token to search for as an implicit token: cf. \_peek_search_tl.
\_peek_search_tl
The token to search for as an explicit token: cf. \_peek_search_token.

\_peek_true:w
\_peek_true_aux:w
\_peek_false:w
\_peek_tmp:w

Functions used by the branching and space-stripping code.

\peek_after:Nw
\peek_gafter:Nw
Simple wrappers for \futurelet: no arguments absorbed here.

\_peek_true_remove:w
A function to remove the next token and then regain control.

\_peek_remove_spaces:n
Repeatedly use \_peek_true_remove:w to remove a space and call \_peek_true_aux:w.
\peek_remove_spaces:n \exp_after:w \__peek_false:w
}

(End definition for \peek_remove_spaces:n and \__peek_remove_spaces:. This function is documented on page 270.)

\__peek_token_generic_aux:NNNTF

The generic functions store the test token in both implicit and explicit modes, and the true and false code as token lists, more or less. The two branches have to be absorbed here as the input stream needs to be cleared for the peek function itself. Here, #1 is \__peek_true_remove:w when removing the token and \__peek_true_aux:w otherwise.

\cs_new_protected:Npn \__peek_token_generic_aux:NNNTF #1#2#3#4#5
\group_align_safe_begin:
\cs_set_eq:NN \l__peek_search_token #3
\tl_set:Nn \l__peek_search_tl {#3}
\cs_set:Npx \__peek_true_aux:w
\exp_not:N \group_align_safe_end:
\exp_not:n {#4}
\cs_set_eq:NN \__peek_true:w #1
\cs_set:Npx \__peek_false:w
\exp_not:N \group_align_safe_end:
\exp_not:n {#5}
\peek_after:Nw #2
\group_align_safe_end:
\exp_after:wN \__peek_false:w
}

(End definition for \__peek_token_generic_aux:NNNTF.)

\__peek_token_remove_generic:NNF \__peek_token_remove_generic:NNTF

For token removal there needs to be a call to the auxiliary function which does the work.

\cs_new_protected:Npn \__peek_token_remove_generic:NNTF #1#2#3
\cs_new_protected:Npn \__peek_token_remove_generic:NNT #1#2#3
\cs_new_protected:Npn \__peek_token_remove_generic:NNF #1#2#3
\cs_new_protected:Npn \__peek_token.generic_aux:NNNTF \__peek_true_remove:w
\group_align_safe_begin:
\cs_set_eq:NN \l__peek_search_token #3
\tl_set:Nn \l__peek_search_tl {#3}
\cs_set:Npx \__peek_true_remove:w
\exp_not:N \group_align_safe_end:
\exp_after:wN \__peek_false:w
}

(End definition for \__peek_token_remove_generic:NNTF and \__peek_token_remove_generic:NNTF.)

\__peek_execute_branches_meaning:

The meaning test is straightforward.

\cs_new:Npn \__peek_execute_branches_meaning:
\if_meaning:w \l_peek_token \l__peek_search_token
\exp_after:wN \__peek_true:w
\group_align_safe_end:
\exp_after:wN \__peek_false:w
}

579
The catcode and charcode tests are very similar, and in order to use the same auxiliaries we do something a little bit odd, firing \if_catcode:w and \if_charcode:w before finding the operands for those tests, which are only given in the auxii:N and auxiii: auxiliaries. For our purposes, three kinds of tokens may follow the peeking function:

- control sequences which are not equal to a non-active character token (e.g., macro, primitive);
- active characters which are not equal to a non-active character token (e.g., macro, primitive);
- explicit non-active character tokens, or control sequences or active characters set equal to a non-active character token.

The first two cases are not distinguishable simply using \TeX's \futurelet, because we can only access the \meaning of tokens in that way. In those cases, detected thanks to a comparison with \scan_stop:, we grab the following token, and compare it explicitly with the explicit search token stored in \l__peek_search_tl. The \exp_not:N prevents outer macros (coming from non-\TeX{} code) from blowing up. In the third case, \l__peek_token is good enough for the test, and we compare it again with the explicit search token. Just like the peek token, the search token may be of any of the three types above, hence the need to use the explicit token that was given to the peek function.
\peek_catcode:NTF
\peek_catcode_remove:NTF
\peek_charcode:NTF
\peek_charcode_remove:NTF
\peek_meaning:NTF
\peek_meaning_remove:NTF

The public functions themselves cannot be defined using \prg_new_conditional:Nn. Instead, the TF, T, F variants are defined in terms of corresponding variants of \__-\_peek_execute_branches_catcode:, with first argument one of \__peek_execute_branches_catcode:, \__peek_execute_branches_charcode:, or \__peek_execute_branches_meaning:.

To ignore spaces, remove them using \peek_remove_spaces:n before running the tests.

(End definition for \__peek_execute_branches_catcode: and others.)
All tokens are N-type tokens, except in four cases: begin-group tokens, end-group tokens, space tokens with character code 32, and outer tokens. Since \l_peek_token might be outer, we cannot use the convenient \bool_if:NTF function, and must resort to the old trick of using \ifodd to expand a set of tests. The false branch of this test is taken if the token is one of the first three kinds of non-N-type tokens (explicit or implicit), thus we call \__peek_false:w. In the true branch, we must detect outer tokens, without impacting performance too much for non-outer tokens. The first filter is to search for outer in the \meaning of \l_peek_token. If that is absent, \use_none_delimit_by_q_stop:w cleans up, and we call \__peek_true:w. Otherwise, the token can be a non-outer macro or a primitive mark whose parameter or replacement text contains outer, it can be the primitive \outer, or it can be an outer token. Macros and marks would have ma in the part before the first occurrence of outer; the meaning of \outer has nothing after outer, contrarily to outer macros; and that covers all cases, calling \__peek_true:w or \__peek_false:w as appropriate. Here, there is no \scan_stop: to the \__peek_token_generic:NTF function.
The following test files are used for this code: m3prop001, m3prop002, m3prop003, m3prop004, m3show001.

A property list is a macro whose top-level expansion is of the form

\s__prop \__prop_pair:wn \langle key1 \rangle \s__prop \{ \langle value1 \rangle \}

... \__prop_pair:wn \langle keyn \rangle \s__prop \{ \langle value_n \rangle \}

where \s__prop is a scan mark (equal to \scan_stop:), and \__prop_pair:wn can be used to map through the property list.

\s__prop
The internal token used at the beginning of property lists. This is also used after each \langle key \rangle (see \__prop_pair:wn).

(End definition for \s__prop.)

\__prop_pair:wn
The internal token used to begin each key–value pair in the property list. If expanded outside of a mapping or manipulation function, an error is raised. The definition should always be set globally.

(End definition for \__prop_pair:wn.)

\l__prop_internal_tl
Token list used to store new key–value pairs to be inserted by functions of the \prop_put:Nnn family.

(End definition for \l__prop_internal_tl.)
\_prop\_split:NnTF \_prop\_split:NnTF \{property list\} \{(key)\} \{(true code)\} \{(false code)\}

Splits the \{property list\} at the \{key\}, giving three token lists: the \{extract\} of \{property list\} before the \{key\}, the \{value\} associated with the \{key\} and the \{extract\} of the \{property list\} after the \{value\}. Both \{extracts\} retain the internal structure of a property list, and the concatenation of the two \{extracts\} is a property list. If the \{key\} is present in the \{property list\} then the \{true code\} is left in the input stream, with #1, #2, and #3 replaced by the first \{extract\}, the \{value\}, and the second extract. If the \{key\} is not present in the \{property list\} then the \{false code\} is left in the input stream, with no trailing material. Both \{true code\} and \{false code\} are used in the replacement text of a macro defined internally, hence macro parameter characters should be doubled, except #1, #2, and #3 which stand in the \{true code\} for the three extracts from the property list. The \{key\} comparison takes place as described for \texttt{str\_if\_eq:nn}.

\texttt{\_s\_prop}\ A private scan mark is used as a marker after each key, and at the very beginning of the property list.

\texttt{\_prop\_pair:wn}\ The delimiter is always defined, but when misused simply triggers an error and removes its argument.

\texttt{\l\_prop\_internal\_tl}\ Token list used to store the new key–value pair inserted by \prop\_put:Nnn and friends.

\texttt{\c\_empty\_prop}\ An empty prop.

18.1 Allocation and initialisation

\texttt{\prop\_new:N}\ Property lists are initialized with the value \texttt{\_c\_empty\_prop}.

\texttt{\prop\_clear:N}\ The same idea for clearing.
Once again a simple variation of the token list functions.

\prop_clear_new:N Once again a simple variation of the token list functions.
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

These are simply copies from the token list functions.
\prop_set_eq:NN
\prop_set_eq:cN
\prop_set_eq:Nc
\prop_set_eq:cc
\prop_gset_eq:NN
\prop_gset_eq:cN
\prop_gset_eq:Nc
\prop_gset_eq:cc

We can now initialize the scratch variables.
\l_tmpa_prop
\l_tmpb_prop
\g_tmpa_prop
\g_tmpb_prop

Property list used by \prop_set_from_keyval:Nn and others.
\prop_new:N \l__prop_internal_prop

To avoid tracking throughout the loop the variable name and whether the assignment
is local/global, do everything in a scratch variable and empty it afterwards to avoid
wasting memory. Loop through items separated by commas, with \prg_do_nothing: to
avoid losing braces. After checking for termination, split the item at the first and then
at the second = (which ought to be the first of the trailing = that we added). For both
splits trim spaces and call a function (first \__prop_from_keyval_key:w then \__prop_from_keyval_value:w), followed by the trimmed material, \q_nil, the subsequent part
of the item, and the trailing =’s and \q_stop. After finding the \key just store it after
\q_stop. After finding the \value ignore completely empty items (both trailing = were
used as delimiters and all parts are empty); if the remaining part #2 consists exactly
of the second trailing = (namely there was exactly one = in the item) then output one
key–value pair for the property list; otherwise complain about a missing or extra =.
\__prop_from_keyval:n {#2}
\prop_set_eq:NN #1 \l__prop_internal_prop
\prop_clear:N \l__prop_internal_prop
\cs_generate_variant:Nn \prop_set_from_keyval:Nn { c }
\cs_new_protected:Npn \prop_gset_from_keyval:Nn #1#2
{ \prop_clear:N \l__prop_internal_prop
 \__prop_from_keyval:n {#2}
 \prop_gset_eq:NN #1 \l__prop_internal_prop
 \prop_clear:N \l__prop_internal_prop
 \cs_generate_variant:Nn \prop_gset_from_keyval:Nn { c }
 \cs_new_protected:Npn \prop_const_from_keyval:Nn #1#2
{ \prop_clear:N \l__prop_internal_prop
 \__prop_from_keyval:n {#2}
 \tl_const:Nx #1 { \exp_not:o \l__prop_internal_prop }
 \prop_clear:N \l__prop_internal_prop
 \cs_generate_variant:Nn \prop_const_from_keyval:Nn { c }
 \cs_new_protected:Npn \__prop_from_keyval:n #1
{ \__prop_from_keyval_loop:w \prg_do_nothing: #1 ,
 \q_recursion_tail , \q_recursion_stop
 \cs_new_protected:Npn \__prop_from_keyval_loop:w #1 ,
{ \quark_if_recursion_tail_stop:o {#1}
 \__prop_from_keyval_split:Nw \__prop_from_keyval_key:n
 #1 = = \q_stop {#1}
 \__prop_from_keyval_loop:w \prg_do_nothing:
 } }
\cs_new_protected:Npn \__prop_from_keyval_split:Nw #1#2 =
{ \tl_trim_spaces_apply:oN {#2} #1 }
\cs_new_protected:Npn \__prop_from_keyval_key:n #1
{ \__prop_from_keyval_key:w #1 \q_nil }
\cs_new_protected:Npn \__prop_from_keyval_key:w #1 \q_nil #2 \q_stop
{ \__prop_from_keyval_split:Nw \__prop_from_keyval_value:n
 \prg_do_nothing: #2 \q_stop {#1}
 \cs_new_protected:Npn \__prop_from_keyval_value:n #1
{ \__prop_from_keyval_value:w #1 \q_nil #2 \q_stop #3#4 }
\tl_if_empty:nF { #3 #1 #2 }
{ \__kernel_msg_error:nnx { kernel } { prop-keyval } { \exp_not:o {#4} }
 }
\str_if_eq:nnTF {#2} { = }
{ \prop_put:Nnn \l__prop_internal_prop {#3} {#1} }
{ \exp_not:o {#4} }
}
18.2 Accessing data in property lists

This function is used by most of the module, and hence must be fast. It receives a ⟨property list⟩, a ⟨key⟩, a ⟨true code⟩ and a ⟨false code⟩. The aim is to split the ⟨property list⟩ at the given ⟨key⟩ into the ⟨extract1⟩ before the key–value pair, the ⟨value⟩ associated with the ⟨key⟩ and the ⟨extract2⟩ after the key–value pair. This is done using a delimited function, whose definition is as follows, where the ⟨key⟩ is turned into a string.

\[\text{\textbackslash cs_set:Npn } \text{\_prop_split_aux:w } #1 \text{\_prop_pair:wn } \langle \text{key} \rangle \text{\_prop } #2 \]
\[\text{#3 } \text{q\_mark} \text{#4 } \text{q\_stop} \]
\[\text{\{ \#4 } \{\langle \text{true code} \rangle \} \{\langle \text{false code} \rangle \} \}

If the ⟨key⟩ is present in the property list, \_prop_split_aux:w’s #1 is the part before the ⟨key⟩, #2 is the ⟨value⟩, #3 is the part after the ⟨key⟩, #4 is \use_i:nn, and #5 is additional tokens that we do not care about. The ⟨true code⟩ is left in the input stream, and can use the parameters #1, #2, #3 for the three parts of the property list as desired. Namely, the original property list is in this case #1 \_prop_pair:wn ⟨key⟩ \_prop {#2} #3.

If the ⟨key⟩ is not there, then the ⟨function⟩ is \use_ii:nn, which keeps the ⟨false code⟩.

(End definition for \_prop_split:NnTF, \_prop_split_aux:NnTF, and \_prop_split_aux:w.)

Deleting from a property starts by splitting the list. If the key is present in the property list, the returned value is ignored. If the key is missing, nothing happens.

(End definition for \_prop_split:NnTF, \_prop_split_aux:NnTF, and \_prop_split_aux:w.)
Getting an item from a list is very easy: after splitting, if the key is in the property list,
just set the token list variable to the return value, otherwise to \texttt{\qnoval}.

\begin{verbatim}
\cs_new_protected:Npn \prop_get:NnN #1#2#3
{\__prop_split:NnTF #1 {#2}
 { \tl_set:Nn #3 {##2} }
 { \tl_set:Nn #3 {\qnoval} }
}
\cs_generate_variant:Nn \prop_get:NnN { NV , No }
\cs_generate_variant:Nn \prop_get:NnN { c , cV , co }
\end{verbatim}

(Please refer to page 144 for further details on \prop_get:NnN.)

Popping a value also starts by doing the split. If the key is present, save the value in
the token list and update the property list as when deleting. If the key is missing, save
\texttt{\qnoval} in the token list.

\begin{verbatim}
\cs_new_protected:Npn \prop_pop:NnN #1#2#3
{\__prop_split:NnTF #1 {#2}
 { \tl_set:Nn #3 {##2} \tl_set:Nn #1 {##1 ##3} }
 { \tl_set:Nn #3 {\qnoval} }
}
\cs_new_protected:Npn \prop_gpop:NnN #1#2#3
{\__prop_split:NnTF #1 {#2}
 { \tl_set:Nn #3 {##2} \tl_gset:Nn #1 {##1 ##3} }
 { \tl_set:Nn #3 {\qnoval} }
}
\cs_generate_variant:Nn \prop_pop:NnN { No }
\cs_generate_variant:Nn \prop_pop:NnN { c , co }
\cs_generate_variant:Nn \prop_gpop:NnN { No }
\cs_generate_variant:Nn \prop_gpop:NnN { c , co }
\end{verbatim}

(End definition for \prop_pop:NnN and \prop_gpop:NnN. These functions are documented on page 144.)

Getting the value corresponding to a key in a property list in an expandable fashion is
similar to mapping some tokens. Go through the property list one \langle key ⟩–\langle value ⟩ pair at
a time: the arguments of \__prop_item_Nn:nwn are the \langle key ⟩ we are looking for, a \langle key ⟩
of the property list, and its associated value. The \langle keys ⟩ are compared (as strings). If
they match, the \langle value \rangle is returned, within \exp_not:n. The loop terminates even if the \langle key \rangle is missing, and yields an empty value, because we have appended the appropriate \langle key \rangle–\langle empty value \rangle pair to the property list.

\cs_new:Npn \prop_item:Nn #1{ #2 }  \__prop_item_Nn:nwwn { \tl_to_str:n {#2} } #1 
\__prop_pair:wn \tl_to_str:n {#2} \s__prop { }
\prg_break_point:
\cs_new:Npn \__prop_item_Nn:nwwn #1#2 \__prop_pair:wn #3 \s__prop #4
{ \str_if_eq:eeTF {#1} {#3} { \prg_break:n { \exp_not:n {#4} } } { \__prop_item_Nn:nwwn {#1} } }
\cs_generate_variant:Nn \prop_item:Nn { c }

\prop_count:N  \prop_count:c  \__prop_count:nn
Counting the key–value pairs in a property list is done using the same approach as for other count functions: turn each entry into a +1 then use integer evaluation to actually do the mathematics.

\cs_new:Npn \prop_count:N #1
{ \int_eval:n { 0 \prop_map_function:NN #1 \__prop_count:nn } }
\cs_generate_variant:Nn \prop_count:N { c }

\prop_pop:NnN  \prop_pop:cnN  \prop_gpop:NnN  \prop_gpop:cnN
Popping an item from a property list, keeping track of whether the key was present or not, is implemented as a conditional. If the key was missing, neither the property list, nor the token list are altered. Otherwise, \prg_return_true: is used after the assignments. \prg_new_protected_conditional:Npnn \prop_pop:NN \prop_gpop:NN #1#2#3 { #1 , #2 , #3 }
{ \__prop_split:NnTF #1 #2 }
{ \tl_set:Nn #3 {##2} \tl_set:Nn #1 { ##1 ##3 } \prg_return_true: }
{ \prg_return_false: }
\prg_new_protected_conditional:Npnn \prop_gpop:NN #1#2#3 { #1 , #2 , #3 }
{ \__prop_split:NnTF #1 #2 }
{ \tl_set:Nn #3 {##2} }
Since the branches of \_\_prop_split:NnTF are used as the replacement text of an internal macro, and since the \langlekey\rangle and new \langlevalue\rangle may contain arbitrary tokens, it is not safe to include them in the argument of \_\_prop_split:NnTF. We thus start by storing in \l__prop_internal_tl tokens which (after x-expansion) encode the key–value pair. This variable can safely be used in \_\_prop_split:NnTF. If the \langlekey\rangle was absent, append the new key–value to the list. Otherwise concatenate the extracts \#1 and \#3 with the new key–value pair \l__prop_internal_tl. The updated entry is placed at the same spot as the original \langlekey\rangle in the property list, preserving the order of entries.

\cs_new_protected:Npn \prop_put:Nnn { \__prop_put:NNnn \tl_set:Nx }
\cs_new_protected:Npn \prop_gput:Nnn { \__prop_put:NNnn \tl_gset:Nx }
\cs_new_protected:Npn \__prop_put:NNnn #1#2#3#4
\{ \tl_set:Nn \l__prop_internal_tl{
\exp_not:N \__prop_pair:wn \tl_to_str:n {#3}\s__prop { \exp_not:n {#4} } }
\__prop_split:NnTF #2 {#3}{#1 #2 { \exp_not:n {##1} \l__prop_internal_tl \exp_not:n {##3} }}{#1 #2 { \exp_not:o {#2} \l__prop_internal_tl }}
\}
(End definition for \prop_put:Nnn, \prop_gput:Nnn, and \__prop_put:NNnn. These functions are documented on page 144.)

Adding conditionally also splits. If the key is already present, the three brace groups given by \_\_prop_split:NnTF are removed. If the key is new, then the value is added, being careful to convert the key to a string using \tl_to_str:n.

\cs_new_protected:Npn \prop_put_if_new:Nnn \prop_put_if_new:cnn \prop_gput_if_new:Nnn \prop_gput_if_new:cnn \__prop_put_if_new:NNnn
\cs_new_protected:Nnn \prop_put_if_new:Nnn \prop_put_if_new:cnn \prop_gput_if_new:Nnn \prop_gput_if_new:cnn
\cs_new_protected:Nnn \prop_put_if_new:Nnn \prop_put_if_new:cnn \prop_gput_if_new:Nnn
\( \text{End definition for} \prop_put_if_new:Nnn, \prop_gput_if_new:Nnn, \text{and} \prop_gput_if_new:Nnn. \text{These functions are documented on page 144.} \)
11721 \begin{verbatim}
{ \exp_not:N \_(prop\_pair:wn \tl_to_str:n {#3}
    \s\_prop \exp_not:n { {#4} }
}
11722 \_(prop\_split:NNnTF #2 {#3}
11723 { }
11724 { #1 #2 \{ \exp_not:o {#2} \l\_prop\_internal_tl \} }
11725 \cs_generate_variant:Nn \prop_put_if_new:Nnn { c }
11726 \cs_generate_variant:Nn \prop_gput_if_new:Nnn { c }
\end{verbatim}

(End definition for \prop_put_if_new:Nnn, \prop_gput_if_new:Nnn, and \_(prop\_put\_if\_new:NNnn. 
These functions are documented on page 144.)

\subsection*{18.3 Property list conditionals}

\begin{verbatim}
\prop_if_exist_p:N \prop_if_exist_p:c \prop_if_exist:N \prop_if_exist:c
\prop_if_empty_p:N \prop_if_empty_p:c \prop_if_empty:N \prop_if_empty:c
\prop_if_in_p:Nn \prop_if_in_p:NV \prop_if_in_p:No \prop_if_in_p:cn \prop_if_in_p:cV \prop_if_in_p:co
\prop_if_in:Nn \prop_if_in:Nv \prop_if_in:No \prop_if_in:cn \prop_if_in:Nv \prop_if_in:co
\prop_if_in:nnn \prop_if_in:N
\end{verbatim}

Copies of the cs functions defined in \texttt{l3basics}.

\begin{verbatim}
\prg_new_eq_conditional:NNn \prop_if_exist:N \cs_if_exist:N
\prg_new_eq_conditional:NNn \prop_if_exist:c \cs_if_exist:c
\prg_new_conditional:Npnn \prop_if_empty:N #1 { p , T , F , TF }
\begin{verbatim}
\tl_if_eq:NNTF #1 \c_empty_prop \prg_return_true: \prg_return_false:
\end{verbatim}
\prg_generate_conditional_variant:Nnn \prop_if_empty:Nnn { c } { p , T , F , TF }
\end{verbatim}

(End definition for \prop_if_exist:NTF. This function is documented on page 145.)

Testing expandably if a key is in a property list requires to go through the key–value 
pairs one by one. This is rather slow, and a faster test would be

\begin{verbatim}
\prg_new_protected_conditional:Npnn \prop_if_in:Nn #1 #2
\begin{verbatim}
\@@_split:NnTF #1 {#2}
\begin{verbatim}
\prg_return_true: \prg_return_false:
\end{verbatim}
\end{verbatim}
\end{verbatim}

but \_(prop\_split:NNnTF is non-expandable.

Instead, the key is compared to each key in turn using \texttt{\str_if_eq:ee}, which is 
expandable. To terminate the mapping, we append to the property list the key that is 
searched for. This second \texttt{\tl_to_str:n} is not expanded at the start, but only when 
included in the \texttt{\str_if_eq:ee}. It cannot make the breaking mechanism choke, 
because the arbitrary token list material is enclosed in braces. The second argument of 
\_(prop\_if\_in:nnn is most often empty. When the \texttt{\langle\textit{key}\rangle} is found in the list, 
\_(prop\_if\_in:N receives \_(prop\_pair:wn, and if it is found as the extra item, the function receives 
\_q\_recursion\_tail, easily recognizable.
Here, \texttt{\prop_map_function:NN} is not sufficient for the mapping, since it can only map a single token, and cannot carry the key that is searched for.

\begin{verbatim}
\prg_new_conditional:Npnn \prop_if_in:Nn #1#2 { p , T , F , TF }
\prg_break_point:
\cs_new:Npn \__prop_if_in:nwwn #1#2 \__prop_pair:wn #3 \s__prop #4
{ \str_if_eq:eeTF {#1} {#3} { \__prop_if_in:N } { \__prop_if_in:nwwn {#1} } }
\cs_new:Npn \__prop_if_in:N #1
{ \if_meaning:w \q_recursion_tail #1 \prg_return_false: \else: \prg_return_true: \fi: \prg_break: }
\prg_generate_conditional_variant:Nnn \prop_if_in:Nn { NV , No , c , cV , co } { p , T , F , TF }
\end{verbatim}

(End definition for \texttt{\prop_if_in:NnTF}, \texttt{\__prop_if_in:nwwn}, and \texttt{\__prop_if_in:N}. This function is documented on page 146.)

\subsection{18.4 Recovering values from property lists with branching}

\begin{verbatim}
\prg_new_protected_conditional:Npnn \prop_get:NnN #1#2#3 { T , F , TF }
\prg_break_point:
\cs_new:Npn \__prop_split:NnTF #1 \#2
{ \tl_set:Nn \s__prop \s#2 }
\prg_return_true:
\tl_set:Nn \s__prop \s#1 {##2}
\prg_return_true:
\prg_return_false: }
\prg_generate_conditional_variant:Nnn \prop_get:NnN { NV , No , c , cV , co } { p , T , F , TF }
\end{verbatim}

(End definition for \texttt{\prop_get:NnNTF}. This function is documented on page 146.)

\subsection{18.5 Mapping to property lists}

\begin{verbatim}
\prg_new_conditional:Npnn \prop_map_function:NN \prop_map_function:Nc \prop_map_function:cN \prop_map_function:cc \__prop_map_function:Nwwn
\end{verbatim}

The argument delimited by \texttt{\__prop_pair:wn} is empty except at the end of the loop where it is \texttt{\prg_break:}. No need for any quark test.
\cs_new:Npn \prop_map_function:NN #1#2 
{
\exp_after:wN \use_i:nnn
\exp_after:wN \__prop_map_function:Nwwn
\exp_after:wN #2
#1
\prg_break: \__prop_pair:wn \s__prop { } \prg_break_point:
\prg_break_point:Nn \prop_map_break: { }
}
\cs_new:Npn \__prop_map_function:Nwwn #1#2 \__prop_pair:wn #3 \s__prop #4 
{
#2
#1 {#3} {#4}
\__prop_map_function:Nwwn #1
}
\cs_generate_variant:Nn \prop_map_function:NN { Nc , c , cc }

(End definition for \prop_map_function:NN and \__prop_map_function:Nwwn. This function is documented on page 147.)

\prop_map_inline:Nn Mapping in line requires a nesting level counter. Store the current definition of \__prop_pair:wn, and define it anew. At the end of the loop, revert to the earlier definition. Note that besides pairs of the form \__prop_pair:wn \{key\} \s__prop \{value\}, there are a leading and a trailing tokens, but both are equal to \scan_stop:, hence have no effect in such inline mapping. Such \scan_stop: could have affected ligatures if they appeared during the mapping.
\cs_new_protected:Npn \prop_map_inline:Nn #1#2 
{
\cs_gset_eq:cN { __prop_map_ \int_use:N \g__kernel_prg_map_int :wn } \__prop_pair:wn
\int_gincr:N \g__kernel_prg_map_int
\cs_gset_protected:Npn \__prop_pair:wn \prg_break_point:Nn \prop_map_break: { }
\{ % #1
\int_gdecr:N \g__kernel_prg_map_int
\cs_gset_eq:Nc \__prop_pair:wn { __prop_map_ \int_use:N \g__kernel_prg_map_int :wn }
\}
\}
\cs_generate_variant:Nn \prop_map_inline:Nn { c }

(End definition for \prop_map_inline:Nn. This function is documented on page 147.)

\prop_map_tokens:Nn The mapping is very similar to \prop_map_function:NN. The \use_i:nn removes the leading \s__prop. The odd construction \use:n \{#1\} allows \#1 to contain any token without interfering with \prop_map_break:. The loop stops when the argument delimited by \__prop_pair:wn is \prg_break: instead of being empty.
\cs_new:Npn \prop_map_tokens:Nn #1#2 
{
\exp_last_unbraced:Nno
\use_i:nn \{ \__prop_map_tokens:nwwn \} \prg_break_point:
\prg_break_point:Nn \prop_map_break: { }
}
11814 }
11815 \cs_new:Npn \__prop_map_tokens:nwwn #1\#2 \__prop_pair:wn #3 \s__prop #4
11816 {
11817   #2
11818   \use:n {#1} {#3} {#4}
11819   \__prop_map_tokens:nwwn {#1}
11820 }
11821 \cs_generate_variant:Nn \prop_map_tokens:Nn { c }
11822 (End definition for \prop_map_tokens:Nn and \__prop_map_tokens:nwwn. This function is documented on page 147.)

\prop_map_break:  The break statements are based on the general \prg_map_break:Nn.
11823 \cs_new:Npn \prop_map_break: { \prg_map_break:Nn \prop_map_break: { } }
11824 \cs_new:Npn \prop_map_break:n { \prg_map_break:Nn \prop_map_break: }
11825 (End definition for \prop_map_break: and \prop_map_break:n. These functions are documented on page 147.)

18.6 Viewing property lists

\prop_show:N  Apply the general \__kernel_chk_defined:NT and \msg_show:nnnnnn. Contrarily to
\prop_show:c  sequences and comma lists, we use \msg_show_item:nn to format both the key and the
\prop_log:N   value for each pair.
\prop_log:c
11826 \cs_new_protected:Npm \prop_show:N { \__prop_show:NN \msg_show:nnxx }}
11827 \cs_new_protected:Npm \prop_show:N { \__prop_show:NN \msg_show:nnxx }}
11828 \cs_new_protected:Npm \prop_log:N { \__prop_show:NN \msg_log:nnxx }}
11829 \cs_new_protected:Npm \prop_log:N { \__prop_show:NN \msg_log:nnxx }}
11830 \cs_new_protected:Npm \__prop_show:NN \msg_show:nnxx
11831 {
11832   \__kernel_chk_defined:NT #2
11833   {
11834     #1 { LaTeX/kernel } { show-prop }
11835       \token_to_str:N #2
11836       \__prop_map_function:NN #2 \msg_show_item:nn
11837       { } { }
11838   }
11839 }
11840 (End definition for \prop_show:N and \prop_log:N. These functions are documented on page 148.)
11841 ⟨/initch| package⟩

19 l3msg implementation

(*initch| package)
11843 ⟨@@=msg⟩
\l__msg_internal_tl A general scratch for the module.
11845 \tl_new:N \l__msg_internal_tl
(End definition for \l__msg_internal_tl.)
Used to save module info when creating messages.

\str_new:N \l__msg_name_str
\str_new:N \l__msg_text_str

(End definition for \l__msg_name_str and \l__msg_text_str.)

19.1 Creating messages

Messages are created and used separately, so there are two parts to the code here. First, a mechanism for creating message text. This is pretty simple, as there is not actually a lot to do.

Locations for the text of messages.
\tl_const:Nn \c__msg_text_prefix_tl { msg~text~>~ }
\tl_const:Nn \c__msg_more_text_prefix_tl { msg~extra~text~>~ }

(End definition for \c__msg_text_prefix_tl and \c__msg_more_text_prefix_tl.)

Test whether the control sequence containing the message text exists or not.
\prg_new_conditional:Npnn \msg_if_exist:nn #1#2 { p , T , F , TF }
\cs_if_exist:cTF { \c__msg_text_prefix_tl #1 / #2 } { \prg_return_true: } { \prg_return_false: }

(End definition for \msg_if_exist:nnTF. This function is documented on page 151.)

This auxiliary is similar to \__kernel_chk_if_free:cs:N, and is used when defining messages with \msg_new:nnnn.
\cs_new_protected:Npn \msg_new:nnnn #1#2\msg_gset:nnnn {#1} {#2}
\cs_new_protected:Npn \msg_new:nnn #1#2#3\msg_new:nnnn {#1} {#2} {#3} \msg_gset:nn {#1} {#2}
\cs_new_protected:Npn \msg_set:nnnn #1#2#3#4\msg_set:nn {#1} {#2} {#3} {#4}
\cs_set:cpn { \c__msg_text_prefix_tl #1 / #2 \c__msg_more_text_prefix_tl #1 / #2 }

Setting a message simply means saving the appropriate text into two functions. A sanity check first.
## Messages: support functions and text

Simple pieces of text for messages.

```
\tl_const:Nn \c__msg_coding_error_text_tl
\tl_const:Nn \c__msg_continue_text_tl
\tl_const:Nn \c__msg_critical_text_tl
\tl_const:Nn \c__msg_fatal_text_tl
\tl_const:Nn \c__msg_help_text_tl
\tl_const:Nn \c__msg_no_info_text_tl
\tl_const:Nn \c__msg_on_line_text_tl
\tl_const:Nn \c__msg_return_text_tl
\tl_const:Nn \c__msg_trouble_text_tl
```

(End definition for \msg_new:nnnn and others. These functions are documented on page 150.)

### 19.2 Messages: support functions and text

```
\cs_new_protected:Npn \msg_set:nnn #1#2#3 { \msg_set:nnnn {#1} {#2} {#3} { } }
\cs_new_protected:Npn \msg_gset:nnnn #1#2#3#4
 { \cs_gset:cpn { \c__msg_more_text_prefix_tl #1 / #2 }\#1#2#3#4 (#3)
 \cs_gset:cpn { \c__msg_text_prefix_tl #1 / #2 }\#1#2#3#4 (#4)
 }
\cs_new_protected:Npn \msg_gset:nnn #1#2#3
 { \msg_gset:nnnn {#1} {#2} {#3} { } }
```

(End definition for \msg_new:nnnn and others.)
For writing the line number nicely. \msg_line_context: was set up earlier, so this is not new.

\begin{lstlisting}[language=TeX]
\cs_new:Npn \msg_line_number: { \int_use:N \tex_inputlineno:D }
\cs_gset:Npn \msg_line_context:
{ \c__msg_on_line_text_tl \c_space_tl \msg_line_number: }
\end{lstlisting}

(End definition for \msg_line_number: and \msg_line_context:. These functions are documented on page 151.)

19.3 Showing messages: low level mechanism

The low-level interruption macro is rather opaque, unfortunately. Depending on the availability of more information there is a choice of how to set up the further help. We feed the extra help text and the message itself to a wrapping auxiliary, in this order because we must first setup \TeX{}'s \texttt{errhelp} register before issuing an \texttt{errmessage}. To deal with the various cases of critical or fatal errors with and without help text, there is a bit of argument-passing to do.

\begin{lstlisting}[language=TeX]
\cs_new_protected:Npn \__msg_interrupt:NnnnN #1#2#3#4#5
{ \str_set:Nx \l__msg_text_str { #1 {#2} } \str_set:Nx \l__msg_name_str { \msg_module_name:n {#2} } \cs_if_eq:cNTF { \c__msg_more_text_prefix_tl #2 / #3 } \__msg_no_more_text:nnnn { \__msg_interrupt_wrap:nnn { \use:c { \c__msg_text_prefix_tl #2 / #3 } #4 } { \c__msg_continue_text_tl } \c__msg_no_info_text_tl \tl_if_empty:NF #5 { \ \ \ #5 } } { \__msg_interrupt_wrap:nnn { \use:c { \c__msg_text_prefix_tl #2 / #3 } #4 \use:c { \c__msg_more_text_prefix_tl #2 / #3 } #4 \tl_if_empty:NF #5 { \ \ \ #5 } } \__msg_no_more_text:nnnn #1#2#3#4#5 }
\end{lstlisting}

(End definition for \__msg_interrupt:Nnnn and \__msg_no_more_text:nnnn.)
First setup \TeX's \texttt{\texttt{\textbackslash errhelp}} register with the extra help \#1, then build a nice-looking error message with \#2. Everything is done using x-type expansion as the new line markers are different for the two type of text and need to be correctly set up. The auxiliary \texttt{\_\_msg_interrupt_more_text:n} receives its argument as a line-wrapped string, which is thus unaffected by expansion. We ave to split the main text into two parts as only the “message” itself is wrapped with a leader: the generic help is wrapped at full width. We also have to allow for the two characters used by \texttt{\texttt{\textbackslash errmessage}} itself.

\begin{verbatim}
\cs_new_protected:Npn \_msg_interrupt_wrap:nnn \#1#2#3
\group_begin:
\int_sub:Nn \l_iow_line_count_int { 2 }
\iow_wrap:nxnN \{ \l__msg_text_str : ~ \#1 \}
\{ ( \l__msg_name_str ) \prg_replicate:nn
\str_count:N \l__msg_text_str
- \str_count:N \l__msg_name_str
+ 2
\}
\}
\iow_wrap:nnN \{ \l__msg_internal_tl \ l__msg_internal_tl \ \ \ #2 \} \{ \}
\_msg_interrupt:n
\}
\cs_new_protected:Npn \_msg_interrupt_text:n \#1
\group_end:
\tl_set:Nn \l__msg_internal_tl {#1}
\cs_new_protected:Npn \_msg_interrupt_more_text:n \#1
\{ \exp_args:Nx \tex_errhelp:D { \#1 \iow_newline: } \}
\end{verbatim}

\texttt{\_msg_interrupt:n} The business end of the process starts by producing some visual separation of the message from the main part of the log. The error message needs to be printed with everything made “invisible”: \TeX’s own information involves the macro in which \texttt{\texttt{\textbackslash errmessage}} is called, and the end of the argument of the \texttt{\texttt{\textbackslash errmessage}}, including the closing brace. We use an active ! to call the \texttt{\texttt{\textbackslash errmessage}} primitive, and end its argument with \texttt{\texttt{\textbackslash use\_none:n}} \{\langle \texttt{spaces} \rangle\} which fills the output with spaces. Two trailing closing braces are turned into spaces to hide them as well. The group in which we alter the definition of the active ! is closed before producing the message: this ensures that tokens inserted by typing \texttt{I} in the command-line are inserted after the message is entirely cleaned up.

The \texttt{\_kernel_iow_with:Nnn} auxiliary, defined in \texttt{l3file}, expects an \texttt{\langle integer variable \rangle}, an integer \texttt{\langle value \rangle}, and some \texttt{\langle code \rangle}. It runs the \texttt{\langle code \rangle} after ensuring that the \texttt{\langle integer variable \rangle} takes the given \texttt{\langle value \rangle}, then restores the former value of the \texttt{\langle integer variable \rangle} if needed. We use it to ensure that the \texttt{\newlinechar} is 10, as needed for \texttt{\iow_newline:} to work, and that \texttt{\errorcontextlines} is \texttt{-1}, to avoid showing irrelevant context. Note that restoring the former value of these integers requires inserting
tokens after the `\errmessage`, which go in the way of tokens which could be inserted by the user. This is unavoidable.

```latex
\group_begin:
\char_set_lccode:nn { 38 } { 32 } \% &
\char_set_lccode:nn { 46 } { 32 } \% .
\char_set_lccode:nn { 123 } { 32 } \%
\char_set_lccode:nn { 125 } { 32 } \%
\char_set_catcode_active:N \&
\tex_lowercase:D
\group_end:
\cs_new_protected:Npn __msg_interrupt:n #1
\iow_term:n { }
__kernel_iow_with:Nnn \tex_newlinechar:D { '\^^J }
__kernel_iow_with:Nnn \tex_errorcontextlines:D { -1 }
\group_begin:
\cs_set_protected:Npn &
\tex_errmessage:D
\use_none:n
{ .. }
\exp_after:wN
\group_end:
&
\group_end:
\cs_new:Npn \msg_fatal_text:n #1
\int_gset:Nn \tex_errorcontextlines:D { -1 }
\msg_critical_text:n
\msg_error_text:n
\msg_warning_text:n
\msg_info_text:n
__msg_text:nn
__msg_text:n
(End definition for __msg_interrupt:n.)
```

19.4 Displaying messages

\LaTeX{} is handling error messages and so the \TeX{} ones are disabled. This is already done by the \LaTeX{} \TeX{} kernel, so to avoid messing up any deliberate change by a user this is only set in format mode.

```latex
\ msg_fatal_text:n
\ msg_critical_text:n
\ msg_error_text:n
\ msg_warning_text:n
\ msg_info_text:n
__msg_text:nn
__msg_text:n
```

A function for issuing messages: both the text and order could in principle vary. The module name may be empty for kernel messages, hence the slightly contorted code path for a space.

```latex
\cs_new:Npn \msg_fatal_text:n #1
\{ Fatal -
```

599
\msg_error_text:n \{#1\}
\cs_new:Npn \msg_critical_text:n \{#1\}
\cs_new:Npn \msg_error_text:n \#1
{ \msg_error_text:n \{#1\} }
\cs_new:Npn \msg_warning_text:n \{#1\}
\cs_new:Npn \msg_info_text:n \{#1\}
\cs_new:Npn \__msg_text:nn #1#2
{ \exp_args:Nf \__msg_text:n { \msg_module_type:n {#1} }
\msg_module_name:n {#1} ~ #2}
\cs_new:Npn \__msg_text:n #1
{ \tl_if_blank:nF {#1} { #1 ~ } }
(End definition for \msg_fatal_text:n and others. These functions are documented on page 151.)
\g_msg_module_name_prop For storing public module information: the kernel data is set up in advance.
\g_msg_module_type_prop
\prop_new:N \g_msg_module_name_prop
\prop_gput:Nnn \g_msg_module_name_prop \LaTeX \LaTeX3
\prop_new:N \g_msg_module_type_prop
\prop_gput:Nnn \g_msg_module_type_prop \LaTeX \LaTeX3
(End definition for \g_msg_module_name_prop and \g_msg_module_type_prop. These variables are documented on page 152.)
\msg_type:n Contextual footer information, with the potential to give modules an alternative name.
\cs_new:Npn \msg_module_type:n \#1
{ \prop_if_in:NnTF \g_msg_module_type_prop {#1} { \prop_item:Nn \g_msg_module_type_prop {#1} } ⟨initex⟩
{ Module } ⟨/initex⟩
{package} ⟨/package⟩}
(End definition for \msg_module_type:n. This function is documented on page 152.)
\msg_name:n Contextual footer information, with the potential to give modules an alternative name.
\cs_new:Npn \msg_module_name:n \#1
{ \prop_if_in:NnTF \g_msg_module_name_prop {#1} { \prop_item:Nn \g_msg_module_name_prop {#1} } }

600
\msg_see_documentation_text:n \msg_module_name:n \cs_new:Npn \msg_module_name:n #1 \cs_set_protected:Npn \__msg_class_new:nn #1 #2 \prop_new:c { l__msg_redirect_ #1 _prop } \cs_new_protected:cpn { __msg_ #1 _code:nnnnnn } \cs_new_protected:cpn { msg_ #1 :nnnnnnn } \cs_new_protected:cpn { msg_ #1 :nnnnn } \cs_new_protected:cpn { msg_ #1 :nnnn } \cs_new_protected:cpn { msg_ #1 :nnxxx } \cs_new_protected:cpn { msg_ #1 :nnxx } \cs_new_protected:cpn { msg_ #1 :nnx } \cs_new_protected:cpn { msg_ #1 :nn } { \use:x } { \exp_not:n { \__msg_use:nnnnnnn { #1 } { #2 } } { \tl_to_str:n { #3 } } { \tl_to_str:n { #4 } } { \tl_to_str:n { #5 } } { \tl_to_str:n { #6 } } } \cs_new_protected:cpn { msg_ #1 :nnxxxx } \cs_new_protected:cpn { msg_ #1 :nnxxx } \cs_new_protected:cpn { msg_ #1 :nnxx } { \use:x } { \exp_not:N \exp_not:n { \exp_not:c { msg_ #1 :nnnnnn } { #1 } { #2 } } { #3 } { #4 } { #5 } { #6 } } \cs_new_protected:cpn { msg_ #1 :nnxxxx } \cs_new_protected:cpn { msg_ #1 :nnxxx } \cs_new_protected:cpn { msg_ #1 :nnxx } \cs_new_protected:cpn { msg_ #1 :nnx } \cs_new_protected:cpn { msg_ #1 :nn } (End definition for \__msg_class_new:nn. These functions are documented on page 152.)
For fatal errors, after the error message \TeX{} bails out. We force a bail out rather than using \texttt{\end} as this means it does not matter if we are in a context where normally the run cannot end.

\begin{verbatim}
\msg_fatal:nnnnnn \msg_fatal:nnxxxx \msg_fatal:nnnnn \msg_fatal:nnxxx \msg_fatal:nnnn \msg_fatal:nnxx \msg_fatal:nnn \msg_fatal:nnx \msg_fatal:nn \__msg_fatal_exit:
\end{verbatim}

For fatal errors, after the error message \TeX{} bails out. We force a bail out rather than using \texttt{\end} as this means it does not matter if we are in a context where normally the run cannot end.

\begin{verbatim}
\msg_critical:nnnnnn \msg_critical:nnxxxx \msg_critical:nnnnn \msg_critical:nnxxx \msg_critical:nnnn \msg_critical:nnxx \msg_critical:nnn \msg_critical:nnx \msg_critical:nn \__msg_class_new:nn { critical }
\end{verbatim}

Not quite so bad: just end the current file.

\begin{verbatim}
\msg_error:nnnnnn \msg_error:nnxxxx \msg_error:nnnnn \msg_error:nnxxx \msg_error:nnnn \msg_error:nnxx \msg_error:nnn \msg_error:nnx \msg_error:nn \__msg_class_new:nn { error }
\end{verbatim}

For an error, the interrupt routine is called. We check if there is a “more text” by comparing that control sequence with a permanently empty text.

\begin{verbatim}
\msg_warning:nnnnnn \msg_warning:nnxxxx \msg_warning:nnnnn \msg_warning:nnxxx \msg_warning:nnnn \msg_warning:nnxx \msg_warning:nnn \msg_warning:nnx \msg_warning:nn \__msg_class_new:nn { warning }
\end{verbatim}

Warnings are printed to the terminal.
Information only goes into the log.

```
\msg_class_new:nn \info
{ \str_set:Nx \msg_text_str { \msg_info_text:n {#1} } }
{ \str_set:Nx \msg_name_str { \msg_module_name:n {#1} } }
{ \msg_log:n { } }
```

(Log data is very similar to information, but with no extras added.

```
\msg_class_new:nn \log
{ \msg_wrap:nnnN
{ \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
{ } { } \msg_log:n
}
```

The none message type is needed so that input can be gobbled.

```
\msg_class_new:nn \none
{ }{}
```

(End definition for \msg_warning:nnnnnn and others. These functions are documented on page 153.)

(End definition for \msg_info:nnnnnn and others. These functions are documented on page 154.)

(End definition for \msg_log:nnnnnn and others. These functions are documented on page 154.)

(End definition for \msg_none:nnnnnn and others. These functions are documented on page 154.)
The show message type is used for \seq_show:N and similar complicated data structures. Wrap the given text with a trailing dot (important later) then pass it to \__msg_show:n. If there is \textbackslash{}\textgreater{}~ (or if the whole thing starts with \textgreater{}~) we split there, print the first part and show the second part using \sho_tokens (the \exp_after:wN ensure a nice display). Note that this primitive adds a leading \textgreater{}~ and trailing dot. That is why we included a trailing dot before wrapping and removed it afterwards. If there is no \textgreater{}~ do the same but with an empty second part which adds a spurious but inevitable >-

\begin{verbatim}
\msg_show:nnnnnn
\msg_show:nnxxxx
\msg_show:nnnnnn
\msg_show:nnxxxx
\msg_show:nnxx
\msg_show:nnn
\msg_show:nnx
\msg_show:nn
\msg_show:n
\msg_show:w
\msg_show_dot:w
\msg_show:nnn
\msg_show:nn

\__msg_class_new:nn { show }

\cs_new_protected:Npn \__msg_show:n #1
\tl_if_in:nnTF { ^^J #1 } { ^^J > ~ }
\tl_if_in:nnTF { #1 \q_mark } { . \q_mark }
\__msg_show_dot:w { \__msg_show:w } ^^J #1 \q_stop
\__msg_show:nn { ? #1 } { }

\cs_new_protected:Npn \__msg_show_dot:w #1 ^^J > ~ #2 . \q_stop
\__msg_show:nn {#1} {#2}
\cs_new_protected:Npn \__msg_show:w #1 ^^J > ~ #2 \q_stop
\__msg_show:nn {#1} {#2}
\cs_new_protected:Npn \__msg_show:nn #1#2
\tl_if_empty:nF {#1}
\exp_args:No \iow_term:n { \use_none:n #1 }
\tl_set:Nn \l__msg_internal_tl {#2}
\__kernel_iow_with:Nnn \tex_newlinechar:D { 10 }
\__kernel_iow_with:Nnn \tex_errorcontextlines:D { -1 }
\\text_sho_tokens:D \exp_after:wN \exp_after:wN \exp_after:wN
{ \exp_after:wN \l__msg_internal_tl }
\end{verbatim}

(End definition for \msg_show:nnnnnn and others. These functions are documented on page 263.)

End the group to eliminate \__msg_class_new:nn.

\__msg_class_chk_exist:nT

Checking that a message class exists. We build this from \cs_if_free:cTF rather than \cs_if_exist:cTF because that avoids reading the second argument earlier than necessary.

\cs_new:Npn \__msg_class_chk_exist:nT #1
\cs_if_free:cTF { \__msg #1 _code:nnnnnn } { \__kernel_msg_error:nnx { kernel } { message-class-unknown } {#1} }

604
Support variables needed for the redirection system.
\l__msg_class_tl \l__msg_current_class_tl
\l__msg_redirect_prop
\l__msg_hierarchy_seq
\l__msg_class_loop_seq
\l__msg_class_tl
\l__msg_current_class_tl
\l__msg_redirect_prop
\l__msg_hierarchy_seq
\l__msg_class_loop_seq
\l__msg_redirect_prop
\l__msg_hierarchy_seq
\l__msg_class_loop_seq
\l__msg_class_tl
\l__msg_current_class_tl
(End definition for \l__msg_class_tl and \l__msg_current_class_tl)
(End definition for \l__msg_class_tl)
(End definition for \l__msg_redirect_prop)

Actually using a message is a multi-step process. First, some safety checks on the message and class requested. The code and arguments are then stored to avoid passing them around. The assignment to \l__msg_use_code: is similar to \tl_set:Nn. The message is eventually produced with whatever \l__msg_class_tl is when \l__msg_use_code: is called. Here is also a good place to suppress tracing output if the trace package is loaded since all (non-expandable) messages go through this auxiliary.
\cs_new_protected:Npn \__msg_use:nnnnnnn #1#2#3#4#5#6#7
\cs_if_exist_use:N \conditionally@traceoff
\msg_if_exist:nnTF {#2} {#3}
{\__msg_class_chk_exist:nT {#1}
{\tl_set:Nn \l__msg_current_class_tl {#1}
\cs_set_protected:Npx \__msg_use_code:
{\exp_not:n
{\use:c { __msg_ \l__msg_class_tl _code:nnnnnn }
{#2} {#3} {#4} {#5} {#6} {#7}
}
}
}\__msg_use_redirect_name:n { #2 / #3 }
}
{\__kernel_msg_error:nnxx { kernel } { message-unknown } {#2} {#3}
}{package} \cs_if_exist_use:N \conditionally@traceon
\cs_new_protected:Npx \__msg_use_code: { }
The first check is for an individual message redirection. If this applies then no further redirection is attempted. Otherwise, split the message name into ⟨module⟩, ⟨submodule⟩ and ⟨message⟩ (with an arbitrary number of slashes), and store {/module/submodule}, {/module} and {} into \l__msg_hierarchy_seq. We then map through this sequence, applying the most specific redirection.

\cs_new_protected:Npn \__msg_use_redirect_name:n #1
\prop_get:NnNTF \l__msg_redirect_prop { / #1 } \l__msg_class_tl
\prop_set:cnNTF { l__msg_redirect_ \l__msg_current_class_tl _prop } {##1} \l__msg_class_tl
\__msg_use_code: #1

\cs_new_protected:Npn \__msg_use_hierarchy:nwwN #1 #2 / #3 \q_mark % #1
\seq_put_left:Nn \l__msg_hierarchy_seq {#1}
\__msg_use_redirect_module:n {##1}

At this point, the items of \l__msg_hierarchy_seq are the various levels at which we should look for a redirection. Redirections which are less specific than the argument of \__msg_use_redirect_module:n are not attempted. This argument is empty for a class redirection, /module for a module redirection, etc. Loop through the sequence to find the most specific redirection, with module ##1. The loop is interrupted after testing for a redirection for ##1 equal to the argument #1 (least specific redirection allowed). When a redirection is found, break the mapping, then if the redirection targets the same class, output the code with that class, and otherwise set the target as the new current class, and search for further redirections. Those redirections should be at least as specific as ##1.

\cs_new_protected:Npn \__msg_use_redirect_module:n #1
\prop_get:cnNTF { \l__msg_current_class_tl \l__msg_redirect_prop } {##1} \l__msg_class_tl
\tl_if_eq:NNTF \l__msg_current_class_tl \l__msg_class_tl % #1
\seq_map_inline:Nn \l__msg_hierarchy_seq
\prop_set_eq:NN \l__msg_current_class_tl \l__msg_class_tl
\__msg_use_redirect_module:n {##1}

\str_if_eq:nnT {##1} {#1} {#1}
\msg_redirect_name:nnn

Named message always use the given class even if that class is redirected further. An empty target class cancels any existing redirection for that message.

\cs_new_protected:Npn \msg_redirect_name:nnn \l__msg_current_class_tl
\seq_map_break:n { \l__msg_use_code: }
\end definition for \msg_redirect_name:nnn and others.

\msg_redirect_class:nn
\msg_redirect_module:nn
\__msg_redirect:nnn
\__msg_redirect_loop_chk:nnn
\__msg_redirect_loop_list:n

If the target class is empty, eliminate the corresponding redirection. Otherwise, add the redirection. We must then check for a loop: as an initialization, we start by storing the initial class in \l__msg_current_class_tl.

\cs_new_protected:Npn \msg_redirect_class:nn
{ \__msg_redirect:nnn { } }
\cs_new_protected:Npn \msg_redirect_module:nnn \l__msg_current_class_tl
{ \__msg_redirect:nnn { / } }
\cs_new_protected:Npn \__msg_redirect_module:nnn \l__msg_current_class_tl
{ \__msg_redirect:nnn { / #1 } }
\cs_new_protected:Npn \__msg_redirect_loop_chk:nnn \l__msg_current_class_tl
{ \__msg_redirect_loop_list:n \l__msg_current_class_tl
\__msg_redirect_loop_list:n

Since multiple redirections can only happen with increasing specificity, a loop requires that all steps are of the same specificity. The new redirection can thus only create a loop with other redirections for the exact same module, \l__msg_current_class_tl, and not submodules. After some initialization above, follow redirections with \l__msg_current_class_tl, and keep track in \l__msg_current_class_loop_seq of the various classes encountered. A redirection from a class to
itself, or the absence of redirection both mean that there is no loop. A redirection to the initial class marks a loop. To break it, we must decide which redirection to cancel. The user most likely wants the newly added redirection to hold with no further redirection. We thus remove the redirection starting from #2, target of the new redirection. Note that no message is emitted by any of the underlying functions: otherwise we may get an infinite loop because of a message from the message system itself.

12330 \cs_new_protected:Npn \_msg_redirect_loop_chk:nnn #1#2#3
12331 { \seq_put_right:Nn \l__msg_class_loop_seq {#1} \prop_get:cnNT { l__msg_redirect_ #1 _prop } {#3} \l__msg_class_tl
12333 { \str_if_eq:VnF \l__msg_class_tl {#1} \tl_if_eq:NNTF \l__msg_class_tl \l__msg_current_class_tl
12336 { \prop_put:cnn { l__msg_redirect_ #2 _prop } {#3} {#2} \_kernel_msg_warning:nxxxxx
12338 } \_seq_map_function:NN \l__msg_class_loop_seq \_msg_redirect_loop_list:n
12340 \seq_map_function:NN \l__msg_class_loop_seq { \seq_item:Nn \l__msg_class_loop_seq { 1 } }
12342 \seq_map_function:NN \l__msg_class_loop_seq { \seq_item:Nn \l__msg_class_loop_seq { 2 } }
12344 {#3}
12346 \prop_get:cnNT { l__msg_class_loop_seq } \_msg_redirect_loop_list:n
12348 { \seq_item:Nn \l__msg_class_loop_seq { 1 } }
12349 \prop_get:cnNT { l__msg_class_loop_seq } \_msg_redirect_loop_list:n
12351 \seq_map_function:NN \l__msg_class_loop_seq { \seq_item:Nn \l__msg_class_loop_seq { 1 } }
12353 \seq_map_function:NN \l__msg_class_loop_seq { \seq_item:Nn \l__msg_class_loop_seq { 2 } }
12355 \seq_map_function:NN \l__msg_class_loop_seq { \seq_item:Nn \l__msg_class_loop_seq { 3 } }
12357 { \_msg_redirect_loop_chk:onn \l__msg_class_tl {#2} {#3} }
12359 }
12361 \cs_generate_variant:Nn \_msg_redirect_loop_chk:nnn { o }
12363 \cs_new:Npn \_msg_redirect_loop_list:n #1 { {#1} => ~ }

(End definition for \msg_redirect_class:nn and others. These functions are documented on page 155.)

19.5 Kernel-specific functions

The kernel needs some messages of its own. These are created using pre-built functions. Two functions are provided: one more general and one which only has the short text part.

12398 \cs_new_protected:Nnp \_kernel_msg_new:nnnn { LaTeX } { \_kernel_msg_new:nN } \_kernel_msg_new:nnnn #1 #2
12399 \cs_new_protected:Nnp \_kernel_msg_new:nnn { LaTeX } { \_kernel_msg_new:nN } \_kernel_msg_new:nnn #1 #2
12402 \cs_new_protected:Npp \_kernel_msg_set:nnnn { LaTeX } { \_kernel_msg_set:nN } \_kernel_msg_set:nnnn #1 #2
12403 \cs_new_protected:Npp \_kernel_msg_set:nnn { LaTeX } { \_kernel_msg_set:nN } \_kernel_msg_set:nnn #1 #2
12405 \cs_new_protected:Npp \_kernel_msg_set:nn { LaTeX } { \_kernel_msg_set:nN } \_kernel_msg_set:nn #1 #2

(End definition for \_kernel_msg_new:nN and others.)

All the functions for kernel messages come in variants ranging from 0 to 4 arguments. Those with less than 4 arguments are defined in terms of the 4-argument variant, in a
way very similar to \_msg_class_new:nn. This auxiliary is destroyed at the end of the group.

```
\group_begin:
\cs_set_protected:Npn _msg_kernel_class_new:nN #1
{ _msg_kernel_class_new_aux:nN { __kernel_msg_ #1 } }
\cs_set_protected:Npn _msg_kernel_class_new_aux:nN #1#2
{ \cs_new_protected:cpn { #1 :nnnnn } ##1##2##3##4##5##6
 { \use:x
 { \exp_not:n { #2 { LaTeX } { ##1 / ##2 } }
 { \tl_to_str:n {##3} } { \tl_to_str:n {##4} }
 { \tl_to_str:n {##5} } { \tl_to_str:n {##6} }
 }
 }
}\cs_new_protected:cpx { #1 :nnnnn } ##1##2##3##4##5
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} { } }
\cs_new_protected:cpx { #1 :nnnn } ##1##2##3##4
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} {##4} { } { } }
\cs_new_protected:cpx { #1 :nnn } ##1##2##3
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} { } { } { } }
\cs_new_protected:cpx { #1 :nn } ##1##2
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} { } { } { } { } }
\cs_new_protected:cpx { #1 :nnxxxx } ##1##2##3##4##5##6
{ \use:x
 { \exp_not:n \exp_not:n
 { \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} {##6} }
 }
}\cs_new_protected:cpx { #1 :nnxxx } ##1##2##3##4##5
{ \exp_not:c { #1 :nnxxxx } {##1} {##2} {##3} {##4} { } { } }
\cs_new_protected:cpx { #1 :nnxx } ##1##2##3##4
{ \exp_not:c { #1 :nnxxxx } {##1} {##2} {##3} { } { } { } }
\cs_new_protected:cpx { #1 :nnx } ##1##2##3
{ \exp_not:c { #1 :nnxxxx } {##1} {##2} { } { } { } { } }
\cs_new_protected:cpx { #1 :nn } ##1##2
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} { } { } { } { } }
\exp_not:N \exp_not:n
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} {##6} }
}
\cs_new_protected:cpx { #1 :nnxxxx } ##1##2##3##4##5
{ \exp_not:c { #1 :nnxxxx } {##1} {##2} {##3} {##4} { } { } }
\cs_new_protected:cpx { #1 :nnnn } ##1##2##3##4
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} { } { } { } }
\cs_new_protected:cpx { #1 :nnxx } ##1##2##3##4
{ \exp_not:c { #1 :nnxxxx } {##1} {##2} {##3} { } { } { } }
\cs_new_protected:cpx { #1 :nnx } ##1##2##3##4
{ \exp_not:c { #1 :nnxxxx } {##1} {##2} { } { } { } { } }
\cs_new_protected:cpx { #1 :nn } ##1##2##3##4
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} { } { } { } { } }
\exp_not:N \exp_not:n
{ \exp_not:c { #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} {##6} }
}

Neither fatal kernel errors nor kernel errors can be redirected. We directly use the code for (non-kernel) fatal errors and errors, adding the “\LaTeX” module name. Three functions are already defined by l3basics; we need to undefine them to avoid errors.
```

\cs_undefine:N \__kernel_msg_error:nnxx\cs_undefine:N \__kernel_msg_error:nnx\cs_undefine:N \__kernel_msg_error:nn\__msg_kernel_class_new:nN \fatal \__msg_fatal_code:nnnnnn
\cs_undefine:N \__kernel_msg_error:nxx\cs_undefine:N \__kernel_msg_error:nnn\cs_undefine:N \__kernel_msg_error:nn\__msg_kernel_class_new:nN \error \__msg_error_code:nnnnnn

(End definition for \__kernel_msg_fatal:nnnnnn and others.)
Kernel messages which can be redirected simply use the machinery for normal messages, with the module name “\LaTeX”.

(End definition for \_\_kernel_msg_warning:nnnnn and others.)

End the group to eliminate \_\_msg_kernel_class_new:nN.

Error messages needed to actually implement the message system itself.

Messages for earlier kernel modules plus a few for \l3keys which cover coding errors.
\__kernel_msg_new:nnn { kernel } { char-active } 
{ Cannot-generate-active-chars. }
\__kernel_msg_new:nnn { kernel } { char-invalid-catcode } 
{ Invalid-catcode-for-char-generation. }
\__kernel_msg_new:nnn { kernel } { char-null-space } 
{ Cannot-generate-null-char-as-a-space. }
\__kernel_msg_new:nnn { kernel } { char-out-of-range } 
{ Charcode-requested-out-of-engine-range. }
\__kernel_msg_new:nnn { kernel } { char-space } 
{ Cannot-generate-space-chars. }
\__kernel_msg_new:nnn { kernel } { command-already-defined } 
{ Control-sequence-\#1-already-defined. }
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-create\-a\-new\-control\-sequence\-'\#1'-
but\-this\-name\-has\-already\-been\-used\-elsewhere. \\
The\-current\-meaning\-is:\
\ \ \ \ #2
\}
\__kernel_msg_new:nnnn { kernel } { command-not-defined } 
{ Control-sequence-\#1-undefined. }
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-use\-a\-control\-sequence\-'\#1':\ \this\-has\-not\-been\-defined\-yet.
\}
\__kernel_msg_new:nnn { kernel } { empty-search-pattern } 
{ Empty-search-pattern. }
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-replace\-an\-empty\-pattern\-by-'\#1':\-that\-would\-lead\-to\-an\-infinite\-loop!
\}
\__kernel_msg_new:nnnn { kernel } { out-of-registers } 
{ No-room\-for\-a\-new\-\#1. }
\{ TeX\-only\-supports-\int_use:N \c_max_register_int \% 
of\-each\-type.-All\-the\-\#1\-registers\-have\-been\-used.-
This\-run\-will\-be\-aborted\-now.
\}
\__kernel_msg_new:nnn { kernel } { non-base-function } 
{ Function-'\#1'-is\-not\-a\-base\-function }
\c__msg_coding_error_text_tl
Functions\-defined\-through-\iow_char:N\cs_new:Nn must\-have\-a\-signature\-consisting\-of\-only\-normal\-arguments\-‘N’\-and\-‘n’.-
To\-define\-variants\-use-\iow_char:N\cs_generate_variant:Nn\-and\-to\-define\-other\-functions\-use-\iow_char:N\cs_new:Npn.
\}
\__kernel_msg_new:nnn { kernel } { missing-colon } 
{ Function-'\#1'-contains\-no\-‘:’. }
\c__msg_coding_error_text_tl
Code\-level\-functions\-must\-contain\-‘:\’\-to\-separate\-the-

611
argument specification from the function name. This is needed when defining conditionals or variants, or when building a parameter text from the number of arguments of the function.

\__kernel_msg_new:nnnn { kernel } { overflow }
{ Integers larger than \(2^{30}-1\) cannot be stored in arrays. }
{ An attempt was made to store \#3 \tl_if_empty:nF {\#2} { at position \#2 } in the array \#1. The largest allowed value \#4 will be used instead. }

\__kernel_msg_new:nnnn { kernel } { out-of-bounds }
{ Access to an entry beyond an array’s bounds. }
{ An attempt was made to access or store data at position \#2 of the array \#1, but this array has entries at positions from 1 to \#3. }

\__kernel_msg_new:nnnn { kernel } { protected-predicate }
{ Predicate \#1 must be expandable. }
{ LaTeX has been asked to define \#1 as a protected predicate. Only expandable tests can have a predicate version. }

\__kernel_msg_new:nnnn { kernel } { randint-backward-range }
{ Bounds ordered backwards in \\int_rand:nn {\#1} {\#2}. }

\__kernel_msg_new:nnnn { kernel } { conditional-form-unknown }
{ Conditional form \#1 for function \#2 unknown. }
{ LaTeX has been asked to define the conditional form \#1 of the function \#2, but only TF, T, F, and p forms exist. }

\__kernel_msg_new:nnnn { kernel } { key-no-property }
{ No property given in definition of key \#1. }
{ LaTeX did not find a \l_def: to indicate the start of a property. }

\__kernel_msg_new:nnnn { kernel } { key-property-boolean-values-only }
{ The property \#1 accepts boolean values only. }
{ \__msg_coding_error_text_tl \LaTeX was asked to set property \#1 for key \#2. No value was given for the property, and one is required. }
\__kernel_msg_new:nnnn { kernel } { key-property-unknown }
{ The-key-property-'#1'-is-unknown. }
{
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-set\-the\-property-'#1'-for\-key-'#2':-
this-property-is-not-defined.
}
\__kernel_msg_new:nnnn { kernel } { quote-in-shell }
{ Quotes-in-shell-command-'#1'. }
{ Shell\-commands\-cannot\-contain\-quotes\-('). }
\__kernel_msg_new:nnnn { kernel } { scanmark-already-defined }
{ Scan-mark-'#1'-already-defined. }
{
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-create\-a\-new\-scan-mark-'#1'-
but\-this-name\-has\-already\-been\-used\-for\-a\-scan-mark.
}
\__kernel_msg_new:nnnn { kernel } { shuffle-too-large }
{ The-sequence-'#1'-is-too-long-to-be-shuffled-by-TeX. }
{
TeX\-has\-\\int_eval:n\{\c_max_register_int + 1\}\-toks-registers:\-this\-only\-allows\-to\-shuffle\-up\-to-
\\int_use:N\ \c_max_register_int \ \items\-.
The-list\-will\-not\-be-shuffled.
}
\__kernel_msg_new:nnnn { kernel } { variable-not-defined }
{ Variable-'#1'-undefined. }
{
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-show\-a\-variable-'#1',\-but\-this\-has\-not-
been\-defined\-yet.
}
\__kernel_msg_new:nnnn { kernel } { variant-too-long }
{ Variant-form-'#1'-longer-than-base-signature-of-'#2'. }
{
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-create\-a\-variant\-of\-the\-function-'#2'-
with\-a\-signature\-starting\-with-'#1',\-but\-that\-is\-longer-than-
the\-signature\-(part\-after\-the\-colon)\-of-'#2'.
}
\__kernel_msg_new:nnnn { kernel } { invalid-variant }
{ Variant-form-'#1'-invalid-for-base-form-'#2'. }
{
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-create\-a\-variant\-of\-the\-function-'#2'-
with\-a\-signature\-starting\-with-'#1',\-but\-cannot\-change\-an\-argument-
from\-type-'#3'-to\-type-'#4'.
}
\__kernel_msg_new:nnnn { kernel } { invalid-exp-args }
{ Invalid-variant-specifier-'#1'-in-'#2'. }
{
\c__msg_coding_error_text_tl
LaTeX\-has\-been\-asked\-to\-create\-an-\\iow_char:N\exp_args:N\ldots-
function-with-signature-'N#2'-but-’#1’-is-not-a-valid-argument-specifier.

\kernel_msg_new:nnn { kernel } { deprecated-variant }
{
  Variant-form-’#1’-deprecated-for-base-form-’#2’.-
  One-should-not-change-an-argument-from-type-’#3’-to-type-’#4’
\str_case:nFF \{#3\}
{
  \{ n \} { :-use-a-’\token_if_eq_charcode:NNTF #4 c v V’-variant? }\n  \{ N \} { :-base-form-only-accepts-a-single-token-argument. }\n  \{#4\} { :-base-form-is-already-a-variant. }\n  \{ . \}
}

Some errors are only needed in package mode if debugging is enabled by one of the options \texttt{enable-debug}, \texttt{check-declarations}, \texttt{log-functions}, or on the contrary if debugging is turned off. In format mode the error is somewhat different.

\{\texttt{package}\}
\kernel_msg_new:nnn { kernel } { enable-debug }
{ To-use-’#1’-load-expl3-with-the-’enable-debug’-option. }
{
  The-function-’#1’-will-be-ignored-because-it-can-only-work-if-
  some-internal-functions-in-expl3-have-been-appropriately-
  defined.-This-only-happens-if-one-of-the-options-
  ’enable-debug’,-’check-declarations’-or-’log-functions’-was-
  given-when-loading-expl3.
}
\{\texttt{/package}\}
\{\texttt{initex}\}
\kernel_msg_new:nnn { kernel } { enable-debug }
{ ’#1’-cannot-be-used-in-format-mode. }
{
  The-function-’#1’-will-be-ignored-because-it-can-only-work-if-
  some-internal-functions-in-expl3-have-been-appropriately-
  defined.-This-only-happens-in-package-mode-(and-only-if-one-of-
  the-options-’enable-debug’,-’check-declarations’-or-’log-functions’-
  was-given-when-loading-expl3.
}
\{\texttt{/initex}\}

Some errors only appear in expandable settings, hence don’t need a “more-text” argument.
\__kernel_msg_new:nnn { kernel } { unknown-comparison }
{ Relation-\'#1\'-unknown: use=.,.<,>,=,<,=!,.=,<!,>=,.<,>=,. }
\__kernel_msg_new:nnn { kernel } { zero-step }
{ Zero-step-size-for-step-function-\#1. }
\cs_if_exist:NF \tex_expanded:D
{
 \__kernel_msg_new:nnn { kernel } { e-type }
{ #1 - in-e-type-argument }
}

Messages used by the "show" functions.
\__kernel_msg_new:nnn { kernel } { show-clist }
{ The-comma-list- \tl_if_empty:nF {#1} { #1 - }
\tl_if_empty:nTF {#2}
{ is-empty \textless\textgreater -. }
{ contains-the-items-(without-outer-braces): #2 . }
}
\__kernel_msg_new:nnn { kernel } { show-intarray }
{ The-integer-array-#1-contains-#2-items: \ #3 . }
\__kernel_msg_new:nnn { kernel } { show-prop }
{ The-property-list-#1-
\tl_if_empty:nTF {#2}
{ is-empty \textless\textgreater -. }
{ contains-the-pairs-(without-outer-braces): #2 . }
}
\__kernel_msg_new:nnn { kernel } { show-seq }
{ The-sequence-#1-
\tl_if_empty:nTF {#2}
{ is-empty \textless\textgreater -. }
{ contains-the-items-(without-outer-braces): #2 . }
}
\__kernel_msg_new:nnn { kernel } { show-streams }
{ \tl_if_empty:nTF {#2} { No- } { The-following- }
\str_case:nn {#1}
{ ior } { input - }
{ iow } { output - }
}
\tl_if_empty:nTF {#2} { open } { in-use: #2 . }

System layer messages
\__kernel_msg_new:nnnn { sys } { backend-set }
{ Backend-configuration-already-set. }
{ Run-time-backend-selection-may-only-be-carried-out-once-during-a-run.-
This-second-attempt-to-set-them-will-be-ignored. }
\__kernel_msg_new:nnnn { sys } { wrong-backend }
{ Backend-request-inconsistent-with-engine:-using-\'#2\'-backend. }
You have requested backend-‘#1’, -but-this-is-not-suitable-for-use-with-the-active-engine.-LaTeX3-will-use-the-‘#2’-backend-instead.

19.6 Expandable errors

In expansion only context, we cannot use the normal means of reporting errors. Instead, we feed \TeX{} an undefined control sequence, \LaTeX{} error:. It is thus interrupted, and shows the context, which thanks to the odd-looking \use:n is

<argument> \LaTeX{} error:

The error message.

In other words, \TeX{} is processing the argument of \use:n, which is \LaTeX{} error: (error message). Then \texttt{\_\_msg\_expandable\_error:w} cleans up. In fact, there is an extra subtlety: if the user inserts tokens for error recovery, they should be kept. Thus we also use an odd space character (with category code 7) and keep tokens until that space character, dropping everything else until \texttt{\q_stop}. The \texttt{\exp_end:} prevents losing braces around the user-inserted text if any, and stops the expansion of \texttt{\exp:w}. The group is used to prevent \LaTeX{}-error: from being globally equal to \texttt{\scan_stop:}.

\begin{verbatim}
\group_begin:
\cs_set_protected:Npn \__msg_tmp:w #1#2
{ \cs_new:Npn \__msg_expandable_error:n ##1
{ \exp:w \exp_after:wN \exp_after:wN \__msg_expandable_error:w
\exp_after:wN \exp_after:wN \exp_end:
\use:n { #1 #2 ##1 } #2 }

\cs_new:Npn \__msg_expandable_error:w ##1 #2 ##2 #2 {##1}
\end{verbatim}

(End definition for \texttt{\_\_msg\_expandable\_error:n} and \texttt{\_\_msg\_expandable\_error:w}.)

The command built from the csname \texttt{c\_\_msg\_text\_prefix\_tl} \LaTeX{} / #1 / #2 takes four arguments and builds the error text, which is fed to \texttt{\_\_msg\_expandable\_error:n} with appropriate expansion: just as for usual messages the arguments are first turned to strings, then the message is fully expanded.

\begin{verbatim}
\exp_args:Ne \__msg_expandable_error:nnnnn \\
\cs_new:Npn \kernel_msg_expandable_error:nnnnnn #1#2#3#4#5#6
{ \exp_args:Ne \exp_args:Noooo \\
{ \c\_\_msg\_text\_prefix\_tl \LaTeX{} / #1 / #2 } \\
{ \tl_to_str:n {#3} }
\end{verbatim}

616
\end{footnotesize}

\begin{footnotesize}
\begin{verbatim}
\end{verbatim}
\end{footnotesize}

\begin{footnotesize}
\begin{verbatim}

\end{verbatim}
\end{footnotesize}

\end{document}
\texttt{\textbackslash g\_ior\_streams\_seq} A list of the currently-available input streams to be used as a stack. In format mode, all streams (from 0 to 15) are available, while the package requests streams to \LaTeX\textsubscript{2}\varepsilon as they are needed (initially none are needed), so the starting point varies!

\begin{verbatim}
\seq_new:N \g__ior_streams_seq
\seq_gset_split:Nnn \g__ior_streams_seq { , } { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 }
\end{verbatim}

(End definition for \texttt{\g__ior\_streams\_seq}.)

\texttt{\textbackslash l\_ior\_stream\_tl} Used to recover the raw stream number from the stack.

\begin{verbatim}
\tl_new:N \l__ior_stream_tl
\end{verbatim}

(End definition for \texttt{\l__ior\_stream\_tl}.)

\texttt{\textbackslash g\_ior\_streams\_prop} The name of the file attached to each stream is tracked in a property list. To get the correct number of reserved streams in package mode the underlying mechanism needs to be queried. For \LaTeX\textsubscript{2}\varepsilon and plain \TeX\ this data is stored in \texttt{\count16}: with the \texttt{etex} package loaded we need to subtract 1 as the register holds the number of the next stream to use. In Con\TeX, we need to look at \texttt{\count38} but there is no subtraction: like the original plain \TeX/\LaTeX\textsubscript{2}\varepsilon mechanism it holds the value of the last stream allocated.

\begin{verbatim}
\prop_new:N \g__ior_streams_prop
\int_step_inline:nnn { 0 } { \cs_if_exist:NTF \normalend { \tex_count:D 38 ~ } { \tex_count:D 16 ~ \% \cs_if_exist:NT \loccount { - 1 } } }
\prop_gput:Nnn \g__iorStreams_prop {#1} { Reserved~by~format }
\end{verbatim}

(End definition for \texttt{\g__ior\_streams\_prop}.)

\section{Stream management}

\texttt{\ior\_new:N} Reserving a new stream is done by defining the name as equal to using the terminal.

\begin{verbatim}
\cs_new_protected:Npn \ior\_new:N #1 { \cs_new_eq:NN #1 \c__ior_term_ior }
\cs_generate_variant:Nn \ior\_new:N { c }
\end{verbatim}

(End definition for \texttt{\ior\_new:N}. This function is documented on page 156.)

\texttt{\textbackslash g\_tmpa\_ior} \texttt{\textbackslash g\_tmpb\_ior} The usual scratch space.

\begin{verbatim}
\ior\_new:N \g\_tmpa\_ior \ior\_new:N \g\_tmpb\_ior
\end{verbatim}

(End definition for \texttt{\g\_tmpa\_ior} and \texttt{\g\_tmpb\_ior}. These variables are documented on page 163.)
Use the conditional version, with an error if the file is not found.

\ior_open:Nn
\ior_open:cn

\ior_open:NnF #1 {#2} { \_kernel_file_missing:n {#2} }
\cs_generate_variant:Nn \ior_open:Nn { c }

(End definition for \ior_open:Nn. This function is documented on page 156.)

\l__ior_file_name_tl

Data storage.
\tl_new:N \l__ior_file_name_tl
(End definition for \l__ior_file_name_tl.)

\ior_open:NnTF
\ior_open:cnTF

An auxiliary searches for the file in the \TeX{}, \LaTeX{} 2ε and \LaTeX{} 3 paths. Then pass the file found to the lower-level function which deals with streams. The full_name is empty when the file is not found.

\file_get_full_name:nNTF {#2} \l__ior_file_name_tl
\__kernel_ior_open:No #1 \l__ior_file_name_tl
\prg_return_true:

\prg_generate_conditional_variant:Nnn \ior_open:Nn { c } { T , F , TF }
(End definition for \ior_open:NnTF. This function is documented on page 157.)

\__ior_new:N

In package mode, streams are reserved using \newread before they can be managed by \ior. To prevent \ior from being affected by redefinitions of \newread (such as done by the third-party package morewrites), this macro is saved here under a private name. The complicated code ensures that \__ior_new:N is not \outer despite plain \TeX{}'s \newread being \outer. For Con\TeXt{}, we have to deal with the fact that \newread works like our own: it actually checks before altering definition.

\exp_args:NNf \cs_new_protected:Npn \__ior_new:N { \exp_args:NNc \exp_after:wN \exp_stop_f: { newread } }
\cs_if_exist:NT \normalend{
\cs_new_eq:NN \__ior_new_aux:N \__ior_new:N
\cs_set_protected:Npn \__ior_new:N #1{
\cs_undefine:N #1
\__ior_new_aux:N #1}
}

\__kernel_ior_open:No
\__ior_open_stream:Nn

The stream allocation itself uses the fact that there is a list of all of those available, so allocation is simply a question of using the number at the top of the list. In package mode, life gets more complex as it’s important to keep things in sync. That is done using a two-part approach: any streams that have already been taken up by \ior but are now
free are tracked, so we first try those. If that fails, ask plain \TeX{} or \LaTeX{} for a new stream and use that number (after a bit of conversion).

Here, we act defensively in case \LaTeX{} is in use with an extensionless file name.

Closing a stream means getting rid of it at the \TeX{} level and removing from the various data structures. Unless the name passed is an invalid stream number (outside the range \([0, 15]\)), it can be closed. On the other hand, it only gets added to the stack if it was not already there, to avoid duplicates building up.

Show the property lists, but with some “pretty printing”. See the \l3msg{} module. The first argument of the message is ior (as opposed to iow) and the second is empty if no
read stream is open and non-empty (the list of streams formatted using \msg_show_item_unbraced:nn) otherwise. The code of the message show-streams takes care of translating ior/iow to English.

\cs_new_protected:Npn \ior_show_list: { \__ior_list:N \msg_show:nnnxx \ior }
\cs_new_protected:Npn \ior_log_list: { \__ior_list:N \msg_log:nnnxx \ior }
\cs_new_protected:Npn \__ior_list:N #1
{ \ior }
{ \prop_map_function:NN \g__ior_streams_prop \msg_show_item_unbraced:nn }
{ } { }
(End definition for \ior_show_list:, \ior_log_list:, and \ior_list:N. These functions are documented on page 157.)

20.1.3 Reading input
\if_eof:w The primitive conditional
\cs_new_eq:NN \if_eof:w \tex_ifeof:D
(End definition for \if_eof:w. This function is documented on page 163.)
\ior_if_eof_p:N \ior_if_eof:N \ior_if_eof:NTF
To test if some particular input stream is exhausted the following conditional is provided. The primitive test can only deal with numbers in the range [0, 15] so we catch outliers (they are exhausted).
\cs_new_protected:Npn \ior_get:NN \ior_get:NNf \ior_get:NNf { \tl_set:Nn #2 { \q_no_value } }
\cs_new_protected:Npn \__ior_get:NN #1 #2
{ \tex_read:D #1 to #2 }
\prg_new_protected_conditional:Npnn \ior_get:NN #1#2 { T , F , TF }
And here we read from files.
\ior_str_get:NN \__ior_str_get:NN \ior_str_get:NN

Reading as strings is a more complicated wrapper, as we wish to remove the endline character and restore it afterwards.

\cs_new_protected:Npn \ior_str_get:NN #1#2
{ \ior_str_get:NNF #1 #2 { \tl_set:Nn #2 { \q_no_value } } }
\cs_new_protected:Npn \__ior_str_get:NN #1#2
{ \exp_args:Nno \use:n
  \int_set:Nn \tex_endlinechar:D { -1 }
  \tex_readline:D #1 to #2
  \int_set:Nn \tex_endlinechar:D
  { \int_use:N \tex_endlinechar:D }
}\prg_new_protected_conditional:Npnn \ior_str_get:NN #1#2 { T , F , TF }
{ \ior_if_eof:NTF #1
  { \prg_return_false: }
  { \__ior_str_get:NN #1 #2
    \prg_return_true: }
}\c__ior_term_noprompt_ior

For reading without a prompt.
\int_const:Nn \c__ior_term_noprompt_ior { -1 }

\ior_get_term:nN \ior_str_get_term:nN \__ior_get_term:NnN

Getting from the terminal is better with pretty-printing.
\cs_new_protected:Npn \ior_get_term:nN #1#2
{ \__ior_get_term:NnN \__ior_get:NN {#1} #2 }
\cs_new_protected:Npn \ior_str_get_term:nN #1#2
{ \__ior_get_term:NnN \ior_str_get:NN {#1} #2 }
\cs_new_protected:Npn \__ior_get_term:NnN #1#2#3
{ \group_begin:
  \tex_escapechar:D = \scan_stop:
  \tl_if_blank:nTF {#2}
  { \exp_args:NNo \c__ior_term_noprompt_ior }
  { \exp_args:NNo \c__ior_term_ior }
}\ior_if_eof:NTF #1
{ \prg_return_false: }
{ \__ior_get:NN #1 #2
  \prg_return_true: }

(End definition for \ior_get:NN, \__ior_get:NN, and \ior_get:NNTF. These functions are documented on page 158.)
Usual map breaking functions.

\ior_map_break: \ior_map_break:n

Mapping to an input stream can be done on either a token or a string basis, hence the setup. Within that, there is a check to avoid reading past the end of a file, hence the two applications of \ior_if_eof:N and its lower-level analogue \if_eof:w. This mapping cannot be nested with twice the same stream, as the stream has only one “current line”.

Since the \TeX{} primitive (\read or \readline) assigns the tokens read in the same way as a token list assignment, we simply call the appropriate primitive. The end-of-loop is checked using the primitive conditional for speed.
\cs_new_protected:Npn \ior_str_map_variable:NNn  
\cs_new_protected:Npn \ior_str_get:NN  
\cs_new_protected:Npn \__ior_map_variable:NNNn #1#2#3#4  
\ior_if_eof:NF #2 { \__ior_map_variable_loop:NNNn #1#2#3 \{#4\} }  
\prg_break_point:Nn \ior_map_break: \{ \}  
\cs_new_protected:Npn \__ior_map_variable_loop:NNNn #1#2#3#4  
\ior_if_eof:w #2 \exp_after:wN \ior_map_break: \fi: #4  
\__ior_map_variable_loop:NNNn #1#2#3 \{#4\}  
(End definition for \ior_map_variable:NNn and others. These functions are documented on page 159.)

20.2 Output operations

There is a lot of similarity here to the input operations, at least for many of the basics. Thus quite a bit is copied from the earlier material with minor alterations.

20.2.1 Variables and constants

Here we allocate two output streams for writing to the transcript file only (\c_log_iow) and to both the terminal and transcript file (\c_term_iow). Recent Lua\TeX{} provide 128 write streams; we also use \c_term_iow as the first non-allowed write stream so its value depends on the engine.

\seq_new:N \g__iow_streams_seq  
\exp_args:Nnx \use:n  
\seq_gset_split:Nnn \g__iow_streams_seq { }  
\int_step_function:nnN { 0 } { \c_term_iow }  
\prg_do_nothing:  
\int_compare:nNnF \c_term_iow < { 18 }  
(End definition for \c_log_iow and \c_term_iow. These variables are documented on page 163.)

\g__iow_streams_seq
A list of the currently-available output streams to be used as a stack. The stream 18 is special, as \write18 is used to denote commands to be sent to the OS.

\seq_new:N \g__iow_streams_seq
\exp_args:Nnx \use:n  
\seq_gset_split:Nnn \g__iow_streams_seq { }  
\int_step_function:nnN { 0 } { \c_term_iow }  
\prg_do_nothing:  
\int_compare:nNnF \c_term_iow < { 18 }
\l__iow_stream_tl

Used to recover the raw stream number from the stack.

\g__iow_streams_prop

As for reads with the appropriate adjustment of the register numbers to check on.

\__iow_new:N

As for read streams, copy \newwrite in package mode, making sure that it is not \outer.
\iow_open:Nn  \iow_open:cn
\_iow_open_stream:Nn  \_iow_open_stream:NV

The same idea as for reading, but without the path and without the need to allow for a conditional version.

13041 \cs_new_protected:Npn \iow_open:Nn #1#2
13042 { Alg
13043 \tl_set:Nx \l__iow_file_name_tl
13044 { \_kernel_file_name_sanitiz:n {#2} }
13045 \iow_close:N #1
13046 \seq_gpop:NNTF \g__iow_streams_seq \l__iow_stream_tl
13047 { \_iow_open_stream:NV #1 \l__iow_file_name_tl }
13048 \langle \textbullet \text{initex} \rangle
13049 \{ \_kernel_msg_fatal:nn { kernel } { output-streams-exhausted } \}
13050 \langle /\textbullet \text{initex} \rangle
13051 \langle \textbullet \text{package} \rangle
13052 {
13053 \_iow_new:N #1
13054 \tl_set:Nx \l__iow_stream_tl { \int_eval:n {#1} }
13055 \_iow_open_stream:NV #1 \l__iow_file_name_tl
13056 }
13057 \langle /\textbullet \text{package} \rangle
13058 \langle \textbullet \text{cs_generate_variant:Nn} \_iow_open:Nn \{ c \} \rangle
13059 \langle \textbullet \text{cs_new_protected:Npn} \_iow_open_stream:Nn \{ \#1\#2 \} \rangle
13060 \langle \textbullet \text{cs_generate_variant:Nn} \_iow_open_stream:NV \rangle

(End definition for \_iow_file_name_tl.)

\iow_close:N  \iow_close:c

Closing a stream is not quite the reverse of opening one. First, the close operation is easier than the open one, and second as the stream is actually a number we can use it directly to show that the slot has been freed up.

13061 \cs_new_protected:Npm \iow_close:N \#1
13062 { Alg
13063 \int_compare:nT { - \c_log_iow < #1 < \c_term_iow }
13064 \{ Alg
13065 \_tex_immediate:D \_tex_closeout:D \#1
13066 \prop_gput:NV \g__iow_streams_prop \#1 \#2
13067 \_tex_immediate:D \_tex_openout:D \#1 \_kernel_file_name_quote:n \#2 \scan_stop:
13068 \}
13069 \_cs_generate_variant:Nn \_iow_open_stream:Nn \{ NV \}
13070 \langle \textbullet \text{cs_generate_variant:Nn} \_iow_close:N \{ c \} \rangle

(End definition for \_iow_open:Nn and \_iow_open_stream:Nn. This function is documented on page 157.)

626
\iow_show_list: Done as for input, but with a copy of the auxiliary so the name is correct.
\iow_log_list: \_\_iow_list:N
\cs_new_protected:Npn \iow_show_list: { \_\_iow_list:N \msg_show:nnxxxx }
\cs_new_protected:Npn \iow_log_list: { \_\_iow_list:N \msg_log:nnxxxx }
\cs_new_protected:Npn \_\_iow_list:N #1
{
  \#1 \{ LaTeX / kernel \} \{ show-streams \}
  \{ \io \}
  \{ \prop_map_function:NN \g__iow_streams_prop \msg_show_item_unbraced:nn \}
  \{ } { }
};
(End definition for \iow_show_list:, \iow_log_list:, and \_\_iow_list:N. These functions are documented on page 157.)

20.3.1 Deferred writing
\iow_shipout_x:Nn \iow_shipout_x:Nx \iow_shipout_x:cn \iow_shipout_x:cx
First the easy part, this is the primitive, which expects its argument to be braced.
\cs_new_protected:Npn \iow_shipout_x:Nn #1#2
{ \tex_write:D #1 {#2} }
\cs_generate_variant:Nn \iow_shipout_x:Nn { c, Nx, cx }
(End definition for \iow_shipout_x:Nn. This function is documented on page 161.)
\iow_shipout:NN \iow_shipout:Nx \iow_shipout:cn \iow_shipout:cx
With ε-TEX available deferred writing without expansion is easy.
\cs_new_protected:Npn \iow_shipout:NN \iow_shipout:Nx \iow_shipout:cn \iow_shipout:cx
{ \tex_write:D \#1 \exp_not:n {#2} }
\cs_generate_variant:Nn \iow_shipout:NN { c, Nx, cx }
(End definition for \iow_shipout:NN. This function is documented on page 161.)

20.3.2 Immediate writing
\__kernel_iow_with:Nnn \__iow_with:nNnn
If the integer \#1 is equal to \#2, just leave \#3 in the input stream. Otherwise, pass the old
value to an auxiliary, which sets the integer to the new value, runs the code, and restores
the integer.
\cs_new_protected:Npm \__kernel_iow_with:Nnn \#1#2
{ \int_compare:nNnTF {#1} = {#2}
  { \use:n }
  { \exp_args:No \__iow_with:nNnn { \int_use:N #1 } \#1 \#2 }
};
\cs_new_protected:Npm \__iow_with:nNnn \#1#2#3#4
{ \int_set:Nn \#2 \#3
 \#4
 \int_set:Nn \#2 \#1
};
(End definition for \__kernel_iow_with:Nnn and \__iow_with:nNnn.)
This routine writes the second argument onto the output stream without expansion. If this stream isn’t open, the output goes to the terminal instead. If the first argument is no output stream at all, we get an internal error. We don’t use the expansion done by \texttt{\write} to get the \texttt{Nx} variant, because it differs in subtle ways from \texttt{x}-expansion, namely, macro parameter characters would not need to be doubled. We set the \texttt{\newlinechar} to 10 using \texttt{\_kernel\_iow\_with:Nnn} to support formats such as plain \TeX{}; otherwise, \texttt{\iow\_newline:} would not work. We do not do this for \texttt{\iow\_shipout:Nn} or \texttt{\iow\_shipout\_x:Nn}, as \TeX{} looks at the value of the \texttt{\newlinechar} at shipout time in those cases.

\begin{verbatim}
\cs_new_protected:Npn \iow_now:Nn #1#2
    { \__kernel_iow_with:Nnn \tex_newlinechar:D { '\^^J } \{ \tex_immediate:D \tex_write:D #1 { \exp_not:n {#2} } \} }
\cs_generate_variant:Nn \iow_now:Nn { c, Nx, cx }
\end{verbatim}

\textbf{20.3.3 Special characters for writing}

\texttt{\iownewline:} Global variable holding the character that forces a new line when something is written to an output stream.

\begin{verbatim}
\cs_new:NN \iownewline: \^M
\end{verbatim}

\textbf{20.3.4 Hard-wrapping lines to a character count}

The code here implements a generic hard-wrapping function. This is used by the messaging system, but is designed such that it is available for other uses.

\begin{verbatim}
\_l_iow_line_count_int
\end{verbatim}

\textbf{\_l\_iow\_newline\_tl} The token list inserted to produce a new line, with the \texttt{(run-on text)}.
This stores the target line count: the full number of characters in a line, minus any part
for a leader at the start of each line.

The \_\_iow\_set\_indent:n (that could possibly be public) sets the indentation in a consistent way. We set it to four
spaces by default.

The current indentation (some copies of \_\_iow\_one\_indent\_tl) and its number of
characters.

These hold the current line of text and a partial line to be added to it, respectively.

Indicates whether the line was broken precisely at a chunk boundary.

Used for the expansion step before detokenizing, and for the output from wrapping text:
fully expanded and with lines which are not overly long.
Every special action of the wrapping code is started with the same recognizable string, \texttt{\_iow\_wrap\_marker\_tl}. Upon seeing this “word”, the wrapping code reads one space-delimited argument to know what operation to perform. The setting of \texttt{\_escapechar} here is not very important, but makes \texttt{\_iow\_wrap\_marker\_tl} look marginally nicer.

\begin{verbatim}
\group_begin:
\int_set:Nn \tex_escapechar:D { -1 }
\tl_const:Nx \c__iow_wrap_marker_tl { \tl_to_str:n { \^^I \^^O \^^W \^^_ \^^W \^^R \^^A \^^P } }
\group_end:
\tl_map_inline:nn { { end } { newline } { allow_break } { indent } { unindent } }
{ \tl_const:cx { c__iow_wrap_ #1 _marker_tl } { \c__iow_wrap_marker_tl #1 \c_catcode_other_space_tl }
{ \iow_allow_break:n } to produce an error when outside messages. Within wrapped message, it is set to \texttt{\_iow\_indent:n} when valid and otherwise to \texttt{\_iow\_indent\_error:n}. The first places the instruction for increasing the indentation before its argument, and the instruction for unindenting afterwards. The second produces an error expandably.

\begin{verbatim}
\cs_new_protected:Npn \_iow\_allow\_break:n #1
{ \_kernel_msg_error:nnnn { kernel } { iow-indent } {&\iow\_wrap:nnnN } { \_iow\_allow\_break\_marker\_tl } #1
{ \c__iow\_allow\_break\_error:
{ \_kernel\_msg\_expandable\_error:nnnn { kernel } { iow-indent } {\iow\_wrap:nnnN } { \_iow\_allow\_break\_error:\ }

\cs_new:Npx \_iow\_allow\_break:n #1
{ \_iow\_indent:n } to produce an error when outside messages. Within wrapped message, it is set to \texttt{\_iow\_indent:n} when valid and otherwise to \texttt{\_iow\_indent\_error:n}. The first places the instruction for increasing the indentation before its argument, and the instruction for unindenting afterwards. The second produces an error expandably. Note that there are no forced line-break, so the indentation only changes when the next line is started.

\begin{verbatim}
\cs_new_protected:Npn \_iow\_indent:n #1
{ \_kernel\_msg\_error:nnnn { kernel } { iow-indent } {\iow\_wrap:nnnN } { \_iow\_indent\_marker\_tl } #1
{ \c__iow\_indent\_error:n
\end{verbatim}
\begin{verbatim}
\c__iow_wrap_indent_marker_tl
\c__iow_wrap_unindent_marker_tl
\}
\cs_new:Npn \__iow_indent_error:n #1
{\__kernel_msg_expandable_error:nnnnn { kernel } { iow-indent }
{ \iow_wrap:nnnN } { \iow_indent:n } {#1}
#1}
\end{verbatim}

(End definition for \iow_indent:n, \__iow_indent:n, and \__iow_indent_error:n. This function is documented on page 162.)

\iow_wrap:nnnN \iow_wrap:nnxnN

The main wrapping function works as follows. First give \ \ and other formatting commands the correct definition for messages and perform the given setup \#3. The definition of \ uses an “other” space rather than a normal space, because the latter might be absorbed by \TeX{} to end a number or other \texttt{t}-type expansions. Use \texttt{conditionally@traceoff} if defined; it is introduced by the \texttt{trace} package and suppresses uninteresting tracing of the wrapping code.

\begin{verbatim}
\cs_new_protected:Npn \iow_wrap:nnnN #1#2#3#4
{\group_begin:
⟨package⟩ \cs_if_exist_use:N \conditionally@traceoff
\int_set:Nn \tex_escapechar:D { -1 }
\cs_set:Npx \{ { \token_to_str:N \{ }
\cs_set:Npx \# { \token_to_str:N \# }
\cs_set:Npx \} { \token_to_str:N \} }
\cs_set:Npx % { \token_to_str:N % }
\cs_set:Npx \~ { \token_to_str:N \~ }
\int_set:Nn \tex_escapechar:D { 92 }
\cs_set_eq:NN \\iow_newline: \iow_newline:
\cs_set_eq:NN \c_catcode_other_space_tl \\c_catcode_other_space_tl:
\cs_set_eq:NN \iow_allow_break: \__iow_allow_break:
\cs_set_eq:NN \iow_indent:n \__iow_indent:n
#3
\tl_set:Nx \l__iow_newline_tl { \iow_newline: #2 }
\tl_set:Nx \l__iow_newline_tl { \tl_to_str:N \l__iow_newline_tl }
\int_set:Nn \l__iow_line_target_int { \l_iow_line_count_int - \str_count:N \l__iow_newline_tl + 1 }
\end{verbatim}

Then fully-expand the input: in package mode, the expansion uses \LaTeX{}'s \texttt{\protect} mechanism in the same way as \texttt{\typeout}. In generic mode this setting is useless but harmless. As soon as the expansion is done, reset \texttt{\iow_indent:n} to its error definition: it only works in the first argument of \texttt{\iow_wrap:nnnN}.

\begin{verbatim}
\cs_set_eq:NN \\iow_newline: \protect \token_to_str:N
\cs_set_eq:NN \\iow_allow_break: \__iow_allow_break:
\cs_set_eq:NN \\iow_indent:n \__iow_indent:n
\end{verbatim}

Afterwards, set the newline marker (two assignments to fully expand, then convert to a string) and initialize the target count for lines (the first line has target count \texttt{\l__iow_line_count_int} instead).

\begin{verbatim}
\tl_set:Nx \l__iow_newline_tl { \iow_newline: #2 }
\tl_set:Nx \l__iow_newline_tl { \tl_to_str:N \l__iow_newline_tl }
\int_set:Nn \l__iow_line_target_int { \l__iow_line_count_int - \str_count:N \l__iow_newline_tl + 1 }
\end{verbatim}

631
Sanity check.

There is then a loop over the input, which stores the wrapped result in \l__iow_wrap_tl. After the loop, the resulting text is passed on to the function which has been given as a post-processor. The \tl_to_str:n step converts the “other” spaces back to normal spaces. The f-expansion removes a leading space from \l__iow_wrap_tl.

Escape spaces and change newlines to \c__iow_wrap_newline_marker_tl. Set up a few variables, in particular the initial value of \l__iow_wrap_tl: the space stops the f-expansion of the main wrapping function and \use_none:n removes a newline marker inserted by later code. The main loop consists of repeatedly calling the chunk auxiliary to wrap chunks delimited by (newline or indentation) markers.

(End definition for \iow_wrap:nnnN. This function is documented on page 162.)
The chunk and next auxiliaries are defined indirectly to obtain the expansions of \( \texttt{c\_catcode\_other\_space\_tl} \) and \( \texttt{c\_\_iow\_wrap\_marker\_tl} \) in their definition. The next auxiliary calls a function corresponding to the type of marker (its \( \#2 \)), which can be newline or indent or unindent or end. The first argument of the chunk auxiliary is a target number of characters and the second is some string to wrap. If the chunk is empty simply call next. Otherwise, set up a call to \( \_\_\_iow\_wrap\_line\_nw \), including the indentation if the current line is empty, and including a trailing space (\#1) before the \( \_\_\_iow\_wrap\_end\_chunk\_w \) auxiliary.

This is followed by \{\( \texttt{\langle string\rangle}\) \( \texttt{\langle intexpr\rangle} \);. It stores the \( \texttt{\langle string\rangle} \) and up to \( \texttt{\langle intexpr\rangle} \) characters from the current chunk into \( \texttt{\_\_\_iow\_line\_part\_tl} \). Characters are grabbed 8 at a time and left in \( \texttt{\_\_\_iow\_line\_part\_tl} \) by the line_loop auxiliary. When \( k < 8 \) remain to be found, the line_aux auxiliary calls the line_end auxiliary followed by (the single digit) \( k \), then \( 7 - k \) empty brace groups, then the chunk’s remaining characters. The line_end auxiliary leaves \( k \) characters from the chunk in the line part, then ends the assignment. Ignore the \texttt{\use\_none\:nnnnnn} line for now. If the next character is a space the line can be broken there: store what we found into the result and get the next line. Otherwise some work is needed to find a break-point. So far we have ignored what happens if the chunk is shorter than the requested number of characters: this is dealt
with by the end_chunk auxiliary, which gets treated like a character by the rest of the code. It ends up being called either as one of the arguments #2–#9 of the line_loop auxiliary or as one of the arguments #2–#8 of the line_end auxiliary. In both cases stop the assignment and work out how many characters are still needed. Notice that when we have exactly seven arguments to clean up, a \exp_stop_f: has to be inserted to stop the \exp:w. The weird \use_none:mmmm ensures that the required data is in the right place.

\cs_new_protected:Npn \__iow_wrap_line:nw #1
\begin{verbatim}
{ \tex_edef:D \l__iow_line_part_tl { \if_false: } \fi:\#1\exp_after:wN \__iow_wrap_line_loop:w \int_value:w \int_eval:w\}
\end{verbatim}

\cs_new:Npn \__iow_wrap_line_loop:w #1 ; #2#3#4#5#6#7#8#9
\begin{verbatim}
{ \if_int_compare:w #1 < 8 \exp_stop_f:\__iow_wrap_line_aux:Nw #1\fi:\#2 #3 #4 #5 #6 #7 #8 #9\exp_after:wN \__iow_wrap_line_loop:w \int_value:w \int_eval:w #1 - 8 ;\}
\end{verbatim}

\cs_new:Npn \__iow_wrap_line_aux:Nw #1#2#3 \exp_after:wN #4 ;
\begin{verbatim}
{ \if_int_compare:w #1 \exp_stop_f:
\prg_do_nothing:\or: \use_none:n \or: \use_none:nn \or: \use_none:nnn \or: \use_none:nnnn \or: \use_none:nnnnn \or: \use_none:nnnnnn \or: \__iow_wrap_line_seven:nnnnnnn \fi:\{ } { } { } { } { } { } { } #3\}
\end{verbatim}

\cs_new:Npn \__iow_wrap_line_seven:nnnnnnn #1#2#3#4#5#6#7 #8
\begin{verbatim}
\{ \use_none:nnnnn \int_eval:w 8 - ; #9\token_if_eq_charcode:NNTF \c_space_token #9
\{ \__iow_wrap_line_end:nw \} \{ \fi: \__iow_wrap_break:w #9 \}
\end{verbatim}

\cs_new:Npn \__iow_wrap_line_end:nw #1
\begin{verbatim}
\}
\end{verbatim}
Functions here are defined indirectly: \__iow_tmp:w is eventually called with an “other” space as its argument. The goal is to remove from \l__iow_line_part_tl the part after the last space. In most cases this is done by repeatedly calling the \__iow_wrap_break_loop auxiliary, which leaves “words” (delimited by spaces) until it hits the trailing space: then its argument \#3 is ? \__iow_wrap_break_end instead of a single token, and that \__iow_wrap_break_end auxiliary leaves in the assignment the line until the last space, then calls \__iow_wrap_line_end: to finish up the line and move on to the next. If there is no space in \__iow_line_part_tl then the \__iow_wrap_break_first auxiliary calls the \__iow_wrap_break_none auxiliary. In that case, if the current line is empty, the complete word (including \#4, characters beyond what we had grabbed) is added to the line, making it over-long. Otherwise, the word is used for the following line (and the last space of the line so far is removed because it was inserted due to the presence of a marker).
\cs_new:Npn \__iow_wrap_break_end:w ##1 #1 #2 #3 #1 #4 \q_mark 
{ #1 \__iow_wrap_line_end:nw { } #3 }
}
\exp_args:NV \__iow_tmp:w \c_catcode_other_space_tl

(End definition for \__iow_wrap_break:w and others.)
\__iow_wrap_next_line:w

The special case where the end of a line coincides with the end of a chunk is detected here,
to avoid a spurious empty line. Otherwise, call \__iow_wrap_line:nw to find characters
for the next line (remembering to account for the indentation).

\cs_new_protected:Npn \__iow_wrap_next_line:w #1#2 \q_stop
{\tl_clear:N \l__iow_line_tl
\token_if_eq_meaning:NNTF #1 \__iow_wrap_end_chunk:w
{\tl_clear:N \l__iow_line_part_tl
\bool_set_true:N \l__iow_line_break_bool
\__iow_wrap_next:nw { \l__iow_line_target_int }
}
{\__iow_wrap_line:nw { \l__iow_indent_tl \l__iow_line_target_int - \l__iow_indent_int ; #1 #2 \q_stop }
}
}

(End definition for \__iow_wrap_next_line:w.)
\__iow_wrap_allow_break:n

This is called after a chunk has been wrapped. The \l__iow_line_part_tl typically
ends with a space (except at the beginning of a line?), which we remove since the allow_-
break marker should not insert a space. Then move on with the next chunk, making
sure to adjust the target number of characters for the line in case we did remove a space.

\cs_new_protected:Npn \__iow_wrap_allow_break:n #1
{\tl_clear:N \l__iow_line_tl
\token_if_eq Meaning:NNTF #1 \__iow_wrap_end_chunk:w
{\tl_clear:N \l__iow_line_part_tl
\bool_set_true:N \l__iow_line_break_bool
\__iow_wrap_next:nw { \l__iow_line_target_int }
}
{\__iow_wrap_line:nw { \l__iow_indent_tl
\l__iow_line_target_int - \l__iow_indent_int ; #1 #2 \q_stop }
}
}

(End definition for \__iow_wrap_allow_break:n.)
\__iow_wrap_indent:n
\__iow_wrap_unindent:n

These functions are called after a chunk has been wrapped, when encountering
indent/unindent markers. Add the line part (last line part of the previous chunk)
to the line so far and reset a boolean denoting the presence of a line-break. Most impor-
tantly, add or remove one indent from the current indent (both the integer and the token
list). Finally, continue wrapping.

\cs_new_protected:Npn \__iow_wrap_indent:n #1
{\tl_set:Nx \l__iow_line_tl \l__iow_line_part_tl
\bool_set_false:N \l__iow_line_break_bool
\__iow_wrap_line:nw { \l__iow_line_target_int }
\exp_args:Nf \__iow_wrap_chunk:nw { \int_eval:n { #1 + 1 } } }

(End definition for \__iow_wrap_allow_break:n.)

636
\font_set_false:N \l__iow_line_break_bool
\int_add:Nn \l__iow_indent_int \{ \l__iow_one_indent_int \}
\tl_put_right:No \l__iow_indent_tl \{ \l__iow_one_indent_tl \}
\__iow_wrap_chunk:nw \{#1\}
\cs_new_protected:Npn \__iow_wrap_unindent:n \#1 \{
\tl_put_right:Nx \l__iow_line_tl \{ \l__iow_line_part_tl \}
\bool_set_false:N \l__iow_line_break_bool
\int_sub:Nn \l__iow_indent_int \{ \l__iow_one_indent_int \}
\tl_set:Nx \l__iow_indent_tl \{ \exp_after:wN \__iow_unindent:w \l__iow_indent_tl \}
\__iow_wrap_chunk:nw \{#1\}
\}
(End definition for \__iow_wrapIndent:n and \__iow_wrapUnindent:n.)

These functions are called after a chunk has been line-wrapped, when encountering a newline/end marker. Unless we just took a line-break, store the line part and the line so far into the whole \l__iow_wrap_tl, trimming a trailing space. In the newline case look for a new line (of length \l__iow_line_target_int) in a new chunk.
\cs_new_protected:Npn \__iow_wrap_newline:n \#1 \{
\bool_if:NF \l__iow_line_break_bool
{ \__iow_wrap_store_do:n { \__iow_wrap_trim:N } }
\bool_set_false:N \l__iow_line_break_bool
\__iow_wrap_chunk:nw \{ \l__iow_line_target_int \}
\}
\cs_new_protected:Npn \__iow_wrap_end:n \#1 \{
\bool_if:NF \l__iow_line_break_bool
{ \__iow_wrap_store_do:n { \__iow_wrap_trim:N } }
\bool_set_false:N \l__iow_line_break_bool
\}
(End definition for \__iow_wrap_newline:n and \__iow_wrap_end:n.)

First add the last line part to the line, then append it to \l__iow_wrap_tl with the appropriate new line (with “run-on” text), possibly with its last space removed (#1 is empty or \__iow_wrap_trim:N).
\cs_new_protected:Npn \__iow_wrap_store_do:n \#1 \{
\tl_set:Nx \l__iow_line_tl \{ \l__iow_line_tl \l__iow_line_part_tl \}
\tl_set:Nx \l__iow_line_tl \l__iow_line_target_int
\__iow_wrap_chunk:nw \{\}
\tl_clear:N \l__iow_line_tl
\}
(End definition for \__iow_wrap_store_do:n.)
Remove one trailing “other” space from the argument if present.

\cs_set_protected:Npn \__iow_tmp:w #1
{ \cs_new:Npn \__iow_wrap_trim:N ##1 { \exp_after:wN \__iow_wrap_trim:w ##1 \q_mark #1 \q_mark \q_stop }
\cs_new:Npn \__iow_wrap_trim:w ##1 \q_mark \q_stop { \__iow_wrap_trim_aux:w ##1 \q_mark }
\cs_new:Npn \__iow_wrap_trim_aux:w ##1 \q_mark ##2 \q_stop { ##1 }
\exp_args:NV \__iow_tmp:w \c_catcode_other_space_tl
}

\__iow_wrap_trim:N, \__iow_wrap_trim:w, and \__iow_wrap_trim_aux:w

End definition for \__iow_wrap_trim:N, \__iow_wrap_trim:w, and \__iow_wrap_trim_aux:w.

End definition for \__iow_wrap_trim:N, \__iow_wrap_trim:w, and \__iow_wrap_trim_aux:w.

\tl_new:N \l__file_internal_tl

End definition for \l__file_internal_tl.

\str_new:N \g_file_curr_dir_str
\str_new:N \g_file_curr_ext_str
\str_new:N \g_file_curr_name_str

End definition for \g_file_curr_dir_str, \g_file_curr_ext_str, and \g_file_curr_name_str. These
variables are documented on page 163.

\seq_new:N \g__file_stack_seq

End definition for \g__file_stack_seq.

The input list of files is stored as a sequence stack. In package mode we can recover the
information from the details held by \LaTeX2ε (we must be in the preamble and loaded
using \usepackage or \RequirePackage). As \LaTeX2ε doesn’t store directory and name
separately, we stick to the same convention here. In pre-loading, \@currnamestack is
empty so is skipped.

\tl_if_blank:nTF {#1}
{ \exp_after:wN \__file_tmp:w \tex_jobname:D \tex_jobname:D \q_stop }
{ \exp After:wN \__file_tmp:w \tex_jobname:D \q_stop }
\seq_gput_right:Nx \g__file_stack_seq { { } {#1} {#2} }

\tl_if_blank:nTF {#1}
{ \exp_after:wN \__file_tmp:w \tex_jobname:D \q_stop }
{ \exp After:wN \__file_tmp:w \tex_jobname:D \q_stop }
\seq_gput_right:Nn \g__file_stack_seq { { } {#1} {#2} }

20.4 File operations
\cs_if_exist:NT \@currnamestack
{
\tl_if_empty:NF \@currnamestack
{ \exp_after:wN \__file_tmp:w \@currnamestack }
}
\group_end:
⟨/package⟩

\g__file_record_seq
The total list of files used is recorded separately from the current file stack, as nothing is ever popped from this list. The current file name should be included in the file list!
In format mode, this is done at the very start of the \TeX{} run. In package mode we will eventually copy the contents of \@filelist.
\seq_new:N \g__file_record_seq
\tex_everyjob:D \exp_after:wN
\tex_the:D \tex_everyjob:D
\seq_gput_right:NV \g__file_record_seq \g_file_curr_name_str
⟨/initex⟩

\l__file_base_name_tl
\l__file_full_name_tl
For storing the basename and full path whilst passing data internally.
\tl_new:N \l__file_base_name_tl
\tl_new:N \l__file_full_name_tl
(End definition for \l__file_base_name_tl and \l__file_full_name_tl.)

\l__file_dir_str
\l__file_ext_str
\l__file_name_str
Used in parsing a path into parts: in contrast to the above, these are never used outside of the current module.
\str_new:N \l__file_dir_str
\str_new:N \l__file_ext_str
\str_new:N \l__file_name_str
(End definition for \l__file_dir_str, \l__file_ext_str, and \l__file_name_str.)

\l_file_search_path_seq
The current search path.
\seq_new:N \l_file_search_path_seq
(End definition for \l_file_search_path_seq. This variable is documented on page \pageref{file-search}).

\l__file_tmp_seq
Scratch space for comma list conversion in package mode.
\{package\}
\seq_new:N \l__file_tmp_seq
⟨/package⟩
(End definition for \l__file_tmp_seq.)
Expanding the file name without expanding active characters is done using the same
token-by-token approach as for example case changing. The finale outcome only need be
type expandable, so there is no need for the shuffling that is seen in other locations.

\cs_new:Npn \__kernel_file_name_sanitize:n \__kernel_file_name_trim_spaces:n \exp_after:wN \__kernel_file_name_strip_quotes:n \___kernel_file_name_expand_loop:w \exp_after:wN \__kernel_file_name_expand_loop:w \exp_after:wN \__kernel_file_name_expand_loop:w

\cs_new:Nx \__kernel_file_name_expand_group:nw \c_left_brace_str \exp_not:N \__kernel_file_name_expand_loop:w \c_right_brace_str

640
Quoting file name uses basically the same approach as for luaquotejobname: count the " tokens and remove them.

Spaces need to be trimmed from the start of the name and from the end of any extension. However, the name we are passed might not have an extension: that means we have to look for one. If there is no extension, we still use the standard trimming function but deliberately prevent any spaces being removed at the end.
\c__file_marker_tl

The same idea as the marker for rescanning token lists: this pair of tokens cannot appear in a file that is being input.

\tl_const:Nx \c__file_marker_tl { \token_to_str:N : }

(End definition for \__kernel_file_name_quote:n and \__kernel_file_name_quote:nw.)

\file_get:nnN
\file_get:nnNF
\__file_get_aux:nnN
\__file_get_do:Nw

The approach here is similar to that for \tl_set_rescan:Nnn. The file contents are grabbed as an argument delimited by \c__file_marker_tl. A few subtleties: braces in \if_false: ... \fi: to deal with possible alignment tabs, \tracingnesting to avoid a warning about a group being closed inside the \scantokens, and \prg_return_true: is placed after the end-of-file marker.
A copy of the primitive where it’s available, or the LuaTeX equivalent if relevant.

\cs_new_eq:NN \__file_size:n \tex_filesize:D
\sys_if_engine_luatex:T
{ \cs_gset:Npn \__file_size:n #1
{ \lua_now:e
{ \l3kernel.filesize ( " \lua_escape:e {#1} " ) } }
}

(End definition for \__file_size:n.)

File searching can be carried out if the \pdffilesize primitive or an equivalent is available. That of course means we need to arrange for everything else to here to be done by expansion too. We start off by sanitizing the name and quoting if required: we may need to remove those quotes, so the raw name is passed too.

\cs_new:Npn \file_full_name:n #1
{ \exp_args:Ne \__file_full_name:n { \__kernel_file_name_sanitize:n {#1} } }

First, we check of the file is just here: no mapping so we do not need the break part of the broader auxiliary. We are using the fact that the primitive here returns nothing if the file is entirely absent. For package mode, \input@path is a token list not a sequence.

\cs_new:Npn \__file_full_name:n #1
{ \tl_if_blank:nF {#1}
{ \tl_if_blank:eTF { \__file_size:n {#1} }
{ \seq_map_tokens:Nn \l_file_search_path_seq
{ \__file_full_name_aux:n {#1} } }

(*package*)
\cs_if_exist:NT \input@path
{ \tl_map_tokens:Nn \input@path
{ \__file_full_name_aux:n {#1} } }

(*package*)
\close_file_name_end:
{ \__file_ext_check:n {#1} }

}
Two pars to the auxiliary here so we can avoid doing quoting twice in the event we find
the right file.

\cs_new:Npn \_\_file_full_name_aux:nn #1#2
{ \exp_args:Ne \_\_file_full_name_aux:n { \tl_to_str:n {#2} / #1 } }
\cs_new:Npn \_\_file_full_name_aux:n #1
{ \tl_if_blank:eF { \_\_file_size:n {#1} } 
  { \seq_map_break:n
    { \_\_file_ext_check:n {#1}
      \_\_file_name_cleanup:w
    }
  }
}
\cs_new:Npn \_\_file_name_cleanup:w #1 \_\_file_name_end: { }
\cs_new:Npn \_\_file_name_end: { }

As \TeX{} automatically adds .\texttt{tex} if there is no extension, there is a little clean up to do
here. First, make sure we are not in the directory part, saving that. Then check for an
extension.

\cs_new:Npn \_\_file_ext_check:n #1
{ \_\_file_ext_check:nw { / } #1 / \q_nil / \q_stop }
\cs_new:Npn \_\_file_ext_check:nw #1 #2 / #3 / #4 \q_stop
{ \quark_if_nil:nTF {#3}
  { \exp_args:No \_\_file_ext_check:nnw
    { \use_none:n #1 } {#2} #2 . \q_nil . \q_stop
  }
  { \_\_file_ext_check:nw { #1 #2 / } #3 / #4 \q_stop }
}
\cs_new:Npx \_\_file_ext_check:nnw #1#2#3 . #4 . #5 \q_stop
{ \exp_not:N \quark_if_nil:nTF {#4}
  { \exp_not:N \_\_file_ext_check:nn
    { #1 #2 } { #1 #2 \tl_to_str:n { .\texttt{tex} } }
  }
  { #1 #2 }
}
\cs_new:Npn \_\_file_ext_check:nn #1#2
{ \tl_if_blank:eTF { \_\_file_size:n {#2} } 
  {#1}
  { \int_compare:nNnTF
    \_\_file_size:n {#1} = \_\_file_size:n {#2}
    {#2}
    {#1}
  }
}

Deal with the fact that the primitive might not be available.
\bool_lazy_or:nF
{ \cs_if_exist_p:N \tex_filesize:D }
{ \sys_if_engine_luatex_p: }
{ \cs_gset:Npn \file_full_name:n #1 }
{ \__kernel_msg_expandable_error:nnn }
{ kernel } { primitive-not-available }
{ \(pdf)filesize }
}
\__kernel_msg_new:nnnn { kernel } { primitive-not-available }
{ Primitive~\token_to_str:N #1 not-available }
{ The-version-of-your-TeX-engine-does-not-provide-functionality-equivalent-to-the-#1-primitive. }

(End definition for \file_full_name:n and others. This function is documented on page 164.)

These functions pre-date using \tex_filesize:D for file searching, so are get functions with protection. To avoid having different search set ups, they are simply wrappers around the code above.

\cs_new_protected:Npn \file_get_full_name:nN #1#2
{ \file_get_full_name:nNF {#1} #2
{ \tl_set:Nn #2 { \q_no_value } }
}
\cs_generate_variant:Nn \file_get_full_name:nN { V }
\prg_new_protected_conditional:Nppnn \file_get_full_name:nN #1#2 { T , F , TF }
{ \tl_set:Nx #2
{ \file_full_name:n {#1} }
\tl_if_empty:NTF #2
{ \prg_return_false: }
{ \prg_return_true: }
}
\cs_generate_variant:Nn \file_get_full_name:nN #1#2 { T , F , TF }
\cs_generate_variant:Nn \file_get_full_name:nNF { V }
\cs_generate_variant:Nn \file_get_full_name:nNT { V }
\cs_generate_variant:Nn \file_get_full_name:nNTF { V }

If \tex_filesize:D is not available, the way to test if a file exists is to try to open it: if it does not exist then T\TeX{} reports end-of-file. A search is made looking at each potential path in turn (starting from the current directory). The first location is of course treated as the correct one: this is done by jumping to \prg_break_point:. If nothing is found, #2 is returned empty. A special case when there is no extension is that once the first location is found we test the existence of the file with .tex extension in that directory, and if it exists we include the .tex extension in the result.

\bool_lazy_or:nF
{ \cs_if_exist_p:N \tex_filesize:D }
{ \sys_if_engine_luatex_p: }
{ \prg_set_protected_conditional:Nppnn \file_get_full_name:nN #1#2 { T , F , TF }
{ 

645
\tl_set:Nx \_file_base_name_tl
\__kernel_file_name-sanitize:n {#1} }
\__file_get_full_name_search:nN { } \use:n
\seq_map_inline:Nn \_file_search_path_seq
\__file_get_full_name_search:nN { #1 / } \seq_map_break:n }

⟨package⟩
\cs_if_exist:NT \input@path
{
\tl_map_inline:Nn \input@path
{ \__file_get_full_name_search:nN { ##1 / } \tl_map_break:n }
}

⟨/package⟩
\tl_set:Nn \l__file_full_name_tl { \q_no_value }
\prg_break_point:
\quark_if_no_value:NTF \l__file_full_name_tl
{
\ior_close:N \g__file_internal_ior
\prg_return_false:
}
{
\file_parse_full_name:VNNN \l__file_full_name_tl
\l__file_dir_str \l__file_name_str \l__file_ext_str
\str_if_empty:NT \l__file_ext_str
\__kernel_ior_open:No \g__file_internal_ior
{ \l__file_full_name_tl .tex }
\ior_if_eof:NF \g__file_internal_ior
{ \tl_put_right:Nn \l__file_full_name_tl { .tex } }
\ior_close:N \g__file_internal_ior
\tl_set_eq:NN #2 \l__file_full_name_tl
\prg_return_true:
}
}\cs_new_protected:Npn \__file_get_full_name_search:nN \l__file_full_name_tl \q_no_value
{\q_no_value }
\prg_break_point:
\quark_if_no_value:NTF \l__file_full_name_tl
{
\ior_close:N \g__file_internal_ior
\prg_return_false:
}
{
\file_parse_full_name:VNNN \l__file_full_name_tl
\l__file_dir_str \l__file_name_str \l__file_ext_str
\str_if_empty:NT \l__file_ext_str
\__kernel_ior_open:No \g__file_internal_ior
{ \l__file_full_name_tl .tex }
\ior_if_eof:NF \g__file_internal_ior
{ \tl_put_right:Nn \l__file_full_name_tl { .tex } }
\ior_close:N \g__file_internal_ior
\tl_set_eq:NN #2 \l__file_full_name_tl
\prg_return_true:
}
\bool_lazy_or:nnF
{ \cs_if_exist_p:N \tex_filesize:D }
{ \sys_if_engine_luatex_p: }
{ \ior_new:N \g__file_internal_ior }

(End definition for \file_get_full_name:nN, \file_get_full_name:nNTF, and \__file_get_full_name_search:nN. These functions are documented on page 164.)

\g__file_internal_ior A reserved stream to test for file existence, if required.
\bool_lazy_or:nnF
{ \cs_if_exist_p:N \tex_filesize:D }
{ \sys_if_engine_luatex_p: }
{ \ior_new:N \g__file_internal_ior }

(End definition for \g__file_internal_ior.)
Getting file details by expansion is relatively easy if a bit repetitive. As the MD5 function has a slightly different syntax from the other commands, there is a little cleaning up to do.

```latex
\cs_new:Npn \file_mdfive_hash:n #1
\cs_new:Npn \file_size:n #1
\cs_new:Npn \file_timestamp:n #1
__file_details:nn
__file_details_aux:nn
__file_mdfive_hash:n
\tl_if_blank:nF {\file_full_name:n {#1}} {\use:c {\tex_file #2 :D} {#1}}
```

These are separate as they need multiple arguments or the file size. For LuaTeX, the emulation does not need the file size so we save a little on expansion.

```latex
\cs_gset:Npn __file_details_aux:nn #1#2
\lua_now:e {l3kernel.file#2 ("\lua_escape:e {#1}")}
```

(End definition for \file_mdfive_hash:n and others. These functions are documented on page 165.)
\exp_args:Ne \__file_hex_dump_auxii:nnnn
{ \__file_details_aux:nn {#1} { size } }
{#1} {#2} {#3}
}
\cs_new:Npn \__file_hex_dump_auxii:nnnn #1#2#3#4
{\int_compare:nNnTF {#3} > 0
{ \__file_hex_dump_auxiii:nnnn {#3} }
{\exp_args:Ne \__file_hex_dump_auxiii:nnnn
{ \int_eval:n { #1 + #3 } }
{#1} {#2} {#4}}
}
\cs_new:Npn \__file_hex_dump_auxiii:nnnn #1#2#3#4
{\int_compare:nNnTF {#4} > 0
{ \__file_hex_dump_auxiv:nnn {#4} }
{\exp_args:Ne \__file_hex_dump_auxiv:nnn
{ \int_eval:n { #2 + #4 } }
{#1} {#3}}
}
\cs_new:Npn \__file_hex_dump_auxiv:nnn #1#2#3
{\tex_filedump:D
offset \int_eval:n { #2 - 1 } -
length \int_eval:n { #1 - #2 + 1 }
{#3}}
\sys_if_engine_luatex:T
{\cs_gset:Npn \__file_hex_dump_auxiv:nnn #1#2#3
{\lua_now:e
{l3kernel.filedump
{ " \lua_escape:e {#3} " ,
\int_eval:n { #2 - 1 } ,
\int_eval:n { #1 - #2 + 1 }
}}}
}
\cs_new:Npn \file_hex_dump:n #1
{\exp_args:Ne \__file_hex_dump:n { \file_full_name:n {#1} } }
\cs_new:Npn \__file_hex_dump:n #1
{\tl_if_blank:nF {#1}
{\tex_filedump:D length \tex_filesize:D {#1} {#1}}
}
\sys_if_engine_luatex:T

\cs_gset:Npn \__file_hex_dump:n #1
  \lua_now:e
  { l3kernel.filedump ( " \lua_escape:e { #1 } " ) }
\prg_new_protected_conditional:Npnn \file_get_hex_dump:nNN #1#2 { T , F , TF }
  { \__file_get_details:nnN {#1} { hex_dump } #2 }
\prg_new_protected_conditional:Npnn \file_get_mdfive_hash:nNN #1#2 { T , F , TF }
  { \__file_get_details:nnN {#1} { mdfive_hash } #2 }
\prg_new_protected_conditional:Npnn \file_get_size:nNN #1#2 { T , F , TF }
  { \__file_get_details:nnN {#1} { size } #2 }
\prg_new_protected_conditional:Npnn \file_get_timestamp:nNN #1#2 { T , F , TF }
  { \__file_get_details:nnN {#1} { timestamp } #2 }
\cs_new_protected:Npn \__file_get_details:nnNN #1#2#3
  \tl_set:Nx #3
  { \use:c { file_ #2 :n } {#1} }
\cs_new_protected:Npn \__file_get_details:nnN #1#2#3
  \tl_clear:N #3
  \__kernel_msg_error:nnx
  { kernel } { primitive-not-available }
  { \token_to_str:N (pdf)file
    \str_case:nn {#2}
    { \hex_dump } { dump }
    { \mdfive_hash } { mdfivesum } }

Where the primitive is not available, issue an error: this is a little more conservative than absolutely needed, but does work.
Custom code due to the additional arguments.

As we are doing a fixed-length “big” integer comparison, it is easiest to use the low-level behavior of string comparisons.

(End definition for \file_get_hex_dump:nnnNTF. This function is documented on page 165.)
Comparison of file date can be done by using the low-level nature of the string comparison functions.

```latex
\texttt{\textbackslash_file_compare_timestamp:nnn\{#1\#2\#3\}}
```

```latex
\texttt{\textbackslash_file_timestamp:nn}
```

```latex
\texttt{\sys_if_engine_luatex:TF}
```
\begin{verbatim}
\{ p , T , F , TF \}
\{
\_\_kernel_msg_expandable_error:nnn
\{ kernel \} \{ primitive-not-available \}
\{ \(\langle\text{pdf}\rangle\)filemoddate \}
\prg_return_false:
}\}

(End definition for \file_compare_timestamp:nTF, \_\_file_compare_timestamp:nF, and \_\_file_timestamp:n. This function is documented on page 166.)

\file_if_exist:nTF The test for the existence of a file is a wrapper around the function to add a path to a file. If the file was found, the path contains something, whereas if the file was not located then the return value is empty.
\begin{verbatim}
\prg_new_protected_conditional:Npn \file_if_exist:n #1 { T , F , TF }
{ \file_get_full_name:nNTF {#1} \l__file_full_name_tl
\prg_return_true: }
\prg_return_false:
}\}

(End definition for \file_if_exist:nTF. This function is documented on page 164.)

\file_if_exist_input:n
\file_if_exist_input:nF Input of a file with a test for existence. We do not define the T or TF variants because the most useful place to place the ⟨true code⟩ would be inconsistent with other conditionals.
\begin{verbatim}
\cs_new_protected:Npn \file_if_exist_input:n #1 { \file_get_full_name:nNTF {#1} \l__file_full_name_tl
\prg_return_true: }
\cs_new_protected:Npn \file_if_exist_input:nF #1\#2 { \file_get_full_name:nNTF {#1} \l__file_full_name_tl\prg_return_false:{#2}
}\}

(End definition for \file_if_exist_input:n and \file_if_exist_input:nF. These functions are documented on page 167.)

\file_input_stop: A simple rename.
\begin{verbatim}
\cs_new_protected:Npm \file_input_stop: { \tex_endinput:D }

(End definition for \file_input_stop:. This function is documented on page 167.)

\_\_kernel_file_missing:n An error message for a missing file, also used in \ior_open:Nn.
\begin{verbatim}
\cs_new_protected:Npm \_\_kernel_file_missing:n \{ \_\_kernel_msg_error:nmx \{ kernel \} \{ file-not-found \}
\{ \_\_kernel_file_name_sanitize:n \{#1\} \}
\}

(End definition for \_\_kernel_file_missing:n.)
\end{verbatim}
\end{verbatim}
Loading a file is done in a safe way, checking first that the file exists and loading only if it does. Push the file name on the \texttt{\_\_file_stack_seq} and add it to the file list, either \texttt{\_\_file_record_seq} or \texttt{@filelist} in package mode.

14073 \cs_new_protected:Npn \file_input:n #1
14074 { \file_get_full_name:nNTF {#1} \l__file_full_name_tl
14075 { \__file_input:V \l__file_full_name_tl }
14076 { \__kernel_file_missing:n {#1} }
14078 }

Keeping a track of the file data is easy enough: we store the separated parts so we do not need to parse them twice.

14097 \cs_new_protected:Npn \__file_input_push:n #1
14098 { \seq_gpush:Nx \g__file_stack_seq
14100 { \g_file_curr_dir_str
14102 \g_file_curr_name_str \\14104 \g_file_curr_ext_str
14105 } \file_parse_full_name:nNNN {#1}
14106 \l__file_dir_str \l__file_name_str \l__file_ext_str
14107 \str_gset_eq:NN \g_file_curr_dir_str \l__file_dir_str
14109 \str_gset_eq:NN \g_file_curr_name_str \l__file_name_str
14110 \str_gset_eq:NN \g_file_curr_ext_str \l__file_ext_str
14111 } \package
14112 \cs_new_eq:NN \__kernel_file_input_push:n \__file_input_push:n
14113 \package
14114 \cs_new_protected:Npn \__file_input_pop:
14115 { \seq_gpop:NN \g__file_stack_seq \l__file_internal_tl
14116 \exp_after:wN \__file_input_pop:nnn \l__file_internal_tl
14117 } \package
14119 \cs_generate_variant:Nn \__file_input:n { V }
Parsing starts by stripping off any surrounding quotes. Then find the directory \#4 by splitting at the last \/. (The auxiliary returns true/false depending on whether it found the delimiter.) We correct for the case of a file in the root \/, as in that case we wish to keep the trailing (and only) slash. Then split the base name \#5 at the last dot. If there was indeed a dot, \#5 contains the name and \#6 the extension without the dot, which we add back for convenience. In the special case of no extension given, the auxiliary stored the name into \#6, we just have to move it to \#5.

\begin{verbatim}
\cs_new_protected:Npn \file_parse_full_name:nNNN #1#2#3#4
\{\exp_after:wN \__file_parse_full_name_auxi:w \\
\tl_to_str:n { #1 " #1 " } \q_stop #2#3#4 \}
\cs_generate_variant:Nn \file_parse_full_name:nNNN { V }
\cs_new_protected:Npn \__file_parse_full_name_auxi:w #1 " #2 " #3 \q_stop #4#5#6
\{ \__file_parse_full_name_split:nNNNTF {#2} / #4 #5
{ \str_if_empty:NT #4 { \str_set:Nn #4 { / } } }
{ }
\exp_args:No \__file_parse_full_name_split:nNNNTF {#5} . #5 #6
{ \str_put_left:Nn #6 { . } }
\str_set_eq:NN #5 #6
\str_clear:N #6
\}
\cs_new_protected:Npn \__file_parse_full_name_split:nNNNTF #1#2#3#4
\{ \cs_set_protected:Npn \__file_tmp:w ##1 ##2 #2 ##3 \q_stop
\{ \tl_if_empty:nTF {##3}
\{ \str_set:Nn #4 {##2} \tl_if_empty:nTF {##1}
\{ \str_clear:N #3 \use_i:nn
\}
\{ \str_set:Nx #3 { \str_tail:n {##1} } \use_i:nn
\}
\}
\{ \__file_tmp:w { ##1 #2 ##2 } ##3 \q_stop \}
\end{verbatim}
A function to list all files used to the log, without duplicates. In package mode, if \@filelist is still defined, we need to take this list of file names into account (we capture it \AtBeginDocument into \g__file_record_seq), turning it to a string (this does not affect the commas of this comma list).

\begin{verbatim}
\cs_new_protected:Npn \file_show_list: { \__file_list:N \msg_show:nnxxxx }
\cs_new_protected:Npn \file_log_list: { \__file_list:N \msg_log:nnxxxx }
\cs_new_protected:Npn \__file_list:N #1 
  { \seq_clear:N \l__file_tmp_seq
  ⟨ \* package ⟩
  \clist_if_exist:NT \@filelist 
  { \exp_args:NNx \seq_set_from_clist:Nn \l__file_tmp_seq
    { \tl_to_str:N \@filelist }
  }
  ⟨ / package ⟩
  \seq_concat:NNN \l__file_tmp_seq \l__file_tmp_seq \g__file_record_seq
  \seq_remove_duplicates:N \l__file_tmp_seq
  \seq_map_function:NN \l__file_tmp_seq \__file_list_aux:n
  #1 { \seq_clear:N \l__file_tmp_seq
  ⟨ \* package ⟩
  \cs_if_exist:NT \@filelist 
  { \AtBeginDocument 
    \exp_args:NNx \seq_set_from_clist:Nn \l__file_tmp_seq
    { \tl_to_str:N \@filelist }
    \seq_gconcat:NNN \g__file_record_seq \g__file_record_seq
    \l__file_tmp_seq
    \l__file_tmp_seq
  }
  ⟨ / package ⟩
\end{verbatim}

When used as a package, there is a need to hold onto the standard file list as well as the new one here. File names recorded in \@filelist must be turned to strings before being added to \g__file_record_seq.

\begin{verbatim}
\cs_if_exist:NT \@filelist 
\{ \AtBeginDocument 
  \exp_args:NNx \seq_set_from_clist:Nn \l__file_tmp_seq
  { \tl_to_str:N \@filelist }
  \seq_gconcat:NNN \g__file_record_seq \g__file_record_seq
  \l__file_tmp_seq
  \l__file_tmp_seq
\end{verbatim}

As documented in expl3.dtx this function extracts file name etc from an SVN Id line. This used to be how we got version number and so on in all modules, so it had to be defined

\section*{20.5 GetIfInfo}

\begin{verbatim}
\GetIdInfo \__file_id_info_auxi:w \__file_id_info_auxii:w \__file_id_info_auxiii:w
\end{verbatim}
in \texttt{\textbackslash l3bootstrap}. Now it's more convenient to define it after we have set up quite a lot of tools, and \texttt{\textbackslash l3file} seems the least unreasonable place for it.

The idea here is to extract out the information needed from a standard \texttt{svn Id} line, but to avoid a line that would get changed when the file is checked in. Hence the fact that none of the lines here include both a dollar sign and the \texttt{Id} keyword!

\begin{verbatim}
\cs_new_protected:Npn \GetIdInfo
\tl_clear_new:N \ExplFileDescription
\tl_clear_new:N \ExplFileDate
\tl_clear_new:N \ExplFileName
\tl_clear_new:N \ExplFileExtension
\tl_clear_new:N \ExplFileVersion
\group_begin:
\char_set_catcode_space:n { 32 }
\exp_after:wN
\group_end:
\__file_id_info_auxi:w
\end{verbatim}

A first check for a completely empty \texttt{svn} field. If that is not the case, there is a second case when a file created using \texttt{svn cp} but has not been checked in. That leaves a special marker \texttt{-1} version, which has no further data. Dealing correctly with that is the reason for the space in the line to use \texttt{\__file_id_info_auxii:w}.

\begin{verbatim}
\cs_new_protected:Npn \__file_id_info_auxi:w $ #1 $ #2
\tl_set:Nn \ExplFileDescription {#2}
\str_if_eq:nnTF {#1} { Id }
{ \tl_set:Nn \ExplFileDate { 0000/00/00 }
\tl_set:Nn \ExplFileName { [unknown] }
\tl_set:Nn \ExplFileExtension { [unknown-extension] }
\tl_set:Nn \ExplFileVersion {-1}
}
{ \__file_id_info_auxii:w #1 ~ \q_stop }
\end{verbatim}

Here, \#1 is Id, \#2 is the file name, \#3 is the extension, \#4 is the version, \#5 is the check in date and \#6 is the check in time and user, plus some trailing spaces. If \#4 is the marker \texttt{-1} value then \#5 and \#6 are empty.

\begin{verbatim}
\cs_new_protected:Npn \__file_id_info_auxii:w #1 ~ #2.#3 ~ #4 ~ #5 ~ #6 \q_stop
\end{verbatim}

Convert an \texttt{svn}-style date into a \LaTeX-style one.

\begin{verbatim}
\cs_new_protected:Npn \__file_id_info_auxiii:w #1 - #2.#3 - #4 - #5 - #6 \q_stop
{ \tl_set:Nn \ExplFileDate { #1/#2/#3 } }
\end{verbatim}

(End definition for \texttt{\GetIdInfo} and others. This function is documented on page 7.)
20.6 Messages

\begin{verbatim}
\_kernel_msg_new:nnnn { kernel } { file-not-found }
\{ File-`#1' not-found. \}
\begin{verbatim}
  \_kernel_msg_new:nnnn { kernel } { file-list }
\{ \begin{verbatim}
    File-List-
    #1 \ \\\n    ..............
\end{verbatim}
\end{verbatim}
\_kernel_msg_new:nnnn { kernel } { input-streams-exhausted }
\{ Input-streams-exhausted \}
\begin{verbatim}
  \_kernel_msg_new:nnnn { kernel } { output-streams-exhausted }
\{ Output-streams-exhausted \}
\_kernel_msg_new:nnnn { kernel } { unbalanced-quote-in-filename }
\{ Unbalanced-quotes-in-file-name-`#1'. \}
\begin{verbatim}
  \_kernel_msg_new:nnnn { kernel } { iow-indent }
\{ Only-`#1 (arg-1)-allows-`#2 \}
\begin{verbatim}
    The-command-`#2 can-only-be-used-in-messages-
    which-will-be-wrapped-using-`#1.
    \tl_if_empty:nF {#3} { - It-was-called-with-argument-`#3'. }
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}

20.7 Functions delayed from earlier modules

\begin{verbatim}
\c_sys_platform_str
\end{verbatim}

Detecting the platform on Lua\TeX{} is easy: for other engines, we use the fact that the
two common cases have special null files. It is possible to probe further (see package
platform), but that requires shell escape and seems unlikely to be useful. This is set up
here as it requires file searching.

\begin{verbatim}
\sys_if_engine_luatex:TF
\begin{verbatim}
  \str_const:Nx \c_sys_platform_str
  \{ \tex_directlua:D \{ tex.print(os.type) \} \}
\end{verbatim}
\end{verbatim}

\begin{verbatim}
\end{verbatim}

657
\file_if_exist:nTF { nul: }
{
    \file_if_exist:nF { /dev/null }
    { \str_const:Nn \c_sys_platform_str { windows } }
}
\file_if_exist:nT { /dev/null }
{ \str_const:Nn \c_sys_platform_str { unix } }
\cs_if_exist:NF \c_sys_platform_str
{ \str_const:Nn \c_sys_platform_str { unknown } }
\sys_if_platform_unix_p:
\sys_if_platform_unix:
TF
\sys_if_platform_windows_p:
\sys_if_platform_windows:
TF
We can now set up the tests.
\clist_map_inline:nn { unix , windows }
{ \__file_const:nn { sys_if_platform_ #1 }
\str_if_eq_p:Vn \c_sys_platform_str { #1 } }
\sys_if_platform_unix_p:
\sys_if_platform_unix:
TF
\sys_if_platform_windows_p:
\sys_if_platform_windows:
TF
We can now set up the tests.
\clist_map_inline:nn { unix , windows }
{ \__file_const:nn { sys_if_platform_ #1 }
\str_if_eq_p:Vn \c_sys_platform_str { #1 } }
21 l3skip implementation

21.1 Length primitives renamed
Primitives renamed.
\if_dim:w\__dim_eval:w\__dim_eval_end:
\cs_new_eq:NN \if_dim:w \tex_ifdim:D
\cs_new_eq:NN \__dim_eval:w \tex_dimexpr:D
\cs_new_eq:NN \__dim_eval_end: \tex_relax:D
\sys_if_platform_unix_p:
\sys_if_platform_unix:
TF
\sys_if_platform_windows_p:
\sys_if_platform_windows:
TF
(End definition for \sys_if_platform_unix_p:TF and \sys_if_platform_windows_p:TF. These functions are documented on page 115.)

21.2 Creating and initialising dim variables
Allocating (dim) registers ...
Contrarily to integer constants, we cannot avoid using a register, even for constants. We cannot use \verb|\dim_gset:Nn| because debugging code would complain that the constant is not a global variable. Since \verb|\dim_const:Nn| does not need to be fast, use \verb|\dim_eval:n| to avoid needing a debugging patch that wraps the expression in checking code.

\begin{verbatim}
\dim_const:Nn \dim_const:cn
\end{verbatim}

Reset the register to zero. Using \verb|\c_zero_skip| deals with the case where the variable passed is incorrectly a skip (for example a \LaTeX\vspace{2\baselineskip} length).

\begin{verbatim}
\dim_zero:N \dim_zero:c \dim_gzero:N \dim_gzero:c
\end{verbatim}

Create a register if needed, otherwise clear it.

\begin{verbatim}
\dim_zero_new:N \dim_zero_new:c \dim_gzero_new:N \dim_gzero_new:c
\end{verbatim}

Setting \verb|\dim\variables| is easy enough but when debugging we want both to check that the variable is correctly local/global and to wrap the expression in some code. The \verb|\scan_stop:| deals with the case where the variable passed is a skip (for example a \LaTeX\vspace{2\baselineskip} length).

\begin{verbatim}
\dim_set:Nn \dim_set:cn \dim_gset:Nn \dim_gset:cn
\end{verbatim}

21.3 Setting \verb|\dim\variables|

Copies of the \verb|cs| functions defined in \LaTeX\basics.

\begin{verbatim}
\dim_if_exist_p:N \dim_if_exist_p:c \dim_if_exist:NTF \dim_if_exist:cTF
\end{verbatim}

(End definition for \verb|\dim\variables|. These functions are documented on page 168.)

(End definition for \verb|\dim\variables|. These functions are documented on page 168.)
(End definition for \texttt{\dim_set:Nn} and \texttt{\dim_gset:Nn}. These functions are documented on page 169.)

\texttt{\dim_set_eq:NN} \texttt{\dim_set_eq:cN} \texttt{\dim_set_eq:Nc} \texttt{\dim_set_eq:cc}

All straightforward, with a \texttt{\scan_stop:} to deal with the case where \texttt{#1} is (incorrectly) a skip.

\texttt{\dim_gset_eq:NN} \texttt{\dim_gset_eq:cN} \texttt{\dim_gset_eq:Nc} \texttt{\dim_gset_eq:cc}

(End definition for \texttt{\dim_set_eq:NN} and \texttt{\dim_gset_eq:NN}. These functions are documented on page 169.)

\texttt{\dim_add:Nn} \texttt{\dim_add:cn} \texttt{\dim_gadd:Nn} \texttt{\dim_gadd:cn}

\texttt{\dim_sub:Nn} \texttt{\dim_sub:cn} \texttt{\dim_gsub:Nn} \texttt{\dim_gsub:cn}

Using \texttt{\scan_stop:} here deals with the (incorrect) case \texttt{dimen123}. Using \texttt{\scan_stop:} deals with skip variables. Since debugging checks that the variable is correctly local/global, the global versions cannot be defined as \texttt{\tex_global:D} followed by the local versions. The debugging code is inserted by \texttt{\__dim_tmp:w}.

\texttt{\dim_abs:n} \texttt{\__dim_abs:N} \texttt{\dim_max:nn} \texttt{\dim_min:nn} \texttt{\__dim_maxmin:wwN}

Functions for \texttt{min}, \texttt{max}, and absolute value with only one evaluation. The absolute value is evaluated by removing a leading - if present.

21.4 Utilities for dimension calculations

\texttt{\dim_abs:n} \texttt{\__dim_abs:N} \texttt{\dim_max:nn} \texttt{\dim_min:nn} \texttt{\__dim_maxmin:wwN}

Functions for \texttt{min}, \texttt{max}, and absolute value with only one evaluation. The absolute value is evaluated by removing a leading - if present.
\dim_use:N \__dim_eval:w #2 ;
\__dim_eval_end:
\cs_new:Npn \dim_min:nn #1#2
{\dim_use:N \__dim_eval:w \exp_after:wN \__dim_maxmin:wwN
\dim_use:N \__dim_eval:w #1 \exp_after:wN ;
\dim_use:N \__dim_eval:w #2 ;
<
\__dim_eval_end:}
\cs_new:Npn \dim_ratio:nn #1#2
{ \__dim_ratio:n {#1} / \__dim_ratio:n {#2} }
\cs_new:Npn \__dim_ratio:n #1
{ \int_value:w \__dim_eval:w (#1) \__dim_eval_end: }
\__dim_ratio:n
With dimension expressions, something like 10 pt * ( 5 pt / 10 pt ) does not work.
Instead, the ratio part needs to be converted to an integer expression. Using \texttt{\int_value:w}
forces everything into \texttt{sp}, avoiding any decimal parts.
\cs_new:Npn \dim_ratio:nn \__dim_ratio:n #1#2 #3
{ \if_dim:w #1 #3 #2 ~ #1 \else: #2 \fi: }
\__dim_ratio:n
\texttt{\int_compare:nTF} function. First make sure that there is at least one
relation operator, by evaluating a dimension expression with a trailing \texttt{\__dim_compare_error:}.
Just like for integers, the looping auxiliary \texttt{\__dim_compare:wNN}
closes a primitive conditional and opens a new one. It is actually easier to grab a
dimension operand than an integer one, because once evaluated, dimensions all end with
\texttt{pt} (with category other). Thus we do not need specific auxiliaries for the three "simple"
relations \texttt{<, =, and >}.
\prg_new_conditional:Npnn \dim_compare:n #1 { p , T , F , TF }
{ \exp_after:wN \__dim_compare:w }
\texttt{\textbackslash \texttt{dim_use:N \_dim_eval:w #1 \_dim_compare_error:}}

\begin{verbatim}
\cs_new:Npn \_dim_compare:w #1 \_dim_compare_error: 
\begin{cs_new:cpn { \_dim_compare_! :w } \_dim_compare_#1 \_dim_compare_! \_dim_compare_\_dim_compare_end:w \#2 \_dim_compare_error:
\end{cs_new:cpn}
\cs_new:Npn \_dim_compare:nnN #1 \_dim_compare:nnN \_dim_compare_\_dim_compare_end:w \#2 \_dim_compare_error:
\end{verbatim}

\texttt{End definition for} \texttt{dim_compare:nTF} \texttt{and others. This function is documented on page 171.}

\texttt{\textbackslash \dim_case:nn \textbackslash \dim_case:nnT \_dim_case:nnTF \_dim_case:nw \_dim_case_end:nw}

\begin{verbatim}
\cs_new:Npn \_dim_case:nnTF #1
\begin{cs_new:cpn { \_dim_case_\_dim_compare_end:nw \_dim_case_\_dim_compare:nnTF \_dim_compare:nnT \_dim_case:nnF}
\end{verbatim}

\texttt{For dimension cases, the first task to fully expand the check condition. The overall idea is then much the same as for \texttt{str_case:nn(TF)} as described in \texttt{l3basics}.}
\exp:w
\exp_args:Nf \__dim_case:nnTF { \dim_eval:n {#1} } {#2} { }
\cs_new:Npn \dim_case:nn #1#2
{ \exp:w
  \exp_args:Nf \__dim_case:nnTF { \dim_eval:n {#1} } {#2} { } { }
}\cs_new:Npn \__dim_case:nnTF #1#2#3#4
{ \__dim_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
\cs_new:Npn \__dim_case:nw #1#2#3
{ \dim_compare:nNnTF {#1} = {#2}
  { \__dim_case_end:nw {#3} }
  { \__dim_case:nw {#1} }
}\cs_new:Npn \__dim_case_end:nw #1#2#3 \q_mark #4#5 \q_stop
  { \exp_end: #1 #4 }

(End definition for \dim_case:nnTF and others. This function is documented on page 172.)

21.6 Dimension expression loops
\dim_while_do:nn while_do and do_while functions for dimensions. Same as for the int type only the
names have changed.
\dim_until_do:nn
\dim_do_while:nn
\dim_do_until:nn
\cs_new:Npn \dim_while_do:nn #1#2
{ \dim_compare:nT {#1}
  { #2 \dim_while_do:nn {#1} {#2} }
}\cs_new:Npn \dim_until_do:nn #1#2
{ \dim_compare:nF {#1}
  { #2 \dim_until_do:nn {#1} {#2} }
}\cs_new:Npn \dim_do_while:nn #1#2
{ #2 \dim_compare:nT {#1}
  { \dim_do_while:nn {#1} {#2} }
}\cs_new:Npn \dim_do_until:nn #1#2
{ #2 \dim_compare:nF {#1}
  { \dim_do_until:nn {#1} {#2} }
}
while_do and do_while functions for dimensions. Same as for the int type only the names have changed.

\dim_while_do:nNnn
\dim_until_do:nNnn
\dim_do_while:nNnn
\dim_do_until:nNnn

Before all else, evaluate the initial value, step, and final value. Repeating a function by steps first needs a check on the direction of the steps. After that, do the function for the start value then step and loop around. It would be more symmetrical to test for a step size of zero before checking the sign, but we optimize for the most frequent case (positive step).

\dim_step_function:nnnN
\__dim_step:wwwN
\__dim_step:NnnnN

(End definition for \dim_while_do:nNnn and others. These functions are documented on page 173.)

21.7 Dimension step functions
\dim_step_inline:nnnn \dim_step_variable:nnnNn \__dim_step:NNnnn

The approach here is to build a function, with a global integer required to make the nesting safe (as seen in other in line functions), and map that function using \dim_step_function:nnnn. We put a \prg_break_point:Nn so that map_break functions from other modules correctly decrement \g__kernel_prg_map_int before looking for their own break point. The first argument is \scan_stop:, so that no breaking function recognizes this break point as its own.

\cs_new_protected:Npn \dim_step_inline:nnnn
\cs_new_protected:Npn \dim_step_variable:nnnNn #1#2#3#4#5
\cs_new_protected:Npn \__dim_step:NNnnn #1#2#3#4#5#6

(End definition for \dim_step_function:nnnn, \__dim_step:wwwN, and \__dim_step:NnnnN. This function is documented on page 173.)
21.8 Using dim expressions and variables

\dim_eval:n Evaluating a dimension expression expandably.

\dim_sign:n See \dim_abs:n. Contrarily to \int_sign:n the case of a zero dimension cannot be
distinguished from a positive dimension by looking only at the first character, since \texttt{0.2pt}
and \texttt{0pt} start the same way. We need explicit comparisons. We start by distinguishing
the most common case of a positive dimension.

\dim_use:N
\dim_use:c Accessing a \texttt{dim}.

\dim_to_decimal:n A function which comes up often enough to deserve a place in the kernel. Evaluate the
dimension expression \#1 then remove the trailing \texttt{pt}. When debugging is enabled, the
argument is put in parentheses as this prevents the dimension expression from terminating
early and leaving extra tokens lying around. This is used a lot by low-level manipulations.
\texttt{\use:x}
{
\cs_new:Npn \exp_not:N \__dim_to_decimal:w
##1 . ##2 \tl_to_str:n { pt }
}
{
\int_compare:nNnTF {#2} > { 0 }
{ #1 . #2 }
{ #1 }
}

\textit{(End definition for \texttt{\dim_to_decimal:n and \__dim_to_decimal:w. This function is documented on page 174.})}

\texttt{\dim_to_decimal_in_bp:n}
Conversion to big points is done using a scaling inside \texttt{\__dim_eval:w} as \texttt{\epsilon}-Tex does that using 64-bit precision. Here, 800/803 is the integer fraction for $72/72.27$. This is a common case so is hand-coded for accuracy (and speed).
\begin{verbatim}
\cs_new:Npn \dim_to_decimal_in_bp:n #1
{ \dim_to_decimal:n { ( #1 ) * 800 / 803 } }
\end{verbatim}
\textit{(End definition for \texttt{\dim_to_decimal_in_bp:n. This function is documented on page 175.})}

\texttt{\dim_to_decimal_in_sp:n}
Another hard-coded conversion: this one is necessary to avoid things going off-scale.
\begin{verbatim}
\cs_new:Npn \dim_to_decimal_in_sp:n #1
{ \int_value:w \__dim_eval:w #1 \__dim_eval_end: }
\end{verbatim}
\textit{(End definition for \texttt{\dim_to_decimal_in_sp:n. This function is documented on page 175.})}

\texttt{\dim_to_decimal_in_unit:nn}
An analogue of \texttt{\dim_ratio:nn} that produces a decimal number as its result, rather than a rational fraction for use within dimension expressions.
\begin{verbatim}
\cs_new:Npn \dim_to_decimal_in_unit:nn #1#2
{ \dim_to_decimal:n
{ #1 pt *
\dim_ratio:nn {#1} {#2}
} }
\end{verbatim}
\textit{(End definition for \texttt{\dim_to_decimal_in_unit:nn. This function is documented on page 175.})}

\texttt{\dim_to_fp:n}
Defined in \texttt{l3fp-convert}, documented here.
\textit{(End definition for \texttt{\dim_to_fp:n. This function is documented on page 175.})}

21.9 Viewing dim variables

\texttt{\dim_show:N}
Diagnostics.
\texttt{\dim_show:c}
\begin{verbatim}
\cs_new_eq:NN \dim_show:N \__kernel_register_show:N
\cs_generate_variant:Nn \dim_show:N { c }
\end{verbatim}
\textit{(End definition for \texttt{\dim_show:N. This function is documented on page 175.})}
Diagnostics. We don’t use the \TeX{} primitive \texttt{\showthe} to show dimension expressions: this gives a more unified output.

\begin{verbatim}
\cs_new_protected:Npn \dim_show:n { \msg_show_eval:Nn \dim_eval:n }
\end{verbatim}

(End definition for \texttt{\dim_show:n}. This function is documented on page 176.)

Diagnostics. Redirect output of \texttt{\dim_show:n} to the log.

\begin{verbatim}
\cs_new_eq:NN \dim_log:N \__kernel_register_log:N
\cs_new_eq:NN \dim_log:c \__kernel_register_log:c
\cs_new_protected:Npn \dim_log:n { \msg_log_eval:Nn \dim_eval:n }
\end{verbatim}

(End definition for \texttt{\dim_log:N} and \texttt{\dim_log:n}. These functions are documented on page 176.)

21.10 Constant dimensions

\begin{verbatim}
\dim_const:Nn \c_zero_dim { 0 pt }
\dim_const:Nn \c_max_dim { 16383.99999 pt }
\end{verbatim}

(End definition for \texttt{\c_zero_dim} and \texttt{\c_max_dim}. These variables are documented on page 176.)

21.11 Scratch dimensions

We provide two local and two global scratch registers, maybe we need more or less.

\begin{verbatim}
\dim_new:N \l_tmpa_dim
\dim_new:N \l_tmpb_dim
\dim_new:N \g_tmpa_dim
\dim_new:N \g_tmpb_dim
\end{verbatim}

(End definition for \texttt{\l_tmpa_dim} and others. These variables are documented on page 176.)

21.12 Creating and initialising skip variables

Allocation of a new internal registers.

\begin{verbatim}
\skip_new:N \skip_new:c
\skip_new:N \skip_new:c
\end{verbatim}

(End definition for \texttt{\skip_new:N}. This function is documented on page 176.)
Contrarily to integer constants, we cannot avoid using a register, even for constants. See \dim_const:Nn for why we cannot use \skip_gset:Nn.

\begin{verbatim}
\cs_new_protected:Npn \skip_const:Nn #1#2
{ \skip_new:N #1 \tex_global:D #1 ~ \skip_eval:n {#2} \scan_stop: }
\end{verbatim}

(End definition for \skip_const:Nn. This function is documented on page 177.)

\skip_zero:N Reset the register to zero.
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

\begin{verbatim}
\cs_new_protected:Npn \skip_zero:N #1 { #1 \c_zero_skip }
\cs_new_protected:Npn \skip_gzero:N #1 { \tex_global:D #1 \c_zero_skip }
\end{verbatim}

(End definition for \skip_zero:N and \skip_gzero:N. These functions are documented on page 177.)

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

\begin{verbatim}
\cs_new_protected:Npn \skip_zero_new:N #1 { \skip_if_exist:NTF #1 { \skip_zero:N #1 } { \skip_new:N #1 } }
\cs_new_protected:Npn \skip_gzero_new:N #1 { \skip_if_exist:NTF #1 { \skip_gzero:N #1 } { \skip_new:N #1 } }
\end{verbatim}

(End definition for \skip_zero_new:N and \skip_gzero_new:N. These functions are documented on page 177.)

\skip_set_eq:NN
\skip_set_eq:cN
\skip_set_eq:Nc
\skip_set_eq:cc
\skip_gset_eq:NN
\skip_gset_eq:cN
\skip_gset_eq:Nc
\skip_gset_eq:cc

All straightforward.

\begin{verbatim}
\cs_new_protected:Npn \skip_set_eq:NN #1#2 { #1 = #2 }
\cs_generate_variant:Nn \skip_set_eq:NN { c , Nc , cc }
\cs_new_protected:Npn \skip_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
\cs_generate_variant:Nn \skip_gset_eq:NN { c , Nc , cc }
\end{verbatim}

(End definition for \skip_set_eq:NN and \skip_gset_eq:NN. These functions are documented on page 177.)

21.13 Setting skip variables

Much the same as for dimensions.

\begin{verbatim}
\cs_new_protected:Npn \skip_set:Nn \skip_set:cn \skip_gset:Nn \skip_gset:cn
{ #1 - \tex_glueexpr:D #2 \scan_stop: }
\end{verbatim}

(End definition for \skip_set:Nn and \skip_gset:Nn. These functions are documented on page 177.)
Using by here deals with the (incorrect) case \skip 123.

As a result, only equality is tested.

With \TeX, we have an easy access to the order of infinities of the stretch and shrink components of a skip. However, to access both, we either need to evaluate the expression twice, or evaluate it, then call an auxiliary to extract both pieces of information from the result. Since we are going to need an auxiliary anyways, it is quicker to make it search for the string \texttt{fil} which characterizes infinite glue.
21.15 Using skip expressions and variables

\skip_eval:n
Evaluating a skip expression expandably.

\cs_new:Npn \skip_eval:n #1
{ \skip_use:N \tex_glueexpr:D #1 \scan_stop: }

(End definition for \skip_eval:n. This function is documented on page 178.)

\skip_use:N
\skip_use:c
Accessing a ⟨skip⟩.

\cs_new_eq:NN \skip_use:N \tex_the:D
\cs_new:Npn \skip_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End definition for \skip_use:N. This function is documented on page 178.)

21.16 Inserting skips into the output

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n
\skip_vertical:N
\skip_vertical:c
\skip_vertical:n
Inserting skips.

\cs_new_eq:NN \skip_horizontal:N \tex_hskip:D
\cs_new:Npn \skip_horizontal:n #1
{ \skip_horizontal:N \tex_glueexpr:D #1 \scan_stop: }
\cs_generate_variant:Nn \skip_horizontal:N { c }
\cs_new_eq:NN \skip_vertical:N \tex_vskip:D
\cs_new:Npn \skip_vertical:n #1
{ \skip_vertical:N \tex_glueexpr:D #1 \scan_stop: }
\cs_generate_variant:Nn \skip_vertical:N { c }

(End definition for \skip_horizontal:N and others. These functions are documented on page 179.)

21.17 Viewing skip variables

\skip_show:N
\skip_show:c
Diagnostics.

\cs_new_eq:NN \skip_show:N \__kernel_register_show:N
\cs_new:Npn \skip_show:c #1 { \__kernel_register_show:N #1 }

(End definition for \skip_show:N. This function is documented on page 178.)

\skip_show:n
Diagnostics. We don’t use the \TeX\ primitive \showthe\ to show skip expressions: this gives a more unified output.

\cs_new_protected:Npn \skip_show:n #1 { \msg_show_eval:Nn \skip_eval:n }

(End definition for \skip_show:n. This function is documented on page 178.)

\skip_log:N
\skip_log:c
\skip_log:n
Diagnostics. Redirect output of \skip_show:n to the log.

\cs_new_eq:NN \skip_log:N \__kernel_register_log:N
\cs_new_eq:NN \skip_log:c \__kernel_register_log:c
\cs_new_protected:Npn \skip_log:n #1 { \msg_log_eval:Nn \skip_eval:n }

(End definition for \skip_log:N and \skip_log:n. These functions are documented on page 179.)
21.18  Constant skips

\c_zero_skip Skips with no rubber component are just dimensions but need to terminate correctly.

\c_max_skip
\skip_const:Nn \c_zero_skip { \c_zero_dim }
\skip_const:Nn \c_max_skip { \c_max_dim }

(End definition for \c_zero_skip and \c_max_skip. These functions are documented on page 179.)

21.19  Scratch skips

\l_tmpa_skip \l_tmpb_skip \g_tmpa_skip \g_tmpb_skip

We provide two local and two global scratch registers, maybe we need more or less.

\skip_new:N \l_tmpa_skip
\skip_new:N \l_tmpb_skip
\skip_new:N \g_tmpa_skip
\skip_new:N \g_tmpb_skip

(End definition for \l_tmpa_skip and others. These variables are documented on page 179.)

21.20  Creating and initialising muskip variables

\muskip_new:N \muskip_new:c

And then we add muskips.

\cs_new_protected:Npn \muskip_new:N #1
\__kernel_chk_if_free_cs:N #1
\cs:w newmuskip \cs_end: #1

\cs_generate_variant:Nn \muskip_new:N { c }

(End definition for \muskip_new:N. This function is documented on page 180.)

\muskip_const:Nn \muskip_const:cn

See \skip_const:Nn.

\cs_new_protected:Npn \muskip_const:Nn #1#2
{ \muskip_new:N #1
  \tex_global:D #1 \muskip_eval:n {#2} \scan_stop:
}
\cs_generate_variant:Nn \muskip_const:Nn { c }

(End definition for \muskip_const:Nn. This function is documented on page 180.)

\muskip_zero:N \muskip_zero:c \muskip_gzero:N \muskip_gzero:c

Reset the register to zero.

\cs_new_protected:Npn \muskip_zero:N #1 \c_zero_muskip
{ \text_global:D #1 \c_zero_muskip }
\cs_new_protected:Npn \muskip_gzero:N #1 \c_zero_muskip
{ \text_global:D #1 \c_zero_muskip }
\cs_generate_variant:Nn \muskip_zero:N \muskip_zero:N { c }
\cs_generate_variant:Nn \muskip_gzero:N \muskip_gzero:N { c }

(End definition for \muskip_zero:N and \muskip_gzero:N. These functions are documented on page 180.)
Create a register if needed, otherwise clear it.

\begin{verbatim}
\cs_new_protected:Npn \muskip_zero_new:N #1
\muskip_if_exist:NTF #1 \{ \muskip_zero:N #1 \} \{ \muskip_new:N #1 \}
\cs_new_protected:Npn \muskip_gzero_new:N #1
\muskip_if_exist:NTF #1 \{ \muskip_gzero:N #1 \} \{ \muskip_new:N #1 \}
\cs_generate_variant:Nn \muskip_zero_new:N { c }
\cs_generate_variant:Nn \muskip_gzero_new:N { c }
\end{verbatim}

(End definition for \muskip_zero_new:N and \muskip_gzero_new:N. These functions are documented on page 180.)

\begin{verbatim}
\prg_new_eq_conditional:NNn \muskip_if_exist:N \cs_if_exist:N
\{ TF , T , F , p \}
\prg_new_eq_conditional:NNn \muskip_if_exist:c \cs_if_exist:c
\{ TF , T , F , p \}
\end{verbatim}

(End definition for \muskip_if_exist:NTF. This function is documented on page 180.)

21.21 Setting muskip variables

This should be pretty familiar.

\begin{verbatim}
\cs_new_protected:Npn \muskip_set:Nn #1#2
\{ #1 ~ \tex_muexpr:D #2 \scan_stop: \}
\cs_new_protected:Npn \muskip_gset:Nn #1#2
\{ \tex_global:D #1 ~ \tex_muexpr:D #2 \scan_stop: \}
\cs_generate_variant:Nn \muskip_set:Nn { c }
\cs_generate_variant:Nn \muskip_gset:Nn { c }
\end{verbatim}

(End definition for \muskip_set:Nn and \muskip_gset:Nn. These functions are documented on page 181.)

\begin{verbatim}
\prg_new_eq_conditional:NNn \muskip_set_eq:NN \cs_set_eq:NN
\{ #1 = #2 \}
\prg_new_eq_conditional:NNn \muskip_set_eq:cN \cs_set_eq:cN
\{ #1 = #2 \}
\cs_new_protected:Npn \muskip_set_eq:Nc \cs_set_eq:Nc
\{ #1 = #2 \}
\cs_new_protected:Npn \muskip_gset_eq:NN \cs_gset_eq:NN
\{ \tex_global:D #1 = #2 \}
\cs_new_protected:Npn \muskip_gset_eq:cN \cs_gset_eq:cN
\{ \tex_global:D #1 = #2 \}
\end{verbatim}

(End definition for \muskip_set_eq:NN and \muskip_gset_eq:NN. These functions are documented on page 181.)

\begin{verbatim}
\prg_new_eq_conditional:NNn \muskip_add:Nn \cs_set_eq:NN
\{ \tex_advance:D #1 by \tex_muexpr:D #2 \scan_stop: \}
\prg_new_eq_conditional:NNn \muskip_gadd:Nn \cs_set_eq:NN
\{ \tex_global:D \tex_advance:D #1 by \tex_muexpr:D #2 \scan_stop: \}
\cs_new_protected:Npn \muskip_add:cn \cs_set_eq:NN
\{ \tex_advance:D #1 by - \tex_muexpr:D #2 \scan_stop: \}
\cs_new_protected:Npn \muskip_gadd:cn \cs_set_eq:NN
\{ \tex_global:D \tex_advance:D #1 by - \tex_muexpr:D #2 \scan_stop: \}
\end{verbatim}

(End definition for \muskip_add:Nn and others. These functions are documented on page 180.)
21.22 Using muskip expressions and variables

\muskip_eval:n Evaluating a muskip expression expandably.
\muskip_use:N Accessing a ⟨muskip⟩.
\muskip_use:c
\muskip_show:N Diagnostics. We don’t use the \TeX\ primitive \showthe to show muskip expressions: this gives a more unified output.
\muskip_log:N Diagnostics. Redirect output of \muskip_show:n to the log.
\muskip_log:c
\muskip_log:n

21.23 Viewing muskip variables

\muskip_show:N \muskip_show:c \muskip_show:n \muskip_log:N \muskip_log:c \muskip_log:n

21.24 Constant muskips

\c_zero_muskip \c_max_muskip
\muskip_const:Nn \c_zero_muskip { 0 mu }
\muskip_const:Nn \c_max_muskip { 16383.99999 mu }

21.25 Scratch muskips

\l_tmpa_muskip \l_tmpb_muskip \g_tmpa_muskip \g_tmpb_muskip
\muskip_new:N \l_tmpa_muskip \muskip_new:N \l_tmpb_muskip \muskip_new:N \g_tmpa_muskip \muskip_new:N \g_tmpb_muskip

(End definition for \l_tmpa_muskip and others. These variables are documented on page 182.)
22 l3keys Implementation

22.1 Low-level interface

The low-level key parser is based heavily on keyval, but with a number of additional “safety” requirements and with the idea that the parsed list of key–value pairs can be processed in a variety of ways. The net result is that this code needs around twice the amount of time as keyval to parse the same list of keys. To optimise speed as far as reasonably practical, a number of lower-level approaches are taken rather than using the higher-level expl3 interfaces.

\__keyval_nil
\__keyval_mark
\__keyval_stop
\__keyval_tail

(End definition for \__keyval_nil and others.)

This temporary macro will be used since some of the definitions will need an active comma or equals sign. Inside of this macro \#1 will be the active comma and \#2 will be the active equals sign.

\keyval_parse:NNn

The main function starts the first of two input loops. The outer loop splits the key–value list at active commas, the inner loop will do so at other commas. The use of \__keyval_mark here prevents loss of braces from the key argument.

\__keyval_loop_active:NNw

First a fast test for the end of the loop is done, it’ll gobble everything up to an \__keyval_mark immediately followed by an \__keyval_tail. The loop ending macro will gobble everything to the last \__keyval_mark in this definition. If the end isn’t reached yet, start the second loop splitting at other comments, and after that one iterate the current loop.

(End definition for \keyval_parse:NNn. This function is documented on page 195.)

\__keyval_loop_active:NNw

(End definition for \__keyval_loop_active:NNw.)
The second loop uses the same test for its end as the first loop, next it tests whether there are other or active equals signs, throwing an error if there are both. If there are none, test whether the argument is blank or is a single key. If there are only active equals signs split at those, else split at others. Finally, iterate the loop.

\cs_new:Npn \__keyval_loop_other:NNw ##1 ##2 ##3 ,
{
    \__keyval_if_recursion_tail:w ##3
    \__keyval_end_loop_other:w \s__keyval_mark \s__keyval_tail
    \__keyval_has_false:w \s__keyval_mark \s__keyval_stop \use_i:nn
    { \__keyval_split_other:w ##3 = \s__keyval_stop ##2 }
    \__keyval_if_has_equal_active:w \s__keyval_mark \s__keyval_stop
    \__keyval_has_false:w \s__keyval_mark \s__keyval_stop \use_i:nn
    \__keyval_misplaced_equal_error:
    { \__keyval_split_other:w ##3 = \s__keyval_stop ##2 }
    { \__keyval_if_has_equal_active:w \s__keyval_mark \s__keyval_stop
        \__keyval_has_false:w \s__keyval_mark \s__keyval_stop \use_i:nn
        { \__keyval_split_active:w ##3 #2 \s__keyval_stop ##2 }
        \__keyval_if_blank:w \s__keyval_nil \s__keyval_mark
        \__keyval_blank_true:w \s__keyval_mark \s__keyval_stop \use:n
        { \__keyval_trim:nN { ##3 } \__keyval_key:nN ##1 }
    }
    \__keyval_loop_other:NNw ##1 ##2 \s__keyval_mark
}

(End definition for \__keyval_loop_other:NNw.)

\__keyval_split_active:w
\__keyval_split_active:nw
Splits at the first active equals sign and trims the key. Next test whether there are any more valid split points, if so throw an error and gobble the remaining \emph{functions}, which will not yet be gobbled. If there was only one active equals sign start trimming the spaces off the value and give control to \__keyval_key_val:nnN.

\cs_new:Npn \__keyval_split_active:w ##1 #2
{
    \__keyval_trim:nN { ##1 } \__keyval_split_active:nw \s__keyval_mark
}
\cs_new:Npn \__keyval_split_active:nw ##1 ##2 #2 ##3 \s__keyval_stop
{
    \__keyval_if_empty:w \s__keyval_mark \s__keyval_stop
    \__keyval_has_false:w \s__keyval_mark \s__keyval_stop \use_i:nn
    { \__keyval_misplaced_equal_error: \use_none:n }
    { \__keyval_trim:nN { ##2 } \__keyval_key_val:nnN { ##1 } }
}

(End definition for \__keyval_split_active:w and \__keyval_split_active:nw.)

\__keyval_if_has_equal_active:w
The test for an active equals sign just gobbles tokens until the first active equals sign and then runs the test for an empty argument.

\cs_new:Npn \__keyval_if_has_equal_active:w ##1 #2
{
    \__keyval_if_empty:w \s__keyval_mark
}

(End definition for \__keyval_if_has_equal_active:w.)
We're done with the macros which need active equals signs or commas in their definition, so we can end that scope and call the temporary macro which will do the definitions.

\begin{Verbatim}
\__keyval_tmp:NN , 
\__keyval_end_loop_active:w
\__keyval_end_loop_other:w
\end{Verbatim}

Both of these macros just have to gobble a few tokens to remove the reminder of the loops current iteration. We do this in a pretty static manner, explicitly stating every token we know beforehand because this is slightly faster.

\begin{Verbatim}
\cs_new:Npn \__keyval_end_loop_active:w
\s__keyval_mark \s__keyval_tail
\__keyval_loop_other:NNw #1 , \s__keyval_tail
\__keyval_loop_active:NNw #2 \s__keyval_mark
{}
\end{Verbatim}

\begin{Verbatim}
\cs_new:Npn \__keyval_end_loop_other:w
\s__keyval_mark \s__keyval_tail
\__keyval_if_has_equal_other:w #1 = \s__keyval_stop
\__keyval_has_false:w \s__keyval_mark \s__keyval_stop \use_i:nn
#2
\__keyval_loop_other:NNw #3 \s__keyval_mark
{}
\end{Verbatim}

\begin{Verbatim}
\__keyval_split_other:w
\__keyval_split_other:nw
\end{Verbatim}

These work exactly as \__keyval_split_active:wn, just for equals signs of category other.

\begin{Verbatim}
\cs_new:Npn \__keyval_split_other:w #1 =
\{ \__keyval_trim:nN { #1 } \__keyval_split_other:nw \s__keyval_mark
\}
\cs_new:Npn \__keyval_split_other:wn #1 #2 = #3 \s__keyval_stop
\{ \__keyval_if_empty:w \s__keyval_mark #3 \s__keyval_stop
\__keyval_has_false:w \s__keyval_mark \s__keyval_stop \use_i:nn
#2
\__keyval_trim:nN { #2 } \__keyval_key_val:nnN { #1 }
\}
\end{Verbatim}

\begin{Verbatim}
\__keyval_key:nnN
\end{Verbatim}

This will get the current key with spaces trimmed and \texttt{function} as its arguments. All it has to do is put them in an \texttt{exp_not:n} and reorder them.

\begin{Verbatim}
\cs_new:Npn \__keyval_key:nnN #1 #2
\{ \exp_not:n { #2 { #1 } }
\}
\end{Verbatim}

(End definition for \__keyval_key:nnN.)
\_keyval_key_val:nnN This will get the key name and value with spaces trimmed. It has to assert that the key name isn’t empty. Afterwards put them into an \exp_not:n together with \langle function\rangle. If the key is empty they are gobbled instead.

\__keyval_if_empty:w All these tests work by gobbling tokens until a certain combination is met, which makes them pretty fast. The test for a blank argument should be called with an arbitrary token following the argument. Each of these utilize the fact that the argument will contain a leading \s__keyval_mark.

\_keyval_if_recursion_tail:w
\_keyval_has_false:w
\_keyval_blank_true:w
\_keyval_empty_key:w
\_keyval_if_equal_other:w
\_keyval_misplaced_equal_error:

\__kernel_msg_new:nnn { kernel } { misplaced-equals-sign } { Misplaced~equals~sign~in~key-value~input~\msg_line_context: }

\_keyval_misplaced_equal_error: Just throw an error expandably. This is hid inside a macro so that other macros don’t have to gobble so many tokens, which increases speed for correct input. This will marginally slow down the error case, but that doesn’t have to be fast anyway.
And an adapted version of \_tl_trim_spaces:nn which is a bit faster for our use case, as it can strip the braces at the end. This is pretty much the same concept, so I won’t comment on it here. The speed gain by using this instead of \tl_trim_spaces_apply:nN is about 10% of the total time for \keyval_parse:Nnn with one key and one key–value pair, so I think it’s worth it.

\begin{verbatim}
\group_begin:
\cs_set_protected:Npn \__keyval_tmp:n #1
  \{
    \cs_new:Npn \__keyval_trim:nN ##1
      \{
        \__keyval_trim_auxi:w
        \#1
        \s__keyval_nil
        \s__keyval_mark #1 { }
        \s__keyval_mark \__keyval_trim_auxii:w
        \__keyval_trim_auxiii:w
        \#1 \s__keyval_nil
        \__keyval_trim_auxiv:w
        \s__keyval_stop
      }
    \}
    \cs_new:Npn \__keyval_trim_auxi:w ##1 \s__keyval_mark \s__keyval_mark ##2 \s__keyval_mark
      \{
        ##2
        \__keyval_trim_auxi:w
        \s__keyval_mark
        ##1 \s__keyval_mark {##1}
      }
    \}
    \cs_new:Npn \__keyval_trim_auxii:w \__keyval_trim_auxi:w \s__keyval_mark \__keyval_mark
      \s__keyval_nil
    \}
    \cs_new:Npn \__keyval_trim_auxiii:w ##1 \s__keyval_nil \s__keyval_nil
      \{
        ##1
        \__keyval_trim_auxii:w
      }
    \}
    \cs_new:Npn \__keyval_trim_auxiv:w \s__keyval_mark \s__keyval_nil
      \s__keyval_stop \s__keyval_stop
    \}
  \}
\__keyval_tmp:n { ~ }
\group_end:
\end{verbatim}

This is the one macro which differs from the original definition.

\begin{verbatim}
\cs_new:Npn \__keyval_trim_auxi:w \__keyval_trim_auxi:w \__keyval_trim_auxi:w \s__keyval_mark \s__keyval_mark
  \s__keyval_mark
  \s__keyval_nil
\}
\cs_new:Npn \__keyval_trim_auxii:w \__keyval_trim_auxi:w \__keyval_trim_auxi:w \s__keyval_mark \s__keyval_mark
  \s__keyval_nil
\}
\cs_new:Npn \__keyval_trim_auxiii:w \__keyval_trim_auxi:w \__keyval_trim_auxi:w \__keyval_trim_auxi:w
  \s__keyval_nil
\}
\cs_new:Npn \__keyval_trim_auxiv:w \s__keyval_mark \s__keyval_nil
  \s__keyval_stop \s__keyval_stop
\}
\__keyval_tmp:n { ~ }
\group_end:
\end{verbatim}

(End definition for \_\_keyval_trim:nN and others.)

### 22.2 Constants and variables

\begin{verbatim}
\c__keys_code_root_str
\c__keys_default_root_str
\c__keys_groups_root_str
\c__keys_inherit_root_str
\c__keys_type_root_str
\c__keys_validate_root_str
\end{verbatim}

Various storage areas for the different data which make up keys.
\_str\_const:Nn \c\_keys\_code\_root\_str \{ key-code\-
\}  
\_str\_const:Nn \c\_keys\_default\_root\_str \{ key-default\-
\}  
\_str\_const:Nn \c\_keys\_groups\_root\_str \{ key-groups\-
\}  
\_str\_const:Nn \c\_keys\_inherit\_root\_str \{ key-inherit\-
\}  
\_str\_const:Nn \c\_keys\_type\_root\_str \{ key-type\-
\}  
\_str\_const:Nn \c\_keys\_validate\_root\_str \{ key-validate\-
\}  

(End definition for \c\_keys\_code\_root\_str and others.)

\c\_keys\_props\_root\_str The prefix for storing properties.

\_str\_const:Nn \c\_keys\_props\_root\_str \{ key-prop\-
\}  

(End definition for \c\_keys\_props\_root\_str.)

\l\_keys\_choice\_int \l\_keys\_choice\_tl Publicly accessible data on which choice is being used when several are generated as a

\int\_new:N \l\_keys\_choice\_int  
\tl\_new:N \l\_keys\_choice\_tl  

(End definition for \l\_keys\_choice\_int and \l\_keys\_choice\_tl. These variables are documented on
page 189.)

\l\_keys\_groups\_clist Used for storing and recovering the list of groups which apply to a key: set as a comma

\clist\_new:N \l\_keys\_groups\_clist  

(End definition for \l\_keys\_groups\_clist.)

\l\_keys\_key\_str \l\_keys\_key\_tl The name of a key itself: needed when setting keys. The tl version is deprecated but

\str\_new:N \l\_keys\_key\_str  
\tl\_new:N \l\_keys\_key\_tl  

(End definition for \l\_keys\_key\_str and \l\_keys\_key\_tl. These variables are documented on page
191.)

\l\_keys\_module\_str The module for an entire set of keys.

\str\_new:N \l\_keys\_module\_str  

(End definition for \l\_keys\_module\_str.)

\l\_keys\_no\_value\_bool A marker is needed internally to show if only a key or a key plus a value was seen: this

\bool\_new:N \l\_keys\_no\_value\_bool  

(End definition for \l\_keys\_no\_value\_bool.)

\l\_keys\_only\_known\_bool Used to track if only “known” keys are being set.

\bool\_new:N \l\_keys\_only\_known\_bool  

(End definition for \l\_keys\_only\_known\_bool.)

\l\_keys\_path\_str \l\_keys\_path\_tl The “path” of the current key is stored here: this is available to the programmer and so

\str\_new:N \l\_keys\_path\_str  
\tl\_new:N \l\_keys\_path\_tl

(End definition for \l\_keys\_path\_str and \l\_keys\_path\_tl.)
End definition for \l_keys_path_str and \l_keys_path_tl. These variables are documented on page 191.

\l__keys_inherit_str
str_new:N \l__keys_inherit_str
(End definition for \l__keys_inherit_str.)

\l__keys_relative_tl
The relative path for passing keys back to the user. As this can be explicitly no-value, it
must be a token list.
\tl_new:N \l__keys_relative_tl
\tl_set:Nn \l__keys_relative_tl \q_no_value
(End definition for \l__keys_relative_tl.)

\l__keys_property_str
The “property” begin set for a key at definition time is stored here.
\str_new:N \l__keys_property_str
(End definition for \l__keys_property_str.)

\l__keys_selective_bool \l__keys_filtered_bool
Two flags for using key groups: one to indicate that “selective” setting is active, a second
to specify which type (“opt-in” or “opt-out”).
\bool_new:N \l__keys_selective_bool
\bool_new:N \l__keys_filtered_bool
(End definition for \l__keys_selective_bool and \l__keys_filtered_bool.)

\l__keys_selective_seq
The list of key groups being filtered in or out during selective setting.
\seq_new:N \l__keys_selective_seq
(End definition for \l__keys_selective_seq.)

\l__keys_unused_clist
Used when setting only some keys to store those left over.
\tl_new:N \l__keys_unused_clist
(End definition for \l__keys_unused_clist.)

\l__keys_value_tl
The value given for a key: may be empty if no value was given.
\tl_new:N \l__keys_value_tl
(End definition for \l__keys_value_tl. This variable is documented on page 191.)

\l__keys_tmp_bool \l__keys_tmpa_tl \l__keys_tmpb_tl
Scratch space.
\bool_new:N \l__keys_tmp_bool
\tl_new:N \l__keys_tmpa_tl
\tl_new:N \l__keys_tmpb_tl
(End definition for \l__keys_tmp_bool, \l__keys_tmpa_tl, and \l__keys_tmpb_tl.)
22.3 The key defining mechanism

The public function for definitions is just a wrapper for the lower level mechanism, more or less. The outer function is designed to keep a track of the current module, to allow safe nesting. The module is set removing any leading / (which is not needed here).

```latex
\keys_define:nn
__keys_define:nn
__keys_define:onn
```

The outer functions here record whether a value was given and then converge on a common internal mechanism. There is first a search for a property in the current key name, then a check to make sure it is known before the code hands off to the next step.

```latex
\keys_define:n
\keys_define:nn
\keys_define_aux:nn
```

Searching for a property means finding the last . in the input, and storing the text before and after it. Everything is turned into strings, so there is no problem using an x-type expansion.

```latex
\keys_property_find:n
\keys_property_find:w
```

(End definition for \keys_define:nn and \__keys_define:nn. This function is documented on page 184.)

```latex
\keys_property_find:n
\keys_property_find:w
```

(End definition for \__keys_define:n, \__keys_define:nn, and \__keys_define_aux:nn.)
Two possible cases. If there is a value for the key, then just use the function. If not, then a check to make sure there is no need for a value with the property. If there should be one then complain, otherwise execute it. There is no need to check for a : as if it was missing the earlier tests would have failed.
22.4 Turning properties into actions

Boolean keys are really just choices, but all done by hand. The second argument here is the scope: either empty or \texttt{g} for global.

Inverse boolean setting is much the same.
To make a choice from a key, two steps: set the code, and set the unknown key. As multichoices and choices are essentially the same bar one function, the code is given together.

\[ \text{To make a choice from a key, two steps: set the code, and set the unknown key. As multichoices and choices are essentially the same bar one function, the code is given together.} \]

Auto-generating choices means setting up the root key as a choice, then defining each choice in turn.

\[ \text{Auto-generating choices means setting up the root key as a choice, then defining each choice in turn.} \]
\int_set:Nn \exp_not:N \l_keys_choice_int
\{ \int_use:N \l_keys_choice_int \}
\exp_not:n \l_keys_choice_int
\}

(End definition for \_keys_choices_make:n, \_keys_multichoices_make:nn, and \_keys_choices_make:Nn.)

\__keys_cmd_set:nn Setting the code for a key first logs if appropriate that we are defining a new key, then saves the code.
\cs_new_protected:Npn \__keys_cmd_set:nn #1#2
\{ \cs_set_protected:cpn { \c__keys_code_root_str #1 } ##1 {#2} \}
\cs_generate_variant:Nn \__keys_cmd_set:nn { nx , Vn , Vo }

(End definition for \__keys_cmd_set:nn.)

\__keys_cs_set:NNpn \__keys_cs_set:Ncpn Creating control sequences is a bit more tricky than other cases as we need to pick up the p argument. To make the internals look clearer, the trailing n argument here is just for appearance.
\cs_new_protected:Npn \__keys_cs_set:NNpn #1#2#3#
\{ \cs_set_protected:cpx { \c__keys_code_root_str \l_keys_path_str } ##1 {#1} \}
\use_none:n
\cs_generate_variant:Nn \__keys_cs_set:NNpn { Nc }

(End definition for \__keys_cs_set:NNpn.)

\__keys_default_set:n Setting a default value is easy. These are stored using \cs_set:cpx as this avoids any worries about whether a token list exists.
\cs_new_protected:Nnpn \__keys_default_set:n #1
\{ \tl_if_empty:nTF {#1} \}
\cs_set_eq:cN\{ \c__keys_default_root_str \l_keys_path_str \} \tex_undefined:D
\}
\}
\cs_set_nopar:cpx
\{ \c__keys_default_root_str \l_keys_path_str \}
\exp_not:n \l_keys_value_requirement:nn { required } { false }
\}

(End definition for \__keys_default_set:n.)

\__keys_groups_set:n Assigning a key to one or more groups uses comma lists. As the list of groups only exists if there is anything to do, the setting is done using a scratch list. For the usual grouping reasons we use the low-level approach to undefining a list. We also use the low-level approach for the other case to avoid tripping up the check-declarations code.
\__keys_groups_set:n

\__keys_inherit:n

\__keys_initialise:n

\__keys_meta_make:n

\__keys_meta_make:nn

(End definition for \__keys_groups_set:n.)

\__keys_inherit:n

\__keys_initialise:n

(End definition for \__keys_inherit:n.)

(End definition for \__keys_initialise:n.)

(End definition for \__keys_meta_make:n and \__keys_meta_make:nn.)
Much the same as other variables, but needs a dedicated auxiliary.

```
\cs_new_protected:Npn __keys_prop_put:Nn #1 #2
 { \prop_if_exist:NF #1 { \prop_new:N #1 } \exp_after:wN __keys_find_key_module:NNw
 \exp_after:wN \l__keys_tmpa_tl \exp_after:wN \l__keys_tmpb_tl \l_keys_path_str / \q_stop
 __keys_cmd_set:nx \l_keys_path_str
 { \exp_not:c { prop_ #2 put:Nnn } \exp_not:N #1 \exp_not:n { {##1} } }
}
\cs_generate_variant:Nn __keys_prop_put:Nn { c }
```

(End definition for \__keys_prop_put:Nn.)

Undefining a key has to be done without \cs_undefine:c as that function acts globally.

```
\cs_new_protected:Npn __keys_undefine:
 { \clist_map_inline:nn { code , default , groups , inherit , type , validate }
 { \cs_set_eq:cN { \tl_use:c { c__keys_ ##1 _root_str } \l_keys_path_str } \tex_undefined:D }
}
```

(End definition for \__keys_undefine:.)

Validating key input is done using a second function which runs before the main key code. Setting that up means setting it equal to a generic stub which does the check. This approach makes the lookup very fast at the cost of one additional csname per key that needs it. The cleanup here has to know the structure of the following code.

```
\cs_new_protected:Npn __keys_value_requirement:nn #1 #2
 { \str_case:nnF {#2} { true } { \cs_if_eq:ccT { \c__keys_validate_root_str \l_keys_path_str } __keys_validate_ #1 : }
 { __keys_validate_required:nn }
 { __keys_validate_cleanup:w
 { \cs_set_eq:cc { \c__keys_validate_root_str \l_keys_path_str } __keys_validate_ #1 : }
 { __keys_validate_forbidden:nn }
 }
```

688
\cs_set_eq:cN
{ \c__keys_validate_root_str \l_keys_path_str }
\tex_undefined:D
}
}
\__kernel_msg_error:nxx { kernel }
{ key-property-boolean-values-only }
{ .value_ \#1 :n }
}
\cs_new_protected:Npn \__keys_validate_forbidden:
{
\bool_if:NF \l__keys_no_value_bool
{
\__kernel_msg_error:nxx { kernel } { value-forbidden }
{ \l_keys_path_str } { \l_keys_value_tl }
\__keys_validate_cleanup:w
}
}
\cs_new_protected:Npn \__keys_validate_required:
{
\bool_if:NT \l__keys_no_value_bool
{
\__kernel_msg_error:nxx { kernel } { value-required }
{ \l_keys_path_str }
\__keys_validate_cleanup:w
}
}
\cs_new_protected:Npn \__keys_validate_cleanup:w #1 \cs_end: #2#3 { }
\__keys_variable_set:NnnN
\__keys_variable_set:cnnN
\__keys_variable_set_required:NnnN
\__keys_variable_set_required:cnnN
Setting a variable takes the type and scope separately so that it is easy to make a new
variable if needed.
\cs_new_protected:Npn \__keys_variable_set:NnnN #1#2#3#4
{
\use:c { #2_if_exist:NF } #1 \{ \use:c { #2 _new:N } #1 \}
\__keys_cmd_set:nx { \l_keys_path_str }
{ \exp_not:c { #2 _ #3 set:N #4 } }
\exp_not:N #1
\exp_not:n { {##1} }
}
\cs_generate_variant:Nn \__keys_variable_set:NnnN { c }
\cs_new_protected:Npn \__keys_variable_set_required:NnnN #1#2#3#4
{
\__keys_variable_set:NnnN #1 \{#2\} \{#3\} \#4
\__keys_value_requirement:nn { required } { true }
}
\cs_generate_variant:Nn \__keys_variable_set_required:NnnN { c }
(End definition for \__keys_value_requirement:nn and others.)

(End definition for \__keys_variable_set:NnnN and \__keys_variable_set_required:NnnN.)
22.5 Creating key properties

The key property functions are all wrappers for internal functions, meaning that things stay readable and can also be altered later on.

Importantly, while key properties have “normal” argument specs, the underlying code always supplies one braced argument to these. As such, argument expansion is handled by hand rather than using the standard tools. This shows up particularly for the two-argument properties, where things would otherwise go badly wrong.

```latex
\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set:N } #1
{ __keys_bool_set:Nn #1 { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set:c } #1
{ __keys_bool_set:cn {#1} { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset:N } #1
{ __keys_bool_set:Nn #1 { g } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset:c } #1
{ __keys_bool_set:cn {#1} { g } }
\end{verbatim}
(End definition for .bool_set:N and .bool_gset:N. These functions are documented on page 185.)

```latex
\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set_inverse:N } #1
{ \__keys_bool_set_inverse:Nn #1 { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set_inverse:c } #1
{ \__keys_bool_set_inverse:cn {#1} { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset_inverse:N } #1
{ \__keys_bool_set_inverse:Nn #1 { g } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset_inverse:c } #1
{ \__keys_bool_set_inverse:cn {#1} { g } }
\end{verbatim}
(End definition for .bool_set_inverse:N and .bool_gset_inverse:N. These functions are documented on page 185.)

```latex
\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .choice: } #1
{ __keys_choice_make: }
\end{verbatim}
(End definition for .choice:. This function is documented on page 185.)

```latex
\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .choices:nn } #1
{ \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:Vn } #1
{ \exp_args:NV \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:on } #1
{ \exp_args:No \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:xn } #1
{ \exp_args:Nx \__keys_choices_make:nn #1 }
\end{verbatim}
(End definition for .choices:nn. This function is documented on page 185.)
```
Creating code is simply a case of passing through to the underlying set function.

```
\cs_new_protected:cpn { \c__keys_props_root_str .code:n } #1
{ \__keys_cmd_set:nn { \l_keys_path_str } {#1} }
```

(End definition for .code:n. This function is documented on page 185.)

```
\clist_set:N
\clist_set:c
\clist_gset:N
\clist_gset:c
\cs_set:Np
\cs_set:cp
\cs_set_protected:Np
\cs_set_protected:cp
\cs_gset:Np
\cs_gset:cp
\cs_gset_protected:Np
\cs_gset_protected:cp
```

(End definition for .clist_set:N and .clist_gset:N. These functions are documented on page 185.)

```
\cs_set_protected:Np
\cs_set_protected:cp
\cs_gset_protected:Np
\cs_gset_protected:cp
\default:n
\default:V
\default:o
\default:x
```

(End definition for .default:n. This function is documented on page 186.)

```
\dim_set:N
\dim_set:c
\dim_gset:N
\dim_gset:c
```

(End definition for .dim_set:N. This function is documented on page 186.)

Setting a variable is very easy: just pass the data along.
\cs_new_protected:cpn \c__keys_props_root_str .dim_set:N \#1
{ __keys_variable_set_required:NnnN \#1 \{ \dim \} \{ g \} n }
\cs_new_protected:cpn \c__keys_props_root_str .dim_gset:N \#1
{ __keys_variable_set_required:cnmN \#1 \{ \dim \} \{ g \} n }

(End definition for .dim_set:N and .dim_gset:N. These functions are documented on page 186.)

\fp_set:N Setting a variable is very easy: just pass the data along.
\fp_set:c
\fp_gset:N
\fp_gset:c
\cs_new_protected:cpn \c__keys_props_root_str .fp_set:N \#1
{ __keys_variable_set_required:NnnN \#1 \{ \fp \} \{ \} n }
\cs_new_protected:cpn \c__keys_props_root_str .fp_set:c \#1
{ __keys_variable_set_required:cnmN \#1 \{ \fp \} \{ \} n }
\cs_new_protected:cpn \c__keys_props_root_str .fp_gset:N \#1
{ __keys_variable_set_required:cnmN \#1 \{ \fp \} \{ g \} n }
\cs_new_protected:cpn \c__keys_props_root_str .fp_gset:c \#1
{ __keys_variable_set_required:cnmN \#1 \{ \fp \} \{ g \} n }

(End definition for .fp_set:N and .fp_gset:N. These functions are documented on page 186.)

\groups:n A single property to create groups of keys.
\cs_new_protected:cpn \c__keys_props_root_str .groups:n \#1
{ __keys_groups_set:n \#1 }

(End definition for .groups:n. This function is documented on page 186.)

\inherit:n Nothing complex: only one variant at the moment!
\cs_new_protected:cpn \c__keys_props_root_str .inherit:n \#1
{ __keys_inherit:n \#1 }

(End definition for .inherit:n. This function is documented on page 186.)

\initial:n The standard hand-off approach.
\initial:V
\initial:o
\initial:x
\cs_new_protected:cpn \c__keys_props_root_str .initial:n \#1
{ __keys_initialise:n \#1 }
\cs_new_protected:cpn \c__keys_props_root_str .initial:V \#1
{ \exp_args:NV __keys_initialise:n \#1 }
\cs_new_protected:cpn \c__keys_props_root_str .initial:o \#1
{ \exp_args:No __keys_initialise:n \#1 }
\cs_new_protected:cpn \c__keys_props_root_str .initial:x \#1
{ \exp_args:Nx __keys_initialise:n \#1 }

(End definition for .initial:n. This function is documented on page 186.)

\int_set:N Setting a variable is very easy: just pass the data along.
\int_set:c
\int_gset:N
\int_gset:c
\cs_new_protected:cpn \c__keys_props_root_str .int_set:N \#1
{ __keys_variable_set_required:NnnN \#1 \{ \int \} \{ \} n }
\cs_new_protected:cpn \c__keys_props_root_str .int_set:c \#1
{ __keys_variable_set_required:cnmN \#1 \{ \int \} \{ \} n }
\cs_new_protected:cpn \c__keys_props_root_str .int_gset:N \#1
{ __keys_variable_set_required:cnmN \#1 \{ \int \} \{ g \} n }
\cs_new_protected:cpn \c__keys_props_root_str .int_gset:c \#1
{ __keys_variable_set_required:cnmN \#1 \{ \int \} \{ g \} n }

(End definition for .int_set:N and .int_gset:N. These functions are documented on page 187.)
Making a meta is handled internally.

Meta with path: potentially lots of variants, but for the moment no so many defined.

The same idea as choice: and choices:nn, but where more than one choice is allowed.

Setting a variable is very easy: just pass the data along.

Setting a variable is very easy: just pass the data along.
Setting a variable is very easy: just pass the data along.

\cs_new_protected:cpn { \c__keys_props_root_str .skip_set:N } #1
{ __keys_variable_set_required:nnN {#1} { skip } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .skip_set:c } #1
{ __keys_variable_set_required:nnN {#1} { skip } { } g } n
\cs_new_protected:cpn { \c__keys_props_root_str .skip_gset:N } #1
{ __keys_variable_set_required:nnN {#1} { skip } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .skip_gset:c } #1
{ __keys_variable_set_required:nnN {#1} { skip } { g } x }

(End definition for .skip_set:N and .skip_gset:N. These functions are documented on page 188.)

\cs_new_protected:cpn { \c__keys_props_root_str .tl_set:N } #1
{ __keys_variable_set:NnnN #1 { tl } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set:c } #1
{ __keys_variable_set:cnnN {#1} { tl } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:N } #1
{ __keys_variable_set:NnnN #1 { tl } { x } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:c } #1
{ __keys_variable_set:cnnN {#1} { tl } { x } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset:N } #1
{ __keys_variable_set:NnnN #1 { tl } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset:c } #1
{ __keys_variable_set:cnnN {#1} { tl } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:N } #1
{ __keys_variable_set:NnnN #1 { tl } { g } x }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:c } #1
{ __keys_variable_set:cnnN {#1} { tl } { g } x }

(End definition for .tl_set:N and others. These functions are documented on page 188.)
\cs_new_protected:cpn { \c__keys_props_root_str .undefine: }
{ __keys_undefine: }

(End definition for .undefine:. This function is documented on page 188.)
\cs_new_protected:cpn { \c__keys_props_root_str .value_forbidden:n } #1
{ __keys_value_requirement:nn { forbidden } {#1} }
\cs_new_protected:cpn { \c__keys_props_root_str .value_required:n } #1
{ __keys_value_requirement:nn { required } {#1} }

(End definition for .value_forbidden:n and .value_required:n. These functions are documented on page 188.)

22.6 Setting keys
\keys_set:nn
\keys_set:nV
\keys_set:nV
\keys_set:nn
\keys_set:no
\keys_set:nn
\keys_set:nn
\keys_set:nn

A simple wrapper allowing for nesting.
\bool_set_false:N \exp_not:N \l__keys_only_known_bool
\bool_set_false:N \exp_not:N \l__keys_filtered_bool
\bool_set_false:N \exp_not:N \l__keys_selective_bool
\tl_set:Nn \exp_not:N \l__keys_relative_tl
__keys_set:nn { \exp_not:N \q_no_value }
__keys_set:nnn \exp_not:n { {#1} {#2} }
\bool_if:NT \l__keys_only_known_bool
\bool_set_true:N \exp_not:N \l__keys_only_known_bool
\bool_if:NT \l__keys_filtered_bool
\bool_set_true:N \exp_not:N \l__keys_filtered_bool
\bool_if:NT \l__keys_selective_bool
\bool_set_true:N \exp_not:N \l__keys_selective_bool
\tl_set:Nn \exp_not:N \l__keys_relative_tl
__keys_set:nn { \exp_not:o \l__keys_relative_tl }
\cs_generate_variant:Nn \keys_set:nn { nV , nv , no }
\cs_new_protected:Npn __keys_set:nn { \exp_args:No __keys_set:nnn \l__keys_module_str {#1} {#2} }
\cs_new_protected:Npn __keys_set:nnn #1#2#3
\str_set:Nx \l__keys_module_str { __keys_trim_spaces:n {#2} }
\keyval_parse:NNn __keys_set_keyval:n __keys_set_keyval:nn {#3}
\str_set:Nn \l__keys_module_str {#1}
__(End definition for \keys_set:nn, __keys_set:nn, and __keys_set:nnn. This function is documented on page \pageref{keys_set:nn}.\)
The idea of setting keys in a selective manner again uses flags wrapped around the basic code. The comments on \texttt{\keys_set_known:nnn} also apply here. We have a bit more shuffling to do to keep everything nestable.
A shared system once again. First, set the current path and add a default if needed. There are then checks to see if the a value is required or forbidden. If everything passes, move on to execute the code.
The key path here can be fully defined, after which there is a search for the key and module names: the user may have passed them with part of what is actually the module (for our purposes) in the key name. As that happens on a per-key basis, we use the stack approach to restore the module name without a group.

If selective setting is active, there are a number of possible sub-cases to consider. The key name may not be known at all or if it is, it may not have any groups assigned. There is then the question of whether the selection is opt-in or opt-out.
In the case where selective setting requires a comparison of the list of groups which apply to a key with the list of those which have been set active. That requires two mappings, and again a different outcome depending on whether opt-in or opt-out is set.

\cs_new_protected:Npn __keys_check_groups: {\
 \bool_set_false:N \l__keys_tmp_bool\
 \seq_map_inline:Nn \l__keys_selective_seq {\
 \clist_map_inline:Nn \l__keys_groups_clist {\
 \str_if_eq:nnT {##1} {####1} {\
 \bool_set_true:N \l__keys_tmp_bool\
 \clist_map_break:n { \seq_map_break: }\
 }\
 }\
 }\
 \bool_if:NTF \l__keys_tmp_bool {\
 \bool_if:NTF \l__keys_filtered_bool { __keys_store_unused: } { __keys_execute: }\
 }\
 { \bool_if:NTF \l__keys_filtered_bool { __keys_execute: } { __keys_store_unused: } }\
}\
__keys_value_or_default:n __keys_default_inherit:

If a value is given, return it as \#1, otherwise send a default if available.
\cs_if_exist:cT
 \{ \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str \}
 \{ \c__keys_default_inherit: \}
 \}
{ \tl_set:Nn \l_keys_value_tl {#1} }
\cs_new_protected:Npm __keys_default_inherit:
\{
\clist_map_inline:cn \{ \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str \}
\{
 \cs_if_exist:cT \{ \c__keys_default_root_str ##1 / \l_keys_key_str \}
 \{
 \tl_set_eq:Nc \l_keys_value_tl \{ \c__keys_default_root_str ##1 / \l_keys_key_str \}
 \clist_map_break:
 \}
\}
\}
(End definition for __keys_value_or_default:n and __keys_default_inherit:.)
__keys_execute:
__keys_execute_inherit:
__keys_execute_unknown:
__keys_execute:nn
__keys_store_unused:
__keys_store_unused_aux:

Actually executing a key is done in two parts. First, look for the key itself, then look
for the unknown key with the same path. If both of these fail, complain. What exactly
happens if a key is unknown depends on whether unknown keys are being skipped or if
an error should be raised.
\cs_new_protected:Npm __keys_execute:
\{
 \cs_if_exist:cTF \{ \c__keys_code_root_str \l_keys_path_str \}
 \{
 \cs_if_exist_use:c \{ \c__keys_validate_root_str \l_keys_path_str \}
 \cs:w \c__keys_code_root_str \l_keys_path_str \exp_after:wN \cs_end:
 \exp_after:wN \{ \l_keys_value_tl \}
 \}
 \{
 \cs_if_exist:cTF \{ \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str \}
 \{ __keys_execute_inherit: \}
 \{ __keys_execute_unknown: \}
 \}
\}

To deal with the case where there is no hit, we leave __keys_execute_unknown: in the
input stream and clean it up using the break function: that avoids needing a boolean.
\cs_new_protected:Npm __keys_execute_inherit:
\{
\clist_map_inline:cn \{ \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str \}
\{
 \cs_if_exist:cT \{ \c__keys_code_root_str ##1 / \l_keys_key_str \}
\}
When there is no relative path, things here are easy: just save the key name and value. When we are working with a relative path, first we need to turn it into a string: that can’t happen earlier as we need to store \texttt{_q_no_value}. Then, use a standard delimited approach to fish out the partial path.

When there is no relative path, things here are easy: just save the key name and value. When we are working with a relative path, first we need to turn it into a string: that can’t happen earlier as we need to store \texttt{_q_no_value}. Then, use a standard delimited approach to fish out the partial path.

When there is no relative path, things here are easy: just save the key name and value. When we are working with a relative path, first we need to turn it into a string: that can’t happen earlier as we need to store \texttt{_q_no_value}. Then, use a standard delimited approach to fish out the partial path.
_keys_choice_find:n
_keys_choice_find:nn
_keys_multichoice_find:n

Executing a choice has two parts. First, try the choice given, then if that fails call the unknown key. That always exists, as it is created when a choice is first made. So there is no need for any escape code. For multiple choices, the same code ends up used in a mapping.

\cs_new:Npn _keys_choice_find:n #1

__keys_parent:n Used to strip off the ending part of the key path after the last /.

__keys_parent:o
__keys_parent:w

Space stripping has to allow for the fact that the key here might have several parts, and spaces need to be stripped from each part.

22.7 Utilities
\keys_if_exist:nn \keys_if_exist:nn\#1\#2 { p , T , F , TF }{ \cs_if_exist:cTF \c__keys_code_root_str __keys_trim_spaces:n \{ \#1 / \#2 \} \prg_return_true: \}{ \prg_return_false: \}
(End definition for \keys_if_exist:nn\#1\#2. This function is documented on page 193.)

\keys_if_choice_exist:nnn \keys_if_choice_exist:nnn\#1\#2\#3 { p , T , F , TF }{ \cs_if_exist:cTF \c__keys_code_root_str __keys_trim_spaces:n \{ \#1 / \#2 / \#3 \} \prg_return_true: \}{ \prg_return_false: \}
(End definition for \keys_if_choice_exist:nnn\#1\#2\#3. This function is documented on page 193.)

\keys_show:nn \keys_log:nn __keys_show:Nnn \keys_if_exist:nn\#1\#2\#3 \keys_if_choice_exist:nnn\#1\#2\#3

To show a key, show its code using a message.
\end{definition}

\section*{22.8 \textbf{Messages}}

For when there is a need to complain.

\begin{verbatim}
__kernel_msg_new:nnn { kernel } { bad-relative-key-path }
 \{ The-key-'#1'-is-not-inside-the-'#2'-path. \}
__kernel_msg_new:nnn { kernel } { cannot-be-expressed-relative-to-path-'#2'. }
__kernel_msg_new:nnn { kernel } { boolean-values-only }
 \{ Key-'#1'-accepts-boolean-values-only. \}
__kernel_msg_new:nnn { kernel } { boolean-values-only .'true'-'false'. }
__kernel_msg_new:nnn { kernel } { key-choice-unknown }
 \{ Key-'#1'-accepts-only-a-fixed-set-of-choices. \}
 \{ The-key-'#1'-only-accepts-predefined-values,-
 and-'#2'-is-not-one-of-these. \}
__kernel_msg_new:nnn { kernel } { key-unknown }
 \{ The-key-'#1'-is-unknown-and-is-being-ignored. \}
 \{ The-module-'#2'-does-not-have-a-key-called-'#1'.\}
 \{ Check-that-you-have-spelled-the-key-name-correctly. \}
__kernel_msg_new:nnn { kernel } { nested-choice-key }
 \{ Attempt-to-define-'#1'-as-a-nested-choice-key. \}
 \{ The-key-'#1'-cannot-be-defined-as-a-choice-as-the-parent-key-'#2'-is-
 itself-a-choice. \}
__kernel_msg_new:nnn { kernel } { value-forbidden }
 \{ The-key-'#1'-does-not-take-a-value. \}
 \{ The-key-'#1'-should-be-given-without-a-value.\}
 \{ The-value-'#2'-was-present:-the-key-will-be-ignored. \}
__kernel_msg_new:nnn { kernel } { value-required }
 \{ The-key-'#1'-requires-a-value. \}
 \{ The-key-'#1'-must-have-a-value.\}
 \{ No-value-was-present:-the-key-will-be-ignored. \}
__kernel_msg_new:nnn { kernel } { show-key }
 \{ The-key-'#1'-
 \tl_if_empty:nTF {#2}
 \{ is-undefined. \}
 \{ has-the-properties: #2 . \}
\end{verbatim}

705
23 \texttt{l3intarray} implementation

We use these primitives quite a lot in this module.

\begin{verbatim}
__intarray_entry:w __intarray_count:w
\cs_new_eq:NN __intarray_entry:w \tex_fontdimen:D
\cs_new_eq:NN __intarray_count:w \tex_hyphenchar:D
\end{verbatim}

(End definition for \texttt{__intarray_entry:w} and \texttt{__intarray_count:w}.)

\begin{verbatim}
\l__intarray_loop_int A loop index.
\int_new:N \l__intarray_loop_int
\end{verbatim}

(End definition for \texttt{\l__intarray_loop_int}.)

\begin{verbatim}
\c__intarray_sp_dim Used to convert integers to dimensions fast.
\dim_const:Nn \c__intarray_sp_dim { 1 sp }
\end{verbatim}

(End definition for \texttt{\c__intarray_sp_dim}.)

\begin{verbatim}
\g__intarray_font_int Used to assign one font per array.
\int_new:N \g__intarray_font_int
\end{verbatim}

(End definition for \texttt{\g__intarray_font_int}.)

\begin{verbatim}
\intarray_new:Nn \intarray_new:cn __intarray_new:N
\end{verbatim}

Declare \texttt{#1} to be a font (arbitrarily \texttt{cmr10} at a never-used size). Store the array’s size as the \texttt{\hyphenchar} of that font and make sure enough \texttt{\fontdimen} are allocated, by setting the last one. Then clear any \texttt{\fontdimen} that \texttt{cmr10} starts with. It seems LuaTeX’s \texttt{cmr10} has an extra \texttt{\fontdimen} parameter number 8 compared to other engines (for a math font we would replace 8 by 22 or some such). Every \texttt{intarray} must be global; it’s enough to run this check in \texttt{intarray_new:Nn}.

\begin{verbatim}
\cs_new_protected:Npn __intarray_new:N #1
\cs_new_protected:Npn \intarray_new:Nn #1#2
\end{verbatim}

\texttt{__kernel_msg_new:nnn \{ kernel \} \{ negative-array-size \}}

\texttt{\{ Size-of-array-may-not-be-negative:-#1 \}}
_kernel_msg_error:nn \{ kernel \} \{ negative-array-size \}
\{ \intarray_count:N \#1 \}
}
\int_compare:nNnT \{ \intarray_count:N \#1 \} > 0
\{ __kernel_intarray_gset:Nnn \#1 \{ \intarray_count:N \#1 \} \{ 0 \} \}
}
\cs_generate_variant:Nn \intarray_new:Nn \{ c \}

(End definition for \intarray_new:Nn and __intarray_new:N. This function is documented on page 196.)

\intarray_count:N
\intarray_count:c

Size of an array.
\cs_new:Npn \intarray_count:N \#1 { \int_value:w __intarray_count:w \#1 }
\cs_generate_variant:Nn \intarray_count:N \{ c \}

(End definition for \intarray_count:N. This function is documented on page 196.)

23.2 Array items

Used when an item to be stored is larger than \c_max_dim in absolute value; it is replaced by ±\c_max_dim.
\cs_new:Npn __intarray_signed_max_dim:n \#1 { \int_value:w __intarray_count:w \#1 } \c_max_dim

(End definition for __intarray_signed_max_dim:n.)

__intarray_bounds:NNnTF
__intarray_bounds_error:NNn

The functions \intarray_gset:Nnn and \intarray_item:Nn share bounds checking. The T branch is used if \#3 is within bounds of the array \#2.
\cs_new:Npn __intarray_bounds:NNnTF \#1 \#2 \#3 \#4 \#5
{ \if_int_compare:w \#1 > \#3 \exp_stop_f:
 __intarray_bounds_error:NNn \#1 \#2 \{\#3\}
 \#5
 \else:
 \if_int_compare:w \#3 > \intarray_count:N \#2 \exp_stop_f:
 __intarray_bounds_error:NNn \#1 \#2 \{\#3\}
 \#5
 \else:
 \#4
 \fi:\
 \#1:
 \exp_stop_f:
}
\cs_new:Npn __intarray_bounds_error:NNn \#1 \#2 \#3
{ \#1 \{ kernel \} \{ out_of_bounds \}
 \{ \token_to_str:N \#2 \} \{\#3\} \{ \intarray_count:N \#2 \}
}

(End definition for __intarray_bounds:NNnTF and __intarray_bounds_error:NNn.)

\intarray_gset:Nnn
\intarray_gset:cnn
__kernel_intarray_gset:Nnn
__kernel_intarray_gset:Nnn
__kernel_intarray_gset:Nnn
\intarray_gset_overflow:Nnn

Set the appropriate \fontdimen. The __kernel_intarray_gset:Nnn function does not use \int_eval:n, namely its arguments must be suitable for \int_value:w. The user version checks the position and value are within bounds.
\cs_new_protected:Npn __kernel_intarray_gset:Nnn \#1 \#2 \#3

707
\begin{verbatim}
\cs_new_protected:Np \intarray_gset:Nnn \intarray_gset:NNn \intarray_gset:Nww \intarray_gset:NNn \intarray_gset:NNn
\exp_after:wN __intarray_gset:Nww \int_value:w \int_eval:n {#2} \exp_after:wN ; \int_value:w \int_eval:n {#3} ;
\cs_generate_variant:Nn \intarray_gset:Nnn { c }
\cs_new_protected:Npn __intarray_gset:Nww #1#2 ; #3 ;
__intarray_bounds:NNnTF __kernel_msg_error:nnxxx #1 {#2}
__intarray_gset_overflow_test:nw {#3}
__kernel_intarray_gset:Nnn #1 {#2} {#3}
\cs_if_exist:NTF \tex_ifabsnum:D
\cs_new_protected:Npn __intarray_gset_overflow_test:nw #1
\if_int_compare:w \int_abs:n {#1} > \c_max_dim
\exp_after:wN __intarray_gset_overflow:NNnn
\fi:
\end{verbatim}

(End definition for \texttt{\intarray_gset:N} and others. This function is documented on page 196.)

\texttt{\intarray_gzero:N}
Set the appropriate \texttt{\fontdimen} to zero. No bound checking needed. The \texttt{\prg_replicate:nn} possibly uses quite a lot of memory, but this is somewhat comparable to the size of the array, and it is much faster than an \texttt{\int_step_inline:nn} loop.

\texttt{\intarray_gzero:c}

\begin{verbatim}
\cs_new_protected:Np \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N \intarray_gzero:N
\end{verbatim}
Get the appropriate \fontdimen and perform bound checks. The __kernel__intarray_item:Nn function omits bound checks and omits \int_eval:n, namely its argument must be a T\TeX{} integer suitable for \int_value:w.

\cs_new:Npn __kernel_intarray_item:Nn #1#2 { \int_value:w __intarray_entry:w #2 #1 }
\cs_new:Npn \intarray_item:Nn #1#2 { \exp_after:wN __intarray_item:Nw \exp_after:wN #1 \int_value:w \int_eval:n {#2} ;
__intarray_count:w #1 \l__intarray_loop_int
}
\cs_generate_variant:Nn \intarray_item:Nn { c }
\cs_new_protected:Npn __intarray_item:Nw #1#2 ;
__intarray_bounds:NNnTF __kernel_msg_expandable_error:nnfff #1 {#2}
{ __kernel_intarray_item:Nn #1 {#2} }
{ 0 }
}

(End definition for \intarray_item:Nn, __kernel__intarray_item:Nn, and __intarray_item:Nn. This function is documented on page 197.)

Importanty, \intarray_item:Nn only evaluates its argument once.

\cs_new:Npn \intarray_rand_item:N #1 { \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
\cs_generate_variant:Nn \intarray_rand_item:N { c }

(End definition for \intarray_rand_item:N. This function is documented on page 197.)

23.3 Working with contents of integer arrays

Similar to \intarray_new:Nn (which we don’t use because when debugging is enabled that function checks the variable name starts with \texttt{g}). We make use of the fact that T\TeX{} allows allocation of successive \fontdimen as long as no other font has been declared: no need to count the comma list items first. We need the code in \intarray_gset:Nnn that checks the item value is not too big, namely __intarray_gset_overflow_test:nw, but not the code that checks bounds. At the end, set the size of the intarray.

\cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
{ __intarray_new:N #1 \int_zero:N \l__intarray_loop_int \clist_map_inline:nn {#2} { \exp_args:Nf __intarray_const_from_clist:nN { \int_eval:n {##1} } #1 __intarray_count:w #1 \l__intarray_loop_int
}
\cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
\cs_new_protected:Npn __intarray_const_from_clist:nN #1#2
{ __intarray_bounds:NNnTF __kernel_msg_expandable_error:nnfff #1 {#2}
{ __intarray_item:Nn #1 {#2} }
{ 0 }

(End definition for \intarray_const_from_clist:Nn, __kernel__intarray_const_from_clist:Nn, and __intarray_const_from_clist:Nn. This function is documented on page 197.)
\intarray_to_clist:N
\intarray_to_clist:c
\intarray_to_clist:Nn
\intarray_to_clist:w

Loop through the array, putting a comma before each item. Remove the leading comma
with f-expansion. We also use the auxiliary in \intarray_show:N with argument comma,
space.
\cs_new:Npn \intarray_to_clist:N { __intarray_to_clist:Nn #1 { , } }
\cs_generate_variant:Nn \intarray_to_clist:N { c }
\cs_new:Npn __intarray_to_clist:Nn #1#2
{ \int_compare:nNnF { \intarray_count:N #1 } = \c_zero_int
 { \exp_last_unbraced:Nf \use_none:n
 \{ __intarray_to_clist:w 1 ; #1 {#2} \prg_break_point: \}
 }
\cs_new:Npn __intarray_to_clist:w #1 ; #2#3
{ \if_int_compare:w #1 > __intarray_count:w #2
 \prg_break:n
 \fi:
 \#3 __kernel_intarray_item:Nn #2 {#1}
 \exp_after:wN __intarray_to_clist:w \int_value:w \int_eval:w #1 + \c_one_int ; #2 {#3}
}

(End definition for \intarray_to_clist:N, __intarray_to_clist:Nn, and __intarray_to_clist:w.
This function is documented on page 262.)

\intarray_show:N
\intarray_show:c
\intarray_log:N
\intarray_log:c

Convert the list to a comma list (with spaces after each comma)
\cs_new_protected:Npn \intarray_show:N { __intarray_show:NN \msg_show:nnxxxx }
\cs_generate_variant:Nn \intarray_show:N { c }
\cs_new_protected:Npn \intarray_log:N { __intarray_show:NN \msg_log:nnxxxx }
\cs_generate_variant:Nn \intarray_log:N { c }
\cs_new_protected:Npn __intarray_show:NN #1#2
{ __kernel_chk_defined:NT #2
 { \if_int_compare:w #1 > __intarray_count:w #2
 \prg_break:n
 \fi:
 \#2 __kernel_intarray_item:Nn #1 {#1}
 \exp_after:wN __intarray_to_clist:w \int_value:w \int_eval:w #1 + \c_one_int ; #2 {#2}
 }
}

(End definition for \intarray_show:N and \intarray_log:N. These functions are documented on page 197.)
23.4 Random arrays

We only perform the bounds checks once. This is done by two __intarray_gset_-
overflow_test:nw, with an appropriate empty argument to avoid a spurious “at position
#1” part in the error message. Then calculate the number of choices: this is at most
\((2^{30} - 1) - \lceil - (2^{30} - 1) \rfloor + 1 = 2^{31} - 1 \), which just barely does not overflow. For small ranges
use __kernel_randint:n (making sure to subtract 1 before adding the random number
to the \(\langle \text{min} \rangle \), to avoid overflow when \(\langle \text{min} \rangle \) or \(\langle \text{max} \rangle \) are ±\c_max_int), otherwise __kernel_randint:nn. Finally, if there are no random numbers do not define any of the
auxiliaries.

\cs_new_protected:Npn \intarray_gset_rand:Nn \#1
\{ \intarray_gset_rand:Nnn \#1 \{ \#1 \} \}
\cs_generate_variant:Nn \intarray_gset_rand:Nn { c }
\sys_if_rand_exist:TF
\{ \cs_new_protected:Npn \intarray_gset_rand:Nnn #1#2#3
\{ __intarray_gset_rand:Nff #1
\{ \int_eval:n \{#2\} \} \{ \int_eval:n \{#3\} \}
\}
\cs_new_protected:Npn __intarray_gset_rand:Nnn #1#2#3
\{ \int_compare:nNnTF {#2} > {#3}
\{ __kernel_msg_expandable_error:nnnn
\{ kernel \} \{ randint-backward-range \} \{#2\} \{#3\}
__intarray_gset_rand:Nnn #1 \{#3\} \{#2\}
\}
\}
\cs_generate_variant:Nn __intarray_gset_rand:Nnn { Nff }
\cs_new_protected:Npn __intarray_gset_rand_auxi:Nnnn #1#2#3#4
\{ __intarray_gset_rand_overflow_test:nw \{#2\}
__intarray_gset_rand_auxii:Nnnn #1 \{ \} \{#2\} \{#3\}
\}
\cs_new_protected:Npn __intarray_gset_rand_auxii:Nnnn #1#2#3#4
\{ \exp_args:NNf __intarray_gset_rand_auxiii:Nnnn #1
\{ \int_eval:n \{ #3 - #4 + 1 \} \} \{#4\} \{#3\}
\}
\cs_new_protected:Npn __intarray_gset_rand_auxiii:Nnnn #1#2#3#4
\{ \exp_args:Nff __intarray_gset_all_same:Nn \#1\}
\{ \int_compare:nNnTF \{#2\} > \c__kernel_randint_max_int
\{ \exp_stop_f:
\int_eval:n \{ __kernel_randint:nn \{#3\} \{#4\} \}
\}
\exp_stop_f: \int_eval:n { __kernel_randint:n {#2} - 1 + #3 }

\cs_new_protected:Npn __intarray_gset_all_same:Nn #1#2
 {\int_zero:N \l__intarray_loop_int \prg_replicate:nn { \intarray_count:N #1 } { \int_incr:N \l__intarray_loop_int __kernel_intarray_gset:Nnn #1 \l__intarray_loop_int {#2} } }
\cs_new_protected:Npn \intarray_gset_rand:Nnn #1#2#3
 {__kernel_msg_error:nnn { kernel } { fp-no-random } { \intarray_gset_rand:Nnn #1 {#2} {#3} } }
\cs_generate_variant:Nn \intarray_gset_rand:Nnn { c }

(End definition for \intarray_gset_rand:Nnn and others. These functions are documented on page 262.)

24 \texttt{l3fp} implementation

Nothing to see here: everything is in the subfiles!

25 \texttt{l3fp-aux} implementation

\cs_new_eq:NN __fp_int_eval:w \tex_numexpr:D __fp_int_eval_end: \scan_stop: __fp_int_to_roman:w

Largely for performance reasons, we need to directly access primitives rather than use \int_eval:n. This happens a lot, so we use private names. The same is true for \romannumeral, although it is used much less widely.

\cs_new_eq:NN __fp_int_eval:w \tex_numexpr:D __fp_int_eval_end: \scan_stop: __fp_int_to_roman:w \tex_romannumeral:D

(End definition for __fp_int_eval:w, __fp_int_eval_end:, and __fp_int_to_roman:w.)
25.2 Internal representation

Internally, a floating point number \(X\) is a token list containing

\[
\texttt{sfp} \texttt{fp_chk:w} \langle \text{case} \rangle \langle \text{sign} \rangle \langle \text{body} \rangle ;
\]

Let us explain each piece separately.

Internal floating point numbers are used in expressions, and in this context are subject to \(f\)-expansion. They must leave a recognizable mark after \(f\)-expansion, to prevent the floating point number from being re-parsed. Thus, \texttt{sfp} is simply another name for \texttt{relax}.

When used directly without an accessor function, floating points should produce an error: this is the role of \texttt{fp_chk:w}. We could make floating point variables be protected to prevent them from expanding under \(x\)-expansion, but it seems more convenient to treat them as a subcase of token list variables.

The (decimal part of the) IEEE-754-2008 standard requires the format to be able to represent special floating point numbers besides the usual positive and negative cases. We distinguish the various possibilities by their \(\langle \text{case} \rangle\), which is a single digit:

0 zeros: \(+0\) and \(-0\),

1 “normal” numbers (positive and negative),

2 infinities: \(+\text{inf}\) and \(-\text{inf}\),

3 quiet and signalling \texttt{nan}.

The \(\langle \text{sign} \rangle\) is 0 (positive) or 2 (negative), except in the case of \texttt{nan}, which have \(\langle \text{sign} \rangle = 1\). This ensures that changing the \(\langle \text{sign} \rangle\) digit to \(2 - \langle \text{sign} \rangle\) is exactly equivalent to changing the sign of the number.

Special floating point numbers have the form

\[
\texttt{sfp} \texttt{fp_chk:w} \langle \text{case} \rangle \langle \text{sign} \rangle \texttt{sfp...} ;
\]

where \texttt{sfp...} is a scan mark carrying information about how the number was formed (useful for debugging).

Normal floating point numbers (\(\langle \text{case} \rangle = 1\)) have the form

\[
\texttt{sfp} \texttt{fp_chk:w} 1 \langle \text{sign} \rangle \langle \text{exponent} \rangle \{\langle X_1 \rangle\} \{\langle X_2 \rangle\} \{\langle X_3 \rangle\} \{\langle X_4 \rangle\} ;
\]

Here, the \(\langle \text{exponent} \rangle\) is an integer, between \(-10000\) and \(10000\). The body consists in four blocks of exactly 4 digits, 0000 \(\leq \langle X_i \rangle \leq 9999\), and the floating point is

\[
(-1)^{\langle \text{sign} \rangle/2} \langle X_1 \rangle \langle X_2 \rangle \langle X_3 \rangle \langle X_4 \rangle \cdot 10^{\langle \text{exponent} \rangle - 16}
\]

where we have concatenated the 16 digits. Currently, floating point numbers are normalized such that the \(\langle \text{exponent} \rangle\) is minimal, in other words, 1000 \(\leq \langle X_1 \rangle \leq 9999\).

Calculations are done in base 10000, \textit{i.e.} one myriad.
Table 3: Internal representation of floating point numbers.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 \s_{-} fp_... ;</td>
<td>Positive zero.</td>
</tr>
<tr>
<td>0 2 \s_{-} fp_... ;</td>
<td>Negative zero.</td>
</tr>
<tr>
<td>1 0 {\langle exponent\rangle {\langle X_1\rangle {\langle X_2\rangle {\langle X_3\rangle {\langle X_4\rangle } ;</td>
<td>Positive floating point.</td>
</tr>
<tr>
<td>1 2 {\langle exponent\rangle {\langle X_1\rangle {\langle X_2\rangle {\langle X_3\rangle {\langle X_4\rangle } ;</td>
<td>Negative floating point.</td>
</tr>
<tr>
<td>2 0 \s_{-} fp_... ;</td>
<td>Positive infinity.</td>
</tr>
<tr>
<td>2 2 \s_{-} fp_... ;</td>
<td>Negative infinity.</td>
</tr>
<tr>
<td>3 1 \s_{-} fp_... ;</td>
<td>Quiet nan.</td>
</tr>
<tr>
<td>3 1 \s_{-} fp_... ;</td>
<td>Signalling nan.</td>
</tr>
</tbody>
</table>

25.3 Using arguments and semicolons

_fp_use_none_stop_f:n This function removes an argument (typically a digit) and replaces it by \exp_stop_f:, a marker which stops f-type expansion.

_fp_use_s:n Those functions place a semicolon after one or two arguments (typically digits).

_fp_use_ii_until_s:nnw Those functions select specific arguments among a set of arguments delimited by a semicolon.

_fp_reverse_args:Nww Many internal functions take arguments delimited by semicolons, and it is occasionally useful to swap two such arguments.

_fp_rrot:www Rotate three arguments delimited by semicolons. This is the inverse (or the square) of the Forth primitive ROT, hence the name.

_fp_use_i:ww Many internal functions take arguments delimited by semicolons, and it is occasionally useful to remove one or two such arguments.
25.4 Constants, and structure of floating points

__fp_misused:n
This receives a floating point object (floating point number or tuple) and generates an error stating that it was misused. This is called when for instance an \texttt{fp} variable is left in the input stream and its contents reach \TeX's stomach.

\begin{verbatim}
\cs_new_protected:Npn __fp_misused:n #1 { __kernel_msg_error:nnx { kernel } { misused-fp } { \fp_to_tl:n {#1} } }
\end{verbatim}

(End definition for \texttt{__fp_misused:n}.)

__fp_chk:w
Floating points numbers all start with \texttt{\s__fp __fp_chk:w}, where \texttt{\s__fp} is equal to the \TeX primitive \texttt{\relax}, and \texttt{__fp_chk:w} is protected. The rest of the floating point number is made of characters (or \texttt{\relax}). This ensures that nothing expands under f-expansion, nor under x-expansion. However, when typeset, \texttt{\s__fp} does nothing, and \texttt{__fp_chk:w} is expanded. We define \texttt{__fp_chk:w} to produce an error.

\begin{verbatim}
\scan_new:N \s__fp
\cs_new_protected:Npn __fp_chk:w #1 ; { __fp_misused:n { \s__fp __fp_chk:w #1 ; } }
\end{verbatim}

(End definition for \texttt{\s__fp} and \texttt{__fp_chk:w}.)

\s__fp_mark
\s__fp_stop
Aliases of \texttt{\tex_relax:D}, used to terminate expressions.

\begin{verbatim}
\scan_new:N \s__fp_mark
\scan_new:N \s__fp_stop
\end{verbatim}

(End definition for \texttt{\s__fp_mark} and \texttt{\s__fp_stop}.)

\s__fp_invalid
\s__fp_underflow
\s__fp_overflow
\s__fp_division
\s__fp_exact
A couple of scan marks used to indicate where special floating point numbers come from.

\begin{verbatim}
\scan_new:N \s__fp_invalid
\scan_new:N \s__fp_underflow
\scan_new:N \s__fp_overflow
\scan_new:N \s__fp_division
\scan_new:N \s__fp_exact
\end{verbatim}

(End definition for \texttt{\s__fp_invalid} and others.)

\c_zero_fp
\c_minus_zero_fp
\c_inf_fp
\c_minus_inf_fp
\c_nan_fp
The special floating points. We define the floating points here as “exact”.

\begin{verbatim}
\tl_const:Nn \c_zero_fp { \s__fp __fp_chk:w 0 0 \s__fp_exact ; }
\tl_const:Nn \c_minus_zero_fp { \s__fp __fp_chk:w 0 2 \s__fp_exact ; }
\tl_const:Nn \c_inf_fp { \s__fp __fp_chk:w 2 0 \s__fp_exact ; }
\tl_const:Nn \c_minus_inf_fp { \s__fp __fp_chk:w 2 2 \s__fp_exact ; }
\tl_const:Nn \c_nan_fp { \s__fp __fp_chk:w 3 1 \s__fp_exact ; }
\end{verbatim}

(End definition for \texttt{\c_zero_fp} and others. These variables are documented on page 205.)

\c__fp_prec_int
\c__fp_half_prec_int
\c__fp_block_int
The number of digits of floating points.

\begin{verbatim}
\int_const:Nn \c__fp_prec_int { 16 }
\int_const:Nn \c__fp_half_prec_int { 8 }
\int_const:Nn \c__fp_block_int { 4 }
\end{verbatim}

(End definition for \texttt{\c__fp_prec_int}, \texttt{\c__fp_half_prec_int}, and \texttt{\c__fp_block_int}.)

\c__fp_myriad_int
Blocks have 4 digits so this integer is useful.

\begin{verbatim}
\int_const:Nn \c__fp_myriad_int { 10000 }
\end{verbatim}
Normal floating point numbers have an exponent between $-\text{minus_min_exponent}$ and max_exponent inclusive. Larger numbers are rounded to $\pm\infty$. Smaller numbers are rounded to ±0. It would be more natural to define a min_exponent with the opposite sign but that would waste one TeX count.

```
\int_const:Nn \c__fp_minus_min_exponent_int { 10000 }
\int_const:Nn \c__fp_max_exponent_int { 10000 }
```

If a number’s exponent is larger than that, its exponential overflows/underflows.

```
\int_const:Nn \c__fp_max_exp_exponent_int { 5 }
```

A floating point number that is bigger than all normal floating point numbers. This replaces infinities when converting to formats that do not support infinities.

```
\tl_const:Nx \c__fp_overflowing_fp
```

In case of overflow or underflow, we have to output a zero or infinity with a given sign.

```
\cs_new:Npn \__fp_zero_fp:N #1
{ \s__fp \__fp_chk:w 0 #1 \s__fp_underflow ; }
\cs_new:Npn \__fp_inf_fp:N #1
{ \s__fp \__fp_chk:w 2 #1 \s__fp_overflow ; }
```

For normal numbers, the function expands to the exponent, otherwise to 0. This is used in \l3str-format.

```
\cs_new:Npn \__fp_exponent:w \s__fp \__fp_chk:w #1
{ \if_meaning:w 1 #1 \exp_after:wN \__fp_use_ii_until_s:nnw
\else: \exp_after:wN \__fp_use_i_until_s:nw \exp_after:wN 0 \fi: }
```

When appearing in an integer expression or after $\int_value:w$, this expands to the sign opposite to #1, namely 0 (positive) is turned to 2 (negative), 1 (\texttt{nan}) to 1, and 2 to 0.

```
\cs_new:Npn \__fp_neg_sign:N #1
{ \__fp_int_eval:w 2 - #1 \__fp_int_eval_end: }
```
_fp_kind:w \n Expands to 0 for zeros, 1 for normal floating point numbers, 2 for infinities, 3 for NaN, 4 for tuples.

_fp_sanitize:Nw _fp_sanitize:wN _fp_sanitize_zero:w \n Expects the sign and the exponent in some order, then the significand (which we don’t touch). Outputs the corresponding floating point number, possibly underflowed to ±0 or overflowed to ±∞. The functions _fp_underflow:w and _fp_overflow:w are defined in l3fp-traps.

_fp_exp_after_o:w _fp_exp_after_f:nw \n Places ⟨tokens⟩ (empty in the case of _fp_exp_after_o:w) between the ⟨floating point⟩ and the following tokens, then hits those tokens with o or f-expansion, and leaves the floating point number unchanged.

_fp_exp_after_o:w _fp_exp_after_o:w (floating point) _fp_exp_after_f:nw _fp_exp_after_f:nw (tokens) (floating point)
Special floating point numbers are easy to jump over since they contain few tokens.

\s__fp_tuple __fp_tuple_chk:w
Floating point tuples take the form \s__fp_tuple __fp_tuple_chk:w { ⟨fp 1⟩ ⟨fp 2⟩ ...} ; where each ⟨fp⟩ is a floating point number or tuple, hence ends with ; itself. When
a tuple is typeset, _fp_tuple_chk:w produces an error, just like usual floating point
numbers. Tuples may have zero or one element.

_fp_tuple_count:w
_fp_array_count:n
_fp_tuple_count_loop:Nw

Count the number of items in a tuple of floating points by counting semicolons. The
technique is very similar to \tl_count:n, but with the loop built-in. Checking for the
end of the loop is done with the \use_none:n #1 construction.

_fp_if_type_fp:NTwFw

Used as _fp_if_type_fp:NTwFw \langle marker \rangle \{ \langle true code \rangle \} \langle s_fp \langle false code \rangle \rangle _q_stop, this test whether the \langle marker \rangle is \s_fp or not and runs the appropriate \langle code \rangle.
The very unusual syntax is for optimization purposes as that function is used for all
floating point operations.

_fp_array_if_all_fp:nTF
_fp_array_if_all_fp_loop:w

True if all items are floating point numbers. Used for min.

(End definition for _fp_array_if_all_fp:nTF and _fp_array_if_all_fp_loop:w.)
Used as __fp_type_from_scan:N \langle token \rangle. Grabs the pieces of the stringified \langle token \rangle which lies after the first s_fp. If the \langle token \rangle does not contain that string, the result is _?.

\cs_new:Npn __fp_type_from_scan:N #1
\begin{verbatim}
 __fp_if_type_fp:NwFw
 \s__fp { __fp_type_from_scan_other:N #1 }
 \q_stop
\end{verbatim}

\cs_new:Npx __fp_type_from_scan_other:N #1
\begin{verbatim}
 \exp_not:N \exp_after:wN \exp_not:N __fp_type_from___scan:w
 \token_to_str:N \exp_not:N \q_mark
 \tl_to_str:n { s_fp _? } \exp_not:N \q_mark \exp_not:N \q_stop
\end{verbatim}

\exp_last_unbraced:NNNNo
\cs_new:Npn __fp_type_from_scan:w #1
\begin{verbatim}
 \tl_to_str:n { s_fp } \q_mark \#2 \q_stop {\#2}
\end{verbatim}

(End definition for __fp_type_from_scan:N, __fp_type_from_scan_other:N, and __fp_type_from___scan:w.)

Arguments are \langle type marker \rangle \langle function \rangle \langle recovery \rangle. This gives the function obtained by placing the type after @@. If the function is not defined then \langle recovery \rangle \langle function \rangle is used instead; however that test is not run when the \langle type marker \rangle is \s_fp.

\cs_new:Npn __fp_change_func_type:NNN #1#2#3
\begin{verbatim}
 __fp_if_type_fp:NwFw
 \s_fp
 \{ \exp_after:wN __fp_change_func_type_chk:NNN \cs:w
 __fp __fp_type_from_scan:chk:NNN____w
 __fp: __fp_type_from_scan:other:N \#1
 \exp_after:wN __fp_change_func_type_aux:w \token_to_str:N \#2 ____w
 \cs_end:
 \#2 \#3
 \}
 \q_stop
\end{verbatim}

\exp_last_unbraced:NNNNo
\cs_new:Npn __fp_change_func_type_aux:w #1 \{ \tl_to_str:n __fp \}
\begin{verbatim}
 \exp_after:wN __fp_change_func_type_chk:NNN \cs:w
 __fp: __fp_type_from_scan:chk:NNN \#1\#2\#3
 \{ \if_meaning:w \scan_stop: \#1 \exp_after:wN __fp: \#3 \exp_after:wN __fp: \#2
 \else:
 \exp_after:wN __fp: \#1
 \fi:
\end{verbatim}

(End definition for __fp_change_func_type:NNN, __fp_change_func_type_aux:w, and __fp_change_func_type_chk:NNN.)
The \texttt{Nnw} function simply dispatches to the appropriate \texttt{_fp_exp_after_..._f:nw} with “…” (either empty or \langle\textit{type}\rangle) extracted from #1, which should start with \texttt{_s_fp}. If it doesn’t start with \texttt{_s_fp} the function \texttt{_fp_exp_after_?_f:nw} defined in l3fp-parse gives an error; another special \langle\textit{type}\rangle is \texttt{stop}, useful for loops, see below. The \texttt{nw} function has an important optimization for floating points numbers; it also fetches its type marker #2 from the floating point.

\begin{verbatim}
\cs_new:Npn __fp_exp_after_any_f:Nnw #1 { \cs:w __fp_exp_after __fp_type_from_scan_other:N #1 _f:nw \cs_end: }
\cs_new:Npn __fp_exp_after_any_f:nw #1#2
__fp_if_type_fp:NTwFw #2 __fp_exp_after_f:nw \s__fp { __fp_exp_after_any_f:Nnw #2 }
\q_stop {#1} #2
\cs_new_eq:NN __fp_exp_after_stop_f:nw \use_none:nn
\end{verbatim}

\begin{verbatim}
The loop works by using the \texttt{n} argument of \texttt{_fp_exp_after_any_f:nw} to place the loop macro after the next item in the tuple and expand it.

\begin{verbatim}
_fp_exp_after_array_f:w
\langle fp1 \rangle ;
\ldots
\langle fpn \rangle ;
\s__fp_stop
\cs_new:Npn _fp_exp_after_tuple_o:w
_fp_exp_after_tuple_f:nw
_fp_exp_after_array_f:w
\end{verbatim}

\begin{verbatim}
_fp_exp_after_tuple_o:w
_fp_exp_after_tuple_f:nw
_fp_exp_after_array_f:w
\end{verbatim}

\begin{verbatim}
25.8 Packing digits
When a positive integer \#1 is known to be less than 10^8, the following trick splits it into two blocks of 4 digits, padding with zeros on the left.
\end{verbatim}
The idea is that adding 10^8 to the number ensures that it has exactly 9 digits, and can then easily find which digits correspond to what position in the number. Of course, this can be modified for any number of digits less or equal to 9 (we are limited by TeX's integers). This method is very heavily relied upon in 13fp-basics.

More specifically, the auxiliary inserts $+ #1 #2 #3 #4 #5 ; \{ #6 \}$, which allows us to compute several blocks of 4 digits in a nested manner, performing carries on the fly. Say we want to compute 12345×66778899. With simplified names, we would do

```latex
\exp_after:wN \post_processing:w
\__fp_int_value:w \__fp_int_eval:w - 5 0000
\exp_after:wN \pack:NNNNNw
\__fp_int_value:w \__fp_int_eval:w 4 9995 0000
+ 12345 * 6677
\exp_after:wN \pack:NNNNNw
\__fp_int_value:w \__fp_int_eval:w 5 0000 0000
+ 12345 * 8899 ;
```

The \exp_after:wN triggers \int_value:w __fp_int_eval:w, which starts a first computation, whose initial value is $-5\,0000$ (the “leading shift”). In that computation appears an \exp_after:wN, which triggers the nested computation \int_value:w __fp_int_eval:w with starting value $4\,9995\,0000$ (the “middle shift”). That, in turn, expands \exp_after:wN which triggers the third computation. The third computation’s value is $5\,0000\,0000 + 12345 \times 8899$, which has 9 digits. Adding $5 \cdot 10^8$ to the product allowed us to know how many digits to expect as long as the numbers to multiply are not too big; it also works to some extent with negative results. The \pack function puts the last 4 of those 9 digits into a brace group, moves the semi-colon delimiter, and inserts a $+$, which combines the carry with the previous computation. The shifts nicely combine into $5\,0000\,0000 + 4\,9995\,0000 = 5\,0000\,0000$. As long as the operands are in some range, the result of this second computation has 9 digits. The corresponding \pack function, expanded after the result is computed, braces the last 4 digits, and leaves $+ \langle 5 \text{ digits} \rangle$ for the initial computation. The “leading shift” cancels the combination of the other shifts, and the \post_processing:w takes care of packing the last few digits.

Admittedly, this is quite intricate. It is probably the key in making 13fp as fast as other pure TeX floating point units despite its increased precision. In fact, this is used so much that we provide different sets of packing functions and shifts, depending on ranges of input.

This set of shifts allows for computations involving results in the range $[-4 \cdot 10^8, 5 \cdot 10^8 - 1]$. Shifted values all have exactly 9 digits.

This set of shifts allows for computations involving results in the range $[-5 \cdot 10^8, 6 \cdot 10^8 - 1]$ (actually a bit more). Shifted values all have exactly 10 digits. Note that the upper
bound is due to T\TeX{}'s limit of $2^{31} - 1$ on integers. The shifts are chosen to be roughly the mid-point of 10^9 and 2^{31}, the two bounds on 10-digit integers in T\TeX{}.

\begin{verbatim}
\int_const:Nn \c__fp_big_leading_shift_int { - 15 2374 }
\int_const:Nn \c__fp_big_middle_shift_int { 15 2374 * 9999 }
\int_const:Nn \c__fp_big_trailing_shift_int { 15 2374 * 10000 }
\cs_new:Npn __fp_pack_big:NNNNNNw #1#2 #3#4#5#6 #7;
{ + #1#2#3#4#5#6 ; {#7} }
\end{verbatim}

This set of shifts allows for computations with results in the range $[-1 \cdot 10^9, 147483647]$; the end-point is $2^{31} - 1 - 2 \cdot 10^9 \simeq 1.47 \cdot 10^8$. Shifted values all have exactly 10 digits.

\begin{verbatim}
\int_const:Nn \c__fp_Bigg_leading_shift_int { - 20 0000 }
\int_const:Nn \c__fp_Bigg_middle_shift_int { 20 0000 * 9999 }
\int_const:Nn \c__fp_Bigg_trailing_shift_int { 20 0000 * 10000 }
\cs_new:Npn __fp_pack_Bigg:NNNNNNw #1#2 #3#4#5#6 #7;
{ + #1#2#3#4#5#6 ; {#7} }
\end{verbatim}

Addition and multiplication of significands are done in two steps: first compute a (more or less) exact result, then round and pack digits in the final (braced) form. These functions take care of the packing, with special attention given to the case where rounding has caused a carry. Since rounding can only shift the final digit by 1, a carry always produces an exact power of 10. Thus, __fp_basics_pack_high_carry:w is always followed by four times \{0000\}.

This is used in l3fp-basics and l3fp-extended.

\begin{verbatim}
\cs_new:Npn __fp_basics_pack_low:NNNNNw #1 #2#3#4#5 #6;
{ + #1 - 1 ; {#2#3#4#5} {#6} ; }
\cs_new:Npn __fp_basics_pack_high:NNNNNw \cs_new:Npn __fp_basics_pack_high_carry:w
\end{verbatim}
This is used in \texttt{l3fp-basics} for additions and divisions. Their syntax is confusing, hence the name.

\begin{verbatim}
\cs_new:Npn __fp_basics_pack_weird_low:NNNNw #1 #2#3#4 #5;
 \if_meaning:w 2 #1 + 1 \fi: __fp_int_eval_end: #2#3#4; {#5} ;
\cs_new:Npn __fp_basics_pack_weird_high:NNNNNNNNw 1 #1#2#3#4 #5#6#7#8 #9; { ; {#1#2#3#4} {#5#6#7#8} {#9} }
\end{verbatim}

(End definition for \texttt{_fp_basics_pack_weird_low:NNNNw} and \texttt{_fp_basics_pack_weird_high:NNNNNNNNw}.)

\subsection*{25.9 Decimate (dividing by a power of 10)}

\begin{verbatim}
__fp_decimate:nNnnnn {\langle shift \rangle} {f_1} {X_1} {X_2} {X_3} {X_4}
\end{verbatim}

Each $\langle X \rangle$ consists in 4 digits exactly, and $1000 \leq \langle X_1 \rangle < 9999$. The first argument determines by how much we shift the digits. $\langle f_1 \rangle$ is called as follows:

\begin{quote}
\begin{verbatim}
\langle f_1 \rangle \langle rounding \rangle \{X_1\} \{X_2\} \{X_3\} \{X_4\} \langle extra-digits \rangle ;
\end{verbatim}
\end{quote}

where $0 \leq \langle X_i \rangle < 10^8 - 1$ are 8 digit integers, forming the truncation of our number. In other words,

\begin{equation}
\sum_{i=1}^{4} \langle X_i \rangle \cdot 10^{-4i} \cdot 10^{-\langle shift \rangle} = \langle X_1 \rangle \cdot 10^{-8} + \langle X_2 \rangle \cdot 10^{-16} = 0, \langle extra-digits \rangle \cdot 10^{-16} \in [0, 10^{-16}).
\end{equation}

To round properly later, we need to remember some information about the difference. The $\langle rounding \rangle$ digit is 0 if and only if the difference is exactly 0, and 5 if and only if the difference is exactly $0.5 \cdot 10^{-16}$. Otherwise, it is the (non-0, non-5) digit closest to 10^{17} times the difference. In particular, if the shift is 17 or more, all the digits are dropped, $\langle rounding \rangle$ is 1 (not 0), and $\langle X_1 \rangle$ and $\langle X_2 \rangle$ are both zero.

If the shift is 1, the $\langle rounding \rangle$ digit is simply the only digit that was pushed out of the brace groups (this is important for subtraction). It would be more natural for the $\langle rounding \rangle$ digit to be placed after the $\langle X_i \rangle$, but the choice we make involves less reshuffling.

Note that this function treats negative $\langle shift \rangle$ as 0.
Each of the auxiliaries see the function \(f_1 \), followed by 4 blocks of 4 digits.

If the \(\langle \text{shift} \rangle \) is zero, or too big, life is very easy.

Shifting happens in two steps: compute the \(\langle \text{rounding} \rangle \) digit, and repack digits into two blocks of 8. The sixteen functions are very similar, and defined through \(__\text{fp-}\text{tmp:}\text{w} \). The arguments are as follows: \#1 indicates which function is being defined; after one step of expansion, \#2 yields the “extra digits” which are then converted by \(__\text{fp-round-digit:}\text{Nw} \) to the \(\langle \text{rounding} \rangle \) digit (note the + separating blocks of digits to avoid overflowing \TeX{}’s integers). This triggers the f-expansion of \(__\text{fp-decimate-pack:}\text{nnnnnnnnnnw} \), responsible for building two blocks of 8 digits, and removing the rest. For this to work, \#3 alternates between braced and unbraced blocks of 4 digits, in such a way that the 5 first and 5 next token groups yield the correct blocks of 8 digits.

No, the argument spec is not a mistake: the function calls an auxiliary to do half of the job.
The computation of the (rounding) digit leaves an unfinished \int_value:w, which expands the following functions. This allows us to repack nicely the digits we keep. Those digits come as an alternation of unbraced and braced blocks of 4 digits, such that the first 5 groups of token consist in 4 single digits, and one brace group (in some order), and the next 5 have the same structure. This is followed by some digits and a semicolon.

\begin{verbatim}
16541 \cs_new:Npn __fp_decimate_pack:nnnnnnnnnnw \#1\#2\#3\#4\#5
16542 \{ __fp_decimate_pack:nnnnnnw \#1\#2\#3\#4\#5 \}
16543 \cs_new:Npn __fp_decimate_pack:nnnnnnw \#1 \#2\#3\#4\#5\#6
16544 \{ \#1 \#2\#3\#4\#5\#6 \}
\end{verbatim}

(End definition for __fp_decimate_pack:nnnnnnnnnnw.)

\subsection*{25.10 Functions for use within primitive conditional branches}

The functions described in this section are not pretty and can easily be misused. When correctly used, each of them removes one \fi: as part of its parameter text, and puts one back as part of its replacement text.

Many computation functions in \l3fp must perform tests on the type of floating points that they receive. This is often done in an \if_case:w statement or another conditional statement, and only a few cases lead to actual computations: most of the special cases are treated using a few standard functions which we define now. A typical use context for those functions would be

\begin{verbatim}
\if_case:w \langle integer \rangle \exp_stop_f:
 __fp_case_return_o:Nw \langle fp var \rangle
\or: __fp_case_use:nw \langle some computation \rangle
\or: __fp_case_return_same_o:w
\or: __fp_case_return:nw \langle something \rangle
\fi:
\langle junk \rangle
\langle floating point \rangle
\end{verbatim}

In this example, the case 0 returns the floating point \langle fp var \rangle, expanding once after that floating point. Case 1 does \langle some computation \rangle using the \langle floating point \rangle (presumably compute the operation requested by the user in that non-trivial case). Case 2 returns the \langle floating point \rangle without modifying it, removing the \langle junk \rangle and expanding once after. Case 3 closes the conditional, removes the \langle junk \rangle and the \langle floating point \rangle, and expands \langle something \rangle next. In other cases, the \langle junk \rangle is expanded, performing some other operation on the \langle floating point \rangle. We provide similar functions with two trailing \langle floating points \rangle.

\begin{verbatim}
__fp_case_use:nw
\end{verbatim}

This function ends a \TeX conditional, removes junk until the next floating point, and places its first argument before that floating point, to perform some operation on the floating point.

\begin{verbatim}
\cs_new:Npn __fp_case_use:nw \#1\#2 \fi: \#3 \a__fp \{ \fi: \#1 \a__fp \}
\end{verbatim}

(End definition for __fp_case_use:nw.)

726
This function ends a TeX conditional, removes junk and a floating point, and places its first argument in the input stream. A quirk is that we don’t define this function requiring a floating point to follow, simply anything ending in a semicolon. This, in turn, means that the \textit{junk} may not contain semicolons.

\begin{verbatim}
cs_new:Npn _fp_case_return:nw #1 #2 \fi: #3 ; { \fi: #1 }
(End definition for _fp_case_return:nw.)
\end{verbatim}

This function ends a TeX conditional, removes junk and a floating point, and returns its first argument (an \textit{fp var}) then expands once after it.

\begin{verbatim}
cs_new:Npn _fp_case_return_o:Nw #1 #2 \fi: #3 \s__fp #4 ; { \fi: \exp_after:wN #1 }
(End definition for _fp_case_return_o:Nw.)
\end{verbatim}

This function ends a TeX conditional, removes junk, and returns the following floating point, expanding once after it.

\begin{verbatim}
cs_new:Npn _fp_case_return_same_o:w #1 \fi: #2 \s__fp #3 ; \s__fp #4 ; { \fi: __fp_exp_after_o:w \s__fp #3 ; }
(End definition for _fp_case_return_same_o:w.)
\end{verbatim}

Same as _fp_case_return_o:Nw but with two trailing floating points.

\begin{verbatim}
cs_new:Npn _fp_case_return_o:Nww #1 #2 \fi: #3 \s__fp #4 ; \s__fp #5 ; { \fi: \exp_after:wN #1 }
(End definition for _fp_case_return_o:Nww.)
\end{verbatim}

Similar to _fp_case_return_same_o:w, but this returns the first or second of two trailing floating point numbers, expanding once after the result.

\begin{verbatim}
cs_new:Npn _fp_case_return_i_o:ww #1 \fi: #2 \s__fp #3 ; \s__fp #4 ; { \fi: __fp_exp_after_o:w \s__fp #3 ; }\end{verbatim}

\begin{verbatim}
cs_new:Npn _fp_case_return_ii_o:ww #1 \fi: #2 \s__fp #3 ; { \fi: __fp_exp_after_o:w }
(End definition for _fp_case_return_i_o:ww and _fp_case_return_ii_o:ww.)
\end{verbatim}

\subsection{Integer floating points}

_fp_int_p:w Tests if the floating point argument is an integer. For normal floating point numbers, this holds if the rounding digit resulting from _fp_decimate:nNNNNN is 0.

\begin{verbatim}
\prg_new_conditional:Npnn _fp_int:w \s__fp __fp_chk:w #1 #2 #3 #4; { TF , T , F , p }
{ \if_case:w #1 \exp_stop_f:
\prg_return_true:
\or:
\if_case:w #0
_fp_decimate:nNNNNN \c__fp_prec_int - #3 }
_fp_use_i_until_s:nw #4
\prg_return_true:
\else:
\prg_return_false:
\fi;
\end{verbatim}

_fp_int:WF
25.12 Small integer floating points

Tests if the floating point argument is an integer or \(\pm \infty \). If so, it is clipped to an integer in the range \([-10^8, 10^8]\) and fed as a braced argument to the \langle true code \rangle. Otherwise, the \langle false code \rangle is performed.

First filter special cases: zeros and infinities are integers, \(\text{nan} \) is not. For normal numbers, decimate. If the rounding digit is not 0 run the \langle false code \rangle. If it is, then the integer is \#2 \#3; use \#3 if \#2 vanishes and otherwise \(10^8 \).

\begin{verbatim}
\cs_new:Npn __fp_small_int:wTF \s__fp __fp_chk:w #1#2
{ \if_case:w #1 \exp_stop_f:
 __fp_case_return:nw { __fp_small_int_true:wTF 0 ; }
\or: \exp_after:wN __fp_small_int_normal:NnwTF
\or:
 __fp_case_return:nw
 \exp_after:wN __fp_small_int_true:wTF \int_value:w
 \if_meaning:w 2 #2 - \fi: 1 0000 0000 ;
\else: __fp_case_return:nw \use_ii:nn
 \fi:
#2
}
\cs_new:Npn __fp_small_int_true:wTF #1; #2#3 { #2 {#1} }
\cs_new:Npn __fp_small_int_normal:NnwTF #1#2#3;
{ __fp_decimate:nNnnnn { \c__fp_prec_int - #2 } __fp_small_int_test:NnnwNw
#3 \#1 }
\cs_new:Npn __fp_small_int_test:NnnwNw #1#2#3#4; #5
{ \if_meaning:w 0 #1 \exp_after:wN __fp_small_int_true:wTF
\int_value:w \if_meaning:w 2 #5 - \fi:
 \if_int_compare:w #2 > 0 \exp_stop_f:
 1 0000 0000
 \else:
 \#3
 \fi:
\else:
 \exp_after:wN \use_ii:nn
\else:
 \exp_after:wN \use_ii:nn
\fi:
#4
}
\end{verbatim}

(End definition for __fp_small_int:wTF and others.)

25.13 Fast string comparison

A private version of the low-level string comparison function. As the nature of the arguments is restricted and as speed is of the essence, this version does not seek to deal with # tokens. No l3sys or l3luatex just yet so we have to define in terms of primitives.

```latex
\__fp_str_if_eq:nn
\sys_if_engine_luatex:TF
{ \cs_new:Npn \__fp_str_if_eq:nn #1#2
  \tex_directlua:D
  { l3kernel.strcmp
    " \tex_luaescapestring:D {#1}",
    " \tex_luaescapestring:D {#2}"
  }
}
{ \cs_new_eq:NN \__fp_str_if_eq:nn \tex_strcmp:D }
```

(End definition for __fp_str_if_eq:nn.)

25.14 Name of a function from its l3fp-parse name

The goal is to convert for instance __fp_sin_o:w to sin. This is used in error messages hence does not need to be fast.

```latex
\__fp_func_to_name:N \__fp_func_to_name_aux:w
\cs_new:Npn \__fp_func_to_name:N #1
{ \exp_last_unbraced:Nf \__fp_func_to_name_aux:w { \cs_to_str:N #1 } X }
\cs_set_protected:Npn \__fp_tmp:w #1 #2
{ \cs_new:Npn \__fp_func_to_name_aux:w ##1 #1 ##2 #2 ##3 X {##2} }
\exp_args:Nff \__fp_tmp:w { \tl_to_str:n { __fp_ } }
```

(End definition for __fp_func_to_name:N and __fp_func_to_name_aux:w.)

25.15 Messages

Using a floating point directly is an error.

```latex
\__kernel_msg_new:nnnn { kernel } { misused-fp }
{ A-floating-point-with-value-‘#1’-was-misused. }
\token_to_str:N \fp_to_decimal:N’,-\token_to_str:N \fp_to_tl:N’,-or-other-
conversion-functions.
```

(/initex | package)
26 l3fp-traps Implementation

Exceptions should be accessed by an n-type argument, among

- invalid_operation
- division_by_zero
- overflow
- underflow
- inexact (actually never used).

26.1 Flags

Flags to denote exceptions.

\begin{verbatim}
\flag_new:n { fp_invalid_operation }
\flag_new:n { fp_division_by_zero }
\flag_new:n { fp_overflow }
\flag_new:n { fp_underflow }
\end{verbatim}

(End definition for flag fp_invalid_operation and others. These variables are documented on page 207.)

26.2 Traps

Exceptions can be trapped to obtain custom behaviour. When an invalid operation or a division by zero is trapped, the trap receives as arguments the result as an n-type floating point number, the function name (multiple letters for prefix operations, or a single symbol for infix operations), and the operand(s). When an overflow or underflow is trapped, the trap receives the resulting overly large or small floating point number if it is not too big, otherwise it receives $+\infty$. Currently, the inexact exception is entirely ignored.

The behaviour when an exception occurs is controlled by the definitions of the functions

\begin{verbatim}
__fp_invalid_operation:nnw,
__fp_invalid_operation_o:Nww,
__fp_invalid_operation_tl_o:ff,
__fp_division_by_zero_o:Nww,
__fp_division_by_zero_o:NNww,
__fp_overflow:w,
__fp_underflow:w.
\end{verbatim}

Rather than changing them directly, we provide a user interface as \fp_trap:nn\{\exception\}\{\way of trapping\}, where the \{way of trapping\} is one of error, flag, or none.

We also provide __fp_invalid_operation_o:nw, defined in terms of __fp_-
invalid_operation:nnw.

730
\fp_trap:nn

\cs_new_protected:Npn \fp_trap:nn #1#2
\{
 \cs_if_exist_use:cF { __fp_trap_#1_set_#2: }
 \{
 \clist_if_in:nnTF
 { invalid_operation , division_by_zero , overflow , underflow }
 {#1}
 \{
 __kernel_msg_error:nxx { kernel }
 { unknown-fpu-trap-type } {#1} {#2}
 }
 \{
 __kernel_msg_error:nx { kernel } { unknown-fpu-exception } {#1}
 }
\}
\}
\}

(End definition for \fp_trap:nn. This function is documented on page 207.)

We provide three types of trapping for invalid operations: either produce an error and raise the relevant flag; or only raise the flag; or don’t even raise the flag. In most cases, the function produces as a result its first argument, possibly with post-expansion.

\cs_new_protected:Npn __fp_trap_invalid_operation_set_error:
\cs_new_protected:Npn __fp_trap_invalid_operation_set_flag:
\cs_new_protected:Npn __fp_trap_invalid_operation_set_none:
\cs_new_protected:Npn __fp_trap_invalid_operation_set:N #1
\{
 \exp_args:Nno \use:n
 { \cs_set:Npn __fp_invalid_operation:nnw ##1##2##3; }
 {#1}
 __fp_error:nffn { fp-invalid } {##2} { \
 \fp_to_tl:n { ##3; } } { }
 \flag_raise_if_clear:n { fp_invalid_operation }
 {#1}
\}
\exp_args:Nno \use:n
 \cs_set:Npn __fp_invalid_operation_o:Nww ##1##2; ##3; }
\{
 __fp_error:nffn { fp-invalid-ii } {
 \fp_to_tl:n { ##2; } } {
 \fp_to_tl:n { ##3; } } {##1}
 \flag_raise_if_clear:n { fp_invalid_operation }
 \exp_after:wN \c_nan_fp
\}
\exp_args:Nno \use:n
 \cs_set:Npn __fp_invalid_operation_tl_o:ff ##1##2;
\{
 __fp_error:nffn { fp-invalid } {##1} {##2} { }
\}

731
We provide three types of trapping for invalid operations and division by zero: either produce an error and raise the relevant flag; or only raise the flag; or don’t even raise the flag. In all cases, the function must produce a result, namely its first argument, ±∞ or NaN.

\cs_new_protected:Npn __fp_trap_division_by_zero_set_error: { __fp_trap_division_by_zero_set:N \prg_do_nothing: }
\cs_new_protected:Npn __fp_trap_division_by_zero_set_flag: { __fp_trap_division_by_zero_set:N \use_none:nnnnn }
\cs_new_protected:Npn __fp_trap_division_by_zero_set_none: { __fp_trap_division_by_zero_set:N \use_none:nnnnnnn }
\cs_new_protected:Npn __fp_trap_division_by_zero_set:N #1 {
 \exp_args:Nno \use:n { \cs_set:Npn __fp_division_by_zero_o:Nnw ##1##2##3; }
 __fp_error:nnfn { fp-zero-div } {##2} { \fp_to_tl:n { ##3; } } { }
 \flag_raise_if_clear:n { fp_division_by_zero } \exp_after:wN ##1
}
\exp_args:Nno \use:n { \cs_set:Npn __fp_division_by_zero_o:NNww ##1##2##3; ##4; }
__fp_error:nffn { fp-zero-div-ii } { \fp_to_tl:n { ##3; } } { \fp_to_tl:n { ##4; } } {##2}
\flag_raise_if_clear:n { fp_division_by_zero } \exp_after:wN ##1
}

(End definition for __fp_trap_division_by_zero_set_error: and others.)

Just as for invalid operations and division by zero, the three different behaviours are obtained by feeding \prg_do_nothing:, \use_none:nnnnn or \use_none:nnnnnnn to an auxiliary, with a further auxiliary common to overflow and underflow functions. In most cases, the argument of the __fp_overflow:w and __fp_underflow:w functions will be an (almost) normal number (with an exponent outside the allowed range), and the error message thus displays that number together with the result to which it overflowed or underflowed. For extreme cases such as 10 ** 1e9999, the exponent would be too large for \TeX, and __fp_overflow:w would receive ±∞ (__fp_underflow:w would receive ±0); then we cannot do better than simply say an overflow or underflow occurred.

\cs_new_protected:Npn __fp_trap_overflow_set_error: { __fp_trap_overflow_set:N \prg_do_nothing: }
\cs_new_protected:Npn __fp_trap_overflow_set_flag: { __fp_trap_overflow_set:N \use_none:nnnnn }
\cs_new_protected:Npn __fp_trap_overflow_set_none: { __fp_trap_overflow_set:N \use_none:nnnnnnn }
\cs_new_protected:Npn __fp_trap_overflow_set:N #1 {
 \exp_after:wN __fp_trap_division_by_zero_set:nNnNn
 { __fp_trap_division_by_zero_set:nNnNn
 __fp_trap_division_by_zero_set:N __fp_trap_division_by_zero_set:N
 }
}

(End definition for __fp_trap_division_by_zero_set_error: and others.)
\begin{verbatim}
{ _fp_trap_overflow_set:N \use_none:nnnnn }
\cs_new_protected:Npn _fp_trap_overflow_set:N #1
{ _fp_trap_overflow_set:NnNn #1 { overflow } _fp_inf_fp:N { inf } }
\cs_new_protected:Npn _fp_trap_underflow_set_error:
{ _fp_trap_underflow_set:N \prg_do_nothing: }
\cs_new_protected:Npn _fp_trap_underflow_set_flag:
{ _fp_trap_underflow_set:N \use_none:nnnnn }
\cs_new_protected:Npn _fp_trap_underflow_set_none:
{ _fp_trap_underflow_set:N \use_none:nnnnnnn }
\cs_new_protected:Npn _fp_trap_underflow_set:N #1
{ _fp_trap_overflow_set:NnNn #1 { underflow } _fp_zero_fp:N { 0 } }
\cs_new_protected:Npn _fp_trap_overflow_set:NnNn #1#2#3#4
{ \exp_args:Nno \use:n
 { \cs_set:cpn { __fp_ #2 :w } \s__fp __fp_chk:w ##1##2##3; }
 { #1
 __fp_error:nffn
 { fp-flow \if_meaning:w 1 ##1 -to \fi: }
 { \fp_to_tl:n { \s__fp __fp_chk:w ##1##2##3; } }
 { \token_if_eq_meaning:NNF 0 ##2 { - } #4 }
 }
#3 #2 }
\flag_raise_if_clear:n { fp_#2 }
#3 #2 }
\end{verbatim}

(End definition for _fp_trap_overflow_set_error: and others.)

\begin{verbatim}
__fp_invalid_operation:nnw
__fp_invalid_operation_o:Nww
__fp_invalid_operation_tl_o:ff
__fp_division_by_zero_o:Nnw
__fp_division_by_zero_o:NNww
__fp_overflow:w
__fp_underflow:w
\end{verbatim}

Initialize the control sequences (to log properly their existence). Then set invalid operations to trigger an error, and division by zero, overflow, and underflow to act silently on their flag.

\begin{verbatim}
\cs_new:Npn __fp_invalid_operation:nnw #1#2#3; { }
\cs_new:Npn __fp_invalid_operation_o:Nww #1#2; #3; { }
\cs_new:Npn __fp_invalid_operation_tl_o:ff #1 #2 { }
\cs_new:Npn __fp_division_by_zero_o:Nnw #1#2#3; { }
\cs_new:Npn __fp_division_by_zero_o:NNww #1#2#3; #4; { }
\cs_new:Npn __fp_valid_operation:nnw #1 #2 { }
\cs_new:Npn __fp_valid_operation_o:nnw #1 #2 { }
\fp_trap:nn { invalid_operation } { error }
\fp_trap:nn { division_by_zero } { flag }
\fp_trap:nn { overflow } { flag }
\fp_trap:nn { underflow } { flag }
\end{verbatim}

(End definition for _fp_invalid_operation:nnw and others.)

\begin{verbatim}
__fp_invalid_operation_o:nnw
__fp_invalid_operation_o:fw
\end{verbatim}

Convenient short-hands for returning \c_nan_fp for a unary or binary operation, and expanding after.

\begin{verbatim}
\cs_new:Npn __fp_invalid_operation:nnw { \exp_after:wN \c_nan_fp } \end{verbatim}

(End definition for _fp_invalid_operation:nnw.)

733
26.3 Errors

__fp_error:nnnn
__fp_error:nnfn
__fp_error:nffn
__fp_error:nfff
1671 \cs_new:Npn __fp_error:nnnn
1672 { __kernel_msg_expandable_error:nnnn \{ kernel \} }
1673 \cs_generate_variant:Nn __fp_error:nnnn \{ nnf, nff, nfff \}

(End definition for __fp_error:nnnn.)

26.4 Messages

Some messages.

__kernel_msg_new:nnnn \{ kernel \} \{ unknown-fpu-exception \}
1674 { __kernel_msg_new:nnnn \{ kernel \} \{ unknown-fpu-trap-type \}
1675 { The-FPU-trap-type-’#2’-is-not-known. }
1676 __kernel_msg_new:nnn \{ kernel \} \{ fp-flow \}
1677 { An - #3 - occurred. }
1678 __kernel_msg_new:nnn \{ kernel \} \{ fp-flow-to \}
1679 __kernel_msg_new:nnn \{ kernel \} \{ fp-zero-div \}
1680 __kernel_msg_new:nnn \{ kernel \} \{ fp-zero-div-ii \}
1681 __kernel_msg_new:nnn \{ kernel \} \{ fp-invalid \}
1682 __kernel_msg_new:nnn \{ kernel \} \{ fp-invalid-ii \}
1683 __kernel_msg_new:nnn \{ kernel \} \{ fp-unknown-type \}
1684 __kernel_msg_new:nnn \{ kernel \} \{ error \}
1685 __kernel_msg_new:nnn \{ kernel \} \{ flag \}
1686 __kernel_msg_new:nnn \{ kernel \} \{ none \}
1687 __kernel_msg_new:nnn \{ kernel \} \{ invalid-operation- \#1 \#2 \}
1688 __kernel_msg_new:nnn \{ kernel \} \{ invalid-operation- \#1 \#3 \#2 \}
1689 __kernel_msg_new:nnn \{ kernel \} \{ unknown-type-for-’#1’ \}

⟨/initex | package⟩

734
27 \l3fp-round implementation

\cs_new:Npn _fp_parse_word_trunc:N { _fp_parse_function:NNN _fp_round_o:Nw _fp_round_to_zero:NNN }
\cs_new:Npn _fp_parse_word_floor:N { _fp_parse_function:NNN _fp_round_o:Nw _fp_round_to_ninf:NNN }
\cs_new:Npn _fp_parse_word_ceil:N { _fp_parse_function:NNN _fp_round_o:Nw _fp_round_to_pinf:NNN }

(End definition for _fp_parse_word_trunc:N, _fp_parse_word_floor:N, and _fp_parse_word_ceil:N.)

\cs_new:Npn _fp_parse_word_round:N #1#2 { _fp_parse_function:NNN _fp_round_o:Nw _fp_round_to_nearest:NNN #1 #2 }
\cs_new:Npn _fp_parse_round:Nw #1 #2 _fp_round_to_nearest:NNN #3#4 { #2 #1 #3 }

(End definition for _fp_parse_word_round:N and _fp_parse_round:Nw.)

27.1 Rounding tools

\c__fp_five_int This is used as the half-point for which numbers are rounded up/down.

\int_const:Nn \c__fp_five_int { 5 }

(End definition for \c__fp_five_int.)

Floating point operations often yield a result that cannot be exactly represented in a significand with 16 digits. In that case, we need to round the exact result to a representable number. The IEEE standard defines four rounding modes:

- Round to nearest: round to the representable floating point number whose absolute difference with the exact result is the smallest. If the exact result lies exactly at the mid-point between two consecutive representable floating point numbers, round to the floating point number whose last digit is even.
- Round towards negative infinity: round to the greatest floating point number not larger than the exact result.
- Round towards zero: round to a floating point number with the same sign as the exact result, with the largest absolute value not larger than the absolute value of the exact result.
- Round towards positive infinity: round to the least floating point number not smaller than the exact result.
This is not fully implemented in l3fp yet, and transcendental functions fall back on the “round to nearest” mode. All rounding for basic algebra is done through the functions defined in this module, which can be redefined to change their rounding behaviour (but there is not interface for that yet).

The rounding tools available in this module are many variations on a base function __fp_round:NNN, which expands to 0\exp_stop_f: or 1\exp_stop_f: depending on whether the final result should be rounded up or down.

- __fp_round:NNN \langle sign \rangle \langle digit_1 \rangle \langle digit_2 \rangle can expand to 0\exp_stop_f: or 1\exp_stop_f:.
- __fp_round_to_nearest:NNN \langle sign \rangle \langle digit_1 \rangle \langle digit_2 \rangle \langle more digits \rangle can expand to 0\exp_stop_f:; or 1\exp_stop_f:.
- __fp_round_neg:NNN \langle sign \rangle \langle digit_1 \rangle \langle digit_2 \rangle can expand to 0\exp_stop_f: or 1\exp_stop_f:.

See implementation comments for details on the syntax.

__fp_round:NNN \langle final sign \rangle \langle digit_1 \rangle \langle digit_2 \rangle

If rounding the number \langle final sign \rangle \langle digit_1 \rangle \langle digit_2 \rangle to an integer rounds it towards zero (truncates it), this function expands to 0\exp_stop_f:, and otherwise to 1\exp_stop_f:. Typically used within the scope of an __fp_int_eval:w, to add 1 if needed, and thereby round correctly. The result depends on the rounding mode.

It is very important that \langle final sign \rangle be the final sign of the result. Otherwise, the result would be incorrect in the case of rounding towards \(-\infty\) or towards \(+\infty\). Also recall that \langle final sign \rangle is 0 for positive, and 2 for negative.

By default, the functions below return 0\exp_stop_f:, but this is superseded by __fp_round_return_one:, which instead returns 1\exp_stop_f:, expanding everything and removing 0\exp_stop_f: in the process. In the case of rounding towards \(\pm\infty\) or towards 0, this is not really useful, but it prepares us for the “round to nearest, ties to even” mode.

The “round to nearest” mode is the default. If the \langle digit_2 \rangle is larger than 5, then round up. If it is less than 5, round down. If it is exactly 5, then round such that \langle digit_1 \rangle plus the result is even. In other words, round up if \langle digit_1 \rangle is odd.

The “round to nearest” mode has three variants, which differ in how ties are rounded: down towards \(-\infty\), truncated towards 0, or up towards \(+\infty\).
__fp_round_return_one:
\fi:
\fi:
0 \exp_stop_f:
\}
\cs_new:Npn __fp_round_to_nearest:NNN #1 #2 #3
{
 \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \else:
 \if_meaning:w 5 #3
 \if_int_odd:w #2 \exp_stop_f:
 __fp_round_return_one:
 \fi:
 \fi:
 \fi:
 0 \exp_stop_f:
}\}
\cs_new:Npn __fp_round_to_nearest_ninf:NNN #1 #2 #3
{
 \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \else:
 \if_meaning:w 5 #3
 \if_meaning:w 2 #1
 __fp_round_return_one:
 \fi:
 \fi:
 \fi:
 0 \exp_stop_f:
}\}
\cs_new:Npn __fp_round_to_nearest_zero:NNN #1 #2 #3
{
 \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \fi:
 0 \exp_stop_f:
}\}
\cs_new:Npn __fp_round_to_nearest_pinf:NNN #1 #2 #3
{
 \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \else:
 \if_meaning:w 5 #3
 \if_meaning:w 0 #1
 __fp_round_return_one:
 \fi:
 \fi:
 0 \exp_stop_f:
}\}
\cs_new_eq:NN __fp_round:NNN __fp_round_to_nearest:NNN

(End definition for __fp_round:NNN and others.)
_fp_round_s:NNN\ (final sign) (digit) (more digits);
Similar to _fp_round:NNN, but with an extra semicolon, this function expands
to 0\exp_stop_f;; if rounding (final sign)(digit)(more digits) to an integer truncates,
and to 1\exp_stop_f;; otherwise. The (more digits) part must be a digit, followed by
something that does not overflow a \texttt{int_use:N} _fp_int_eval:w construction. The
only relevant information about this piece is whether it is zero or not.

\begin{verbatim}
\cs_new:Npn _fp_round_s:NNNw #1 #2 #3 #4;
\exp_after:wN _fp_round:NNN
\exp_after:wN #1\exp_after:wN #2\int_value:w _fp_int_eval:w
\if_int_odd:w \if_meaning:w 0 #3 1 \fi: \fi: \exp_stop_f:
\if_int_compare:w _fp_int_eval:w #4 > 0 \exp_stop_f:
__fp_int_eval:w 1 + \fi: \fi: _fp_int_eval:w #3;
\end{verbatim}

(End definition for _fp_round_s:NNNw.)

_fp_round_digit:Nw\ (digit) (intexpr);
This function should always be called within an \int_value:w or _fp_int_eval:w
expansion; it may add an extra _fp_int_eval:w, which means that the integer or
integer expression should not be ended with a synonym of \relax, but with a semi-colon
for instance.

\begin{verbatim}
\cs_new:Npn _fp_round_digit:Nw #1 #2;
\exp_after:wN _fp_round_digit:Nw\ #1\ #2;
\if_int_odd:w \if_meaning:w 0 #1 1 \else:
__fp_int_eval:w 5 \if_meaning:w 1 \else:
_fp_int_eval:w #2 > 0 \exp_stop_f:
_fp_int_eval:w 1 + \fi:
\fi: \fi:
_fp_int_eval:w #1;
\end{verbatim}

(End definition for _fp_round_digit:Nw.)

_fp_round_neg:NNN\ (final sign) (digit) (digit);
This expands to 0\exp_stop_f; or 1\exp_stop_f; after doing the following test.
Starting from a number of the form (final sign)0.\{15 digits\}(digit) with exactly 15 (non-
all-zero) digits before (digit), subtract from it (final sign)0.0...0(digit), where there
are 16 zeros. If in the current rounding mode the result should be rounded down, then
this function returns 1\exp_stop_f;. Otherwise, i.e., if the result is rounded back to
the first operand, then this function returns 0\exp_stop_f;.

It turns out that this negative “round to nearest” is identical to the positive one.
And this is the default mode.

738
\cs_new_eq:NN __fp_round_to_ninf_neg:NNN __fp_round_to_pinf:NNN
\cs_new:Npn __fp_round_to_zero_neg:NNN #1 #2 #3
{ \if_int_compare:w #3 > 0 \exp_stop_f:
 __fp_round_return_one:
\fi:
0 \exp_stop_f:
}
\cs_new_eq:NN __fp_round_to_pinf_neg:NNN __fp_round_to_ninf:NNN
\cs_new_eq:NN __fp_round_to_nearest_neg:NNN __fp_round_to_nearest_pinf:NNN
\cs_new_eq:NN __fp_round_to_nearest_ninf_neg:NNN __fp_round_to_nearest_pinf:NNN
\cs_new:Npn __fp_round_to_nearest_zero_neg:NNN #1 #2 #3
{ \if_int_compare:w #3 < \c__fp_five_int \else:
 __fp_round_return_one:
\fi:
0 \exp_stop_f:
}
\cs_new_eq:NN __fp_round_to_nearest_pinf_neg:NNN __fp_round_to_nearest_ninf:NNN
\cs_new_eq:NN __fp_round_neg:NNN __fp_round_to_nearest_neg:NNN

(End definition for __fp_round_neg:NNN and others.)

27.2 The round function

First check that all arguments are floating point numbers. The \texttt{trunc}, \texttt{ceil} and \texttt{floor} functions expect one or two arguments (the second is 0 by default), and the \texttt{round} function also accepts a third argument (\texttt{nan} by default), which changes \#1 from __fp_round_to_nearest:NNN to one of its analogues.

\cs_new:Npn __fp_round_o:Nw #1
{ __fp_parse_function_all_fp_o:fnw { __fp_round_name_from_cs:N #1 } { __fp_round_aux_o:Nw #1 } }
\cs_new:Npn __fp_round_aux_o:Nw #1#2 @
{ \if_case:w __fp_int_eval:w __fp_array_count:n {#2} __fp_int_eval_end:
 __fp_round_no_arg_o:Nw #1 \exp:w
\or: __fp_round:Nwn #1 #2 {0} \exp:w
\or: __fp_round:Nww #1 #2 \exp:w
\else: __fp_round:Nww #1 #2 {0} \exp:w
\fi:
\exp_after:wN \exp_end:
}

(End definition for __fp_round_o:Nw and __fp_round_aux_o:Nw.)

__fp_round_no_arg_o:Nw
\cs_new:Npn __fp_round_no_arg_o:Nw #1
{ }
Having three arguments is only allowed for \texttt{round}, not \texttt{trunc}, \texttt{ceil}, \texttt{floor}, so check for that case. If all is well, construct one of \texttt{__fp_round_to_nearest:NNN}, \texttt{__fp_round_to_nearest_zero:NNN}, \texttt{__fp_round_to_nearest_ninf:NNN}, \texttt{__fp_round_to_nearest_-pinf:NNN} and act accordingly.

\begin{verbatim}
\cs_new:Npn __fp_round:Nwww #1#2 ; #3 ; \s__fp __fp_chk:w #4#5#6 ; #7 @
 {\cs_if_eq:NNTF #1 __fp_round_to_nearest:NNN
 {__fp_error:nnnn { fp-num-args } { round () } { 1 } { 3 }
 { __fp_error:nffn { fp-num-args }
 { __fp_round_name_from_cs:N #1 () } { 1 } { 2 }
 }
 }
 \exp_after:wN \c_nan_fp
 }
\end{verbatim}
If the number of digits to round to is an integer or infinity all is good; if it is \texttt{nan} then just produce a \texttt{nan}; otherwise invalid as we have something like \texttt{round(1,3.14)} where the number of digits is not an integer.

\begin{verbatim}
\cs_new:Npn __fp_round:Nww #1 \s__fp __fp_chk:w #2#3; #5
\{ __fp_small_int:wTF #3; { __fp_round:Nwn #1 #2; } \}
\cs_new:Npn __fp_round:Nwn #1 #2 \s__fp __fp_chk:w 1#3; #5 #6
\{ __fp_decimate:nNnnnn { \c__fp_prec_int - #4 - #2 } \}
\cs_new:Npn __fp_round:NnnwNNnn #1#2; #3#4 { #5 \c_nan_fp }
\cs_new:Npn __fp_round_normal:NNwNnn \int_value:w __fp_int_eval:w
\if_int_compare:w #2 > 0 \exp_stop_f: 1 \int_value:w #2
\else: \if_int_compare:w #3 > 0 \exp_stop_f: 1 \int_value:w #3
\fi: \exp_after:wN \c_nan_fp \fi: \exp_after:wN __fp_round_normal:NNwNnn
\int_value:w __fp_int_eval:w #3 + \exp_after:wN __fp_round_normal:NNwNnn
\int_value:w __fp_int_eval:w 1 #3
\if meaning: w 1 \else: \fi: \exp_after:wN __fp_round_normal:NNwNnn
\int_value:w __fp_int_eval:w #4 - #2 \exp_after:wN __fp_round_normal:NNwNnn
#5 \int_value:w __fp_int_eval:w
\if_int_compare:w #1 > 0 \exp_stop_f: 1 \int_value:w #1
\else: \fi: \exp_after:wN __fp_round_normal:NNwNnn
\int_value:w __fp_int_eval:w #1 #2 #3 #4 #5 #6
\end{verbatim}
\exp_after:wN #5
\exp_after:wN #6
\use_none:nunnnnnn #3
__fp_int_eval_end:\n0000 0000 0000 0000 ; #6}
\cs_new:Npn __fp_round_pack:Nw #1\{ \if_meaning:w 2 #1 + 1 \fi: __fp_int_eval_end: \}
\cs_new:Npn __fp_round_normal:NNwNnn #1 #2\{
\if_meaning:w 0 #2\exp_after:wN __fp_round_special:NwwNnn\exp_after:wN #1\fi:\ __fp_pack_twice_four:wNNNNNNNN__fp_pack_twice_four:wNNNNNNNN__fp_round_normal_end:wNnn; #2\}
\cs_new:Npn __fp_round_normal_end:wwNnn #1;#2;#3#4#5\{
\exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w__fp_sanitize:Nw #3 #4 ; #1 ;\}
\cs_new:Npn __fp_round_special:NwwNnn #1#2;#3;#4#5#6\{
\if_meaning:w 0 #1__fp_case_return:nw\{ \exp_after:wN __fp_zero_fp:N \exp_after:wN #4 \} \else:\exp_after:wN __fp_round_special_aux:Nw \exp_after:wN #4\exp_after:wN __fp_int_eval:w 1\if_meaning:w 1 #1 -#6 \else: +#5 \fi:\fi:__fp_case_return:nw\}
\cs_new:Npn __fp_round_special_aux:Nw #1#2;\{
\exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w__fp_sanitize:Nw #1#2; {1000}{0000}{0000}{0000};\}
(End definition for __fp_round:Nww and others.)
{\endinput}

28 l3fp-parse implementation
(*infix | package)
@@=fp)
28.1 Work plan

The task at hand is non-trivial, and some previous failed attempts show that the code leads to unreadable logs, so we had better get it (almost) right the first time. Let us first describe our goal, then discuss the design precisely before writing any code.

In this file at least, a (floating point object) is a floating point number or tuple. This can be extended to anything that starts with \s_fp or \s_fp\langle\text{type}\rangle and ends with ; with some internal structure that depends on the \langle\text{type}\rangle.

_fp_parse:n

_fp_parse:n \{(fexpr)\}

Evaluates the (floating point expression) and leaves the result in the input stream as a floating point object. This function forms the basis of almost all public \text{l3fp} functions. During evaluation, each token is fully \text{f}-expanded.

_fp_parse_o:n does the same but expands once after its result.

\text{T\&Xhac\kern-.1667em kern-.125emers note:} Registers (integers, toks, etc.) are automatically unpacked, without requiring a function such as \text{\int_use:N}. Invalid tokens remaining after \text{f}-expansion lead to unrecoverable low-level \text{T\&X} errors.

\text{(End definition for _fp_parse:n.)}

Floating point expressions are composed of numbers, given in various forms, infix operators, such as +, **, or , (which joins two numbers into a list), and prefix operators, such as the unary -, functions, or opening parentheses. Here is a list of precedences which control the order of evaluation (some distinctions are irrelevant for the order of evaluation, but serve as signals), from the tightest binding to the loosest binding.

16 Function calls.

13/14 Binary ** and ~ (right to left).

12 Unary +, -, ! (right to left).

11 Juxtaposition (implicit *) with no parenthesis.

10 Binary * and /.

9 Binary + and -.

7 Comparisons.

6 Logical and, denoted by &&.

5 Logical or, denoted by ||.

4 Ternary operator ?:, piece ?.

3 Ternary operator ?:, piece ::.

2 Commas.

1 Place where a comma is allowed and generates a tuple.

0 Start and end of the expression.
28.1.1 Storing results

The main question in parsing expressions expandably is to decide where to put the intermediate results computed for various subexpressions.

One option is to store the values at the start of the expression, and carry them together as the first argument of each macro. However, we want to \texttt{f}-expand tokens one by one in the expression (as \texttt{int_eval:n} does), and with this approach, expanding the next unread token forces us to jump with \texttt{exp_after:wN} over every value computed earlier in the expression. With this approach, the run-time grows at least quadratically in the length of the expression, if not as its cube (inserting the \texttt{exp_after:wN} is tricky and slow).

A second option is to place those values at the end of the expression. Then expanding the next unread token is straightforward, but this still hits a performance issue: for long expressions we would be reaching all the way to the end of the expression at every step of the calculation. The run-time is again quadratic.

A variation of the above attempts to place the intermediate results which appear when computing a parenthesized expression near the closing parenthesis. This still lets us expand tokens as we go, and avoids performance problems as long as there are enough parentheses. However, it would be better to avoid requiring the closing parenthesis to be present as soon as the corresponding opening parenthesis is read: the closing parenthesis may still be hidden in a macro yet to be expanded.

Hence, we need to go for some fine expansion control: the result is stored \textit{before} the start!

Let us illustrate this idea in a simple model: adding positive integers which may be resulting from the expansion of macros, or may be values of registers. Assume that one number, say, 12345, has already been found, and that we want to parse the next number. The current status of the code may look as follows.

\begin{verbatim}
\exp_after:wN \add:ww \int_value:w 12345 \exp_after:wN ;
\exp:w \operand:w ⟨stuff⟩
\end{verbatim}

One step of expansion expands \texttt{exp_after:wN}, which triggers the primitive \texttt{int_value:w}, which reads the five digits we have already found, 12345. This integer is unfinished, causing the second \texttt{exp_after:wN} to expand, and to trigger the construction
\exp:w, which expands \operand:w, defined to read what follows and make a number out of it, then leave \exp_end:, the number, and a semicolon in the input stream. Once \operand:w is done expanding, we obtain essentially

\exp_after:wN \add:ww \int_value:w 12345 ;
\exp:w \exp_end: 333444 ;

where in fact \exp_after:wN has already been expanded, \int_value:w has already seen 12345, and \exp:w is still looking for a number. It finds \exp_end:, hence expands to nothing. Now, \int_value:w sees the ;, which cannot be part of a number. The expansion stops, and we are left with

\add:ww 12345 ; 333444 ;

which can safely perform the addition by grabbing two arguments delimited by ;.

If we were to continue parsing the expression, then the following number should also be cleaned up before the next use of a binary operation such as \add:ww. Just like \int_value:w 12345 \exp_after:wN ; expanded what follows once, we need \add:ww to do the calculation, and in the process to expand the following once. This is also true in our real application: all the functions of the form __fp_..._o:ww expand what follows once. This comes at the cost of leaving tokens in the input stack, and we need to be careful not to waste this memory. All of our discussion above is nice but simplistic, as operations should not simply be performed in the order they appear.

28.1.2 Precedence and infix operators

The various operators we will encounter have different precedences, which influence the order of calculations: $1 + 2 \times 3 = 1 + (2 \times 3)$ because \times has a higher precedence than \plus. The true analog of our macro \operand:w must thus take care of that. When looking for an operand, it needs to perform calculations until reaching an operator which has lower precedence than the one which called \operand:w. This means that \operand:w must know what the previous binary operator is, or rather, its precedence: we thus rename it \operand:Nw. Let us describe as an example how we plan to do the calculation $41-2^3*4+5$. More precisely we describe how to perform the first operation in this expression. Here, we abuse notations: the first argument of \operand:Nw should be an integer constant (\c__fp_prec_plus_int, ...) equal to the precedence of the given operator, not directly the operator itself.

- Clean up 41 and find -. We call \operand:Nw - to find the second operand.
- Clean up 2 and find ^.
- Compare the precedences of - and ^. Since the latter is higher, we need to compute the exponentiation. For this, find the second operand with a nested call to \operand:Nw ^.
- Clean up 3 and find *.
- Compare the precedences of ^ and *. Since the former is higher, \operand:Nw ^ has found the second operand of the exponentiation, which is computed: $2^3 = 8$.
- We now have $41-8*4+5$, and \operand:Nw - is still looking for a second operand for the subtraction. Is it 8?
• Compare the precedences of \(-\) and \(*\). Since the latter is higher, we are not done with 8. Call \operand:Nw * to find the second operand of the multiplication.

• Clean up 4, and find +.

• Compare the precedences of \(*\) and \(+\). Since the former is higher, \operand:Nw * has found the second operand of the multiplication, which is computed: \(8 \times 4 = 32\).

• We now have \(41 - 32 + 5\), and \operand:Nw - is still looking for a second operand for the subtraction. Is it 32?

• Compare the precedences of \(-\) and \(+\). Since they are equal, \operand:Nw - has found the second operand for the subtraction, which is computed: \(41 - 32 = 9\).

• We now have \(9 + 5\).

The procedure above stops short of performing all computations, but adding a surrounding call to \operand:Nw with a very low precedence ensures that all computations are performed before \operand:Nw is done. Adding a trailing marker with the same very low precedence prevents the surrounding \operand:Nw from going beyond the marker.

The pattern above to find an operand for a given operator, is to find one number and the next operator, then compare precedences to know if the next computation should be done. If it should, then perform it after finding its second operand, and look at the next operator, then compare precedences to know if the next computation should be done. This continues until we find that the next computation should not be done. Then, we stop.

We are now ready to get a bit more technical and describe which of the \l3fp-parse functions correspond to each step above.

First, __fp_parse_operand:Nw is the \operand:Nw function above, with small modifications due to expansion issues discussed later. We denote by \langle precedence \rangle the argument of __fp_parse_operand:Nw, that is, the precedence of the binary operator whose operand we are trying to find. The basic action is to read numbers from the input stream. This is done by __fp_parse_one:Nw. A first approximation of this function is that it reads one \langle number \rangle, performing no computation, and finds the following binary \langle operator \rangle. Then it expands to

\(\text{\langle number \rangle} \)
\(\text{__fp_parse_infix_(operator):N \langle precedence \rangle} \)

expanding the \text{infix} auxiliary before leaving the above in the input stream.

We now explain the \text{infix} auxiliaries. We need some flexibility in how we treat the case of equal precedences: most often, the first operation encountered should be performed, such as \(1 - 2 - 3\) being computed as \((1 - 2) - 3\), but \(2^3^4\) should be evaluated as \(2^{(3^4)}\) instead. For this reason, and to support the equivalence between \text{**} and \text{^} more easily, each binary operator is converted to a control sequence __fp_parse_infix_(operator):N when it is encountered for the first time. Instead of passing both precedences to a test function to do the comparison steps above, we pass the \langle precedence \rangle (of the earlier operator) to the \text{infix} auxiliary for the following \langle operator \rangle, to know whether to perform the computation of the \langle operator \rangle. If it should not be performed, the \text{infix} auxiliary expands to

\(\text{\use_none:n __fp_parse_infix_(operator):N} \)
and otherwise it calls _fp_parse_operand:Nw with the precedence of the (operator) to find its second operand (number2) and the next (operator2), and expands to

\[\textit{_fp_parse_apply_binary:NwNwN} \]
\[\textit{_fp_parse_infix_(operator2):N} \]

The \texttt{infix} function is responsible for comparing precedences, but cannot directly call the computation functions, because the first operand (number) is before the \texttt{infix} function in the input stream. This is why we stop the expansion here and give control to another function to close the loop.

A definition of _fp_parse_operand:Nw (preceptence) with some of the expansion control removed is

\[\texttt{_fp_parse_one:Nw} \]
\[\texttt{_fp_parse_infix_(operator):N} \]

This expands _fp_parse_one:Nw (preceptence) completely, which finds a number, wraps the next (operator) into an \texttt{infix} function, feeds this function the (preceptence), and expands it, yielding either

\[\texttt{_fp_parse_continue:NwN} \]
\[\texttt{_fp_parse_infix_(operator):N} \]

or

\[\texttt{_fp_parse_apply_binary:NwNwN} \]
\[\texttt{_fp_parse_infix_(operator):N} \]

The definition of _fp_parse_continue:NwN is then very simple:

\[\texttt{_fp_parse_apply_binary:NwNwN} \]
\[\texttt{_fp_parse_infix_(operator):N} \]

In the first case, \#3 is \texttt{_fp_parse_infix_(operator):N}, and to prepare for the next comparison of precedences: first we get

\[\texttt{_fp_parse_infix_(operator):N} \]

then

\[\texttt{_fp_parse_apply_binary:NwNwN} \]
\[\texttt{_fp_parse_infix_(operator):N} \]

then

747
28.1.3 Prefix operators, parentheses, and functions

Prefix operators (unary -, +, !) and parentheses are taken care of by the same mechanism, and functions (sin, exp, etc.) as well. Finding the argument of the unary -, for instance, is very similar to grabbing the second operand of a binary infix operator, with a subtle precedence explained below. Once that operand is found, the operator can be applied to it (for the unary -, this simply flips the sign). A left parenthesis is just a prefix operator with a very low precedence equal to that of the closing parenthesis (which is treated as an infix operator, since it normally appears just after numbers), so that all computations are performed until the closing parenthesis. The prefix operator associated to the left parenthesis does not alter its argument, but it removes the closing parenthesis (with some checks).

Prefix operators are the reason why we only summarily described the function __fp_parse_one:Nw earlier. This function is responsible for reading in the input stream the first possible ⟨number⟩ and the next infix ⟨operator⟩. If what follows __fp_parse_one:Nw ⟨precedence⟩ is a prefix operator, then we must find the operand of this prefix operator through a nested call to __fp_parse_operand:Nw with the appropriate precedence, then apply the operator to the operand found to yield the result of __fp_parse_one:Nw. So far, all is simple.

The unary operators +, -, ! complicate things a little bit: -3**2 should be -(3**2) = -9, and not (-3)**2 = 9. This would easily be done by giving - a lower precedence, equal to that of the infix * and -. Unfortunately, this fails in cases such as 3**-2*4, yielding 3**2*4 instead of the correct 3**-2*4. A second attempt would be to call __fp_parse_operand:Nw with the ⟨precedence⟩ of the previous operator, but 0>-2+3 is then parsed as 0>-(-2+3): the addition is performed because it binds more tightly than the comparision which precedes -. The correct approach is for a unary - to perform operations whose precedence is greater than both that of the previous operation, and that of the unary - itself. The unary - is given a precedence higher than multiplication and division. This does not lead to any surprising result, since -(x/y) = (-x)/y and similarly for multiplication, and it reduces the number of nested calls to __fp_parse_operand:Nw.

Functions are implemented as prefix operators with very high precedence, so that their argument is the first number that can possibly be built.

Note that contrarily to the infix functions discussed earlier, the prefix functions do perform tests on the previous ⟨precedence⟩ to decide whether to find an argument or not, since we know that we need a number, and must never stop there.
28.1.4 Numbers and reading tokens one by one

So far, we have glossed over one important point: what is a “number”? A number is typically given in the form \(\langle \text{significand} \rangle \text{e} \langle \text{exponent} \rangle\), where the \(\langle \text{significand} \rangle\) is any non-empty string composed of decimal digits and at most one decimal separator (a period), the exponent “\text{e} \langle \text{exponent} \rangle” is optional and is composed of an exponent mark \text{e} followed by a possibly empty string of signs \(+\) or \(-\) and a non-empty string of decimal digits. The \(\langle \text{significand} \rangle\) can also be an integer, dimension, skip, or muskip variable, in which case dimensions are converted from points (or mu units) to floating points, and the \(\langle \text{exponent} \rangle\) can also be an integer variable. Numbers can also be given as floating point variables, or as named constants such as \text{nan}, \text{inf} or \text{pi}. We may add more types in the future.

When \texttt{__fp_parse_one:Nw} is looking for a “number”, here is what happens.

- If the next token is a control sequence with the meaning of \texttt{\scan_stop:}, it can be: \texttt{\s__fp}, in which case our job is done, as what follows is an internal floating point number, or \texttt{\s__fp_mark}, in which case the expression has come to an early end, as we are still looking for a number here, or something else, in which case we consider the control sequence to be a bad variable resulting from c-expansion.

- If the next token is a control sequence with a different meaning, we assume that it is a register, unpack it with \texttt{\tex_the:D}, and use its value (in \texttt{pt} for dimensions and skips, \texttt{mu} for muskips) as the \(\langle \text{significand} \rangle\) of a number: we look for an exponent.

- If the next token is a digit, we remove any leading zeros, then read a significand larger than \(1\) if the next character is a digit, read a significand smaller than \(1\) if the next character is a period, or we have found a significand equal to \(0\) otherwise, and look for an exponent.

- If the next token is a letter, we collect more letters until the first non-letter: the resulting word may denote a function such as \texttt{asin}, a constant such as \texttt{pi} or be unknown. In the first case, we call \texttt{__fp_parse_operand:Nw} to find the argument of the function, then apply the function, before declaring that we are done. Otherwise, we are done, either with the value of the constant, or with the value \texttt{nan} for unknown words.

- If the next token is anything else, we check whether it is a known prefix operator, in which case \texttt{__fp_parse_operand:Nw} finds its operand. If it is not known, then either a number is missing (if the token is a known infix operator) or the token is simply invalid in floating point expressions.

Once a number is found, \texttt{__fp_parse_one:Nw} also finds an infix operator. This goes as follows.

- If the next token is a control sequence, it could be the special marker \texttt{\s__fp_mark}, and otherwise it is a case of juxtaposing numbers, such as \texttt{2\c_zero_int}, with an implied multiplication.

- If the next token is a letter, it is also a case of juxtaposition, as letters cannot be proper infix operators.

- Otherwise (including in the case of digits), if the token is a known infix operator, the appropriate \texttt{__fp_infix_{operator}:N} function is built, and if it does not exist, we complain. In particular, the juxtaposition \texttt{\c_zero_int 2} is disallowed.
In the above, we need to test whether a character token \#1 is a digit:

\if_int_compare:w 9 \< \1 \token_to_str:N \#1 \exp_stop_f:
 is a digit
\else:
 not a digit
\fi:

To exclude 0, replace 9 by 10. The use of \token_to_str:N ensures that a digit with any catcode is detected. To test if a character token is a letter, we need to work with its character code, testing if ‘\#1 lies in [65, 90] (uppercase letters) or [97, 112] (lowercase letters)

\if_int_compare:w __fp_int_eval:w ('9 '1 \if_int_compare:w '9 'Z - 32 \fi:) / 26 = 3 \exp_stop_f:
 is a letter
\else:
 not a letter
\fi:

At all steps, we try to accept all category codes: when \#1 is kept to be used later, it is almost always converted to category code other through \token_to_str:N. More precisely, catcodes \{3, 6, 7, 8, 11, 12\} should work without trouble, but not \{1, 2, 4, 10, 13\}, and of course \{0, 5, 9\} cannot become tokens.

Floating point expressions should behave as much as possible like \vfp\-based integer expressions and dimension expressions. In particular, \f\-expansion should be performed as the expression is read, token by token, forcing the expansion of protected macros, and ignoring spaces. One advantage of expanding at every step is that restricted expandable functions can then be used in floating point expressions just as they can be in other kinds of expressions. Problematically, spaces stop \f\-expansion: for instance, the macro \X below would not be expanded if we simply performed \f\-expansion.

\DeclareDocumentCommand \test \{m\} { \fp_eval:n {#1} }
\ExplSyntaxOff
\test { 1 + \X }

Of course, spaces typically do not appear in a code setting, but may very easily come in document-level input, from which some expressions may come. To avoid this problem, at every step, we do essentially what \use:f would do: take an argument, put it back in the input stream, then \f\-expand it. This is not a complete solution, since a macro’s expansion could contain leading spaces which would stop the \f\-expansion before further macro calls are performed. However, in practice it should be enough: in particular, floating point numbers are correctly expanded to the underlying \s_fp_... structure. The \f\-expansion is performed by __fp_parse_expand:w.

28.2 Main auxiliary functions

\exp:w __fp_parse_operand:Nw (precedence) __fp_parse_expand:w
Reads the "...", performing every computation with a precedence higher than \(\text{precedence}\), then expands to

\(\text{result}\) \@ __fp_parse_infix_\(\text{operation}\):N ...
where the ⟨operation⟩ is the first operation with a lower precedence, possibly end, and the “…” start just after the ⟨operation⟩.

(End definition for _{__fp_parse_opand:}\Nw)

_{__fp_parse_infix_+:}\Nw _{__fp_parse_infix_+:}\Nw (precedence) ...

If + has a precedence higher than the ⟨precedence⟩, cleans up a second ⟨operand⟩ and finds the ⟨operation2⟩ which follows, and expands to

@ _{__fp_parse_apply_binary:}\Nw\Nw\N w + ⟨operand⟩ @ _{__fp_parse_infix_}\langle operation2⟩\Nw ...

Otherwise expands to

@ \use_none:n _{__fp_parse_infix_+:}\Nw ...

A similar function exists for each infix operator.

(End definition for _{__fp_parse_infix_+:}\Nw)

_{__fp_parse_one:}\Nw _{__fp_parse_one:}\Nw (precedence) ...

Cleans up one or two operands depending on how the precedence of the next operation compares to the ⟨precedence⟩. If the following ⟨operation⟩ has a precedence higher than ⟨precedence⟩, expands to

⟨operand1⟩ @ _{__fp_parse_apply_binary:}\Nw\Nw\N w + ⟨operand2⟩ @ _{__fp_parse_infix_}\langle operation2⟩\Nw ...

and otherwise expands to

⟨operand⟩ @ \use_none:n _{__fp_parse_infix_}\langle operation⟩\Nw ...

(End definition for _{__fp_parse_one:}\Nw)

28.3 Helpers

_{__fp_parse_expand:w} _{__fp_parse_expand:w} (tokens)

This function must always come within a \exp:w expansion. The ⟨tokens⟩ should be the part of the expression that we have not yet read. This requires in particular closing all conditionals properly before expanding.

\cs_new:Npn _{__fp_parse_expand:w} #1 \fi: _{__fp_parse_expand:w} { \fi: ; #1 }

(End definition for _{__fp_parse_expand:w})

_{__fp_parse_return_semicolon:w} _{__fp_parse_return_semicolon:w}

This very odd function swaps its position with the following \fi: and removes _{__fp_parse_expand:w} normally responsible for expansion. That turns out to be useful.

\cs_new:Npn _{__fp_parse_return_semicolon:w} _{__fp_parse_return_semicolon:w} #1 \fi: _{__fp_parse_expand:w} { \fi: ; #1 }

(End definition for _{__fp_parse_return_semicolon:w})

_{__fp_parse_digits_vii:}\Nw _{__fp_parse_digits_vi:}\Nw _{__fp_parse_digits_v:}\Nw _{__fp_parse_digits_iv:}\Nw _{__fp_parse_digits_iii:}\Nw _{__fp_parse_digits_ii:}\Nw _{__fp_parse_digits_i:}\Nw _{__fp_parse_digits:}\Nw

These functions must be called within an \int_value:w or _{__fp_int_eval:w} construction. The first token which follows must be f-expanded prior to calling those functions. The functions read tokens one by one, and output digits into the input stream, until meeting a non-digit, or up to a number of digits equal to their index. The full expansion is
\langle \text{digits} \rangle ; \langle \text{filling 0} \rangle ; \langle \text{length} \rangle

where \langle \text{filling 0} \rangle is a string of zeros such that \langle \text{digits} \rangle \langle \text{filling 0} \rangle has the length given by the index of the function, and \langle \text{length} \rangle is the number of zeros in the \langle \text{filling 0} \rangle string. Each function puts a digit into the input stream and calls the next function, until we find a non-digit. We are careful to pass the tested tokens through \texttt{\textbackslash token\textunderscore to\textunderscore str:N} to normalize their category code.

\begin{verbatim}
cs_set_protected:Npn __fp_tmp:w #1 #2 #3
cs_new:cpn { __fp_parse_digits_ #1 :N } ##1
{\if_int_compare:w 9 < 1 \token_to_str:N ##1 \exp_stop_f:
 \token_to_str:N ##1 \exp_after:wN #2 \exp:w
 \else:
 __fp_parse_return_semicolon:w #3 ##1
 \fi:
 __fp_parse_expand:w
}
__fp_tmp:w {vii} __fp_parse_digits_vi:N { 000000 ; 7 }
__fp_tmp:w {vi} __fp_parse_digits_v:N { 000000 ; 6 }
__fp_tmp:w {v} __fp_parse_digits_iv:N { 00000 ; 5 }
__fp_tmp:w {iv} __fp_parse_digits_iii:N { 000 ; 4 }
__fp_tmp:w {iii} __fp_parse_digits_ii:N { 00 ; 3 }
__fp_tmp:w {ii} __fp_parse_digits_i:N { 0 ; 2 }
__fp_tmp:w {i} __fp_parse_digits_:N { ; 0 }
\cs_new:Npn __fp_parse_digits_:N { ; ; 0 }
\end{verbatim}

(End definition for __fp_parse_digits_vii:N and others.)

28.4 Parsing one number

\verb|__fp_parse_one:Nw|

This function finds one number, and packs the symbol which follows in an \verb|__fp_parse_infix...| csname. #1 is the previous \langle \text{precedence} \rangle, and #2 the first token of the operand. We distinguish four cases: #2 is equal to \texttt{\textbackslash scan\textunderscore stop}: in meaning, #2 is a different control sequence, #2 is a digit, and #2 is something else (this last case is split further later). Despite the earlier \texttt{f}-expansion, #2 may still be expandable if it was protected by \texttt{\exp_not:N}, as may happen with the \LaTeX command \texttt{\protect}. Using a well placed \texttt{\reverse_if:N}, this case is sent to \verb|__fp_parse_one_fp:NN| which deals with it robustly.

\begin{verbatim}
cs_new:Npn __fp_parse_one:Nw #1 #2
cs_new:cpn { __fp_parse_infix ... } #1
{\if_catcode:w \scan_stop: \exp_not:N #2
 \exp_after:wN \if_meaning:w \exp_not:N #2 \if_meaning:w \reverse_if:N #2 \else:
 \exp_after:wN \exp_after:wN \exp_after:wN __fp_parse_one_fp:NN
 \fi:
 \if_meaning:w \scan_stop: #2
 \exp_after:wN \exp_after:wN \exp_after:wN __fp_parse_one_register:NN
 \else:
 \exp_after:wN \exp_after:wN \exp_after:wN __fp_parse_one_fp:NN
 \fi:
}
\end{verbatim}

752
This function receives a \langle precedence\rangle and a control sequence equal to \scan_stop: in meaning. There are three cases.

- \s__fp starts a floating point number, and we call __fp_exp_after_f:nw, which \f-expands after the floating point.
- \s__fp_mark is a premature end, we call __fp_exp_after_mark_f:nw, which triggers an \emph{fp-early-end} error.
- For a control sequence not containing \s__fp, we call __fp_exp_after_?:f:nw, causing a \emph{bad-variable} error.

This scheme is extensible: additional types can be added by starting the variables with a scan mark of the form \s__fp\langle type\rangle and defining __fp_exp_after_\langle\textit{type}\rangle_f:nw. In all cases, we make sure that the second argument of __fp_parse_infix:NN is correctly expanded. A special case only enabled in \LaTeX\,2\,e is that if \protect is encountered then the error message mentions the control sequence which follows it rather than \protect itself. The test for \LaTeX\,2\,e uses \@unexpandable@protect rather than \protect because \protect is often \scan_stop: hence “does not exist”.

```latex
\cs_new:Npn \__fp_parse_one_fp:NN #1 #2
\{\cs_new:Npn \__fp_exp_after_one_fp:NN \__fp_exp_after_mark_f:nw \__fp_exp_after_?:f:nw

\end{definition} for \__fp_parse_one:Nw.\
```

This scheme is extensible: additional types can be added by starting the variables with a scan mark of the form \s__fp\langle type\rangle and defining __fp_exp_after_\langle\textit{type}\rangle_f:nw. In all cases, we make sure that the second argument of __fp_parse_infix:NN is correctly expanded. A special case only enabled in \LaTeX\,2\,e is that if \protect is encountered then the error message mentions the control sequence which follows it rather than \protect itself. The test for \LaTeX\,2\,e uses \@unexpandable@protect rather than \protect because \protect is often \scan_stop: hence “does not exist”.
__kernel_msg_expandable_error:nn { kernel } { fp-early-end }
\exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w

__kernel_msg_expandable_error:nnn { kernel } { bad-variable } {#2}
\exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
\exp_args:Nc __fp_tmp:w { \unexpandable@protect }

__fp_parse_one_register:NN __fp_parse_one_register_aux:Nw
__fp_parse_one_register_auxii:www
__fp_parse_one_register_int:www
__fp_parse_one_register_mu:www
__fp_parse_one_register_dim:ww

This is called whenever \#2 is a control sequence other than \scan_stop: in meaning. We
special-case \textbackslash vd, \textbackslash ht, \textbackslash dp (see later) and otherwise assume that it is a register, but care-
fully unpack it with \textbackslash tex_the:D within braces. First, we find the exponent following \#2.
Then we unpack \#2 with \textbackslash tex_the:D, and the auxii auxiliary distinguishes integer reg-
isters from dimensions/skips from muskips, according to the presence of a period and/or
of pt. For integers, simply convert \langle value \rangle e \langle exponent \rangle to a floating point number with
__fp_parse:n (this is somewhat wasteful). For other registers, the decimal rounding
provided by \TeX{} does not accurately represent the binary value that it manipulates, so
we extract this binary value as a number of scaled points with \textbackslash int_value:w \textbackslash dim_to-
decimal_in_sp:n \langle decimal value \rangle pt, and use an auxiliary of \textbackslash dim_to_fp:n, which
performs the multiplication by \textbackslashtextbackslash 2^{-16}, correctly rounded.
The \texttt{\wd}, \texttt{\dp}, \texttt{\ht} primitives expect an integer argument. We abuse the exponent parser to find the integer argument: simply include the exponent marker \texttt{e}. Once that “exponent” is found, use \texttt{\tex_the:D} to find the box dimension and then copy what we did for dimensions.

\begin{verbatim}
\cs_new:Npx __fp_parse_one_register_aux:Nw #1
 \exp_not:n
 { \exp_after:wN \use:nn
 \exp_after:wN __fp_parse_one_register_auxii:wwwNw
 \exp_not:N \exp_after:wN { \exp_not:N \tex_the:D #1 } ; \exp_not:N __fp_parse_one_register_dim:ww
 \tl_to_str:n { pt } ; \exp_not:N __fp_parse_one_register_mu:www . \tl_to_str:n { pt } ; \exp_not:N __fp_parse_one_register_int:www
 \exp_not:N \q_stop
 \exp_args:Nno \use:nn
 { \cs_new:Npn __fp_parse_one_register_auxii:wwwNw #1 . #2 }
 \tl_to_str:n { pt } #3 ; #4#5 \q_stop
\exp_args:Nno \use:nn
 { \cs_new:Npn __fp_parse_one_register_mu:www #1 }
 \tl_to_str:n { mu } ; #2 ; \exp_args:Nno \use:nn
 { __fp_parse_one_register_dim:ww #1 ; }
 __fp_parse_one_register_dim:ww #1 ; #2 ;
 __fp_parse_one_register_dim:ww #1 ; #2 ;
 __fp_parse:n { \#1 e \#3 } }
\cs_new:Npn __fp_parse_one_register_int:www \#1; \#2.; \#3;
 __fp_parse:n { \#1 e \#3 } }
\cs_new:Npn __fp_parse_one_register_dim:ww \#1; \#2;
 __fp_from_dim_test:ww
 \int_value:w \#2 \exp_after:wN ,
 \int_value:w \dim_to_decimal_in_sp:n { \#1 pt } ;
\end{verbatim}

(End definition for \texttt{__fp_parse_one_register:NN} and others.)
__fp_parse_one_register_math:NNw \pi \#1
\fi:
\}
\cs_new:Npn __fp_parse_one_register_math:NNw
#1#2#3#4 __fp_parse_expand:w
{
\#3
\str_if_eq:nnTF {#1} {#2}
{
__kernel_msg_expandable_error:nnn
{ kernel } { fp-infty-pi } {#1}
\c_nan_fp
}
\#4 __fp_parse_expand:w }
\cs_new:Npn __fp_parse_one_register_wd:w
#1#2 \exp_after:wN #3#4 __fp_parse_expand:w
{
#1
\exp_after:wN __fp_parse_one_register_wd:Nw
#4 __fp_parse_expand:w e
}
\cs_new:Npn __fp_parse_one_register_wd:Nw #1#2 ;
{
\exp_after:wN __fp_from_dim_test:ww
\exp_after:wN 0 \exp_after:wN ,
\int_value:w \dim_to_decimal_in_sp:n { #1 #2 } ;
}
(End definition for __fp_parse_one_register_special:N and others.)

__fp_parse_one_digit:NN
A digit marks the beginning of an explicit floating point number. Once the number is
found, we catch the case of overflow and underflow with __fp_sanitize:wN, then __fp_parse_infix_after_operand:NwN expands __fp_parse_infix:NN after the number we find, to wrap the following infix operator as required. Finding the number itself
begins by removing leading zeros: further steps are described later.
\cs_new:Npn __fp_parse_one_digit:NN #1
{
\exp_after:wN __fp_parse_infix_after_operand:NwN
\exp_after:wN #1
\exp:w \exp_end_continue_f:w
\exp_after:wN __fp_sanitize:wN
\int_value:w __fp_int_eval:w 0 __fp_parse_trim_zeros:N
}
(End definition for __fp_parse_one_digit:NN.)

__fp_parse_one_other:NN
For this function, \#2 is a character token which is not a digit. If it is an ASCII let-
ter, __fp_parse_letters:N beyond this one and give the result to __fp_parse-_word:Nw. Otherwise, the character is assumed to be a prefix operator, and we build
__fp_parse_prefix_⟨ operator ⟩:Nw.
\cs_new:Npn __fp_parse_one_other:NN #1 #2
{\if_int_compare:w
Finding letters is a simple recursion. Once __fp_parse_letters:N has done its job, we try to build a control sequence from the word \#2. If it is a known word, then the corresponding action is taken, and otherwise, we complain about an unknown word, yield \cnan_fp, and look for the following infix operator. Note that the unknown word could be a mistyped function as well as a mistyped constant, so there is no way to tell whether to look for arguments; we do not. The standard requires “inf” and “infinity” and “nan” to be recognized regardless of case, but we probably don’t want to allow every l3fp word to have an arbitrary mixture of lower and upper case, so we test and use a differently-named control sequence.

\cs_new:Npn __fp_parse_word:Nw #1#2; { \cs_if_exist_use:cF \{ __fp_parse_word_#2:N \} \cs_if_exist_use:cF \{ __fp_parse_caseless_ \text{str} _\text{foldcase}:n \ (#2) ;N \} __kernel_msg_expandable_error:nnn \{ kernel \} \{ unknown-fp-word \} (#2) \exp_after:wN \cnan_fp \exp:w \exp_end_continue_f:w __fp_parse_infix:NN __fp_parse_word:W }

\cs_new:Npn __fp_parse_letters:N #1 { \exp_end_continue_f:w \if_int_compare:w \if_catcode:w \scan_stop: \exp_not:N #1 0 \else: 757 \fi: __fp_parse_letters:W }

(End definition for __fp_parse_one_other:NN.)
For this function, \#1 is the previous \langle precedence\rangle, \#2 is the operator just seen, and \#3 is a control sequence which implements the operator if it is a known operator. If this control sequence is \scan_stop:, then the operator is in fact unknown. Either the expression is missing a number there (if the operator is valid as an infix operator), and we put \texttt{nan}, wrapping the infix operator in a csname as appropriate, or the character is simply invalid in floating point expressions, and we continue looking for a number, starting again from __fp_parse_one:Nw.

\begin{verbatim}
\cs_new:Npn __fp_parse_prefix:NNN #1#2#3
\begin{verbatim}
\cs_if_exist:cTF { __fp_parse_infix_ \token_to_str:N #1 :N }
__kernel_msg_expandable_error:nnn { kernel } { fp-missing-number } {#1}
\else:
__kernel_msg_expandable_error:nnn { kernel } { fp-unknown-symbol } {#1}
__fp_parse_one:Nw #3
\fi:
\fi:
\end{verbatim}
__fp_parse_return_semicolon:w #1
__fp_parse_expand:w
\end{verbatim}

(End definition for __fp_parse_prefix:NNN and __fp_parse_prefix_unknown:NNN.)

__fp_parse_prefix:NNN
__fp_parse_prefix_unknown:NNN

\textbf{28.4.1 Numbers: trimming leading zeros}

Numbers are parsed as follows: first we trim leading zeros, then if the next character is a digit, start reading a significand \(\geq 1 \) with the set of functions __fp_parse_large...; if it is a period, the significand is \(< 1 \); and otherwise it is zero. In the second case, trim additional zeros after the period, counting them for an exponent shift \((exp_1) < 0, \)
then read the significand with the set of functions __fp_parse_small\ldots Once the significand is read, read the exponent if e is present.

This function expects an already expanded token. It removes any leading zero, then distinguishes three cases: if the first non-zero token is a digit, then call __fp_parse_large:N (the significand is ≥ 1); if it is \ldots, then continue trimming zeros with __fp_parse_strim_zeros:N; otherwise, our number is exactly zero, and we call __fp_parse_zero: to take care of that case.

If we have removed all digits until a period (or if the body started with a period), then enter the “small trim” loop which outputs -1 for each removed 0. Those -1 are added to an integer expression waiting for the exponent. If the first non-zero token is a digit, call __fp_parse_small:N (our significand is smaller than 1), and otherwise, the number is an exact zero. The name \strim\ stands for “small trim”.

(End definition for __fp_parse_trim_zeros:N and __fp_parse_trim_end:w.)
_fp_parse_small:N

This function is called after we have passed the decimal separator and removed all leading zeros from the significand. It is followed by a non-zero digit (with any catcode). The goal is to read up to 16 digits. But we can’t do that all at once, because _int_value:w (which allows us to collect digits and continue expanding) can only go up to 9 digits. Hence we grab digits in two steps of 8 digits. Since \#1 is a digit, read seven more digits using _fp_parse_digits_vii:N. The small_leading auxiliary leaves those digits in the _int_value:w, and grabs some more, or stops if there are no more digits. Then the pack_leading auxiliary puts the various parts in the appropriate order for the processing further up.

_fp_parse_small_leading:wwNN

We leave \langle digits \rangle \langle zeros \rangle in the input stream: the functions used to grab digits are such that this constitutes digits 1 through 8 of the significand. Then prepare to pack 8 more digits, with an exponent shift of zero (this shift is used in the case of a large significand). If \#4 is a digit, leave it behind for the packing function, and read 6 more digits to reach a total of 15 digits: further digits are involved in the rounding. Otherwise put 8 zeros in to complete the significand, then look for an exponent.

_fp_parse_small_leading:wwNN 1 \langle digits \rangle ; \langle zeros \rangle ; \langle number of zeros \rangle

We leave \langle digits \rangle \langle zeros \rangle in the input stream: the functions used to grab digits are such that this constitutes digits 1 through 8 of the significand. Then prepare to pack 8 more digits, with an exponent shift of zero (this shift is used in the case of a large significand). If \#4 is a digit, leave it behind for the packing function, and read 6 more digits to reach a total of 15 digits: further digits are involved in the rounding. Otherwise put 8 zeros in to complete the significand, then look for an exponent.

_fp_parse_small_leading:wwNN 1 \#1 ; \#2 ; \#3 \#4
{
 #1 #2
 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
 \exp_after:wN 0
 \int_value:w __fp_int_eval:w 1
 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
 \token_to_str:N #4
 \exp_after:wN __fp_parse_small_trailing:wwNN
 \int_value:w 1
 \exp_after:wN __fp_parse_digits_vi:N
 \exp:w
 \else: 0 __fp_parse_exponent:Nw #4
 \fi:
 __fp_parse_expand:w
}

(End definition for __fp_parse_small_leading:vvvNN.)

__fp_parse_small_trailing:wwNN
__fp_parse_small_trailing:wwNN 1 ⟨digits⟩; ⟨zeros⟩; ⟨number of zeros⟩ ⟨next token⟩

Leave digits 10 to 15 (arguments #1 and #2) in the input stream. If the ⟨next token⟩ is a digit, it is the 16th digit, we keep it, then the small_round auxiliary considers this digit and all further digits to perform the rounding: the function expands to nothing, to +0 or to +1. Otherwise, there is no 16-th digit, so we put a 0, and look for an exponent.

{ #1 #2
 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
 \token_to_str:N #4
 \exp_after:wN __fp_parse_small_round:NN
 \exp_after:wN #4
 \exp:w
 \else:
 0 __fp_parse_exponent:Nw #4
 \fi:
 __fp_parse_expand:w
}

(End definition for __fp_parse_small_trailing:vvvNN.)

Those functions are expanded after all the digits are found, we took care of the rounding, as well as the exponent. The last argument is the exponent. The previous five arguments are 8 digits which we pack in groups of 4, and the argument before that is 1, except in the rare case where rounding lead to a carry, in which case the argument is 2. The trailing function has an exponent shift as its first argument, which we add to the exponent found in the e... syntax. If the trailing digits cause a carry, the integer expression for the leading digits is incremented (+1 in the code below). If the leading digits propagate this carry all the way up, the function __fp_parse_pack_carry:w increments the exponent, and changes the significand from 0000... to 1000...: this is simple because such a carry can only occur to give rise to a power of 10.

{ \cs_new:Npn __fp_parse_pack_trailing:NNNNNNww __fp_parse_pack_leading:vvvNN __fp_parse_pack_carry:w
 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
 \token_to_str:N #4
 \exp_after:wN __fp_parse_small_round:NN
 \exp_after:wN #4
 \exp:w
 \else:
 0 __fp_parse_exponent:Nw #4
 \fi:
 __fp_parse_expand:w
}

761
\if_meaning:w 2 \#2 + 1 \fi:
\cs_new:Npn __fp_parse_pack_leading:NNNNNww #1 \#2 \#3 \#4 \#5 \#6 \#7;
{ + \#7
\if_meaning:w 2 \#1 __fp_parse_pack_carry:w \fi:
; 0 \{\#2\#3\#4\#5\} \{\#6\}
}
\cs_new:Npn __fp_parse_pack_carry:w \fi: ; 0 \#1
{ \fi: + 1 ; 0 \{1000\} }

(End definition for __fp_parse_pack_trailing:NNNNNww, __fp_parse_pack_leading:NNNNNww, and __fp_parse_pack_carry:w.)

28.4.3 Number: large significand

Parsing a significant larger than 1 is a little bit more difficult than parsing small significands. We need to count the number of digits before the decimal separator, and add that to the final exponent. We also need to test for the presence of a dot each time we run out of digits, and branch to the appropriate parse_small function in those cases.

__fp_parse_large:N
This function is followed by the first non-zero digit of a “large” significand (\geq 1). It is called within an integer expression for the exponent. Grab up to 7 more digits, for a total of 8 digits.
\cs_new:Npn __fp_parse_large:N \#1
{ \exp_after:wN __fp_parse_large_leading:wwNN \int_value:w 1 \token_to_str:N \#1
\exp_after:wN __fp_parse_digits_vii:N
\exp:w __fp_parse_expand:w
}

(End definition for __fp_parse_large:N.)

__fp_parse_large_leading:wwNN
__fp_parse_large_leading:wwNN 1 \langle digits \rangle ; \langle zeros \rangle ; \langle number of zeros \rangle
\langle next token \rangle

We shift the exponent by the number of digits in \#1, namely the target number, 8, minus the \langle number of zeros \rangle (number of digits missing). Then prepare to pack the 8 first digits. If the \langle next token \rangle is a digit, read up to 6 more digits (digits 10 to 15). If it is a period, try to grab the end of our 8 first digits, branching to the small functions since the number of digit does not affect the exponent anymore. Finally, if this is the end of the significant, insert the \langle zeros \rangle to complete the 8 first digits, insert 8 more, and look for an exponent.
\cs_new:Npn __fp_parse_large_leading:wwNN \#1 \#2 \#3 \#4
{ + \c__fp_half_prec_int - \#3
\exp_after:wN __fp_parse_pack_leading:NNNNNww
\int_value:w __fp_int_eval:w 1 \#1
\if_int_compare:w 9 < 1 \token_to_str:N \#4 \exp_stop_f:
\exp_after:wN __fp_parse_large_trailing:wwNN \int_value:w 1 \token_to_str:N \#4
\exp_after:wN __fp_parse_digits_vi:N
\exp_after:wN __fp_parse_digits_vii:N
\exp:w __fp_parse_expand:w

762
__fp_parse_large_trailing:wwNN

We have just read 15 digits. If the \textit{\textless next token\textgreater} is a digit, then the exponent shift caused by this block of 8 digits is 8, first argument to the \texttt{pack_trailing} function. We keep the \textit{\textless digits\textgreater} and this 16-th digit, and find how this should be rounded using \texttt{__fp_parse_large_round:NN}. Otherwise, the exponent shift is the number of \textit{\textless digits\textgreater}, 7 minus the \textit{\textless number of zeros\textgreater}, and we test for a decimal point. This case happens in 123451234512345.67 with exactly 15 digits before the decimal separator. Then branch to the appropriate \texttt{small} auxiliary, grabbing a few more digits to complement the digits we already grabbed. Finally, if this is truly the end of the significand, look for an exponent after using the \textit{\textless zeros\textgreater} and providing a 16-th digit of 0.
28.4.4 Number: beyond 16 digits, rounding

This loop is called when rounding a number (whether the mantissa is small or large). It should appear in an integer expression. This function reads digits one by one, until reaching a non-digit, and adds 1 to the integer expression for each digit. If all digits found are 0, the function ends the expression by ;0, otherwise by ;1. This is done by switching the loop to round_up at the first non-zero digit, thus we avoid to test whether digits are 0 or not once we see a first non-zero digit.

__fp_parse_round_loop:N
__fp_parse_round_up:N

After the loop __fp_parse_round_loop:N, this function fetches an exponent with __fp_parse_exponent:N, and combines it with the number of digits counted by __fp_parse_large_trailing:wwNN.
parse_round_loop:N. At the same time, the result 0 or 1 is added to the surrounding integer expression.

\cs_new:Npn __fp_parse_round_after:wN #1; #2
\begin{verbatim}
+ \numexpr\int_eval:w #1 + __fp_parse_exponent:N
\end{verbatim}

(End definition for __fp_parse_round_after:wN.)

__fp_parse_small_round:NN __fp_parse_round_after:wN

Here, #1 is the digit that we are currently rounding (we only care whether it is even or odd). If #2 is not a digit, then fetch an exponent and expand to ;\{exponent\} only. Otherwise, we expand to +0 or +1, then ;\{exponent\}. To decide which, call __fp_round_s:NNNw to know whether to round up, giving it as arguments a sign 0 (all explicit numbers are positive), the digit #1 to round, the first following digit #2, and either +0 or +1 depending on whether the following digits are all zero or not. This last argument is obtained by __fp_parse_round_loop:N, whose number of digits we discard by multiplying it by 0. The exponent which follows the number is also fetched by __fp_parse_round_after:wN.

\cs_new:Npn __fp_parse_small_round:NN #1#2
\begin{verbatim}
\if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f:
 + \exp_after:wN __fp_round_s:NNNw \exp_after:wN 0 \exp_after:wN #1 \exp_after:wN #2 \int_value:w __fp_int_eval:w __fp_parse_round_after:wN \int_value:w __fp_int_eval:w 0 * __fp_int_eval:w 0 \exp_after:wN __fp_parse_round_loop:N \exp:w
\else:
 __fp_parse_exponent:Nw #2 __fp_parse_expand:w
\fi:
\end{verbatim}

(End definition for __fp_parse_small_round:NN and __fp_parse_round_after:wN.)

__fp_parse_large_round:NN __fp_parse_large_round_test:NN __fp_parse_large_round_aux:wN

Large numbers are harder to round, as there may be a period in the way. Again, #1 is the digit that we are currently rounding (we only care whether it is even or odd). If there are no more digits (#2 is not a digit), then we must test for a period: if there is one, then switch to the rounding function for small significands, otherwise fetch an exponent. If there are more digits (#2 is a digit), then round, checking with __fp_parse_round_loop:N if all further digits vanish, or some are non-zero. This loop is not enough, as it is stopped by a period. After the loop, the aux function tests for a period: if it is present, then we must continue looking for digits, this time discarding the number of digits we find.

\cs_new:Npn __fp_parse_large_round:NN #1#2
\begin{verbatim}
\if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f:
 + \exp_after:wN __fp_parse_large_round_test:NN \exp_after:wN __fp_parse_large_round_aux:wN
\else:
 __fp_parse_large_round_aux:wN #2 __fp_parse_exponent:Nw __fp_parse_large_round_loop:N
\fi:
\end{verbatim}

765
28.4.5 Number: finding the exponent

Expansion is a little bit tricky here, in part because we accept input where multiplication is implicit.

__fp_parse:n { 3.2 erf(0.1) }
__fp_parse:n { 3.2 \l_my_int }
__fp_parse:n { 3.2 \c_pi_fp }

The first case indicates that just looking one character ahead for an “e” is not enough, since we would mistake the function erf for an exponent of “rf”. An alternative would
be to look two tokens ahead and check if what follows is a sign or a digit, considering in that case that we must be finding an exponent. But taking care of the second case requires that we unpack registers after e. However, blindly expanding the two tokens ahead completely would break the third example (unpacking is even worse). Indeed, in the course of reading 3.2, \(c_\pi fp\) is expanded to \(s_{fp} _fp_chk:w 1 0 {-1} \{3141\} \cdots\); and \(s_{fp}\) stops the expansion. Expanding two tokens ahead would then force the expansion of \(_fp_chk:w\) (despite it being protected), and that function tries to produce an error.

What can we do? Really, the reason why this last case breaks is that just as \TeX does, we should read ahead as little as possible. Here, the only case where there may be an exponent is if the first token ahead is e. Then we expand (and possibly unpack) the second token.

\[_fp_parse_exponent:Nw\]
This auxiliary is convenient to smuggle some material through \texttt{\textbackslash fi}: ending conditional processing. We place those \texttt{\textbackslash fi}: (argument \#2) at a very odd place because this allows us to insert \texttt{_fp_int_eval:w} ... there if needed.

\begin{verbatim}
\cs_new:Npn _fp_parse_exponent:Nw #1 #2 _fp_parse_expand:w
 \exp_after:wN ;
 \int_value:w #2 _fp_parse_exponent:N #1
\end{verbatim}

(End definition for \texttt{_fp_parse_exponent:Nw}.)

\[_fp_parse_exponent:N _fp_parse_exponent_aux:N\]
This function should be called within an \texttt{\int_value:w} expansion (or within an integer expression). It leaves digits of the exponent behind it in the input stream, and terminates the expansion with a semicolon. If there is no e (or E), leave an exponent of 0. If there is an e or E, expand the next token to run some tests on it. The first rough test is that if the character code of \#1 is greater than that of 9 (largest code valid for an exponent, less than any code valid for an identifier), there was in fact no exponent; otherwise, we search for the sign of the exponent.

\begin{verbatim}
\cs_new:Npn _fp_parse_exponent:N #1
 \{
 \if:w e \if:w E \exp_not:N #1 e \else: \exp_not:N #1 \fi:
 \exp_after:wN _fp_parse_exponent_aux:N
 \else: \exp:w
 0 _fp_parse_return_semicolon:w #1
 \fi:
 _fp_parse_expand:w
\}
\cs_new:Npn _fp_parse_exponent_aux:N #1
 \{
 \if_int_compare:w \if_catcode:w \scan_stop: \exp_not:N #1
 0 \else: '9 \exp_stop_f:
 0 \exp_after:wN ; \exp_after:wN e
 \else: \exp_after:wN _fp_parse_exponent_sign:N
 \fi:
 _fp_parse_expand:w
\}
\end{verbatim}

(End definition for \texttt{_fp_parse_exponent:N} and \texttt{_fp_parse_exponent_aux:N}.)
Read signs one by one (if there is any).
\[\textit{fp_parse_exponent_sign:N} \]
\begin{verbatim}
\new:Npn _fp_parse_exponent_sign:N #1
\{\if:w + \if:w - \exp_not:N #1 + \fi: \token_to_str:N #1
\exp_after:wN _fp_parse_exponent_sign:N
\exp:w \exp_after:wN _fp_parse_exponent_body:N \fi:
\exp_after:wN _fp_parse_expand:w
\else:
\exp_after:wN _fp_parse_exponent_body:N \exp_after:wN #1 \fi:
\}
\end{verbatim}

An exponent can be an explicit integer (most common case), or various other things
(most of which are invalid).
\[\textit{fp_parse_exponent_body:N} \]
\begin{verbatim}
\new:Npn _fp_parse_exponent_body:N #1
\{\if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
\token_to_str:N #1 \exp_after:wN _fp_parse_exponent_digits:N \exp:w \else:
_fp_parse_exponent_keep:NTF #1
\{ _fp_parse_return_semicolon:w #1 \}
\exp_after:wN ; \exp:w \fi:
_fp_parse_expand:w
\}
\end{verbatim}

Read digits one by one, and leave them behind in the input stream. When finding a
non-digit, stop, and insert a semicolon. Note that we do not check for overflow of the
exponent, hence there can be a \TeX error. It is mostly harmless, except when parsing
\texttt{0e9876543210}, which should be a valid representation of 0, but is not.
\[\textit{fp_parse_exponent_digits:N} \]
\begin{verbatim}
\new:Npn _fp_parse_exponent_digits:N #1
\{\if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
\token_to_str:N #1 \exp_after:wN _fp_parse_exponent_digits:N \exp:w \else:
_fp_parse_exponent_keep:NTF \fi:
\exp_after:wN _fp_parse_return_semicolon:w #1 \fi:
\exp_after:wN ; \exp:w \}
_fp_parse_expand:w
\}
\end{verbatim}

This is the last building block for parsing exponents. The argument \#1 is already fully
expanded, and neither + nor - nor a digit. It can be:
• \s__fp, marking the start of an internal floating point, invalid here;
• another control sequence equal to \relax, probably a bad variable;
• a register: in this case we make sure that it is an integer register, not a dimension;
• a character other than +, - or digits, again, an error.

\prg_new_conditional:Npnn __fp_parse_exponent_keep:N #1 { TF }
{
\if_catcode:w \scan_stop: \exp_not:N #1
\if_meaning:w \scan_stop: #1
\if_int_compare:w
__fp_str_if_eq:nn { \s__fp } { \exp_not:N #1 } = 0 \exp_stop_f:
0
__kernel_msg_expandable_error:nnn
{ kernel } { fp-after-e } { floating-point- }
\prg_return_true:
\else:
__kernel_msg_expandable_error:nnn
{ kernel } { bad-variable } {#1}
\prg_return_false:
\fi:
\else:
\if_int_compare:w
__fp_str_if_eq:nn { \int_value:w #1 } { \tex_the:D #1 } = 0 \exp_stop_f:
\int_value:w #1
\else:
0
__kernel_msg_expandable_error:nnn
{ kernel } { bad-variable } {#1}
\prg_return_false:
\fi:
\else:
__kernel_msg_expandable_error:nnn
{ kernel } { fp-missing } { exponent }
\prg_return_true:
\fi:
\else:
0
__kernel_msg_expandable_error:nnn
{ kernel } { fp-missing } { exponent }
\prg_return_true:
\fi:
(End definition for __fp_parse_exponent_keep:NTF.)

28.5 Constants, functions and prefix operators

28.5.1 Prefix operators

__fp_parse_prefix_+:Nw A unary + does nothing: we should continue looking for a number.

\cs_new_eq:cN { __fp_parse_prefix_+:Nw } __fp_parse_one:Nw
(End definition for __fp_parse_prefix_+:Nw.)
Here, \#1 is a precedence, \#2 is some extra data used by some functions, \#3 is \textit{e.g.}, \texttt{"fp_sin_o:w"}, and expands once after the calculation, \#4 is the operand, and \#5 is a \texttt{"fp_parse_infix_\ldots":N} function. We feed the data \#2, and the argument \#4, to the function \#3, which expands \texttt{\exp:w} thus the \texttt{infix} function \#5.

\begin{verbatim}
\cs_new:Npn __fp_parse_apply_function:NNNwN #1#2#3#4@#5
\begin{verbatim}
\exp:w \exp_end_continue_f:w #5 #1\end{verbatim}
\end{verbatim}

(End definition for \texttt{"fp_parse_apply_function:NNNwN"}.)

In contrast to \texttt{"fp_parse_apply_function:NNNwN"}, this checks that the operand \#4 is a single argument (namely there is a single ;). We use the fact that any floating point starts with a "safe" token like \texttt{"s_fp"}. If there is no argument produce the \texttt{fp-no-arg} error; if there are at least two produce \texttt{fp-multi-arg}. For the error message extract the mathematical function name (such as \texttt{sin}) from the \texttt{expl3} function that computes it, such as \texttt{"fp_sin_o:w"}.

In addition, since there is a single argument we can dispatch on type and check that the resulting function exists. This catches things like \texttt{sin((1,2))} where it does not make sense to take the sine of a tuple.

\begin{verbatim}
\cs_new:Npn __fp_parse_apply_unary:NNNwN #1#2#3#4@#5
\begin{verbatim}
__fp_parse_apply_unary_type:NNN
\exp:w \exp_end_continue_f:w #5 #1\end{verbatim}
\end{verbatim}

(End definition for \texttt{"fp_parse_apply_unary:NNNwN"} and others.)
The unary - and boolean not are harder: we parse the operand using a precedence equal to the maximum of the previous precedence \#1 and the precedence \c__fp_prec_not_int of the unary operator, then call the appropriate __fp\langle operation\rangle_o:w function, where the \langle operation\rangle is set_sign or not.

\cs_set_protected:Npn __fp_tmp:w \#1\#2\#3\#4
\cs_new:cpn { __fp_parse_prefix_#1 :)Nw } #1
\exp_after:wN __fp_parse_infix_after_operand:NwN
\exp_after:wN \exp:w \exp_end_continue_f:w
\exp_after:wN __fp_sanitize:wN
\int_value:w __fp_int_eval:w 0 __fp_parse_strim_zeros:N

(End definition for __fp_parse_prefix_-:Nw and __fp_parse_prefix_!:Nw.)

__fp_parse_prefix_.:Nw

Numbers which start with a decimal separator (a period) end up here. Of course, we do not look for an operand, but for the rest of the number. This function is very similar to __fp_parse_one_digit:NN but calls __fp_parse_strim_zeros:N to trim zeros after the decimal point, rather than the trim_zeros function for zeros before the decimal point.

\cs_new:cpn { __fp_parse_prefix_:.:Nw } #1
\exp_after:wN __fp_parse_infix_after_operand:NwN
\exp_after:wN \exp:w \exp_end_continue_f:w
\exp_after:wN __fp_sanitize:wN
\int_value:w __fp_int_eval:w 0 __fp_parse_strim_zeros:N

(End definition for __fp_parse_prefix_:.:Nw)

__fp_parse_prefix_(:Nw

__fp_parse_lparen_after:NwN

The left parenthesis is treated as a unary prefix operator because it appears in exactly the same settings. If the previous precedence is \c__fp_prec_func_int we are parsing arguments of a function and commas should not build tuples; otherwise commas should build tuples. We distinguish these cases by precedence: \c__fp_prec_comma_int for the case of arguments, \c__fp_prec_tuple_int for the case of tuples. Once the operand is found, the lparen_after auxiliary makes sure that there was a closing parenthesis (otherwise it complains), and leaves in the input stream an operand, fetching the following infix operator.

\cs_new:cpn { __fp_parse_prefix_(:)Nw } #1
\exp_after:wN __fp_parse_lparen_after:NwN
\textit{End definition for \texttt{_fp_parse_prefix	extunderscore:}}\texttt{Nw} and \texttt{_fp_parse_lparen_after\textunderscore:NwN}}.

\texttt{_fp_parse_prefix	extunderscore:Nw} The right parenthesis can appear as a prefix in two similar cases: in an empty tuple or tuple ending with a comma, or in an empty argument list or argument list ending with a comma, such as in \texttt{max(1,2,)} or in \texttt{rand()}.

\texttt{_fp_parse_prefix_after_paren\textunderscore:NN}

\begin{verbatim}
\if_int_compare:w \#1 = \c__fp_prec_comma \exp:w
\else:
_fp_parse_operand\textunderscore:Nw \c__fp_prec_tuple_int \fi:
_fp_parse_expand:w
\cs_new:Npx _fp_parse_lparen_after\textunderscore:NwN \#1 \#2 \#3
\exp_not:N \token_if_eq_meaning:NNTF \#3 \exp_not:c { __fp_parse_infix_):N }{
\exp_not:N __fp_exp_after_array_f:w \#2 _fp_stop
\exp_not:N \exp_after:wN \exp_not:N _fp_parse_infix_after_paren\textunderscore:NN
\exp_not:N \exp_after:wN \#1 \exp_not:N \exp:w
\exp_not:N _fp_parse_expand:w}
\cs_new:cpn { __fp_parse_prefix_):Nw } \#1 {
\if_int_compare:w \#1 = \c__fp_prec_comma \exp:w
\else:
\if_int_compare:w \#1 = \c__fp_prec_tuple_int \exp:w
\else:
\kernel_msg_expandable_error:nnn
{ kernel } { fp\textunderscore missing } {) }
\exp_not:N \tl_if_empty:nT \#2 \exp_not:N \c__fp_empty_tuple_fp #2 _fp_stop
\exp_not:N \use_none:n \#3
}
\end{verbatim}

(End definition for \texttt{_fp_parse_prefix_):Nw}.)
28.5.2 Constants

Some words correspond to constant floating points. The floating point constant is left as a result of __fp_parse_one:N after expanding __fp_parse_infix:NN.

```latex
\begin{verbatim}
\_fp_parse_word_inf:N \_fp_parse_word_nan:N \_fp_parse_word_pi:N \\
\_fp_parse_word_deg:N \_fp_parse_word_true:N \_fp_parse_word_false:N
\end{verbatim}
```

Some words correspond to constant floating points. The floating point constant is left as a result of __fp_parse_one:N after expanding __fp_parse_infix:NN.

```latex
\begin{verbatim}
\cs_set_protected:Npn \__fp_tmp:w #1 #2 \\
\cs_new:cpn { __fp_parse_word_#1:N } \exp_after:wN #2 \exp:w \exp_end_continue_f:w \__fp_parse_infix:NN
\end{verbatim}
```

```latex
\begin{verbatim}
\__fp_tmp:w { inf } \c_inf_fp \\
\__fp_tmp:w { nan } \c_nan_fp \\
\__fp_tmp:w { pi } \c_pi_fp \\
\__fp_tmp:w { deg } \c_one_degree_fp \\
\__fp_tmp:w { true } \c_one_fp \\
\__fp_tmp:w { false } \c_zero_fp
\end{verbatim}
```

(End definition for __fp_parse_word_inf:N and others.)

```latex
\begin{verbatim}
\_fp_parse_caseless_inf:N \_fp_parse_caseless_infinity:N \\
\_fp_parse_caseless_nan:N
\end{verbatim}
```

Copies of __fp_parse_word_:N commands, to allow arbitrary case as mandated by the standard.

```latex
\begin{verbatim}
\cs_set_protected:Npn \__fp_tmp:w #1 #2 \\
\cs_new:cpn { __fp_parse_word_#1:N } \__fp_exp_after_f:nw \__fp_parse_infix:NN \\
\s__fp \__fp_chk:w 10 #2 ;
\end{verbatim}
```

```latex
\begin{verbatim}
\__fp_tmp:w {pt} { {1} {1000} {0000} {0000} {0000} } \\
\__fp_tmp:w {in} { {2} {7227} {0000} {0000} {0000} } \\
\__fp_tmp:w {pc} { {2} {1200} {0000} {0000} {0000} } \\
\__fp_tmp:w {cm} { {2} {2845} {2755} {9055} {1181} } \\
\__fp_tmp:w {mm} { {1} {2845} {2755} {9055} {1181} } \\
\__fp_tmp:w {dd} { {1} {1070} {0085} {6496} {0630} } \\
\__fp_tmp:w {cc} { {2} {1284} {0102} {7795} {2756} } \\
\__fp_tmp:w {nd} { {1} {1066} {9783} {4645} {6693} } \\
\__fp_tmp:w {nc} { {2} {1280} {3740} {1574} {8031} } \\
\__fp_tmp:w {bp} { {1} {1003} {7500} {0000} {0000} } \\
\__fp_tmp:w {sp} { {-4} {1525} {8789} {0625} {0000} }
\end{verbatim}
```

(End definition for __fp_parse_word_inf:N and others.)

```latex
\begin{verbatim}
\_fp_parse_word_pt:N \_fp_parse_word_in:N \\
\_fp_parse_word_pc:N \_fp_parse_word_cm:N \\
\_fp_parse_word_mm:N \_fp_parse_word_dd:N \\
\_fp_parse_word_cc:N \_fp_parse_word_nd:N \\
\_fp_parse_word_nc:N
\end{verbatim}
```

Dimension units are also floating point constants but their value is not stored as a floating point constant. We give the values explicitly here.

```latex
\begin{verbatim}
\cs_set_protected:Npn \__fp_tmp:w #1 #2 \\
\cs_new:cpn { __fp_parse_word_#1:N } \__fp_exp_after_f:nw \__fp_parse_infix:NN \\
\s__fp \__fp_chk:w 10 #2 ;
\end{verbatim}
```

```latex
\begin{verbatim}
\__fp_tmp:w {em} { {em} {ex} }
\end{verbatim}
```

The font-dependent units em and ex must be evaluated on the fly. We reuse an auxiliary of dim_to_fp:n.

```latex
\begin{verbatim}
\tl_map_inline:nn \{ {em} {ex} }
\end{verbatim}
```

773
\cs_new:cpn { _fp_parse_word_#1:N } \\
\{ \\
\exp_after:wN _fp_from_dim_test:ww \\
\exp_after:wN 0 \exp_after:wN , \\
\int_value:w \dim_to_decimal_in_sp:n \{ 1 \#1 \} \exp_after:wN ; \\
\exp:w \exp_end_continue_f:w _fp_parse_infix:NN \\
\}

(End definition for _fp_parse_word_em:N and _fp_parse_word_ex:N.)

\subsection{Functions}
\cs_new:Npn _fp_parse_unary_function:NNN #1#2#3 \\
\{ \\
\exp_after:wN _fp_parse_apply_unary:NNNwN \\
\exp_after:wN #3 \\
\exp_after:wN #2 \\
\exp_after:wN #1 \\
\exp:w _fp_parse_operand:Nw \c__fp_prec_func_int _fp_parse_expand:w \\
\}
\cs_new:Npn _fp_parse_function:NNN #1#2#3 \\
\{ \\
\exp_after:wN _fp_parse_apply_function:NNNwN \\
\exp_after:wN #3 \\
\exp_after:wN #2 \\
\exp_after:wN #1 \\
\exp:w _fp_parse_operand:Nw \c__fp_prec_func_int _fp_parse_expand:w \\
\}

(End definition for _fp_parse_unary_function:NNN and _fp_parse_function:NNN.)

\subsection{Main functions}
Start an \exp:w expansion so that _fp_parse:n expands in two steps. The _fp_parse_operand:N function performs computations until reaching an operation with precedence \c__fp_prec_end_int or less, namely, the end of the expression. The marker \s__fp_mark indicates that the next token is an already parsed version of an infix operator, and _fp_parse_infix_end:N has infinitely negative precedence. Finally, clean up a (well-defined) set of extra tokens and stop the initial expansion with \exp_end:.
\cs_new:Npn _fp_parse:n #1 \\
\{ \\
\exp:w \\
\exp_after:wN _fp_parse_after:ww \\
\}

774
\cs_new:Npn __fp_parse_after:ww #1 __fp_parse_infix_end:N \s__fp_stop #2 { #2 #1 }
\cs_new:Npn __fp_parse_o:n #1
{ \exp:w \exp_after:wN __fp_parse_after:ww \exp:w __fp_parse_operand:Nw \c__fp_prec_end_int __fp_parse_expand:w #1 \s__fp_mark __fp_parse_infix_end:N \s__fp_stop }

(End definition for __fp_parse:n, __fp_parse_o:n, and __fp_parse_after:ww.)

__fp_parse_operand:Nw __fp_parse_continue:NwN

This is just a shorthand which sets up both __fp_parse_continue:NwN and __fp_parse_one:Nw with the same precedence. Note the trailing \exp:w.
\cs_new:Npn __fp_parse_operand:Nw #1
{ \exp_end_continue_f:w \exp_after:wN __fp_parse_continue:NwN \exp_after:wN #1 \exp:w \exp_end_continue_f:w \exp_after:wN __fp_parse_one:Nw \exp_after:wN #1 \exp:w }

(End definition for __fp_parse_operand:Nw and __fp_parse_continue:NwN.)

__fp_parse_apply_binary:NwNwN __fp_parse_apply_binary_chk:NN __fp_parse_apply_binary_error:NNN

Receives \langle precedence \rangle \langle operand_1 \rangle \@ \langle operation \rangle \langle operand_2 \rangle \@ \langle infix command \rangle. Builds the appropriate call to the \langle operation \rangle \#3, dispatching on both types. If the resulting control sequence does not exist, the operation is not allowed.

This is redefined in \texttt{l3fp-extras}.
\cs_new:Npn __fp_parse_apply_binary:NwNwNwN __fp_parse_apply_binary:NNNN \#1 \#2\#3 \#4 \#5\#6 \#7
{ \exp_after:wN __fp_parse_apply_binary:NwN \exp_after:wN __fp_parse_apply_binarychk:NN \exp_after:wN __fp_parse_apply_binary_error:NNN \cs:w __fp __fp_type_from_scan:N \#2 __fp_type_from_scan:N \#5 \m:w __fp_end: \#4 \#2\#3 \#5\#6

775
Applies the operator \texttt{#1} to its two arguments, dispatching according to their types, and expands once after the result. The \texttt{rev} version swaps its arguments before doing this.

\begin{verbatim}
\cs_new:Npn __fp_binary_type_o:Nww #1 #2#3 ; #4
\{ \exp_after:wN __fp_parse_apply_binary_chk:NN \cs:w __fp_type_from_scan:N #2 _ #1 __fp_type_from_scan:N #4 _o:ww \cs_end:\ #1 #2 #3 ; #4 \}
\end{verbatim}

(End definition for \texttt{__fp_binary_type_o:Nww} and \texttt{__fp_binary_rev_type_o:Nww}.)

\subsection*{28.7 Infix operators}

\begin{verbatim}
\cs_new:Npn __fp_parse_infix_after_operand:NwN \exp:w \exp_end_continue_f:w #7 #1
\}
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __fp_parse_infix_after_operand:NwN #1 #2;
\{ \exp_after:wN __fp_parse_apply_binary_chk:NN \cs:w __fp_type_from_scan:N #2 _ #1 __fp_type_from_scan:N #4 _o:ww \cs_end:\ #1 #2 #3 ; #4 \}
\end{verbatim}

(End definition for \texttt{__fp_parse_infix_after_operand:NwN}.)
_fp_exp_after_f:nw _fp_parse_infix:NN #1
#2;
\}
\cs_new:Npn _fp_parse_infix:NN #1 #2
{\if_catcode:w \scan_stop: \exp_not:N #2
\if_int_compare:w
_fp_str_if_eq:nn _fp_mark \exp_not:N #2
= 0 \exp_stop_f:
\exp_after:wN \exp_after:wN
\exp_after:wN _fp_parse_infix_mark:NNN
\else:
\exp_after:wN \exp_after:wN
\exp_after:wN _fp_parse_infix_juxt:N
\fi:
\else:
\if_int_compare:w
_fp_int_eval:w
('#2 \if_int_compare:w '#2 > 'Z - 32 \fi:) / 26
= 3 \exp_stop_f:
\exp_after:wN \exp_after:wN
\exp_after:wN _fp_parse_infix_juxt:N
\else:
\exp_after:wN \exp_after:wN
\exp_after:wN _fp_parse_infix_check:NNN
\cs:w
_fp_parse_infix_ \token_to_str:N #2 :N
\exp_after:wN \exp_after:wN \exp_after:wN
\cs_end:
\fi:
#1
#2
\}
\cs_new:Npn _fp_parse_infix_check:NNN #1#2#3
{\if_meaning:w \scan_stop: #1
_kernel_msg_expandable_error:nnn
{ kernel } { fp-missing } { * }
\exp_after:wN _fp_parse_infix_mul:N
\exp_after:wN #2
\exp_after:wN #3
\else:
\exp_after:wN #1
\exp_after:wN #2
\exp:w \exp_after:wN _fp_parse_expand:w
\fi:
\}

(End definition for _fp_parse_infix_after_operand:NwN.)
_fp_parse_infix_after_paren:NN
Variant of _fp_parse_infix:NN for use after a closing parenthesis. The only difference
is that _fp_parse_infix_juxt:N is replaced by _fp_parse_infix_mul:N.
\cs_new:Npn _fp_parse_infix_after_paren:NN #1 #2
{

777
As an infix operator, \s__fp_mark means that the next token (#3) has already gone through __fp_parse_infix:NN and should be provided the precedence #1. The scan mark #2 is discarded.

\cs_new:Npn __fp_parse_infix_check:NNN \cs:w __fp_parse_infix_ \token_to_str:N #2 :N \cs_end:
\fi:
\fi:
#1
#2
}

(End definition for __fp_parse_infix_after_paren:NN.)

__fp_parse_infix_end:N

This one is a little bit odd: force every previous operator to end, regardless of the precedence.

\cs_new:Npn __fp_parse_infix_end:N \cs:w __fp_parse_infix_end:N \token_to_str:N #2 :N \cs_end:
\fi:
\fi:
#1
\fi:

(End definition for __fp_parse_infix_end:N)

__fp_parse_infix_):N

This is very similar to __fp_parse_infix_end:N, complaining about an extra closing parenthesis if the previous operator was the beginning of the expression, with precedence c__fp_prec_end_int.

\cs_set_protected:Npn __fp_tmp:w #1
\cs_new:Npn __fp_parse_infix_end:N \cs:w __fp_parse_infix_):N \token_to_str:N #2 :N \cs_end:
\fi:
\fi:
#1
\fi:

(End definition for __fp_parse_infix_end:N)

28.7.1 Closing parentheses and commas

__fp_parse_infix_mark:NNN

As an infix operator, \s__fp_mark means that the next token (#3) has already gone through __fp_parse_infix:NN and should be provided the precedence #1. The scan mark #2 is discarded.

\cs_new:Npn __fp_parse_infix_mark:NNN #1#2#3 { #3 #1 }

(End definition for __fp_parse_infix_mark:NNN.)

__fp_parse_infix_end:N

This one is a little bit odd: force every previous operator to end, regardless of the precedence.

\cs_new:Npn __fp_parse_infix_end:N \cs:w __fp_parse_infix_end:N \token_to_str:N #1
\cs_end:
\fi:
\fi:
#1
\fi:

(End definition for __fp_parse_infix_end:N)
As for other infix operations, if the previous operations has higher precedence the comma waits. Otherwise we call __fp_parse_operand:Nw to read more comma-delimited arguments that __fp_parse_infix_comma:w simply concatenates into a @-delimited array. The first comma in a tuple that is not a function argument is distinguished: in that case call __fp_parse_apply_comma:NwN whose job is to convert the first item of the tuple and an array of the remaining items into a tuple. In contrast to __fp_parse_apply_binary:NwN this function’s operands are not single-object arrays.

(End definition for __fp_parse_infix_:N)

__fp_parse_infix_,:N
__fp_parse_infix_comma:w
__fp_parse_apply_comma:NwNwN
__fp_parse_operand:Nw
__fp_parse_expand:w
__fp_continue:NwN
\use_none:n
\c__fp_prec_comma_int
__fp_tmp:w
\cs_set_protected:Npn
\cs_new:Npn
\use_none:n
\c__fp_prec_end_int
\exp_after:wN
\exp_after:wN
\exp_after:wN
\exp_after:wN
\exp_after:wN
__kernel_msg_expandable_error:nnn
__fp_parse_infix:NN
\exp_after:wN
\exp_after:wN
\exp_after:wN
\exp_after:wN
\cs_new:Npn
\cs_new:Npn
\exp_end_continue_f:w

28.7.2 Usual infix operators

As described in the “work plan”, each infix operator has an associated __fp_parse_infix__ function, a computing function, and precedence, given as arguments to __fp_tmp_:w. Using the general mechanism for arithmetic operations. The power operation must be associative in the opposite order from all others. For this, we use two distinct precedences.

28.7.3 Juxtaposition

When an opening parenthesis appears where we expect an infix operator, we compute the product of the previous operand and the contents of the parentheses using __fp_
parse_infix_mul:N.
18181 \cs_new:cpn { __fp_parse_infix_:N } #1
18182 \ cs_new:cpn { __fp_parse_infix_mul:N } #1 (}
(End definition for __fp_parse_infix_:N)

28.7.4 Multi-character cases

_fp_parse_infix_*:N

\cs_set_protected:Npm _fp_tmp:w #1
18183 \cs_new:cpn { __fp_parse_infix_*:N } ##1##2
18184 \if:w * \exp_not:N ##2
18185 \exp_after:wN #1
18186 \exp_after:wN ##1
18187 \else:
18188 \exp_after:wN _fp_parse_infix_mul:N
18189 \exp_after:wN ##1
18190 \exp_after:wN ##2
18191 \fi:
18192 }
18193 }
18194 \exp_args:Nc _fp_tmp:w { __fp_parse_infix_^:N }
(End definition for __fp_parse_infix_*:N)

_fp_parse_infix_|:Nw
_fp_parse_infix_&:Nw

\cs_set_protected:Npm _fp_tmp:w #1#2#3
18195 \cs_new:Npn #1 ##1##2
18196 \if:w #2 \exp_not:N ##2
18197 \exp_after:wN #1
18198 \exp_after:wN ##1
18199 \exp:w \exp_after:wN __fp_parse_expand:w
18200 \else:
18201 \exp_after:wN #3
18202 \exp_after:wN ##1
18203 \exp_after:wN ##2
18204 \fi:
18205 }
18206 }
18207 \exp_args:Nc _fp_tmp:w { __fp_parse_infix_|:N } | _fp_parse_infix_or:N
18208 \exp_args:Nc _fp_tmp:w { __fp_parse_infix_&:N } & _fp_parse_infix_and:N
(End definition for _fp_parse_infix_|:Nw and _fp_parse_infix_&:Nw.)

28.7.5 Ternary operator

_fp_parse_infix_?:N
_fp_parse_infix :::N

\cs_set_protected:Npm _fp_tmp:w #1#2#3#4
18211 \cs_new:Npm _fp_tmp:w #1 #1
18212

781
28.7.6 Comparisons

__fp_parse_infix_<:N
__fp_parse_infix=:N
__fp_parse_infix>:N
__fp_parse_excl_error:
__fp_parse_compare:NNNNNNN
__fp_parse_compare_auxi:xxxxxx
__fp_parse_compare_auxii:xxxxxxxx
__fp_parse_comp_end:xxxx
__fp_compare:WNWNW

(End definition for __fp_parse_infix_?:N and __fp_parse_infix::N)
\exp_after:wN __fp_parse_excl_error:
\else:
\exp_after:wN @
\exp_after:wN \use_none:n
\exp_after:wN __fp_parse_compare:NNNNNNN
\fi:
\cs_new:Npn __fp_parse_compare_auxi:NNNNNNN #1#2#3#4#5#6#7
{\if_case:w
__fp_int_eval:w \exp_after:wN ' \token_to_str:N #7 - '<
__fp_int_eval_end:
__fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\or: __fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\or: __fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\or: __fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\else: #1 __fp_parse_compare_end:NNNNw #3#4#5#6#7
\fi:
\cs_new:Npn __fp_parse_compare_auxii:NNNNNNN #1#2#3#4#5
{\exp_after:wN __fp_parse_compare_auxi:NNNNNNN #2#3#4#5#6#7
\exp_after:wN __fp_int_eval:w \exp_after:wN ' \token_to_str:N #7 - '<
__fp_int_eval_end:
__fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\or: __fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\or: __fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\or: __fp_parse_compare_auxii:NNNNNNN #2#3#4#5#6
\else: #1 __fp_parse_compare_end:NNNNw #3#4#5#6#7
\fi:
\cs_new:Npn __fp_parse_compare_end:NNNNw #1#2#3#4#5 \i:
\cs_new:Npn __fp_parse_apply_compare:NwNNNNNwN #1#2#3#4#5#6#7 #8@ #9
{\if_int_odd:w
\if_meaning:w \c_zero_fp #3
0
\else:
\if_case:w __fp_compare_back_any:ww #8 \exp_stop_f:
#5 \or: #6 \or: #7 \else: #4
\fi:
\fi:
\cs_new:Npn __fp_parse_apply_compare:NwNNNNNwN #1#2#3#4#5#6#7 #8@ #9
{\if_int_odd:w
\if_meaning:w \c_zero_fp #3
0
\else:
\if_case:w __fp_compare_back_any:ww #8 \exp_stop_f:
#5 \or: #6 \or: #7 \else: #4
\fi:
\fi:
\begin{verbatim}
\exp_stop_f:
\exp_after:wN __fp_parse_apply_compare_aux:NNwNN
\exp_after:wN \c_one_fp
\else:
\exp_after:wN __fp_parse_apply_compare_aux:NNwNN
\exp_after:wN \c_zero_fp
\fi:
#1 #8 #9
}
\cs_new:Npn __fp_parse_apply_compare_aux:NNwNN #1 #2 #3; #4
{
\if_meaning:w __fp_parse_compare:NNNNNNN #4
\exp_after:wN __fp_parse_continue_compare:NNwNN
\exp_after:wN #1
\exp_after:wN #2
\exp:w \exp_end_continue_f:w
__fp_exp_after_o:w #3;
\exp:w \exp_end_continue_f:w
\else:
\exp_after:wN __fp_parse_continue:NwN
\exp_after:wN #2
\exp:w \exp_end_continue_f:w
\exp_after:wN #1
\exp:w \exp_end_continue_f:w
\fi:
#4 #2
}
\cs_new:Npn __fp_parse_continue_compare:NNwNN #1#2 #3@ #4#5
{ #4 #2 #3@ #1 }
\end{verbatim}

(End definition for __fp_parse_infix_<:N and others.)

28.8 Tools for functions

__fp_parse_function_all_fp_o:fnw
Followed by \{function name\} \{code\} \{float array\} \@ this checks all floats are floating point numbers (no tuples).
\begin{verbatim}
\cs_new:Npn __fp_parse_function_all_fp_o:fnw #1#2#3 @
{ __fp_array_if_all_fp:nTF {#3} { #2 #3 @ } { __fp_error:nffn { fp-bad-args } {#1} { \fp_to_tl:n { \s__fp_tuple __fp_tuple_chk:w {#3} ; } } { } \exp_after:wN \c_nan_fp } }
\end{verbatim}

(End definition for __fp_parse_function_all_fp_o:fnw.)

__fp_parse_function_one_two:nnw
__fp_parse_function_one_two_error_o:w
__fp_parse_function_one_two_aux:nnw
__fp_parse_function_one_two_auxii:nnw
This is followed by \{function name\} \{code\} \{float array\} \@. It checks that the \{float array\} consists of one or two floating point numbers (not tuples), then leaves the \{code\} (if there is one float) or its tail (if there are two floats) followed by the \{float array\}. The
<code>__fp_parse_function_one_two:nnw</code> should start with a single token such as __fp_atan_default:w that deals with the single-float case.

The first __fp_if_type_fp:NTwFw test catches the case of no argument and the case of a tuple argument. The next one distinguishes the case of a single argument (no error, just add \c_one_fp) from a tuple second argument. Finally check there is no further argument.

```latex
\cs_new:Npn \__fp_parse_function_one_two:nnw #1#2#3
    \__fp_if_type_fp:NTwFw
    #3 { } \s__fp \__fp_parse_function_one_two_error_o:w \q_stop
    \__fp_parse_function_one_two_aux:nww (#1) (#2) #3
\cs_new:Npn \__fp_parse_function_one_two_error_o:w #1#2#3#4 @
    \__fp_error:nffn { fp-bad-args }
    (#2) { \fp_to_tl:n { \s__fp_tuple \__fp_tuple_chk:w {#4} ; } }
    \exp_after:wN \c_nan_fp
\cs_new:Npn \__fp_parse_function_one_two_aux:nww #1#2 #3; #4
    \__fp_if_type_fp:NTwFw #4 { } \s__fp
    \if_meaning:w @ #4
        \exp_after:wN \use_iv:nnnn
        \fi:
    \__fp_parse_function_one_two_error_o:w
    \q_stop
    \__fp_parse_function_one_two_auxii:nww (#1) (#2) #3; #4
\cs_new:Npn \__fp_parse_function_one_two_auxii:nww #1#2#3; #4 #5
    \if_meaning:w @ #5 \else:
        \exp_after:wN \__fp_parse_function_one_two_error_o:w
        \fi:
        \use_ii:nn {#1} { \use_none:n #2 } #3; #4; #5
\end{definition}
```

__fp_tuple_map_o:nw Apply \#1 to all items in the following tuple and expand once afterwards. The code \#1 should itself expand once after its result.

```latex
\cs_new:Npn \__fp_tuple_map_o:nw \__fp_tuple_map_loop_o:nw \__fp_tuple_map_o:nw
    \__fp_tuple_map_loop_o:nw \__fp_tuple_map_o:nw
```

785
__fp_tuple_mapthread_o:nww __fp_tuple_mapthread_loop_o:nn\n
Apply \#1 to pairs of items in the two following tuples and expand once afterwards.
__kernel_msg_new:nnn { kernel } { fp-deprecated } \{ '#1'-deprecated; use '#2' \}
__kernel_msg_new:nnn { kernel } { unknown-fp-word } \{ Unknown-fp-word '#1' \}
__kernel_msg_new:nnn { kernel } { fp-missing } \{ Missing-fp-word '#1' \}
__kernel_msg_new:nnn { kernel } { fp-extra } \{ Extra-fp-word '#1' \}
__kernel_msg_new:nnn { kernel } { fp-early-end } \{ Premature-end-in-fp-expression \}
__kernel_msg_new:nnn { kernel } { fp-after-e } \{ Cannot-use-fp after 'e' \}
__kernel_msg_new:nnn { kernel } { fp-missing-number } \{ Missing-number-before '#1' \}

786
29 l3fp-assign implementation

29.1 Assigning values

Floating point variables are initialized to be +0.

Simply use __fp_parse:n within various f-expanding assignments.

Copying a floating point is the same as copying the underlying token list.
29.2 Updating values

These match the equivalent functions in l3int and l3skip.

\fp_add:Nn For the sake of error recovery we should not simply set \#1 to \#1±(\#2); for instance, if \#2
is 0)+2, the parsing error would be raised at the last closing parenthesis rather than at
the closing parenthesis in the user argument. Thus we evaluate \#2 instead of just putting
parentheses. As an optimization we use __fp_parse:n rather than \fp_eval:n, which
would convert the result away from the internal representation and back.

\fp_add:cn \fp_gadd:cn
\fp_gadd:cn \fp_sub:cn \fp_gsub:cn
__fp_add:NNNn __fp_sub:NNNn __fp_add:NNNn
__fp_gadd:NNNn __fp_gsub:NNNn __fp_gadd:NNNn
__fp_gsub:NNNn __fp_gsub:NNNn

(End definition for \fp_add:Nn and others. These functions are documented on page 200.)
29.3 Showing values

\[\text{This shows the result of computing its argument by passing the right data to } \text{\texttt{\textbackslash tl_show_n}} \text{ or } \text{\texttt{\textbackslash tl_log_n}}. \]

\[\begin{align*}
\text{\texttt{\textbackslash fp_show_N}} & \text{\texttt{\textbackslash fp_log_N}} \\
\text{\texttt{\textbackslash tl_show_n}} & \text{\texttt{\textbackslash tl_log_n}}
\end{align*} \]

\[\text{\texttt{\textbackslash cs_new_protected_Np}} \text{\texttt{\textbackslash fp_show_N}} \{ \text{\texttt{\textbackslash __fp_show_NN \textbackslash tl_show_n}} \}
\]

\[\text{\texttt{\textbackslash cs_generate_variant_Nn \textbackslash fp_show_N}} \{ \text{\texttt{\textbackslash c}} \}
\]

\[\text{\texttt{\textbackslash cs_new_protected_Np \textbackslash fp_log_N}} \{ \text{\texttt{\textbackslash __fp_show_NN \textbackslash tl_log_n}} \}
\]

\[\text{\texttt{\textbackslash cs_generate_variant_Nn \textbackslash fp_log_N}} \{ \text{\texttt{\textbackslash c}} \}
\]

\[\text{\texttt{\textbackslash cs_new_protected_Np \texttt{__fp_show_NN \#1\#2}}}
\]

\[\{ \text{\texttt{\textbackslash _kernel_chk_defined_NT \#2}} \}
\]

\[\{ \text{\texttt{\textbackslash _exp_args:\texttt{_Nx \#1 \{ \text{\texttt{\textbackslash token_to_str:\texttt{_N} \#2}} \text{\texttt{\textbackslash _fp_to_tl_N \#2}} \}} \}} \]

\[\text{} (\text{End definition for } \text{\texttt{\textbackslash fp_show_N}}, \text{\texttt{\textbackslash fp_log_N}}, \text{ and } \text{\texttt{\textbackslash __fp_show_NN}}. \text{ These functions are documented on page 207.}) \]

\[\text{\texttt{\textbackslash fp_show_n}} \text{\texttt{\textbackslash fp_log_n}} \]

\[\text{\texttt{\textbackslash cs_new_protected_Np}} \text{\texttt{\textbackslash fp_show_n}}
\]

\[\{ \text{\texttt{\textbackslash msg_show_eval_Nn \textbackslash _fp_to_tl_n}} \}
\]

\[\text{\texttt{\textbackslash cs_new_protected_Np \textbackslash fp_log_n}}
\]

\[\{ \text{\texttt{\textbackslash msg_log_eval_Nn \textbackslash _fp_to_tl_n}} \}
\]

\[\text{} (\text{End definition for } \text{\texttt{\textbackslash fp_show_n}} \text{ and } \text{\texttt{\textbackslash fp_log_n}}. \text{ These functions are documented on page 207.}) \]

29.4 Some useful constants and scratch variables

\[\text{\texttt{\textbackslash c_one_fp}} \text{\texttt{\textbackslash c_e_fp}} \]

\[\text{\texttt{\textbackslash _exp_args:\texttt{_Nx \#1 \{ \text{\texttt{\textbackslash token_to_str:\texttt{_N} \#2}} \text{\texttt{\textbackslash _fp_to_tl_N \#2}} \}} \}} \]

\[\text{} (\text{End definition for } \text{\texttt{\textbackslash c_one_fp}} \text{ and } \text{\texttt{\textbackslash c_e_fp}}. \text{ These variables are documented on page 205.}) \]

\[\text{\texttt{\textbackslash c_pi_fp}} \text{\texttt{\textbackslash c_one_degree_fp}} \]

\[\text{\texttt{\textbackslash _exp_args:\texttt{_Nx \#1 \{ \text{\texttt{\textbackslash token_to_str:\texttt{_N} \#2}} \text{\texttt{\textbackslash _fp_to_tl_N \#2}} \}} \}} \]

\[\text{} (\text{End definition for } \text{\texttt{\textbackslash c_pi_fp}} \text{ and } \text{\texttt{\textbackslash c_one_degree_fp}}. \text{ These variables are documented on page 206.}) \]

\[\text{\texttt{\textbackslash l_tmpa_fp}} \text{\texttt{\textbackslash l_tmpb_fp}} \]

\[\text{} (\text{End definition for } \text{\texttt{\textbackslash l_tmpa_fp}} \text{ and others. These variables are documented on page 206.}) \]

789
30 l3fp-logic Implementation

Those functions may receive a variable number of arguments.

__fp_parse_word_max:N
__fp_parse_word_min:N

|\cs_new:Npn __fp_parse_word_max:N | { __fp_parse_function:NNN __fp_minmax_o:Nw 2 } |
|\cs_new:Npn __fp_parse_word_min:N | { __fp_parse_function:NNN __fp_minmax_o:Nw 0 } |

(End definition for __fp_parse_word_max:N and __fp_parse_word_min:N.)

30.1 Syntax of internal functions

- __fp_compare_npos:nwnw {⟨expo1⟩} ⟨body1⟩ ; {⟨expo2⟩} ⟨body2⟩ ;
- __fp_minmax_o:Nw ⟨sign⟩ ⟨floating point array⟩
- __fp_not_o:w ? ⟨floating point array⟩ (with one floating point number only)
- __fp_&_o:ww ⟨floating point⟩ ⟨floating point⟩
- __fp_|_o:ww ⟨floating point⟩ ⟨floating point⟩
- __fp_ternary:NwwN, __fp_ternary_auxi:NwwN, __fp_ternary_auxii:NwwN

have to be understood.

30.2 Tests

\fp_if_exist_p:N
\fp_if_exist_p:c
\fp_if_exist:NTF
\fp_if_nan_p:n
\fp_if_nan:nTF

Copies of the cs functions defined in l3basics.

\prg_new_eq_conditional:Nnn \fp_if_exist:N \cs_if_exist:N { TF , T , F , p }
\prg_new_eq_conditional:Nnn \fp_if_exist:c \cs_if_exist:c { TF , T , F , p }

(End definition for \fp_if_exist:NTF. This function is documented on page 202.)

\prg_new_conditional:Nnn \fp_if_nan:n __fp_kind:w { __fp_parse:n {#1} }
\prg_return_true:
\else:
\prg_return_false:
\fi:

(End definition for \fp_if_nan:nTF. This function is documented on page 261.)
30.3 Comparison

Within floating point expressions, comparison operators are treated as operations, so we evaluate #1, then compare with ±0. Tuples are true.

\input{fp_compare_p:n}
\input{fp_compare:nTF}
\input{__fp_compare_return:w}

Evaluate #1 and #3, using an auxiliary to expand both, and feed the two floating point numbers swapped to \texttt{__fp_compare_back_any:ww}, defined below. Compare the result with ’#2-‘, which is −1 for <, 0 for =, 1 for > and 2 for ?.

\input{fp_compare_p:nNn}
\input{fp_compare:nNnTF}
\input{__fp_compare_aux:wn}

\input{__fp_compare_back_any:ww}
\input{__fp_compare_back:ww}
\input{__fp_compare_nan:w}

\texttt{__fp_compare_back_any:ww} \langle y \rangle; \langle x \rangle;

Expands (in the same way as \texttt{\int_eval:n}) to −1 if \(x < y \), 0 if \(x = y \), 1 if \(x > y \), and 2 otherwise (denoted as \(x?y \)). If either operand is \texttt{nan}, stop the comparison with \texttt{__fp_compare_nan:w} returning 2. If \(x \) is negative, swap the outputs 1 and −1 (i.e., > and <); we can henceforth assume that \(x \geq 0 \). If \(y \geq 0 \), and they have the same type, either they are normal and we compare them with \texttt{__fp_compare_npos:nww}, or they
are equal. If $y \geq 0$, but of a different type, the highest type is a larger number. Finally, if $y \leq 0$, then $x > y$, unless both are zero.

Tuple and floating point numbers are not comparable so return 2 in mixed cases or when tuples have a different number of items. Otherwise compare pairs of items with $\text{	extunderscore fp_compare_back_any_ww}$ and if any don’t match return 2 (as int_value_w 02 exp_stop_f).

(End definition for $\text{\textunderscore fp_compare_back_any_ww}$, $\text{\textunderscore fp_compare_back_ww}$, and $\text{\textunderscore fp_compare_nan_w}$.)
\cs_new:Npn _fp_compare_back_tuple:ww #1; #2; \{ 2 \}
\cs_new:Npn _fp_tuple_compare_back:ww #1; #2; \{ 2 \}
\cs_new:Npn _fp_tuple_compare_back_tuple:ww \s__fp_tuple _fp_tuple_chk:w #1; #2; \{
\int_compare:nNnTF { _fp_array_count:n {#1} } = _fp_array_count:n {#2} \{
\int_value:w 0 _fp_tuple_compare_back_loop:w #1 { \s__fp \prg_break: } ; @ #2 { \s__fp \prg_break: } ; \prg_break_point:\exp_stop_f:
\} \{ 2 \}
\cs_new:Npn __fp_tuple_compare_back_loop:w #1#2 ; #3 @ #4#5 ; \{
\use_none:n #1 \use_none:n #4 \if_int_compare:w #1 = #3 \exp_stop_f:
_fp_tuple_compare_back_loop:w #2 \{ \s__fp \prg_break: } ; 0 _fp_tuple_compare_back_loop:w #3 @ #5 \prg_break_point:\exp_stop_f:
\} \{ 2 \}
\cs_new:Npn _fp_tuple_compare_back_loop:w #1#2 ; #3 @ #4#5 ; \{
\use_none:n #1 \use_none:n #4
\if_int_compare:w _fp_compare_back_any:ww #1 #2 ; #4 #5 ; \= 0 \exp_stop_f:
\else: 2 \exp_after:wN \prg_break:\fi:
_fp_tuple_compare_back_loop:w #3 @ #5 \prg_break_point:\exp_stop_f:
\}
\cs_new:Npn _fp_tuple_compare_back_loop:w #1#2 ; #3 @ #4#5 ; \{
\use_none:n #1 \use_none:n #4
\if_int_compare:w #1 = #3 \exp_stop_f:
_fp_compare_back_significand:nnnnnnnn #2 #4 _fp_compare_back_significand:nnnnnnnn #2 #4
\else:
\if_int_compare:w #1 < #3 - \fi: 1
\fi:
\fi:
\cs_new:Npn _fp_tuple_compare_back_loop:w #1#2 ; #3 @ #4#5 ; \{
\use_none:n #1 \use_none:n #4
\if_int_compare:w #1 = #3 \exp_stop_f:
_fp_compare_back_significand:nnnnnnnn #2 #4 _fp_compare_back_significand:nnnnnnnn #2 #4
\else:
\if_int_compare:w #1 < #3 - \fi: 1
\fi:
\fi:
\cs_new:Npn _fp_compare_npos:nwnw _fp_compare_npos:nwnw \{\langle exp_1 \rangle \langle body_1 \rangle \}; \{\langle exp_2 \rangle \langle body_2 \rangle \};
_fp_compare_npos:nwnw _fp_compare_npos:nwnw \{\langle exp_1 \rangle \langle body_1 \rangle \}; \{\langle exp_2 \rangle \langle body_2 \rangle \};
Within an \int_value:w \ldots \exp_stop_f: construction, this expands to 0 if the two numbers are equal, −1 if the first is smaller, and 1 if the first is bigger. First compare the exponents: the larger one denotes the larger number. If they are equal, we must compare significands. If both the first 8 digits and the next 8 digits coincide, the numbers are equal. If only the first 8 digits coincide, the next 8 decide. Otherwise, the first 8 digits are compared.
30.4 Floating point expression loops

\fp_do_until:nn, \fp_do_while:nn, \fp_until_do:nn, \fp_while_do:nn

These are quite easy given the above functions. The do_until and do_while versions execute the body, then test. The until_do and while_do do it the other way round.

\cs_new:Npn \fp_do_until:nn #1#2
\fp_do_until:nNnn #1#2#3#4

As above but not using the nNn syntax.
The approach here is somewhat similar to \int_step_function:nnnN. There are two
subtleties: we use the internal parser ___fp_parse:n to avoid converting back and forth
from the internal representation; and (due to rounding) even a non-zero step does not
guarantee that the loop counter increases.

\cs_new:Npn \fp_step_function:nnnN #1#2#3
{\exp_after:wN __fp_step:wwwN \exp:w \exp_end_continue_f:w __fp_parse_o:n {#1} \exp:w \exp_end_continue_f:w __fp_parse:o:n {#2} \exp:w \exp_end_continue_f:w __fp_parse:n {#3}}
\cs_generate_variant:Nn \fp_step_function:nnnN { nnnc }
\begin{macrocode}
\% Only floating point numbers (not tuples) are allowed arguments.
\% Only \enquote{normal} floating points (not ± 0, $\pm \text{\texttt{inf}}$, \texttt{nan}) can be used as step; if positive,
\% call \cs{_fp_step:NnnnnN} with argument $>$; otherwise $<$. This
\% function has one more argument than its integer counterpart, namely
\% the previous value, to catch the case where the loop has made no
\% progress. Conversion to decimal is done just before calling the
\% user’s function.
\% \end{macrocode}
\cs_new:Npn __fp_step:wwwN #1#2; #3#4; #5#6; #7
{__fp_if_type_fp:NTwFw #1 { } \s__fp \prg_break: \q_stop __fp_if_type_fp:NTwFw #3 { } \s__fp \prg_break: \q_stop __fp_if_type_fp:NTwFw #5 { } \s__fp \prg_break: \q_stop \use_i:nnnn { _fp_step_fp:wwwN #1#2; #3#4; #5#6; #7 } \prg_break_point: \use:n { __fp_error:nfff { fp-step-tuple } \{ \fp_to_tl:n { #1#2 ; } \} \{ \fp_to_tl:n { #3#4 ; } \} \{ \fp_to_tl:n { #5#6 ; } \} }
__kernel_msg_expandable_error:nnn { kernel } { zero-step } {#6}
__fp_error:nnfn { fp-bad-step } { }
\fp_to_tl:n { \s__fp __fp_chk:w #2#3#4 ; } {#6}
\use_none:nnnnn
\{ #1 ; } { \c_nan_fp } { \s__fp __fp_chk:w #2#3#4 ; } { #5 ; } #6
\cs_new:Npn __fp_step:NNnnnn
\{ \int_gincr:N \g__kernel_prg_map_int
\exp_args:NNc __fp_step:NNnnnn
\cs_gset_protected:Npn \{ __fp_map_ \int_use:N \g__kernel_prg_map_int :w \}
\cs_new_protected:Npn \fp_step_variable:nnnNn #1#2#3#4#5#6
{ \int_step_inline:nnnn #1 \exp_args:Nf #6 { __fp_to_decimal_dispatch:w #2 } __fp_step:NfnnnN #1 __fp_parse:n { #2 + #4 } {#2} {#4} {#5} #6
\}
\cs_generate_variant:Nn __fp_step:NnnnnN { Nf }
(End definition for \fp_step_function:nnnN and others. This function is documented on page 205.)

As for \int_step_inline:nnnn, create a global function and apply it, following up with a break point.
\cs_new_protected:Npn \fp_step_inline:nnnn
\{ \int_gincr:N \g__kernel_prg_map_int
\exp_args:NNc __fp_step:NNnnnn
\cs_gset_protected:Npn \{ __fp_map_ \int_use:N \g__kernel_prg_map_int :w \}
\cs_new_protected:Npn \fp_step_variable:nnnNn #1#2#3#4#5
796
First check all operands are floating point numbers. The argument #1 is 2 to find the maximum of an array #2 of floating point numbers, and 0 to find the minimum. We read numbers sequentially, keeping track of the largest (smallest) number found so far. If numbers are equal (for instance ±0), the first is kept. We append −∞ (∞), for the case of an empty array. Since no number is smaller (larger) than that, this additional item only affects the maximum (minimum) in the case of \texttt{max()} and \texttt{min()} with no argument. The weird \texttt{fp}-like trailing marker breaks the loop correctly: see the precise definition of \texttt{__fp_minmax_loop:Nww}.
The first argument is − or + to denote the case where the currently largest (smallest) number found (first floating point argument) should be replaced by the new number (second floating point argument). If the new number is nan, keep that as the extremum, unless that extremum is already a nan. Otherwise, compare the two numbers. If the new number is larger (in the case of max) or smaller (in the case of min), the test yields true, and we keep the second number as a new maximum; otherwise we keep the first number. Then loop.

_fp_minmax_loop:ww

Keep the first/second number, and remove the other.

_fp_minmax_auxi:ww

This function is called from within an \if_meaning:w test. Skip to the end of the tests, close the current test with \fi:, clean up, and return the appropriate number with one post-expansion.

_fp_minmax_break:o:w

(End definition for _fp_minmax_auxi:ww and _fp_minmax_auxii:ww.)

(End definition for _fp_minmax_loop:ww.)

(End definition for _fp_minmax_o:Nw and _fp_minmax_aux_o:Nw.)
30.6 Boolean operations

Return true or false, with two expansions, one to exit the conditional, and one to please \texttt{l3fp-parse}. The first argument is provided by \texttt{l3fp-parse} and is ignored.

\begin{verbatim}
\cs_new:Npn __fp_not_o:w #1 \s__fp __fp_chk:w #2\#3; @
\end{verbatim}
\begin{verbatim}
\if_meaning:w 0 #2 \exp_after:wN \exp_after:wN \exp_after:wN \c_one_fp
\else:
\exp_after:wN \exp_after:wN \exp_after:wN \c_zero_fp
\fi:
\end{verbatim}
\begin{verbatim}
\cs_new:Npn __fp_tuple_not_o:w @ { \exp_after:wN \c_zero_fp }
\end{verbatim}
\begin{verbatim}
\end{definition for __fp_not_o:w and __fp_tuple_not_o:w.}
\end{verbatim}

For and, if the first number is zero, return it (with the same sign). Otherwise, return the second one. For or, the logic is reversed: if the first number is non-zero, return it, otherwise return the second number: we achieve that by hi-jacking __fp_&_o:ww, inserting an extra argument, \texttt{\else:}, before \texttt{\s__fp}. In all cases, expand after the floating point number.

\begin{verbatim}
\if_meaning:w 0 #2 __fp_and_return:wNw \s__fp __fp_chk:w #2\#3;
\else:
__fp_exp_after_o:w
\fi:
\end{verbatim}
\begin{verbatim}
\cs_new:Npn __fp_&_tuple_o:ww #1 \s__fp __fp_chk:w #2\#3;
\end{verbatim}
\begin{verbatim}
\if_meaning:w 0 #2 __fp_and_return:wNw \s__fp __fp_chk:w #2\#3;
\else:
__fp_exp_after_tuple_o:w
\fi:
\end{verbatim}
\begin{verbatim}
\cs_new:Npn __fp_tuple_&_o:ww #1; \fi: __fp_exp_after_o:w
\end{verbatim}
\begin{verbatim}
__fp_and_return:wNw #1; \fi: __fp_exp_after_o:w
\end{verbatim}
\begin{verbatim}
\end{definition for __fp_&_o:ww and others.}
\end{verbatim}
30.7 Ternary operator

The first function receives the test and the true branch of the ?:: ternary operator. It calls __fp_ternary_auxii:NwwN if the test branch is a floating point number ±0, and otherwise calls __fp_ternary_auxi:NwwN. These functions select one of their two arguments.

\begin{verbatim}
\cs_new:Npn __fp_ternary:NwwN #1 #2#30 #40 #5
\{ \if_meaning:w __fp_parse_infix::N #5 \if_charcode:w 0 __fp_if_type_fp:NTwFw
\#2 \{ \use_i:nn \use_i_delimit_by_q_stop:nw #3 \q_stop \s__fp 1 \q_stop \exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxii:NwwN \else:
\exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxi:NwwN \fi:
\exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxii:NwwN \fi:
\end{verbatim}

(End definition for __fp_ternary:NwwN, __fp_ternary_auxi:NwwN, and __fp_ternary_auxii:NwwN.)
31 l3fp-basics Implementation

The l3fp-basics module implements addition, subtraction, multiplication, and division of two floating points, and the absolute value and sign-changing operations on one floating point. All operations implemented in this module yield the outcome of rounding the infinitely precise result of the operation to the nearest floating point.

Some algorithms used below end up being quite similar to some described in “What Every Computer Scientist Should Know About Floating Point Arithmetic”, by David Goldberg, which can be found at http://cr.yp.to/2005-590/goldberg.pdf.

 Unary functions.
\begin{Verbatim}
__fp_parse_word_abs:N
__fp_parse_word_logb:N
__fp_parse_word_sign:N
__fp_parse_word_sqrt:N
\end{Verbatim}

A more obscure function, \texttt{__fp_add_big_i_o:wNww}, is used in l3fp-expo. The logic goes as follows:

- \texttt{__fp_-_o:ww} calls \texttt{__fp_+_o:ww} to do the work, with the sign of the second operand flipped;
- \texttt{__fp_+_o:ww} dispatches depending on the type of floating point, calling specialized auxiliaries;
- in all cases except summing two normal floating point numbers, we return one or the other operands depending on the signs, or detect an invalid operation in the case of \(\infty - \infty \);
- for normal floating point numbers, compare the signs;
- to add two floating point numbers of the same sign or of opposite signs, shift the significand of the smaller one to match the bigger one, perform the addition or subtraction of significands, check for a carry, round, and pack using the \texttt{__fp_-_basics_pack...} functions.

The trickiest part is to round correctly when adding or subtracting normal floating point numbers.
31.1.1 Sign, exponent, and special numbers

__fp_-_o:ww

The __fp_+_o:ww auxiliary has a hook: it takes one argument between the first \s__-fp and __fp_chk:w, which is applied to the sign of the second operand. Positioning the hook there means that __fp_+_o:ww can still perform the sanity check that it was followed by \s__-fp.

\cs_new:cpx { __fp_-_o:ww } \s__fp
\exp_not:c { __fp_+_o:ww }
\exp_not:n { \s__fp __fp_neg_sign:N }

(End definition for __fp_-_o:ww.)

__fp_+_o:ww

This function is either called directly with an empty #1 to compute an addition, or it is called by __fp_-_o:ww with __fp_neg_sign:N as #1 to compute a subtraction, in which case the second operand’s sign should be changed. If the ⟨types⟩ #2 and #4 are the same, dispatch to case #2 (0, 1, 2, or 3), where we call specialized functions: thanks to \int_value:w, those receive the tweaked ⟨sign2⟩ (expansion of #1#5) as an argument. If the ⟨types⟩ are distinct, the result is simply the floating point number with the highest ⟨type⟩. Since case 3 (used for two nan) also picks the first operand, we can also use it when ⟨type1⟩ is greater than ⟨type2⟩. Also note that we don’t need to worry about ⟨sign2⟩ in that case since the second operand is discarded.

\cs_new:cpn { __fp_+_o:ww }
\s__fp #1 __fp_chk:w #2 #3 ; \s__fp __fp_chk:w #4 #5
\if_case:w
\if_meaning:w #2 #4 #2
\else:
\if_int_compare:w #2 > #4 \exp_stop_f:
3
\else:
4
\fi:
\fi:
\exp_after:wN __fp_add_zeros_o:Nww \int_value:w
\or: \exp_after:wN __fp_add_normal_o:Nww \int_value:w
\or: \exp_after:wN __fp_add_inf_o:Nww \int_value:w
\or: __fp_case_return_i_o:ww
\else: \exp_after:wN __fp_add_return_ii_o:ww \int_value:w
\fi:
\fi:
#1 #5
\s__fp __fp_chk:w #2 #3 ;
\s__fp __fp_chk:w #4 #5
}

(End definition for __fp_+_o:ww.)

__fp_add_return_ii_o:ww

Ignore the first operand, and return the second, but using the sign #1 rather than #4. As usual, expand after the floating point.

\cs_new:fpn __fp_add_return_ii_o:Nww #1 #2 ; \s__fp __fp_chk:w #3 #4
\{ __fp_exp_after_o:w \s__fp __fp_chk:w #3 #1 \}

802
Adding two zeros yields \texttt{c_zero_fp}, except if both zeros were -0.

```latex
\begin{verbatim}
\__fp_add_zeros_o:Nww
#1 \s__fp \__fp_chk:w 0 #2
  \if_int_compare:w #2 #1 = 20 \exp_stop_f:
    \exp_after:wN \__fp_add_return_ii_o:Nww
  \else:
    \__fp_case_return_i_o:ww
    \fi:
    #1
    \s__fp \__fp_chk:w 0 #2
  }
\end{verbatim}
```

If both infinities have the same sign, just return that infinity, otherwise, it is an invalid operation. We find out if that invalid operation is an addition or a subtraction by testing whether the tweaked \texttt{\langle sign2 \rangle} (#1) and the \texttt{\langle sign2 \rangle} (#4) are identical.

```latex
\begin{verbatim}
\__fp_add_inf_o:Nww
#1 \s__fp \__fp_chk:w 2 #2 #3; \s__fp \__fp_chk:w 2 #4
  \if_meaning:w #1 #2
    \__fp_case_return_i_o:ww
  \else:
    \__fp_case_use:nw
      \exp_last_unbraced:Nf \__fp_invalid_operation_o:Nww
      \{ \token_if_eq_meaning:NNTF #1 #4 + - \}
  \fi:
  \s__fp \__fp_chk:w 2 #2 #3;
  \s__fp \__fp_chk:w 2 #4
\end{verbatim}
```

We now have two normal numbers to add, and we have to check signs and exponents more carefully before performing the addition.

```latex
\begin{verbatim}
\__fp_add_normal_o:Nww
\langle sign2 \rangle \s__fp \__fp_chk:w 1 \langle sign1 \rangle \langle exp1 \rangle \langle body1 \rangle; \s__fp \__fp_chk:w 1 \langle initial sign2 \rangle \langle exp2 \rangle \langle body2 \rangle;
\end{verbatim}
```
31.1.2 Absolute addition

In this subsection, we perform the addition of two positive normal numbers.

\[\begin{align*}
\text{__fp_add_npos_o:NwNw} & \text{__fp_add_npos_o:NwNw} (\text{sign}_1) (\text{exp}_1) (\text{body}_1) ; \text{s__fp __fp_chk:w} 1 \\
\text{__fp_add_npos_o:NwNw} & \text{__fp_add_npos_o:NwNw} (\text{initial sign}_2) (\text{exp}_2) (\text{body}_2) ;
\end{align*}\]

Since we are doing an addition, the final sign is \(\text{__fp_int_eval:w}\) responsible for computing the exponent: the result, and the \(\text{__fp_chk:w}\) are then given to \(\text{__fp_sanitize:Nw}\) which checks for overflow. The exponent is computed as the largest exponent \#2 or \#5, incremented if there is a carry. To add the significands, we decimate the smaller number by the difference between the exponents. This is done by \(\text{__fp_add_big_i:o:wNwN}\) or \(\text{__fp_add_big_ii:o:wNwN}\). We need to bring the final sign with us in the midst of the calculation to round properly at the end.

\[\begin{align*}
\text{__fp_add_npos_o:NwNw} & \text{__fp_add_npos_o:NwNw} #1\#2\#3 ; \text{s__fp __fp_chk:w} 1 \#4 \#5 \\
\{ \text{__fp_add_npos_o:NwNw} & \text{__fp_add_npos_o:NwNw} \#1\#2\#3 ; \text{s__fp __fp_chk:w} 1 \#4 \#5 \\
\text{__fp_add_npos_o:NwNw} & \text{__fp_add_npos_o:NwNw} \#1\#2\#3 ; \text{s__fp __fp_chk:w} 1 \#4 \#5 \\
\text{__fp_add_npos_o:NwNw} & \text{__fp_int_eval:w} #2 > \#5 \text{__fp_stop_f:} \\
\text{__fp_add_npos_o:NwNw} & \text{__fp_int_eval:w} \#2 \\
\text{__fp_add_npos_o:NwNw} & \text{__fp_int_eval:w} \#5 - \#2 ; \#1 \#3; \\
\}
\end{align*}\]

(End definition for \(\text{__fp_add_npos_o:NwNw}\).)

\[\begin{align*}
\text{__fp_add_big_i:o:wNwN} & \text{__fp_add_big_i:o:wNwN} \langle \text{shift} \rangle ; \langle \text{final sign} \rangle (\text{body}_1) ; (\text{body}_2) ; \\
\text{__fp_add_big_ii:o:wNwN} & \text{__fp_add_big_ii:o:wNwN} \langle \text{shift} \rangle ;
\end{align*}\]

Used in \text{l3fp-expo}. Shift the significand of the small number, then add with \(\text{__fp_add_significand_o:NnnnnN}\).

\[\begin{align*}
\text{__fp_add_big_i:o:wNwN} & \text{__fp_add_big_i:o:wNwN} \#1; \#2 \#3; \#4; \\
\text{__fp_add_big_ii:o:wNwN} & \text{__fp_add_big_ii:o:wNwN} \#1; \#2 \#3; \#4; \\
\end{align*}\]

(End definition for \(\text{__fp_add_big_i:o:wNwN}\) and \(\text{__fp_add_big_ii:o:wNwN}\).)
To round properly, we must know at which digit the rounding should occur. This requires to know whether the addition produces an overall carry or not. Thus, we do the computation now and check for a carry, then go back and do the rounding. The rounding may cause a carry in very rare cases such as \(0.99 \ldots 95 \rightarrow 1.00 \ldots 0\), but this situation always give an exact power of \(10\), for which it is easy to correct the result at the end.

If there's no carry, grab all the digits again and round. The packing function \(_____fp_basics_pack_high:NNNNNw\) takes care of the case where rounding brings a carry.
The case where there is a carry is very similar. Rounding can even raise the first
digit from 1 to 2, but we don’t care.

```latex
\texttt{\textbackslash cs\_new\textbackslash Np n \textbackslash _fp\_add\_significand\_carry\_o\textbackslash wwwNN}
\texttt{\#1; \#2; \#3; \#4; \#5; \#6}
\texttt{+ 1}
```

\texttt{\exp_after:w \textbackslash _fp_basics_pack_weird_high:NNNNNNNNNNw}
\texttt{\int_value:w \textbackslash _fp_int_eval:w 1 1 \#1}
\texttt{\exp_after:w \textbackslash _fp_basics_pack_weird_low:NNNNw}
\texttt{\int_value:w \textbackslash _fp_int_eval:w 1 \#2\#3 +}
\texttt{\exp_after:w \textbackslash _fp_round:NNN}
\texttt{\exp_after:w \#6}
\texttt{\exp_after:w \#3}
\texttt{\int_value:w \textbackslash _fp_round_digit:Nw \#4 \#5 ;}
\texttt{\exp_after:w ;}

\texttt{(End definition for \textbackslash _fp_add_significand_carry_o\textbackslash wwwNN.)}

31.1.3 Absolute subtraction

\texttt{\textbackslash _fp_sub_npos_o\textbackslash NnwNnw}
\texttt{\textbackslash _fp_sub_eq_o\textbackslash NnwNnw}
\texttt{\textbackslash _fp_sub_npos_ii_o\textbackslash NnwNnw}

Rounding properly in some modes requires to know what the sign of the result will be. Thus, we start by comparing the exponents and significands. If the numbers coincide, return zero. If the second number is larger, swap the numbers and call \texttt{\textbackslash _fp_sub_npos_-i_o\textbackslash NnwNnw} with the opposite of \texttt{\textbackslash sign1}.

```latex
\texttt{\textbackslash cs\_new\textbackslash Np n \textbackslash _fp\_sub\_npos\_o\textbackslash NnwNnw \{\textbackslash sign1\} \{\textbackslash exp1\} \{\textbackslash body1\} ; \textbackslash s\_\textbackslash _fp \textbackslash _fp\_chk\_w 1}
\texttt{\textbackslash initial\ \textbackslash sign2\} \{\textbackslash exp2\} \{\textbackslash body2\} ;}
```

\texttt{\exp_after:w \textbackslash _fp_compare_npos_nwwNw \{\#2\} \#3; \{\#5\} \#6; \exp_stop_f:}
\texttt{\exp_after:w \textbackslash _fp_sub_eq_o\textbackslash NnwNnw}
\texttt{\texttt{|or:}}
\texttt{\exp_after:w \textbackslash _fp_sub_npos_i_o\textbackslash NnwNnw}
\texttt{\texttt{|else:}}
\texttt{\exp_after:w \textbackslash _fp_sub_npos_ii_o\textbackslash NnwNnw}
\texttt{\if:}
\texttt{\#1 \{\#2\} \#3; \{\#5\} \#6;}
\texttt{\}]
```

\texttt{(End definition for \textbackslash _fp\_sub\_npos\_o\textbackslash NnwNnw, \textbackslash _fp\_sub\_eq\_o\textbackslash NnwNnw, and \textbackslash _fp\_sub\_npos\_ii\_o\textbackslash NnwNnw.)}

\texttt{\textbackslash _fp\_sub\_npos\_i\_o\textbackslash NnwNnw}

After the computation is done, \texttt{\textbackslash _fp\_sanitize:Nw} checks for overflow/underflow. It expects the \texttt{\textbackslash final\ \textbackslash sign} and the \texttt{\textbackslash exponent} (delimited by ;). Start an integer expression for the exponent, which starts with the exponent of the largest number, and may be decreased if the two numbers are very close. If the two numbers have the same exponent, call the \texttt{near} auxiliary. Otherwise, decimate \texttt{y}, then call the \texttt{far} auxiliary to evaluate
the difference between the two significands. Note that we decimate by 1 less than one could expect.

\begin{verbatim}
\cs_new:Npn \__fp_sub_npos_i_o:Nnwnw #1 #2#3; #4#5;
\exp_after:wN \__fp_sanitize:Nw
\exp_after:wN \int_value:w \__fp_int_eval:w #2
\if_int_compare:w #2 = #4 \exp_stop_f:
\exp_after:wN \__fp_sub_back_near_o:nnnnnnnN
\else:
\exp_after:wN \__fp_decimate:nNnnnn \exp_after:wN { \int_value:w \__fp_int_eval:w #2 - #4 - 1 \exp_after:wN }
\exp_after:wN \__fp_sub_back_far_o:NnnwnnnnN
\fi:
#5
#3
#1
\}
\end{verbatim}

(End definition for \__fp_sub_npos_i_o:Nnwnw.)

\begin{verbatim}
\__fp_sub_back_near_o:nnnnnnnN \{⟨Y1⟩\} \{⟨Y2⟩\} \{⟨Y3⟩\} \{⟨Y4⟩\} \{⟨X1⟩\} \{⟨X2⟩\} \{⟨X3⟩\} \{⟨X4⟩\} \{final sign\}

In this case, the subtraction is exact, so we discard the \{final sign\} \#9. The very large shifts of 10^9 and 1.1 \cdot 10^9 are unnecessary here, but allow the auxiliaries to be reused later. Each integer expression produces a 10 digit result. If the resulting 16 digits start with a 0, then we need to shift the group, padding with trailing zeros.

\begin{verbatim}
\cs_new:Npn \__fp_sub_back_near_o:nnnnnnnnN #1#2#3#4 #5#6#7#8 #9
\exp_after:wN \__fp_sub_back_near_after:wNNNNw
\int_value:w \__fp_int_eval:w 10#5#6 - #1#2 - 11
\exp_after:wN \__fp_sub_back_near_pack:NNNNNNw
\int_value:w \__fp_int_eval:w 11#7#8 - #3#4 \exp_after:wN ;
\end{verbatim}

(End definition for \__fp_sub_back_near_o:nnnnnnnnN, \__fp_sub_back_near_pack:NNNNNNw, and \__fp_sub_back_near_after:wNNNNw.)

\begin{verbatim}
\__fp_sub_back_shift:wnnnn
\__fp_sub_back_shift_ii:ww
\exp_after:wN \__fp_sub_back_shift_iii:NNNNNNww
\exp_after:wN \__fp_sub_back_shift_iv:nnnnw
\__fp_sub_back_shift:wnnnn ; \{⟨Z1⟩\} \{⟨Z2⟩\} \{⟨Z3⟩\} \{⟨Z4⟩\} ;

This function is called with \langle Z_i \rangle \leq 999. Act with \number to trim leading zeros from \langle Z_i \rangle \langle Z_j \rangle (we don’t do all four blocks at once, since non-zero blocks would then overflow \TeX’s integers). If the first two blocks are zero, the auxiliary receives an empty \#1 and trims \#2#30 from leading zeros, yielding a total shift between 7 and 16 to the exponent. Otherwise we get the shift from \#1 alone, yielding a result between 1 and 6. Once the

\end{verbatim}

807
exponent is taken care of, trim leading zeros from \#1\#2\#3 (when \#1 is empty, the space before \#2\#3 is ignored), get four blocks of 4 digits and finally clean up. Trailing zeros are added so that digits can be grabbed safely.

\begin{Verbatim}
\cs_new:Npn \__fp_sub_back_shift:wnnn ; #1#2 #3 #4
\{ \exp_after:wN \__fp_sub_back_shift_ii:ww
  \int_value:w #1 #2 0 ; \}
\cs_new:Npn \__fp_sub_back_shift_ii:ww #1 0 ; #2#3 ;
\{ \if_meaning:w @ #1 @ - 7
  \exp_after:wN \use_i:nnn \exp_after:wN \__fp_sub_back_shift_iii:NNNNNNNNw
  \int_value:w #2#3 0 - 123456789 ; \}
\else:
  - \__fp_sub_back_shift_iii:NNNNNNNNw #1 123456789 ;
  \fi:
  \exp_after:wN \__fp_pack_twice_four:wNNNNNNNN
  \exp_after:wN \__fp_pack_twice_four:wNNNNNNNN
  \exp_after:wN \__fp_sub_back_shift_iv:nnnnw
  \exp_after:wN ;
  \int_value:w #1 #2#3 0 #4 #5 #6 #7 #8 #9 ; \}
\cs_new:Npn \__fp_sub_back_far_o:NnnwnnnnN #1 #2 #3
\{ \exp_after:wN \__fp_sub_back_quite_far_o:wwNN
\{ \exp_after:wN \__fp_sub_back_very_far_o:wwwwNN
\end{Verbatim}

\section*{End definition for \__fp_sub_back_shift:wnnn and others.}

\section*{\__fp_sub_back_far_o:NnnwnnnN (rounding) \{(Y'_1)\} \{(Y'_2)\}
\{extra-digits\} ; \{(X_1)\} \{(X_2)\} \{(X_3)\} \{(X_4)\} \{final sign\}

If the difference is greater than 10^{(\text{expo})}, call the \verb!very_far! auxiliary. If the result is less than 10^{(\text{expo})}, call the \verb!not_far! auxiliary. If it is too close a call to know yet, namely if 1(Y'_1)Y'_2 = (X_1)(X_2)(X_3)(X_4)\{0\}, then call the \verb!quite_far! auxiliary. We use the odd combination of space and semi-colon delimiters to allow the \verb!not_far! auxiliary to grab each piece individually, the \verb!very_far! auxiliary to use \__fp_pack_eight:wwNNNNNNNN, and the \verb!quite_far! to ignore the significands easily (using the ; delimiter).

\begin{Verbatim}
\cs_new:Npn \__fp_sub_back_far_o:NnnwnnnN #1 #2 #3 #4 #5 #6 #7 #8
\{ \if_case:w
  \if_int_compare:w 1 #2 = #5#6 \use_i:nnn #7 \exp_stop_f:
    \if_int_compare:w #3 = \use_none:n #7#8 0 \exp_stop_f:
      0
    \else:
      \if_int_compare:w #3 > \use_none:n #7#8 0 - \fi: 1
    \fi:
  \else:
    \if_int_compare:w 1 #2 > #5#6 \use_i:nnn #7 - \fi: 1
  \fi:
  \exp_stop_f:
\end{Verbatim}

\section*{\__fp_sub_back_quite_far_o:wwNNN and \__fp_sub_back_very_far_o:wwwwNNN}

808
The easiest case is when \( x - y \) is extremely close to a power of 10, namely the first digit of \( x \) is 1, and all others vanish when subtracting \( y \). Then the \langle rounding \rangle #3 and the \langle final sign \rangle #4 control whether we get 1 or 0.99999999999999999. In the usual round-to-nearest mode, we get 1 whenever the \langle rounding \rangle digit is less than or equal to 5 (remember that the \langle rounding \rangle digit is only equal to 5 if there was no further non-zero digit).

In the present case, \( x \) and \( y \) have different exponents, but \( y \) is large enough that \( x - y \) has a smaller exponent than \( x \). Decrement the exponent (with -1). Then proceed in a way similar to the near auxiliaries seen earlier, but multiplying \( x \) by 10 (#30 and #40 below), and with the added quirk that the \langle rounding \rangle digit has to be taken into account. Namely, we may have to decrease the result by one unit if \__fp_round_neg:NNN returns 1. This function expects the \langle final sign \rangle #6, the last digit of \( 1100000000 + #40 - #2 \), and the \langle rounding \rangle digit. Instead of redoing the computation for the second argument, we note that \__fp_round_neg:NNN only cares about its parity, which is identical to that of the last digit of #2.

(End definition for \__fp_sub_back_far_o:NNwNNN and \__fp_sub_back_quite_far_ii:NN.)
The case where \( x - y \) and \( x \) have the same exponent is a bit more tricky, mostly because it cannot reuse the same auxiliaries. Shift the \( y \) significand by adding a leading 0. Then the logic is similar to the not_far functions above. Rounding is a bit more complicated: we have two \( \langle \text{rounding} \rangle \) digits \( #3 \) and \( #6 \) (from the decimation, and from the new shift) to take into account, and getting the parity of the main result requires a computation. The first \( \\text{int\_value:}w \) triggers the second one because the number is unfinished; we can thus not use 0 in place of 2 there.

\[
\text{cs\_new:Hpn \_\_fp\_sub\_back\_very\_far\_o:wwwwNN \#1#2#3#4#5#6#7}
\]
\[
\{ \_\_fp\_pack\_eight:wNNNNNNNN \_\_fp\_sub\_back\_very\_far\_ii\_o:nnNwwNN \{ 0 \ #1#2#3 \ #4#5#6#7 \} ; \}
\]
\[
\text{cs\_new:Hpn \_\_fp\_sub\_back\_very\_far\_ii\_o:nnNwwNN \#1#2 ; \#3 ; \#4 - \#5; \#6#7}
\]
\[
\{ \exp\_after:wN \_\_fp\_basics\_pack\_high:NNNNNNw \text\_int\_value:w \_\_fp\_int\_eval:w 1#4 - \#1 - 1 \exp\_after:wN \_\_fp\_basics\_pack\_low:NNNNNNw \text\_int\_value:w \_\_fp\_int\_eval:w 2#5 - \#2 - \exp\_after:wN \_\_fp\_round\_neg:NNNNNw \text\_int\_value:w \_\_fp\_round\_digit:Nw \#3 \#6 ; \exp\_after:wN ; \}
\]

(End definition for \_\_fp\_sub\_back\_very\_far\_o:wwwwNN and \_\_fp\_sub\_back\_very\_far\_ii\_o:nnNwwNN.)

## 31.2 Multiplication

### 31.2.1 Signs, and special numbers

\_\_fp\_\_*\_o:ww We go through an auxiliary, which is common with \_\_fp\_/\_o:ww. The first argument is the operation, used for the invalid operation exception. The second is inserted in a formula to dispatch cases slightly differently between multiplication and division. The third is the operation for normal floating points. The fourth is there for extra cases needed in \_\_fp\_/\_o:ww.

\[
\text{cs\_new:cpn \{ \_\_fp\_*\_o:ww \} }
\]
\[
\_\_fp\_mul\_cases\_o:NnNww * \{ - 2 + \} \_\_fp\_mul\_npos\_o:Nww \}
\]

(End definition for \_\_fp\_\_*\_o:ww.)

\_\_fp\_mul\_cases\_o:nNnww Split into 10 cases (12 for division). If both numbers are normal, go to case 0 (same sign) or case 1 (opposite signs): in both cases, call \_\_fp\_mul\_npos\_o:Nww to do the work. If
the first operand is \texttt{nan}, go to case 2, in which the second operand is discarded; if the second operand is \texttt{nan}, go to case 3, in which the first operand is discarded (note the weird interaction with the final test on signs). Then we separate the case where the first number is normal and the second is zero: this goes to cases 4 and 5 for multiplication, 10 and 11 for division. Otherwise, we do a computation which dispatches the products $0 \times 0 = 0 \times 1 = 1 \times 0 = 0$ to case 4 or 5 depending on the combined sign, the products $0 \times \infty$ and $\infty \times 0$ to case 6 or 7 (invalid operation), and the products $1 \times \infty = \infty \times 1 = \infty \times \infty = \infty$ to cases 8 and 9. Note that the code for these two cases (which return $\pm \infty$) is inserted as argument #4, because it differs in the case of divisions.

\begin{verbatim}
\cs_new:Npn \__fp_mul_cases_o:NnNnww
\end{verbatim}

31.2.2 Absolute multiplication

In this subsection, we perform the multiplication of two positive normal numbers.
After the computation, \_fp\_sanitize:Nw checks for overflow or underflow. As we did for addition, \_fp\_int\_eval:w computes the exponent, catching any shift coming from the computation in the significand. The \textit{(final sign)} is needed to do the rounding properly in the significand computation. We setup the post-expansion here, triggered by \_fp\_mul\_significand_o:nnnnNnnnn.

This is also used in \_fp-convert.

The product of two 16 digit integers has 31 or 32 digits, but it is impossible to know which one before computing. The place where we round depends on that number of digits, and may depend on all digits until the last in some rare cases. The approach is thus to compute the 5 first blocks of 4 digits (the first one is between 100 and 9999 inclusive), and a compact version of the remaining 3 blocks. Afterwards, the number of digits is known, and we can do the rounding within yet another set of \_fp\_int\_eval:w.

Note the three semicolons at the end of the definition. One is for the last \_fp\_mul\_significand\_drop:NNNNNw; one is for \_fp\_round\_digit:Nw later on; and one, preceded by \exp\_after:wN, which is correctly expanded (within an \_fp\_int\_eval:w), is used by \_fp\_basics\_pack\_low:NNNNNw.

The product of two 16 digit integers has 31 or 32 digits, but it is impossible to know which one before computing. The place where we round depends on that number of digits, and may depend on all digits until the last in some rare cases. The approach is thus to compute the 5 first blocks of 4 digits (the first one is between 100 and 9999 inclusive), and a compact version of the remaining 3 blocks. Afterwards, the number of digits is known, and we can do the rounding within yet another set of \_fp\_int\_eval:w.
\_fp\_mul\_significand\_test\_f:NNN (sign) 1 \langle digits 1–8 \rangle; \langle digits 9–12 \rangle; + \langle digits 17–20 \rangle + \langle digits 21–24 \rangle + \langle digits 25–28 \rangle + \langle digits 29–32 \rangle; \exp_after:wN ;

If the \langle digit 1 \rangle is non-zero, then for rounding we only care about the digits 16 and 17, and whether further digits are zero or not (check for exact ties). On the other hand, if \langle digit 1 \rangle is zero, we care about digits 17 and 18, and whether further digits are zero.

\_fp\_mul\_significand\_large\_f:NwwNNN

In this branch, \langle digit 1 \rangle is non-zero. The result is thus \langle digits 1–16 \rangle, plus some rounding which depends on the digits 16, 17, and whether all subsequent digits are zero or not. Here, \_fp\_round\_digit:Nw takes digits 17 and further (as an integer expression), and replaces it by a \langle rounding digit \rangle, suitable for \_fp\_round:NNN.

\_fp\_mul\_significand\_small\_f:NwwwN

In this branch, \langle digit 1 \rangle is zero. Our result is thus \langle digits 2–17 \rangle, plus some rounding which depends on the digits 17, 18, and whether all subsequent digits are zero or not. The 8 digits 1#3 are followed, after expansion of the small_pack auxiliary, by the next digit, to form a 9 digit number.
31.3 Division

31.3.1 Signs, and special numbers

Time is now ripe to tackle the hardest of the four elementary operations: division.

Filtering special floating point is very similar to what we did for multiplications, with a few variations. Invalid operation exceptions display / rather than *. In the formula for dispatch, we replace \(- 2 + \) by \(-\). The case of normal numbers is treated using \__/fp-div_npos_o:Nww rather than \__/fp-mul_npos_o:Nww. There are two additional cases: if the first operand is normal and the second is a zero, then the division by zero exception is raised: cases 10 and 11 of the \if_case:w construction in \__/fp-mul_cases_o:Nnww are provided as the fourth argument here.

We want to compute \(A/Z\). As for multiplication, \__/fp-sanitize:Nw checks for overflow or underflow; we provide it with the \(\text{(final sign)}\), and an integer expression in which we compute the exponent. We set up the arguments of \__/fp-div_significand-small_f:NNww, namely an integer \(y\) obtained by adding 1 to the first 5 digits of \(Z\) (explanation given soon below), then the four \(\{A_i\}\), then the four \(\{Z_i\}\), a semi-colon, and the \(\text{(final sign)}\), used for rounding at the end.
In this subsection, we explain how to avoid overflowing \TeX’s integers when performing
the division of two positive normal numbers.

We are given two numbers, \( A = 0.A_1A_2A_3A_4 \) and \( Z = 0.Z_1Z_2Z_3Z_4 \), in blocks of 4
digits, and we know that the first digits of \( A_1 \) and of \( Z_1 \) are non-zero. To compute \( A/Z \),
we proceed as follows.

- Find an integer \( Q_A \approx 10^4A/Z \).
- Replace \( A \) by \( B = 10^4A - QAZ \).
- Find an integer \( Q_B \approx 10^4B/Z \).
- Replace \( B \) by \( C = 10^4B - QBZ \).
- Find an integer \( Q_C \approx 10^4C/Z \).
- Replace \( C \) by \( D = 10^4C - QCZ \).
- Find an integer \( Q_D \approx 10^4D/Z \).
- Consider \( E = 10^4D - QDZ \), and ensure correct rounding.

The result is then \( Q = 10^{-4}Q_A + 10^{-8}Q_B + 10^{-12}Q_C + 10^{-16}Q_D + \text{rounding} \). Since
the \( Q_i \) are integers, \( B, C, D, \) and \( E \) are all exact multiples of \( 10^{-16} \), in other words,
computing with 16 digits after the decimal separator yields exact results. The problem
is the risk of overflow: in general \( B, C, D, \) and \( E \) may be greater than 1.

Unfortunately, things are not as easy as they seem. In particular, we want all
intermediate steps to be positive, since negative results would require extra calculations
at the end. This requires that \( Q_A \leq 10^4A/Z \) etc. A reasonable attempt would be to
define \( Q_A \) as

\[ \text{
int_eval:n}\left\{\frac{A_1A_2}{Z_1+1} - 1\right\} \leq 10^4\frac{A}{Z} \]

Subtracting 1 at the end takes care of the fact that \( \varepsilon \)-\TeX’s \( \text{
int_eval:w} \) rounds divisions instead of truncating (really, 1/2 would be sufficient, but we work with integers).
We add 1 to \( Z_1 \) because \( Z_1 \leq 10^4Z < Z_1 + 1 \) and we need \( Q_A \) to be an underestimate.
However, we are now underestimating \( Q_A \) too much: it can be wrong by up to 100, for
instance when \( Z = 0.1 \) and \( A \approx 1 \). Then \( B \) could take values up to 10 (maybe more),
and a few steps down the line, we would run into arithmetic overflow, since \TeX can only
handle integers less than roughly \( 2 \cdot 10^9 \).
A better formula is to take
\[ Q_A = \text{\texttt{int\_eval\:n}}\left\{ \frac{10 \cdot A_1 A_2}{10^{-3} \cdot Z_1 Z_2} + 1 \right\}. \]

This is always less than \(10^9 A/(10^5 Z)\), as we wanted. In words, we take the 5 first digits of \(Z\) into account, and the 8 first digits of \(A\), using 0 as a 9-th digit rather than the true digit for efficiency reasons. We shall prove that using this formula to define all the \(Q_i\) avoids any overflow. For convenience, let us denote
\[ y = \lfloor 10^{-3} \cdot Z_1 Z_2 \rfloor + 1, \]
so that, taking into account the fact that \(\text{\texttt{e\:TeX}}\) rounds ties away from zero,
\[ Q_A = \left\lfloor \frac{A_1 A_2 0}{y} - \frac{1}{2} \right\rfloor > \frac{A_1 A_2 0}{y} - \frac{3}{2}. \]

Note that \(10^4 < y \leq 10^5\), and \(999 \leq Q_A \leq 99989\). Also note that this formula does not cause an overflow as long as \(A < (2^{31} - 1)/10^9 \approx 2.147 \cdots\), since the numerator involves an integer slightly smaller than \(10^9 A\).

Let us bound \(B\):
\[ 10^5 B = A_1 A_2 0 + 10 \cdot 0.A_3 A_4 - 10 \cdot Z_1 Z_2 Z_3 Z_4 \cdot Q_A \]
\[ < A_1 A_2 0 \cdot \left( 1 - 10 \cdot \frac{Z_1 Z_2 Z_3 Z_4}{y} \right) + \frac{3}{2} \cdot 10 \cdot Z_1 Z_2 Z_3 Z_4 + 10 \]
\[ \leq \frac{A_1 A_2 0 \cdot (y - 10 \cdot Z_1 Z_2 Z_3 Z_4)}{y} + \frac{3}{2} y + 10 \]
\[ \leq \frac{A_1 A_2 0 \cdot 1}{y} + \frac{3}{2} y + 10 \leq \frac{10^9 A}{y} + 1.6 y. \]

At the last step, we hide 10 into the second term for later convenience. The same reasoning yields
\[ 10^5 B < 10^9 A/y + 1.6 y, \]
\[ 10^5 C < 10^9 B/y + 1.6 y, \]
\[ 10^5 D < 10^9 C/y + 1.6 y, \]
\[ 10^5 E < 10^9 D/y + 1.6 y. \]

The goal is now to prove that none of \(B, C, D, \) and \(E\) can go beyond \((2^{31} - 1)/10^9 \approx 2.147 \cdots\).

Combining the various inequalities together with \(A < 1\), we get
\[ 10^5 B < 10^9 /y + 1.6 y, \]
\[ 10^5 C < 10^{13} /y^2 + 1.6(y + 10^4), \]
\[ 10^5 D < 10^{17} /y^3 + 1.6(y + 10^4 + 10^8 /y), \]
\[ 10^5 E < 10^{21} /y^4 + 1.6(y + 10^4 + 10^8 /y + 10^{12} /y^2). \]
All of those bounds are convex functions of $y$ (since every power of $y$ involved is convex, and the coefficients are positive), and thus maximal at one of the end-points of the allowed range $10^4 < y \leq 10^5$. Thus,

\[10^5 B < \max(1.16 \cdot 10^5, 1.7 \cdot 10^5),\]
\[10^5 C < \max(1.32 \cdot 10^5, 1.77 \cdot 10^5),\]
\[10^5 D < \max(1.48 \cdot 10^5, 1.777 \cdot 10^5),\]
\[10^5 E < \max(1.64 \cdot 10^5, 1.7777 \cdot 10^5).\]

All of those bounds are less than $2.147 \cdot 10^5$, and we are thus within TeX’s bounds in all cases!

We later need to have a bound on the $Q_i$. Their definitions imply that $Q_A < 10^9 A / y - 1 / 2 < 10^5 A$ and similarly for the other $Q_i$. Thus, all of them are less than $177770$.

The last step is to ensure correct rounding. We have

\[A / Z = \sum_{i=1}^{4} (10^{-4i} Q_i) + 10^{-16} E / Z\]

exactly. Furthermore, we know that the result is in $[0.1, 10)$, hence will be rounded to a multiple of $10^{-16}$ or of $10^{-15}$, so we only need to know the integer part of $E / Z$, and a “rounding” digit encoding the rest. Equivalently, we need to find the integer part of $2E / Z$, and determine whether it was an exact integer or not (this serves to detect ties). Since

\[\frac{2E}{Z} \approx \frac{2 \cdot 10^5 E}{10^5 Z} \leq 2 \cdot \frac{10^5 E}{10^5} < 36,\]

this integer part is between 0 and 35 inclusive. We let $\epsilon$-TeX round

\[P = \texttt{int eval}\left\{\frac{2 \cdot E_1 E_2}{Z_1 Z_2}\right\},\]

which differs from $2E / Z$ by at most

\[\frac{1}{2} + 2 \left| \frac{E}{Z} - \frac{E}{10^{-8} Z_1 Z_2} \right| + 2 \left| \frac{10^8 E - E_1 E_2}{Z_1 Z_2} \right| < 1,\]

(1/2 comes from $\epsilon$-TeX’s rounding) because each absolute value is less than $10^{-7}$. Thus $P$ is either the correct integer part, or is off by 1; furthermore, if $2E / Z$ is an integer, $P = 2E / Z$. We will check the sign of $2E - PZ$. If it is negative, then $E / Z \in ((P - 1) / 2, P / 2)$. If it is zero, then $E / Z = P / 2$. If it is positive, then $E / Z \in (P / 2, (P + 1) / 2)$. In each case, we know how to round to an integer, depending on the parity of $P$, and the rounding mode.

31.3.3 Implementing the significand division

\[\texttt{\_\_fp\_div\_significand\_i\_o:wwnnn} (y) ; \{\langle A_1 \rangle\} \{\langle A_2 \rangle\} \{\langle A_3 \rangle\} \{\langle A_4 \rangle\}\]
\[\{\langle Z_1 \rangle\} \{\langle Z_2 \rangle\} \{\langle Z_3 \rangle\} \{\langle Z_4 \rangle\} ; \langle \text{sign} \rangle\]

Compute $10^6 + Q_A$ (a 7 digit number thanks to the shift), unbrace $\langle A_1 \rangle$ and $\langle A_2 \rangle$, and prepare the $\langle \text{continuation} \rangle$ arguments for 4 consecutive calls to $\texttt{\_\_fp\_div\_significand\_calc:wwmmmnn}$. Each of these calls needs $\langle y \rangle$ ($\#1$), and it turns out that
we need post-expansion there, hence the \`int_value:w`. Here, \#4 is six brace groups,
which give the six first n-type arguments of the calc function.
\begin{verbatim}
cs_new:Npn \_fp_div_significand_i_o:wnnw #1 ; #2#3 #4 ;
\{
\exp_after:wN \_fp_div_significand_test_o:w
\int_value:w \_fp_int_eval:w
\exp_after:wN \_fp_div_significand_calc:wwnnnnnnn
\int_value:w \_fp_int_eval:w 999999 + #2 #3 0 / #1 ;
\#2 #3 ;
\#4
\{
\exp_after:wN \_fp_div_significand_iil:wnn
\exp_after:wN \_fp_div_significand_iil:wnn \int_value:w \#1 }
\{
\exp_after:wN \_fp_div_significand_iil:wnn \int_value:w \#1 }
\}
\end{verbatim}
(End definition for \`_fp_div_significand_i_o:wnn.)

\_fp_div_significand_calc:wwnnnnnnn \(10^6 + Q_A\) ; \langle A_1 \rangle \langle A_2 \rangle ; \{ \langle A_3 \rangle \}
\{ \langle A_4 \rangle \} \{ \langle Z_1 \rangle \} \{ \langle Z_2 \rangle \} \{ \langle Z_3 \rangle \} \{ \langle Z_4 \rangle \} \{ \langle \text{continuation} \rangle \}

expands to
\\[
\langle 10^6 + Q_A \rangle \{ \langle \text{continuation} \rangle \} ; \langle B_1 \rangle \langle B_2 \rangle ; \{ \langle B_3 \rangle \} \{ \langle B_4 \rangle \} \{ \langle Z_1 \rangle \} \{ \langle Z_2 \rangle \} \{ \langle Z_3 \rangle \} \{ \langle Z_4 \rangle \}
\]

where \( B = 10^4 A - Q_A \cdot Z \). This function is also used to compute \( C, D, E \) (with the input shifted accordingly), and is used in \texttt{l3fp-expo}.

We know that \( 0 < Q_A < 1.8 \cdot 10^5 \), so the product of \( Q_A \) with each \( Z_i \) is within \texttt{TeX}'s bounds. However, it is a little bit too large for our purposes: we would not be able to use the usual trick of adding a large power of \( 10 \) to ensure that the number of digits is fixed.

The bound on \( Q_A \), implies that \( 10^6 + Q_A \) starts with the digit 1, followed by 0 or 1. We test, and call different auxiliaries for the two cases. An earlier implementation did the tests within the computation, but since we added a \`\langle \text{continuation} \rangle`, this is not possible because the macro has 9 parameters.

The result we want is then (the overall power of 10 is arbitrary):
\[
10^{-4} (\#2 - \#1 \cdot \#5 - 10 \cdot \langle \hat{i} \rangle \cdot \#5\#6) + 10^{-8} (\#3 - \#1 \cdot \#6 - 10 \cdot \langle \hat{i} \rangle \cdot \#7)
+ 10^{-12} (\#4 - \#1 \cdot \#7 - 10 \cdot \langle \hat{i} \rangle \cdot \#8) + 10^{-16} (-\#1 \cdot \#8),
\]
where \( \langle \hat{i} \rangle \) stands for the \( 10^5 \) digit of \( Q_A \), which is 0 or 1, and \#1, \#2, etc. are the parameters of either auxiliary. The factors of 10 come from the fact that \( Q_A = 10 \cdot 10^4 \cdot \langle \hat{i} \rangle + \#1 \). As usual, to combine all the terms, we need to choose some shifts which must ensure that the number of digits of the second, third, and fourth terms are each fixed. Here, the positive contributions are at most \( 10^8 \) and the negative contributions can go up to \( 10^9 \). Indeed, for the auxiliary with \( \langle \hat{i} \rangle = 1 \), \#1 is at most 80000, leading to contributions of at worse \(-8 \cdot 10^4\), while the other negative term is very small < \( 10^6 \) (except in the first expression, where we don’t care about the number of digits); for the auxiliary with \( \langle \hat{i} \rangle = 0 \), \#1 can go up to 99999, but there is no other negative term. Hence, a good choice is \( 2 \cdot 10^9 \), which produces totals in the range \([10^6, 2.1 \cdot 10^9]\). We are flirting with \texttt{TeX}'s limits once more.
\begin{verbatim}
cs_new:Npn \_fp_div_significand_calc:wwnnnnnnn 1#1
\end{verbatim}

818
\begin{verbatim}
{ \if_meaning:w 1 #1 \exp_after:wN \__fp_div_significand_calc_i:wwnnnnnnn \else: \exp_after:wN \__fp_div_significand_calc_ii:wwnnnnnnn \fi: }
\cs_new:Npn \__fp_div_significand_calc_i:wwnnnnnnn
#1; #2;#3#4 #5#6#7#8 #9
{ 1 1 #1
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_leading_shift_int + #2 - #1 * #5 - #5#60
  \exp_after:wN \__fp_pack_Bigg:NNNNNNw
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_middle_shift_int + #3 - #1 * #6 - #70
  \exp_after:wN \__fp_pack_Bigg:NNNNNNw
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_middle_shift_int + #4 - #1 * #7 - #80
  \exp_after:wN \__fp_pack_Bigg:NNNNNNw
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_trailing_shift_int - #1 * #8 ;
  {#5}{#6}{#7}{#8}
}
\cs_new:Npn \__fp_div_significand_calc_ii:wwnnnnnnn
#1; #2;#3#4 #5#6#7#8 #9
{ 1 0 #1
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_leading_shift_int + #2 - #1 * #5
  \exp_after:wN \__fp_pack_Bigg:NNNNNNw
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_middle_shift_int + #3 - #1 * #6
  \exp_after:wN \__fp_pack_Bigg:NNNNNNw
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_middle_shift_int + #4 - #1 * #7
  \exp_after:wN \__fp_pack_Bigg:NNNNNNw
  \int_value:w \__fp_int_eval:w \c__fp_Bigg_trailing_shift_int - #1 * #8 ;
  {#5}{#6}{#7}{#8}
}
\end{verbatim}

\____fp_div_significand_ii:wwn
\____fp_div_significand_ii:wwn
\langle y \rangle ; \langle B_1 \rangle \{ \langle B_2 \rangle \} \{ \langle B_3 \rangle \} \{ \langle B_4 \rangle \} \{ \langle Z_1 \rangle \}
\{ \langle Z_2 \rangle \} \{ \langle Z_3 \rangle \} \{ \langle Z_4 \rangle \} \{ \langle \text{continuations} \rangle \} \{ \langle \text{sign} \rangle \}

Compute \( Q_B \) by evaluating \( (B_1)\langle B_2\rangle 0/y - 1 \). The result is output to the left, in an \____fp_int_eval:w which we start now. Once that is evaluated (and the other \( Q_i \) also, since later expansions are triggered by this one), a packing auxiliary takes care of placing the digits of \( Q_B \) in an appropriate way for the final addition to obtain \( Q \). This auxiliary is also used to compute \( Q_C \) and \( Q_D \) with the inputs \( C \) and \( D \) instead of \( B \).

819
This adds to the current expression \( \frac{10^7 + 10 \cdot Q_D}{Z} \) a contribution of \( 5 \cdot P + \text{sign}(T) \) with \( T = 2E - PZ \). This amounts to adding \( P/2 \) to \( Q_D \), with an extra \( \text{rounding} \) digit. This \( \text{rounding} \) digit is 0 or 5 if \( T \) does not contribute, i.e., if \( 0 = T = 2E - PZ \), in other words if \( 10^{16} A/Z \) is an integer or half-integer. Otherwise it is in the appropriate range, [1,4] or [6,9]. This is precise enough for rounding purposes (in any mode).

It seems an overkill to compute \( T \) exactly as I do here, but I see no faster way right now.

Once more, we need to be careful and show that the calculation \#1 \#6\#7 below does not cause an overflow: naively, \( P \) can be up to 35, and \#6\#7 up to \( 10^6 \), but both cannot happen simultaneously. To show that things are fine, we split in two (non-disjoint) cases.

- For \( P < 10 \), the product obeys \( P \cdot \#6\#7 < 10^8 \cdot P < 10^9 \).
- For large \( P \geq 3 \), the rounding error on \( P \), which is at most 1, is less than a factor of 2, hence \( P \leq 4E/Z \). Also, \#6\#7 up to \( 10^8 \cdot Z \), hence \( P \cdot \#6\#7 < 4E \cdot 10^8 < 10^9 \).

Both inequalities could be made tighter if needed.

Note however that \( P \cdot \#8\#9 \) may overflow, since the two factors are now independent, and the result may reach \( 3.5 \cdot 10^9 \). Thus we compute the two lower levels separately. The rest is standard, except that we use + as a separator (ending integer expressions explicitly). \( T \) is negative if the first character is \(-\), it is positive if the first character is neither \( 0 \) nor \(-\). It is also positive if the first character is \( 0 \) and second argument of \( \text{\_fp\_div\_significand\_vi:Nw} \), a sum of several terms, is also zero. Otherwise, there was an exact agreement: \( T = 0 \).
\cs_new:Npn \__fp_div_significand_iv:wwnnnnnnn #1; #2;#3#4#5 #6#7#8#9 
\exp_after:wN \__fp_div_significand_vi:Nw 
\int_value:w \__fp_int_eval:w -20 + 2*#2#3 - #1*#6#7 + 
\exp_after:wN \__fp_div_significand_v:NN 
\int_value:w \__fp_int_eval:w 199980 + 2*#4 - #1*#8 + 
\exp_after:wN \__fp_div_significand_v:NN 
\int_value:w \__fp_int_eval:w 200000 + 2*#5 - #1*#9 ;
\cs_new:Npn \__fp_div_significand_v:NN #1#2 { #1#2 \__fp_int_eval_end: + }
\cs_new:Npn \__fp_div_significand_vi:Nw #1#2; 
\if_meaning:w 0 #1 
\if_int_compare:w \__fp_int_eval:w #2 > 0 + 1 \fi: 
\else: 
\if_meaning:w - #1 - \else: + \fi: 1 
\fi: 
\}
(End definition for \__fp_div_significand_iv:wwnnnnnnn, \__fp_div_significand_v:NNw, and \__fp_div_significand_vi:Nw.)

\__fp_div_significand_pack:NNN
At this stage, we are in the following situation: \TeX is in the process of expanding several integer expressions, thus functions at the bottom expand before those above.
\__fp_div_significand_test_o:w 10^6 + Q_A \__fp_div_significand_pack:NNN 10^6 + Q_B \__fp_div_significand_pack:NNN 10^6 + Q_C \__fp_div_significand_pack:NNN 10^7 + 10 \cdot Q_D + 5 \cdot P + \varepsilon ; \langle \text{sign} \rangle
Here, $\varepsilon = \text{sign}(T)$ is 0 in case $2E = PZ$, 1 in case $2E > PZ$, which means that $P$ was the correct value, but not with an exact quotient, and $-1$ if $2E < PZ$, i.e., $P$ was an overestimate. The packing function we define now does nothing special: it removes the $10^6$ and carries two digits (for the $10^5$'s and the $10^4$'s).
\cs_new:Npn \__fp_div_significand_pack:NNN 1 #1 #2 { + #1 #2 ; }
(End definition for \__fp_div_significand_pack:NNN.)

\__fp_div_significand_test_o:w 10 \{ 5d \} ; \langle 4d \rangle ; \langle 4d \rangle ; \langle 5d \rangle ; \langle \text{sign} \rangle
The reason we know that the first two digits are 1 and 0 is that the final result is known to be between 0.1 (inclusive) and 10, hence $Q_A$ (the tilde denoting the contribution from the other $Q_i$) is at most 99999, and $10^6 + Q_A = 10 \cdots$. It is now time to round. This depends on how many digits the final result will have.
\cs_new:Npn \__fp_div_significand_test_o:w 10 \#1 
\if_meaning:w 0 \#1 
\exp_after:wN \__fp_div_significand_small_o:wwwNNNNwN 
\else: 
\exp_after:wN \__fp_div_significand_large_o:wwwNNNNwN 
\fi: 
\#1
(End definition for \__fp_div_significand_test_o:w.)
Standard use of the functions \_\_fp_basics_pack_low:NNNNNw and \_\_fp_basics_pack_high:NNNNNw. We finally get to use the (final sign) which has been sitting there for a while.

We know that the final result cannot reach 10, hence 1\#1\#2, together with contributions from the level below, cannot reach $2 \cdot 10^9$. For rounding, we build the (rounding digit) from the last two of our 18 digits.

### 31.4 Square root

Zeros are unchanged: $\sqrt{-0} = -0$ and $\sqrt{+0} = +0$. Negative numbers (other than $-0$) have no real square root. Positive infinity, and \texttt{nan}, are unchanged. Finally, for normal positive numbers, there is some work to do.
Prepare \__fp_sqrt_npos_o:w to receive the final sign 0 (the result is always positive) and the exponent, equal to half of the exponent \#1 of the argument. If the exponent \#1 is even, find a first approximation of the square root of the significand \(10^8 a_1 + a_2 = 10^8 \#2 \#3 \#4 \#5\) through Newton's method, starting at \(x = 57234133 \approx 10^{7.75}\). Otherwise, first shift the significand of the argument by one digit, getting \(a_1' \in [10^6, 10^7)\) instead of \([10^7, 10^8)\), then use Newton's method starting at \(17782794 \approx 10^{7.25}\).

Newton's method maps \(x \mapsto \left(\frac{x + [10^8 a_1/x]}{2}\right)\) in each iteration, where \([b/c]\) denotes \vTeX's division. This division rounds the real number \(b/c\) to the closest integer, rounding ties away from zero, hence when \(c\) is even, \(b/c - 1/2 + 1/c \leq [b/c] \leq b/c + 1/2\) and when \(c\) is odd, \(b/c - 1/2 + 1/(2c) \leq [b/c] \leq b/c + 1/2 - 1/(2c)\). For all \(c\), \(b/c - 1/2 + 1/(2c) \leq b/c \leq b/c + 1/2\).

Let us prove that the method converges when implemented with \vTeX integer division, for any \(10^6 \leq a_1 < 10^8\) and starting value \(10^6 \leq x < 10^9\). Using the inequalities above and the arithmetic–geometric inequality \((x + t)/2 \geq \sqrt{xt}\) for \(t = 10^8 a_1/x\), we find

\[
x' = \left[\frac{x + [10^8 a_1/x]}{2}\right] \geq \frac{x + 10^8 a_1/x - 1/2 + 1/(2x)}{2} \geq \sqrt{10^8 a_1} - \frac{1}{4} + \frac{1}{4x}.
\]

After any step of iteration, we thus have \(\delta = x - \sqrt{10^8 a_1} \geq -0.25 + 0.25 \cdot 10^{-8}\). The new difference \(\delta' = x' - \sqrt{10^8 a_1}\) after one step is bounded above as

\[
x' - \sqrt{10^8 a_1} \leq \frac{x + 10^8 a_1/x + 1/2}{2} + \frac{1}{2} - \sqrt{10^8 a_1} \leq \frac{\delta + 3}{4}.
\]
For $\delta > 3/2$, this last expression is $\leq \delta/2 + 3/4 < \delta$, hence $\delta$ decreases at each step: since all $x$ are integers, $\delta$ must reach a value $-1/4 < \delta < 3/2$. In this range of values, we get $\delta' \leq \frac{3}{4} x + \frac{3}{4} \leq 0.75 + 1.125 \cdot 10^{-7}$. We deduce that the difference $\delta = x - \sqrt{10^8 a_1}$ eventually reaches a value in the interval $[-0.25 + 0.25 \cdot 10^{-8}, 0.75 + 11.25 \cdot 10^{-8}]$, whose width is $1 + 11 \cdot 10^{-8}$. The corresponding interval for $x$ may contain two integers, hence $x$ might oscillate between those two values.

However, the fact that $x \mapsto x - 1$ and $x - 1 \mapsto x$ puts stronger constraints, which are not compatible: the first implies

$$x + [10^8 a_1/x] \leq 2x - 2$$

hence $10^8 a_1/x \leq x - 3/2$, while the second implies

$$x - 1 + [10^8 a_1/(x - 1)] \geq 2x - 1$$

hence $10^8 a_1/(x - 1) \geq x - 1/2$. Combining the two inequalities yields $x^2 - 3x/2 \geq 10^8 a_1 \geq x - 3x/2 + 1/2$, which cannot hold. Therefore, the iteration always converges to a single integer $x$. To stop the iteration when two consecutive results are equal, the function \_fp_sqrt_Newton:wwn receives the newly computed result as \#1, the previous result as \#2, and \#1 as \#3. Note that \e-FpX combines the computation of a multiplication and a following division, thus avoiding overflow in $\#3 * 100000000 / \#1$.

In any case, the result is within $[10^7, 10^8]$.

This function is followed by $10^8 + x - 1$, which has 9 digits starting with 1, then $\{a_1\} \{a_2\} \{a\}$. Here, $x \simeq \sqrt{10^8 a_1}$ and we want to estimate the square root of $a = 10^{-8} a_1 + 10^{-16} a_2 + 10^{-17} a$. We set up an initial underestimate

$$y = (x - 1)10^{-8} + 0.2499998875 \cdot 10^{-8} \lesssim \sqrt{a}.$$  

From the inequalities shown earlier, we know that $y \leq \sqrt{10^{-8} a_1} \leq \sqrt{a}$ and that $\sqrt{10^{-8} a_1} \leq y + 10^{-8} + 11 \cdot 10^{-16}$ hence (using $0.1 \leq y \leq \sqrt{a} \leq 1$)

$$a - y^2 \leq 10^{-8} a_1 + 10^{-8} - y^2 \leq (y + 10^{-8} + 11 \cdot 10^{-16})^2 - y^2 + 10^{-8} < 3.2 \cdot 10^{-8},$$

and $\sqrt{a} - y = (a - y^2)/(\sqrt{a} + y) \leq 16 \cdot 10^{-8}$. Next, \_fp_sqrt_auxii:o:NNNNNNNNN is called several times to get closer and closer underestimates of $\sqrt{a}$. By construction, the underestimates $y$ are always increasing, $a - y^2 < 3.2 \cdot 10^{-8}$ for all. Also, $y < 1$. 

824
This receives a continuation function #1, then five blocks of 4 digits for \( y \), then two 8-digit blocks and a single digit for \( a \). A common estimate of \( \sqrt{a-y} = (a-y)/(\sqrt{a}+y) \) is \((a-y^2)/(2y)\), which leads to alternating overestimates and underestimates. We tweak this, to only work with underestimates (no need then to worry about signs in the computation).

Each step finds the largest integer \( j \leq 6 \) such that \( 10^{2j}(a-y^2) < 2 \cdot 10^8 \), then computes the integer (with \( \varepsilon \)-\( \mathrm{TeX} \)'s rounding division)

\[
10^{2j}z = \left[ \left(10^{2j}(a-y^2)\right) - 257 \right] \cdot (0.5 \cdot 10^8) / \left[ 10^8 y + 1 \right].
\]

The choice of \( j \) ensures that \( 10^{2j}z < 2 \cdot 10^8 \cdot 0.5 \cdot 10^8/10^7 = 10^9 \), thus \( 10^9 + 10^{2j}z \) has exactly 10 digits, does not overflow \( \mathrm{TeX} \)'s integer range, and starts with 1. Incidentally, since all \( a-y^2 \leq 3.2 \cdot 10^{-8} \), we know that \( j \geq 3 \).

Let us show that \( z \) is an underestimate of \( \sqrt{a-y} \). On the one hand, \( \sqrt{a-y} \leq 16 \cdot 10^{-8} \) because this holds for the initial \( y \) and values of \( y \) can only increase. On the other hand, the choice of \( j \) implies that \( \sqrt{a-y} \leq 5(\sqrt{a}+y)/\sqrt{a-y} = 5(a-y^2) < 10^{2j-4} \). For \( j = 3 \), the first bound is better, while for larger \( j \), the second bound is better. For all \( j \in [3, 6] \), we find \( \sqrt{a-y} < 16 \cdot 10^{-2j} \). From this, we deduce that

\[
10^{2j}(\sqrt{a-y}) = \frac{10^{2j}(a-y^2) - (\sqrt{a-y})^2}{2y} \geq \left[ \frac{10^{2j}(a-y^2) - 257}{2 \cdot 10^{-8}[10^8y + 1]} \right] + \frac{1}{2}
\]

where we have replaced the bound \( 10^{2j}(16 \cdot 10^{-2j}) = 256 \) by 257 and extracted the corresponding term \( 1/(2 \cdot 10^{-8}[10^8y + 1]) \geq 1/2 \). Given that \( \varepsilon \)-\( \mathrm{TeX} \)'s integer division obeys \( |b/c| \leq b/c + 1/2 \), we deduce that \( 10^{2j}z \leq 10^{2j}(\sqrt{a-y}) \), hence \( y+z \leq \sqrt{a} \) is an underestimate of \( \sqrt{a} \), as claimed. One implementation detail: because the computation involves \(-#4\#4 - 2\#3\#5 - 2\#2\#6\) which may be as low as \(-5 \cdot 10^5\), we need to use the \texttt{pack\_big} functions, and the big shifts.

---

\texttt{\cs_new:Npn \_fp_sqrt_auxii_o:NnnnnnnnN \#1\#2\#3\#4 \#5 \{2499 \} \{9988 \} \{7500 \} \)}

\texttt{\_fp_sqrt_auxiii_o:wnnnnnnnn}
We receive here the difference \( a - y^2 = d = \sum_i d_i \cdot 10^{-4i} \), as \( \{d_1\} \ldots \{d_{10}\} \), where each block has 4 digits, except \( \langle d_2 \rangle \). This function finds the largest \( j \leq 6 \) such that \( 10^{4j}(a - y^2) < 2 \cdot 10^8 \), then leaves an open parenthesis and the integer \( \lfloor 10^{4j}(a - y^2) \rfloor \) in an integer expression. The closing parenthesis is provided by the caller \( \__fp_sqrt_auxii_o:NnnnnnnN \), which completes the expression \( 10^{4j}z = \left\lfloor \left(\frac{[10^{4j}(a - y^2)] - 257}{0.5 \cdot 10^8} \right) / [10^8 y + 1] \right\rfloor \) for an estimate of \( 10^{4j}\sqrt{a - y} \). If \( d_2 \geq 2 \), \( j = 3 \) and the auxiv auxiliary receives \( 10^{12}z \). If \( d_2 \leq 1 \) but \( 10^4d_2 + d_3 \geq 2 \), \( j = 4 \) and the auxv auxiliary is called, and receives \( 10^{16}z \), and so on. In all those cases, the auxviii auxiliary is set up to add \( z \) to \( y \), then go back to the auxii step with continuation auxiii (the function we are currently describing). The maximum value of \( j \) is 6, regardless of whether \( 10^{12}d_2 + 10^4d_3 + 10^4d_4 + d_5 \geq 1 \). In this last case, we detect when \( 10^{24}z < 10^7 \), which essentially means \( \sqrt{a - y} \lesssim 10^{-17} \): once this threshold is reached, there is enough information to find the correctly rounded \( \sqrt{a} \) with only one more call to \( \__fp_sqrt_auxii_o:NnnnnnnN \). Note that the iteration cannot be stuck before reaching \( j = 6 \), because for \( j < 6 \), one has \( 2 \cdot 10^8 \leq 10^{4(j+1)}(a - y^2) \), hence \( 10^{4j}z \geq \frac{(20000 - 257)(0.5 \cdot 10^8)}{[10^8 y + 1]} \geq (20000 - 257) \cdot 0.5 > 0 \).
\int_value:w \_fp_int_eval:w (#1#2#3#4 \) %)
\else:
  \exp_after:wN \_fp_sqrt_auxvii_o:NNNNNw
\int_value:w \_fp_int_eval:w (#1#2#3#4#5 \) %)
\fi:
\fi:
\fi:
\fi:
\cs_new:Npn \_fp_sqrt_auxvii_o:NNNNNw 1#1#2#3#4#5#6;
{ \_fp_sqrt_auxviii_o:nnnnnnn {#1#2#3#4#5} {#60000} }
\cs_new:Npn \_fp_sqrt_auxv_o:NNNNNw 1#1#2#3#4#5#6;
{ \_fp_sqrt_auxviii_o:nnnnnnn {000#1#2#3#4#5} {#60000} }
\cs_new:Npn \_fp_sqrt_auxvi_o:NNNNNw 1#1#2#3#4#5#6;
{ \_fp_sqrt_auxviii_o:nnnnnnn {0000000#1} {#2#3#4#5#6} }
\cs_new:Npn \_fp_sqrt_auxvii_o:NNNNNw 1#1#2#3#4#5#6;
{ \_fp_sqrt_auxviii_o:nnnnnnn {00000000} {#1#2#3#4#5#6} }
\cs_new:Npn \_fp_sqrt_auxx_o:Nnnnnnnn {#1#2#3#4#5#6#7}
{ \_fp_sqrt_auxix_o:wnwnw {#1}; #2#3; #4#5; }
\cs_new:Npn \_fp_sqrt_auxxi_o:wwnnN
{ \_fp_sqrt_auxii_o:NnnnnnnnN \_fp_sqrt_auxiii_o:wnnnnnnnn {#1}{#2}{#3}{#4}{#5}{#6}
\_fp_sqrt_auxviii_o:nnnnnnn {#1}{#2}{#3}{#4}{#5}{#6}{#7} }
\cs_new:Npn \_fp_sqrt_auxviii_o:nnnnnnn #1#2 #3#4 #5#6
{ \_fp_sqrt_auxix_o:wnwnw \_fp_int_eval:w #3 }
\cs_new:Npn \_fp_sqrt_auxiv_o:NNNNNw 1#1#2#3#4#5#6;
{ \_fp_sqrt_auxviii_o:nnnnnnn {00000000} {#1#2#3#4#5#6} }
\cs_new:Npn \_fp_sqrt_auxiii_o:wnnnnnnnn 1#1 0#2 0#3
1024 \leq \frac{2^{1/2} + 1/2}{y + 1}(2^7 + 1),
then \( 1024(a - y^2) - 258 < 2(10^7 + 1/2)(y + 10^{-8}) \),
and
\[ 1024(a - y^2) < (10^7 + 1290.5)(1 + 10^{-8})(2y) < (10^7 + 1290.5)(1 + 10^{-7})(y + \sqrt{a}),\]
which finally implies \( 0 \leq \sqrt{a} - y < 0.2 \cdot 10^{-16} \). In particular, \( y \) is an underestimate
of \( \sqrt{a} \) and \( y + 0.5 \cdot 10^{-16} \) is a (strict) overestimate. There is at exactly one multiple
\( m \) of \( 0.5 \cdot 10^{-16} \) in the interval \( [y, y+0.5 \cdot 10^{-16}] \). If \( m^2 > a \), then the square root is inexact and
is obtained by rounding \( m - \epsilon \) to a multiple of \( 10^{-16} \) (the precise shift \( 0 < \epsilon < 0.5 \cdot 10^{-16} \) is irrelevant for rounding). If \( m^2 = a \) then the square root is exactly \( m \), and there is no rounding. If \( m^2 < a \) then we round \( m + \epsilon \). For now, discard a few irrelevant arguments \#1, \#2, \#3, and find the multiple of \( 0.5 \cdot 10^{-16} \) within \([y, y + 0.5 \cdot 10^{-16}]\); rather, only the last 4 digits \#8 of \( y \) are considered, and we do not perform any carry yet. The auxxi auxiliary sets up auxii with a continuation function auxxii instead of auxiii as before.

To prevent auxii from giving a negative results \( a - m^2 \), we compute \( a + 10^{-16} - m^2 \) instead, always positive since \( m < \sqrt{a} + 0.5 \cdot 10^{-16} \) and \( a \leq 1 - 10^{-16} \).

\[
19651 \ \text{cs_new:Npn} \ \_\_fp_sqrt_auxx_o:Nnnnnnn \ #1#2#3 \ #4#5#6#7#8
19652 \ { \ 
19653 \ \ \ \exp_after:wN \_\_fp_sqrt_auxxi_o:wwnnN}
19654 \ \ \int_value:w \_\_fp_int_eval:w
19655 \ \ (#8 + 2499) / 5000 \ast 5000 \ ;
19656 \ \ (#4) \ (#5) \ (#6) \ (#7) \ ;
19657 \ }
19658 \ \text{cs_new:Npn} \ \_\_fp_sqrt_auxxi_o:wwnnN \ #1; \ #2; \ #3#4#5
19659 \ \{ \ 
19660 \ \_\_fp_sqrt_auxxii_o:NnnnnnnnN
19661 \ \_\_fp_sqrt_auxxii_o:nnnnnnw
19662 \ \#2 \ (#1)
19663 \ \{ \ (#3) \ \#4 + 1 \ \} \ #5
19664 \ }

(End definition for \_\_fp_sqrt_auxx_o:Nnnnnnn and \_\_fp_sqrt_auxxi_o:wwnnN.)

The difference \( 0 \leq a + 10^{-16} - m^2 \leq 10^{-16} + (\sqrt{a} - m)(\sqrt{a} + m) \leq 2 \cdot 10^{-16} \) was just computed: its first 8 digits vanish, as do the next four, \#1, and most of the following four, \#2. The guess \( m \) is an overestimate if \( a + 10^{-16} - m^2 < 10^{-16} \), that is, \#1\#2 vanishes. Otherwise it is an underestimate, unless \( a + 10^{-16} - m^2 = 10^{-16} \) exactly. For an underestimate, call the auxxiv function with argument 9998. For an exact result call it with 9999, and for an overestimate call it with 10000.

\[
19661 \ \text{cs_new:Npn} \ \_\_fp_sqrt_auxxii_o:nnnnnnw \ 0; \ #1#2#3#4#5#6#7#8 \ #9;
19662 \ { \ 
19663 \ \ if_int_compare:w \ #1#2 > 0 \ \exp_stop_f: \ 
19664 \ \ if_int_compare:w \ #1#2 = 1 \ \exp_stop_f: \ 
19665 \ \ \ if_int_compare:w \ #3#4 = 0 \ \exp_stop_f: \ 
19666 \ \ \ if_int_compare:w \ #5#6 = 0 \ \exp_stop_f: \ 
19667 \ \ \ \ if_int_compare:w \ #7#8 = 0 \ \exp_stop_f: \ 
19668 \ \ \ \ \_\_fp_sqrt_auxxii_o:w \ 
19669 \ \ \ \ fi: \ 
19670 \ \ \ fi: \ 
19671 \ \ \ exp_after:wN \_\_fp_sqrt_auxxiv_o:wnnnnnnN \ 
19672 \ \ \ int_value:w \ 9998 \ 
19673 \ \ } \ 
19674 \ \ \ if: \ 
19675 \ \ \ \ \fi: \ 
19676 \ \ \ \ \exp_after:wN \_\_fp_sqrt_auxxiv_o:wnnnnnnN \ 
19677 \ \ \ int_value:w \ 10000 \ 
19678 \ \ \ else: \ 
19679 \ \ \ \ \exp_after:wN \_\_fp_sqrt_auxxiv_o:wnnnnnnN \ 
19680 \ \ \ \ \int_value:w \ 9998
19681 \ \ \ \ fi: \ 
19682 \ \ ; \ 
19683 \ 
19684 \ }
19685 \ \text{cs_new:Npn} \ \_\_fp_sqrt_auxxiii_o:w \ \fi: \ \fi: \ \fi: \ \#1 \ \fi: \ ;
19686 \ 

828
This receives 9998, 9999 or 10000 as #1 when m is an underestimate, exact, or an overestimate, respectively. Then comes m as five blocks of 4 digits, but where the last block #6 may be 0, 5000, or 10000. In the latter case, we need to add a carry, unless m is an overestimate (#1 is then 10000). Then comes a as three arguments. Rounding is done by \_\_fp_round:Nw, whose first argument is the final sign 0 (square roots are positive). We fake its second argument. It should be the last digit kept, but this is only used when the ties are “rounded to even”, and only when the result is exactly half-way between two representable numbers rational square roots of numbers with 16 significant digits have: this situation never arises for the square root, as any exact square root of a 16 digit number has at most 8 significant digits. Finally, the last argument is the next digit, possibly shifted by 1 when there are further nonzero digits. This is achieved by \_\_fp_\_round_digit:Nw, which receives (after removal of the 10000’s digit) one of 0000, 0001, 4999, 5000, 5001, or 9999, which it converts to 0, 1, 4, 5, 6, and 9, respectively.

\__fp_sqrt_auxxiv_o:wnnnnnnnN #1; #2#3#4#5#6 #7#8#9
{\exp_after:wN \__fp_basics_pack_high:NNNNNw \int_value:w \__fp_int_eval:w 1 0000 0000 + #2#3 \exp_after:wN \__fp_basics_pack_low:NNNNNw \int_value:w \__fp_int_eval:w 1 0000 0000 + #4#5 \if_int_compare:w #6 > #1 \exp_stop_f: + 1 \fi: + \exp_after:wN \__fp_round:NNN \exp_after:wN 0 \exp_after:wN 0 \int_value:w \__fp_int_eval:w #6 + 19999 - #1 ; \exp_after:wN ; }

(End definition for \_\_fp_sqrt_auxxivi_o:nnnnnnnw and \_\_fp_sqrt_auxxiii_o:w.)

31.5 About the sign and exponent

The exponent of a normal number is its \langle exponent \rangle minus one.
\texttt{\texttt{cs_new:Npn \_fp_logb_o:w \s\_fp \_fp_chk:w \#1 \#2 \#3 \#4;}} \\
\{ \\
\exp_after:wN \_fp_parse:n \exp_after:wN \{ \int_value:w \int_eval:w \#3 - 1 \exp_after:wN \} \}

(End definition for \_fp_logb_o:w and \_fp_logb_aux_o:w.)

\texttt{\_fp_sign_o:w} \texttt{\_fp_sign_aux_o:w} Find the sign of the floating point: \texttt{nan}, \texttt{+0}, \texttt{-0}, \texttt{+1} or \texttt{-1}.

\texttt{\cs_new:Npn \_fp_sign_o:w ? \s\_fp \_fp_chk:w \#1 \#2; @} \\
\{ \\
\if_case:w \#1 \exp_stop_f: \_fp_case_return_same_o:w \\
\or: \exp_after:wN \_fp_sign_aux_o:w \_fp_after:wN \_fp_after:wN \_fp_sign_aux_o:w \_fp_after:wN \_fp_case_return_same_o:w \\
\else: \_fp_case_return_same_o:w \\
\fi: \s\_fp \_fp_chk:w \#1 \#2; \}

(End definition for \_fp_sign_o:w and \_fp_sign_aux_o:w.)

\texttt{\_fp_set_sign_o:w} This function is used for the unary minus and for \texttt{abs}. It leaves the sign of \texttt{nan} invariant, turns negative numbers (sign 2) to positive numbers (sign 0) and positive numbers (sign 0) to positive or negative numbers depending on \#1. It also expands after itself in the input stream, just like \_fp\_+o:ww.

\texttt{\cs_new:Npn \_fp_set_sign_o:w \#1 \s\_fp \_fp_chk:w \#2 \#3 \#4; @} \\
\{ \\
\exp_after:wN \_fp_exp_after_o:w \exp_after:wN \s\_fp \_fp_chk:w \#2 \#3 \#4; \}

(End definition for \_fp_set_sign_o:w.)

31.6 Operations on tuples

\texttt{\_fp_tuple_set_sign_o:w} \texttt{\_fp_tuple_set_sign_aux_o:Nnw} \texttt{\_fp_tuple_set_sign_aux_o:w} Two cases: \texttt{abs(\langle tuple\rangle)} for which \#1 is 0 (invalid for tuples) and \texttt{-\langle tuple\rangle} for which \#1 is 2. In that case, map over all items in the tuple an auxiliary that dispatches to the type-appropriate sign-flipping function.

\texttt{\cs_new:Npn \_fp_tuple_set_sign_o:w \#1} \\
\{ \\
\if_meaning:w 2 \#1 \exp_after:wN \_fp_tuple_set_sign_aux_o:Nnw \_fp_after:wN \_fp_tuple_set_sign_aux_o:Nnw \_fp_after:wN \_fp_invalid_operation_o:nw \{ \texttt{abs} \} \\
\fi: \_fp_tuple_set_sign_o:w \#1 \#2 \#3 @

830
\__fp_tuple_map_o:ww  \__fp_tuple_set_sign_aux_o:w #3 \\
\cs_new:Npn \__fp_tuple_set_sign_aux_o:w #1 #2 ; \\
{ \__fp_change_func_type:NNN #1 \__fp_set_sign_o:w \\
\__fp_parse_apply_unary_error:NNw \\
2 #1 #2 ; @ }

(End definition for \__fp_tuple_set_sign_o:w, \__fp_tuple_set_sign_aux_o:Nnw, and \__fp_tuple_set_sign_aux_o:w.)

\__fp_*_tuple_o:ww  \__fp_tuple_*_o:ww  \__fp_tuple_/o:ww

For \langle number \rangle*\langle tuple \rangle and \langle tuple \rangle*\langle number \rangle and \langle tuple \rangle/\langle number \rangle, loop through the \langle tuple \rangle some code that multiplies or divides by the appropriate \langle number \rangle. Importantly we need to dispatch according to the type, and we make sure to apply the operator in the correct order.

\cs_new:cpn { __fp_*_tuple_o:ww } #1 ; \\
\cs_new:cpn { __fp_tuple_*_o:ww } #1 ; #2 ; \\
\cs_new:cpn { __fp_tuple_/o:ww } #1 ; #2 ; \\
{ \__fp_tuple_map_o:nw { \__fp_binary_rev_type_o:Nww * #2 ; } #1 ; }

(End definition for \__fp_*_tuple_o:ww, \__fp_tuple_*_o:ww, and \__fp_tuple_/o:ww.)

\__fp_tuple_+_tuple_o:ww  \__fp_tuple_-_tuple_o:ww

Check the two tuples have the same number of items and map through these a helper that dispatches appropriately depending on the types. This means (1,2)+((1,1),2) gives (nan,4).

\cs_set_protected:Npn \__fp_tmp:w #1 \\
{ \cs_new:cpn { __fp_#1_tuple_o:ww } #1 ; \\
\cs_new:cpn { __fp_binary_type_o:Nww * } #1 ; #2 ; \\
\cs_new:cpn { __fp_binary_rev_type_o:Nww / } #1 ; #2 ; \\
\int_compare:nNnTF { \__fp_array_count:n {##1} } = { \__fp_array_count:n {##2} } \\
{ \__fp_tuple_mapthread_o:nww { \__fp_binary_type_o:Nww #1 } \\
{ \__fp_invalid_operation_o:nww #1 } \\
\__fp_tuple_mapthread_o:nww { \__fp_binary_rev_type_o:Nww / } \\
\__fp_tuple_mapthread_o:nww { \__fp_binary_rev_type_o:Nww #2 ; } #1 ; \\
\__fp_tuple_mapthread_o:nww { \__fp_binary_rev_type_o:Nww / } #2 ; #1 ; } }

(End definition for \__fp_+_tuple_o:ww, \__fp_tuple_*_o:ww, and \__fp_tuple_/o:ww.)

32 l3fp-extended implementation

(*intex package)  (@=fp)
32.1 Description of fixed point numbers

This module provides a few functions to manipulate positive floating point numbers with extended precision (24 digits), but mostly provides functions for fixed-point numbers with this precision (24 digits). Those are used in the computation of Taylor series for the logarithm, exponential, and trigonometric functions. Since we eventually only care about the 16 first digits of the final result, some of the calculations are not performed with the full 24-digit precision. In other words, the last two blocks of each fixed point number may be wrong as long as the error is small enough to be rounded away when converting back to a floating point number. The fixed point numbers are expressed as

\[(a_1) \{a_2\} \{a_3\} \{a_4\} \{a_5\} \{a_6\} ;\]

where each \(a_i\) is exactly 4 digits (ranging from 0000 to 9999), except \(a_1\), which may be any “not-too-large” non-negative integer, with or without leading zeros. Here, “not-too-large” depends on the specific function (see the corresponding comments for details). Checking for overflow is the responsibility of the code calling those functions. The fixed point number \(a\) corresponding to the representation above is \(a = \sum_{i=1}^{6} a_i \cdot 10^{-4i}\).

Most functions we define here have the form

\[
\_\_\_fp_fixed_{\langle\text{calculation}\rangle}:\text{wwn } \langle\text{operand}_1\rangle ; \langle\text{operand}_2\rangle ; \{\langle\text{continuation}\rangle\}
\]

They perform the \(\langle\text{calculation}\rangle\) on the two \(\langle\text{operands}\rangle\), then feed the result (6 brace groups followed by a semicolon) to the \(\langle\text{continuation}\rangle\), responsible for the next step of the calculation. Some functions only accept an \(\text{N-type}\) \(\langle\text{continuation}\rangle\). This allows constructions such as

\[
\_\_\_fp_fixed_add:\text{wwn } \langle X_1 \rangle ; \langle X_2 \rangle ; \\
\_\_\_fp_fixed_mul:\text{wwn } \langle X_3 \rangle ; \\
\_\_\_fp_fixed_add:\text{wwn } \langle X_4 \rangle ;
\]

to compute \((X_1 + X_2) \cdot X_3 + X_4\). This turns out to be very appropriate for computing continued fractions and Taylor series.

At the end of the calculation, the result is turned back to a floating point number using \(\_\_\_fp_fixed_to_float_o:w\text{N}\). This function has to change the exponent of the floating point number: it must be used after starting an integer expression for the overall exponent of the result.

32.2 Helpers for numbers with extended precision

\c\_fp_one_fixed_tl

The fixed-point number 1, used in \texttt{l3fp-expo}.

\c\_fp_one_fixed_tl
{ {10000} {0000} {0000} {0000} {0000} {0000} ; }

(End definition for \c\_fp_one_fixed_tl.)

\_\_fp_fixed_continue:wn

This function simply calls the next function.

\_\_fp_fixed_continue:wn
#1; #2 { #2 #1; }

(End definition for \_\_fp_fixed_continue:wn.)
This function adds 1 to the fixed point \langle a \rangle, by changing \(a_1\) to 10000 + \(a_1\), then calls the \langle continuation \rangle. This requires \(a_1 + 10000 < 2^{31}\).

\begin{verbatim}
\cs_new:Npn \__fp_fixed_add_one:wN #1#2; #3
{ \exp_after:wN #3 \exp_after:wN \int_value:w \__fp_int_eval:w \c__fp_myriad_int + #1 } #2 ;
\end{verbatim}

(End definition for \__fp_fixed_add_one:wN.)

Divide a fixed point number by 10000. This is a little bit more subtle than just removing the last group and adding a leading group of zeros: the first group \#1 may have any number of digits, and we must split \#1 into the new first group and a second group of exactly 4 digits. The choice of shifts allows \#1 to be in the range \([0, 5 \cdot 10^8 - 1]\).

\begin{verbatim}
\cs_new:Npn \__fp_fixed_div_myriad:wn #1#2#3#4#5#6; #7#8#9;
{ \exp_after:wN \__fp_fixed_mul_after:wwn \int_value:w \__fp_int_eval:w \c__fp_leading_shift_int + #1*#7 \exp_after:wN \__fp_pack:NNNNNw \int_value:w \__fp_int_eval:w \c__fp_middle_shift_int + #1*#8 + #2*#7;
\end{verbatim}

(End definition for \__fp_fixed_div_myriad:wn.)

The fixed point operations which involve multiplication end by calling this auxiliary. It braces the last block of digits, and places the \langle continuation \rangle \#3 in front.

\begin{verbatim}
\cs_new:Npn \__fp_fixed_mul_after:wwn #1; #2; #3 { #3 {#1} #2; }
\end{verbatim}

(End definition for \__fp_fixed_mul_after:wwn.)

32.3 Multiplying a fixed point number by a short one

\begin{verbatim}
\cs_new:Npn \__fp_fixed_mul_short:wwn
{(a_1)}{(a_2)}{(a_3)}{(a_4)}{(a_5)}{(a_6)} ;
{(b_0)}{(b_1)}{(b_2)}{(b_3)}{(b_4)}{(b_5)} ; {\langle continuation \rangle}

Computes the product \(c = ab\) of \(a = \sum_i (a_i)10^{-4i}\) and \(b = \sum_i (b_i)10^{-4i}\), rounds it to the closest multiple of \(10^{-24}\), and leaves \langle continuation \rangle \{c_1\} \ldots \{c_6\} ; \{\langle continuation \rangle\} in the input stream, where each of the \{c_i\} are blocks of 4 digits, except \{c_1\}, which is any \TeX{} integer. Note that indices for \{b\} start at 0: for instance a second operand of \{0000\} \{0000\} \{0000\} leaves the first operand unchanged (rather than dividing it by \(10^8\), as \__fp_fixed_mul:wwn would).
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__fp_fixed_mul_short:wwn #1#2#3#4#5#6; #7#8#9;
{ \exp_after:wN \__fp_fixed_mul_after:wwn \int_value:w \__fp_int_eval:w \c__fp_leading_shift_int + #1*#7 \exp_after:wN \__fp_pack:NNNNNw \int_value:w \__fp_int_eval:w \c__fp_middle_shift_int + #1*#8 + #2*#7;
\end{verbatim}

833
Dividing a fixed point number by a small integer

\section{Dividing a fixed point number by a small integer}

\subsection*{Dividing a fixed point number by a small integer}

\begin{verbatim}
\cs_new:Npn \__fp_fixed_div_int:wwN #1#2#3#4#5#6 ; #7 ; #8 
{ \exp_after:wN \__fp_fixed_div_int_after:Nw
  \exp_after:wN \__fp_fixed_div_int_pack:Nw \__fp_fixed_div_int_pack:Nw
  \__fp_fixed_div_int_after:Nw
\end{verbatim}

\begin{enumerate}
\item Divides the fixed point number \((a)\) by the (small) integer \(0 < \langle n \rangle < 10^4\) and feeds the result to the \textit{continuation}. There is no bound on \(a\).
\item The arguments of the \texttt{i} auxiliary are \(1: a_1, 2: n, 3: a_3\) the \texttt{ii} or the \texttt{iii} auxiliary. It computes a (somewhat tight) lower bound \(Q_i\) for the ratio \(a_i/n\).
\item The \texttt{ii} auxiliary receives \(Q_i, n, a_i\) as arguments. It adds \(Q_i\) to a surrounding integer expression, and starts a new one with the initial value 9999, which ensures that the result of this expression has 5 digits. The auxiliary also computes \(a_i - n \cdot Q_i\), placing the result in front of the 4 digits of \(a_i+1\). The resulting \(a_i+1 = 10^4(a_i - n \cdot Q_i) + a_i+1\) serves as the first argument for a new call to the \texttt{i} auxiliary.
\item When the \texttt{iii} auxiliary is called, the situation looks like this:
\begin{verbatim}
\exp_after:wN \__fp_fixed_div_int_after:Nw
\exp_after:wN \__fp_fixed_div_int_pack:Nw \__fp_fixed_div_int_pack:Nw
\__fp_fixed_div_int_after:Nw
\end{verbatim}
\end{enumerate}

where expansion is happening from the last line up. The \texttt{iii} auxiliary adds \(Q_6 + 2 \approx a_6/n + 1\) to the last 9999, giving the integer closest to 10000 + \(a_6/n\).

Each \texttt{pack} auxiliary receives 5 digits followed by a semicolon. The first digit is added as a carry to the integer expression above, and the 4 other digits are braced. Each call to the \texttt{pack} auxiliary thus produces one brace group. The last brace group is produced by the \texttt{after} auxiliary, which places the \textit{continuation} as appropriate.

\section{Dividing a fixed point number by a small integer}

\subsection*{Dividing a fixed point number by a small integer}

\begin{verbatim}
\cs_new:Npn \__fp_fixed_div_int:wwN (a) ; \langle n \rangle ; \{ \textit{continuation} \}
\end{verbatim}

Each \texttt{pack} auxiliary receives 5 digits followed by a semicolon. The first digit is added as a carry to the integer expression above, and the 4 other digits are braced. Each call to the \texttt{pack} auxiliary thus produces one brace group. The last brace group is produced by the \texttt{after} auxiliary, which places the \textit{continuation} as appropriate.

\begin{verbatim}
\exp_after:wN \__fp_fixed_div_int:wwN \#1#2#3#4#5#6 ; #7 ; #8 
{ \exp_after:wN \__fp_fixed_div_int_after:Nw \exp_after:wN \#8 
\exp_after:wN \__fp_fixed_div_int_after:Nw \exp_after:wN \#8 
\exp_after:wN \__fp_fixed_div_int_after:Nw \#1; \{#7\} \__fp_fixed_div_int_auxii:wnn
\end{verbatim}

834
32.5 Adding and subtracting fixed points

\_\_fp\_fixed\_add:wwn \(\langle a \rangle; \langle b \rangle; \{\text{continuation}\}\rangle\)

\(a + b\) (resp. \(a - b\)) and feeds the result to the \(\langle\text{continuation}\rangle\). This function requires \(0 \leq a_1, b_1 \leq 114748\), its result must be positive (this happens automatically for addition) and its first group must have at most 5 digits: \((a \pm b)_1 < 100000\). The two functions only differ by a sign, hence use a common auxiliary. It would be nice to grab the 12 brace groups in one go; only 9 parameters are allowed. Start by grabbing the sign, \(a_1, \ldots, a_4\), the rest of \(a\), and \(b_1\) and \(b_2\). The second auxiliary receives the rest of \(a\), the sign multiplying \(b\), the rest of \(b\), and the \(\langle\text{continuation}\rangle\) as arguments. After going down through the various level, we go back up, packing digits and bringing the \(\langle\text{continuation}\rangle\) (#5, then #7) from the end of the argument list to its start.

\cs_new:Npn \_\_fp\_fixed\_add:ww { \_\_fp\_fixed\_add:NNnnnnnn \_\_fp\_fixed\_add:NnNNnnnNN \_\_fp\_fixed\_add_pack:NNNNNNNN \_\_fp\_fixed\_add_after:NNNNNN}

(End definition for \_\_fp\_fixed\_div:int:wwn and others.)
32.6 Multiplying fixed points

\exp_after:wN \__fp_fixed_mul:wwn \a (\b) \{ \{continuation\} \}

Computes \(a \times b\) and feeds the result to \{continuation\}. This function requires \(0 \leq a_1, b_1 < 10000\). Once more, we need to play around the limit of 9 arguments for \TeX\ macros. Note that we don’t need to obtain an exact rounding, contrarily to the \(*\) operator, so things could be harder. We wish to perform carries in

\[
a \times b = a_1 \cdot b_1 \cdot 10^{-8} + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{-12} + (a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1) \cdot 10^{-16} + (a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1) \cdot 10^{-20} + (a_2 \cdot b_4 + a_3 \cdot b_3 + a_4 \cdot b_2 + a_5 \cdot b_1) \\
+ \left( a_3 \cdot b_4 + a_4 \cdot b_3 + a_5 \cdot b_2 + a_6 \cdot b_1 \right) \cdot 10^{4} + a_1 \cdot b_5 + a_5 \cdot b_1 \right) \cdot 10^{-24} + O(10^{-24}),
\]

where the \(O(10^{-24})\) stands for terms which are at most \(5 \cdot 10^{-24}\), ignoring those leads to an error of at most 5 \ulp. Note how the first 15 terms only depend on \(a_1, \ldots, a_4\) and \(b_1, \ldots, b_4\), while the last 6 terms only depend on \(a_1, a_2, a_3, a_6, b_5, b_6\), and the corresponding parts of \(b\). Hence, the first function grabs \(a_1, \ldots, a_4\), the rest of \(a\), and \(b_1, \ldots, b_4\), and writes the 15 first terms of the expression, including a left parenthesis for the fraction. The \(i\) auxiliary receives \(a_5, a_6, b_1, b_2, a_1, a_2, b_5, b_6\) and finally the \(\{continuation\}\) as arguments. It writes the end of the expression, including the right parenthesis and the denominator of the fraction. The \(\{continuation\}\) is finally placed in front of the 6 brace groups by \(\__fp_fixed_mul_after:w\).

\exp_after:wN \__fp_fixed_mul_after:w \a \b \{ \{continuation\} \}

\cs_new:Npn \__fp_fixed_mul:wwn #1#2#3#4 #5; #6#7#8#9
\exp_after:wN \__fp_fixed_mul:wwn \a (\b) \{ \{continuation\} \}
Combining product and sum of fixed points

For definiteness, consider the task of computing \( a \times b + c \). We perform carries in

\[
\begin{align*}
 a \times b + c &= (a_1 \cdot b_1 + c_1 c_2) \cdot 10^{-8} \\
 &\quad + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{-12} \\
 &\quad + (a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1 + c_3 c_4) \cdot 10^{-16} \\
 &\quad + (a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1) \cdot 10^{-20} \\
 &\quad + \left( a_2 \cdot b_4 + a_3 \cdot b_3 + a_4 \cdot b_2 \\
 &\quad \quad + a_3 \cdot b_4 + a_4 \cdot b_3 + a_1 \cdot b_6 + a_2 \cdot b_5 + a_5 \cdot b_2 + a_6 \cdot b_1 \\
 &\quad \quad \quad + a_1 \cdot b_5 + a_5 \cdot b_1 + c_5 c_6 \right) \cdot 10^{-24} + O(10^{-24}),
\end{align*}
\]

where \( c_1 c_2, c_3 c_4, c_5 c_6 \) denote the 8-digit number obtained by juxtaposing the two blocks of digits of \( c \), and \( \cdot \) denotes multiplication. The task is obviously tough because we have 18 brace groups in front of us.

Each of the three function starts the first two levels (the first, corresponding to \( 10^{-4} \), is empty), with \( c_1 c_2 \) in the first level, calls the auxiliary with arguments described later, and adds a trailing \( + c_5 c_6 \); \{(continuation)\}; The \( + c_5 c_6 \) piece, which is omitted for \( \text{\_\_fp_fixed_one_minus_mul:wwn} \), is taken in the integer expression for the \( 10^{-24} \) level.
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int + \#3 \#4
\__fp_fixed_mul_add:Nwnnnwnnn +
+ \#5 \#6 ; \#2 ; \#1 ; \#2 ; +
+ \#7 \#8 ; ;
\}\}
\cs_new:Npn \__fp_fixed_mul_sub_back:wwnn #1; #2; #3#4#5#6#7#8;
{\exp_after:wN \__fp_fixed_mul_after:wwn
\int_value:w \c__fp_int_eval:w \c__fp_big_leading_shift_int
\exp_after:wN \__fp_pack_big:NNNNNNw
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int + \#3 \#4
\__fp_fixed_mul_add:Nwnnnwnnn -
+ \#5 \#6 ; \#2 ; \#1 ; \#2 ; -
+ \#7 \#8 ; ;
\}
\cs_new:Npn \__fp_fixed_one_minus_mul:wwn #1; #2;
{\exp_after:wN \__fp_fixed_mul_after:wwn
\int_value:w \c__fp_int_eval:w \c__fp_big_leading_shift_int
\exp_after:wN \__fp_pack_big:NNNNNNw
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int +
1\,0000\,0000
\__fp_fixed_mul_add:Nwnnnwnnn -
; \#2 ; \#1 ; \#2 ; -
; ;
\}
\cs_new:Npn \__fp_fixed_mul_add:Nwnnnwnnn #1 #2; #3#4#5#6; #7#8#9
{\#1 \#7*\#3
\exp_after:wN \__fp_fixed_mul_add:Nwnnnwnnn \langle op \rangle + \langle c_3 \rangle \langle c_4 \rangle ;
\langle b \rangle ; \langle a \rangle ; \langle b \rangle ; \langle op \rangle
+ \langle c_5 \rangle \langle c_6 \rangle ;
Here, \langle op \rangle is either + or -. Arguments \#3, \#4, \#5 are \langle b_1 \rangle, \langle b_2 \rangle, \langle b_3 \rangle; arguments \#7, \#8, \#9 are \langle a_1 \rangle, \langle a_2 \rangle, \langle a_3 \rangle. We can build three levels: \(a_1 \cdot b_1\) for \(10^{-8}\), \((a_1 \cdot b_2 + a_2 \cdot b_1)\) for \(10^{-12}\), and \((a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1 + c_3 c_4)\) for \(10^{-16}\). The \(a-b\) products use the sign \#1. Note that \#2 is empty for \__fp_fixed_one_minus_mul:wwn. We call the \(ii\) auxiliary for levels \(10^{-20}\) and \(10^{-24}\), keeping the pieces of \langle a \rangle we’ve read, but not \langle b \rangle, since there is another copy later in the input stream.
\cs_new:Npn \__fp_fixed_mul_add:Nwnnnwnnn \#1 \#2; \#3\#4\#5\#6; \#7\#8\#9
{
\#1 \#7*\#3
\exp_after:wN \__fp_pack_big:NNNNNNw
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int
\#1 \#7*\#4 \#1 \#8*\#3
\exp_after:wN \__fp_pack_big:NNNNNNw
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int
\#1 \#7*\#5 \#1 \#8*\#4 \#1 \#9*\#3 \#2
\exp_after:wN \__fp_pack_big:NNNNNNw
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int
\#1 \#7*\#5 \#1 \#8*\#4 \#1 \#9*\#3 \#2
\exp_after:wN \__fp_pack_big:NNNNNNw
\int_value:w \c__fp_int_eval:w \c__fp_big_middle_shift_int
\#1 \__fp_fixed_mul_add:nwnnnwnnn \{\#7\}\{\#8\}\{\#9\}
\}
(End definition for \__fp_fixed_mul_add:Nwnnnwnnn.)
Level $10^{-20}$ is $(a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1)$, multiplied by the sign, which was inserted by the i auxiliary. Then we prepare level $10^{-24}$. We don’t have access to all parts of $\langle a \rangle$ and $\langle b \rangle$ needed to make all products. Instead, we prepare the partial expressions

$$b_1 + a_4 \cdot b_2 + a_3 \cdot b_3 + a_2 \cdot b_4 + a_1$$

$$b_2 + a_4 \cdot b_1 + a_3 \cdot b_4 + a_2.$$ 

Obviously, those expressions make no mathematical sense: we complete them with $a_5 \cdot b_5$ and $b_1 \cdot a_4$, and with $a_6 \cdot b_1 + a_5 \cdot b_5 + a_1 \cdot b_6$, and of course with the trailing $+c_5c_6$. To do all this, we keep $a_1, a_5, a_6$, and the corresponding pieces of $\langle b \rangle$.

The second one is divided by 10000: this is the carry from level $10^{-28}$. The trailing $+c_5c_6$ is taken into the expression for level $10^{-24}$. Note that the total of $10^{-24}$ is in the interval $[-5 \cdot 10^8, 6 \cdot 10^8]$ (give or take a couple of 10000), hence adding it to the shift gives a 10-digit number, as expected by the packing auxiliaries. See l3fp-aux for the definition of the shifts and packing auxiliaries.

### 32.8 Extended-precision floating point numbers

In this section we manipulate floating point numbers with roughly 24 significant figures (“extended-precision” numbers, in short, “ep”), which take the form of an integer exponent, followed by a comma, then six groups of digits, ending with a semicolon. The first group of digit may be any non-negative integer, while other groups of digits have 4 digits. In other words, an extended-precision number is an exponent ending in a comma, then a fixed point number. The corresponding value is $0.\langle digits \rangle \cdot 10^{\langle exponent \rangle}$. This convention differs from floating points.
Converts an extended-precision number with an exponent at most 4 and a first block less than \(10^8\) to a fixed point number whose first block has 12 digits, hopefully starting with many zeros.

$$\text{cs_new:Npn \_\_fp_ep_to_fixed:wwn #1,#2}$$

\begin{verbatim}
{ \exp_after:wN \_\_fp_ep_to_fixed_auxi:www
  \int_value:w \__fp_int_eval:w 1 0000 0000 + #2 \exp_after:wN ;
  \exp:w \exp_end_continue_f:w
  \prg_replicate:nn { 4 - \int_max:nn {#1} { -32 } } { 0 } ;
}
\end{verbatim}

$$\text{cs_new:Npn \_\_fp_ep_to_fixed_auxi:www 1#1; #2; #3#4#5#6#7;}$$

\begin{verbatim}
{ \__fp_pack_eight:wNNNNNNNN
  \__fp_pack_twice_four:wNNNNNNNN
  \__fp_pack_twice_four:wNNNNNNNN
  \_\_fp_ep_to_fixed_auxii:nnnnnnnwn ;
  #2 #1#3#4#5#6#7 0000 !
}
\end{verbatim}

$$\text{cs_new:Npn \_\_fp_ep_to_fixed_auxii:nnnnnnnwn #1#2#3#4#5#6#7; #8! #9}{ #9 {#1#2}{#3}{#4}{#5}{#6}{#7}; }$$

(End definition for \_\_fp_ep_to_fixed:wwn, \_\_fp_ep_to_fixed_auxi:www, and \_\_fp_ep_to_fixed_auxii:nnnnnnnwn.)

Normalize an extended-precision number. More precisely, leading zeros are removed from the mantissa of the argument, decreasing its exponent as appropriate. Then the digits are packed into 6 groups of 4 (discarding any remaining digit, not rounding). Finally, the continuation \#8 is placed before the resulting exponent-mantissa pair. The input exponent may in fact be given as an integer expression. The loop auxiliary grabs a digit: if it is 0, decrement the exponent and continue looping, and otherwise call the end auxiliary, which places all digits in the right order (the digit that was not 0, and any remaining digits), followed by some 0, then packs them up neatly in \(3 \times 2 = 6\) blocks of four. At the end of the day, remove with \_\_fp_use_i:ww any digit that did not make it in the final mantissa (typically only zeros, unless the original first block has more than 4 digits).

$$\text{cs_new:Npn \_\_fp_ep_to_ep:wwN #1,#2#3#4#5#6#7; #8}$$

\begin{verbatim}
{ \exp_after:wN #8
  \int_value:w \__fp_int_eval:w #1 + 4
  \exp_after:wN \use_i:nn
  \exp_after:wN \_\_fp_ep_to_ep_loop:N
  \int_value:w \__fp_int_eval:w 1 0000 0000 + #2 \_\_fp_int_eval_end:
  #3#4#5#6#7 ; !
}
\end{verbatim}

$$\text{cs_new:Npn \_\_fp_ep_to_ep_loop:N #1}$$

\begin{verbatim}
{ \if_meaning:w 0 #1
  - 1
  \else:
  \_\_fp_ep_to_ep_end:www #1
  \fi:
  \_\_fp_ep_to_ep_loop:N
}\end{verbatim}
\cs_new:Npn \__fp_ep_to_ep_end:ww \\
#1 \fi: \__fp_ep_to_ep_loop:N #2; #3! \\
{ \\
\fi: \\
\if_meaning:w ; #1 \\
- 2 * \c__fp_max_exponent_int \\
\__fp_ep_to_ep_zero:ww \\
\fi: \\
\__fp_pack_twice_four:wNNNNNNNN \\
\__fp_pack_twice_four:wNNNNNNNN \\
\__fp_pack_twice_four:wNNNNNNNN \\
\__fp_use_i:ww , ; \\
#1 #2 0000 0000 0000 0000 0000 0000 ; \\
} \\
\cs_new:Npn \__fp_ep_to_ep_zero:ww \fi: #1; #2; #3; \\
{ \fi: , {1000}{0000}{0000}{0000}{0000}{0000} ; } \\
\__fp_ep_compare:wwww \\
\__fp_ep_compare_aux:wwww \\
In l3fp-trig we need to compare two extended-precision numbers. This is based on the 
same function for positive floating point numbers, with an extra test if comparing only 
16 decimals is not enough to distinguish the numbers. Note that this function only works 
if the numbers are normalized so that their first block is in [1000,9999]. \\
\cs_new:Npn \__fp_ep_compare:wwww #1,#2#3#4#5#6#7; \\
{ \__fp_ep_compare_aux:wwww {#1}{#2}{#3}{#4}{#5}; #6#7; } \\
\cs_new:Npn \__fp_ep_compare_aux:wwww #1;#2;#3,#4#5#6#7#8#9; \\
{ \\
\if_case:w \\
\__fp_compare_npos:nwnw #1; {#3}{#4}{#5}{#6}{#7}; \exp_stop_f: \\
\if_int_compare:w #2 = #8#9 \exp_stop_f: \\
0 \\
\else: \\
\if_int_compare:w #2 < #8#9 - \fi: 1 \\
\fi: \\
\or: 1 \\
\else: -1 \\
\fi: \\
} \\
\__fp_ep_mul:wwwwn \\
\__fp_ep_mul_raw:wwwwN \\
Multiply two extended-precision numbers: first normalize them to avoid losing too much 
precision, then multiply the mantissas #2 and #4 as fixed point numbers, and sum the 
exponents #1 and #3. The result’s first block is in [100,9999]. \\
\cs_new:Npn \__fp_ep_mul:wwwwn #1,#2; #3,#4; \\
{ \\
\__fp_ep_to_ep:wwN #3,#4; \\
\__fp_fixed_continue:wn \\
\__fp_ep_to_ep:wwN #1,#2; \\
\__fp_ep_mul_raw:wwwwN \\
\} \\
\__fp_fixed_continue:wn
Dividing extended-precision numbers

Divisions of extended-precision numbers are difficult to perform with exact rounding: the technique used in \texttt{l3fp-basics} for 16-digit floating point numbers does not generalize easily to 24-digit numbers. Thankfully, there is no need for exact rounding.

Let us call $\langle n \rangle$ the numerator and $\langle d \rangle$ the denominator. After a simple normalization step, we can assume that $\langle n \rangle \in [0.1, 1)$ and $\langle d \rangle \in [0.1, 1)$, and compute $\langle n \rangle / 10 \langle d \rangle \in (0.01, 1)$. In terms of the 6 blocks of digits $\langle n_1 \rangle \cdots \langle n_6 \rangle$ and the 6 blocks $\langle d_1 \rangle \cdots \langle d_6 \rangle$, the condition translates to $\langle n_1 \rangle, \langle d_1 \rangle \in [1000, 9999]$.

We first find an integer estimate $a \simeq 10^8 / \langle d \rangle$ by computing

$$\alpha = \left\lfloor \frac{10^9}{\langle d_1 \rangle} + 1 \right\rfloor,$$

$$\beta = \left\lfloor \frac{10^9}{\langle d_1 \rangle} \right\rfloor,$$

$$a = 10^3 \alpha + (\beta - \alpha) \cdot \left( 10^3 - \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \right) - 1250,$$

where \texttt{\$} denotes \$\varepsilon\TeX$'s rounding division, which rounds ties away from zero. The idea is to interpolate between $10^3 \alpha$ and $10^3 \beta$ with a parameter $\langle d_2 \rangle / 10^4$, so that when $\langle d_2 \rangle = 0$ one gets $a = 10^3 \beta - 1250 \simeq 10^{12} / \langle d_1 \rangle \simeq 10^8 / \langle d \rangle$, while when $\langle d_2 \rangle = 9999$ one gets $a = 10^3 \alpha - 1250 \simeq 10^{12} / (\langle d_1 \rangle + 1) \simeq 10^8 / \langle d \rangle$. The shift by 1250 helps to ensure that $a$ is an underestimate of the correct value. We shall prove that

$$1 - 1.755 \cdot 10^{-5} < \frac{\langle d \rangle a}{10^8} < 1.$$

We can then compute the inverse of $\langle d \rangle a / 10^8 = 1 - \epsilon$ using the relation $1 / (1 - \epsilon) \simeq (1 + \epsilon)(1 + \epsilon^2) + \epsilon^4$, which is correct up to a relative error of $\epsilon^5 < 1.6 \cdot 10^{-24}$. This allows us to find the desired ratio as

$$\frac{\langle n \rangle}{\langle d \rangle} = \frac{\langle n \rangle a}{10^8} ((1 + \epsilon)(1 + \epsilon^2) + \epsilon^4).$$

Let us prove the upper bound first (multiplied by $10^{15}$). Note that $10^7 \langle d \rangle < 10^3 \langle d_1 \rangle + 10^{-1}(\langle d_2 \rangle + 1)$, and that \$\varepsilon\TeX$'s division $\left\lfloor \frac{\langle d_2 \rangle}{10^4} \right\rfloor$ underestimates $10^{-1}(\langle d_2 \rangle + 1)$ by 0.5 at
most, as can be checked for each possible last digit of \( \langle d_2 \rangle \). Then,
\[
10^7 \langle d \rangle a < \left( 10^4 \langle d_1 \rangle + \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil + \frac{1}{2} \right) \left( 10^3 - \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil \right) \beta + \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil \alpha - 1250 \tag{1}
\]
\[
< \left( 10^4 \langle d_1 \rangle + \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil + \frac{1}{2} \right) \tag{2}
\]
\[
\left( \left( 10^4 - \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil \right) \left( 10^9 \frac{\langle d_1 \rangle}{10} + \frac{1}{2} \right) + \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil \left( \frac{10^9}{\langle d_1 \rangle + 1} + \frac{1}{2} \right) - 1250 \right) \tag{3}
\]
\[
< \left( 10^4 \langle d_1 \rangle + \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil + \frac{1}{2} \right) \left( \frac{10^{12}}{\langle d_1 \rangle} - \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil \frac{10^9}{\langle d_1 \rangle (\langle d_1 \rangle + 1)} - 750 \right) \tag{4}
\]
We recognize a quadratic polynomial in \( \langle d_2 \rangle/10 \) with a negative leading coefficient: this polynomial is bounded above, according to \((\langle d_2 \rangle/10 + a) (b - c \langle d_2 \rangle/10) \leq (b + ca)^2/(4c)\). Hence,
\[
10^7 \langle d \rangle a < \frac{10^{15}}{\langle d_1 \rangle (\langle d_1 \rangle + 1)} \left( \langle d_1 \rangle + \frac{1}{2} + \frac{1}{4} 10^{-3} - \frac{3}{8} \cdot 10^{-9} \langle d_1 \rangle (\langle d_1 \rangle + 1) \right)^2
\]
Since \( \langle d_1 \rangle \) takes integer values within [1000, 9999], it is a simple programming exercise to check that the squared expression is always less than \( \langle d_1 \rangle (\langle d_1 \rangle + 1) \), hence \( 10^7 \langle d \rangle a < 10^{15} \).

The upper bound is proven. We also find that \( \frac{3}{8} \) can be replaced by slightly smaller numbers, but nothing less than 0.374563..., and going back through the derivation of the upper bound, we find that 1250 is as small a shift as we can obtain without breaking the bound.

Now, the lower bound. The same computation as for the upper bound implies
\[
10^7 \langle d \rangle a > \left( 10^4 \langle d_1 \rangle + \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil - \frac{1}{2} \right) \left( \frac{10^{12}}{\langle d_1 \rangle} - \left\lceil \frac{\langle d_2 \rangle}{10} \right\rceil \frac{10^9}{\langle d_1 \rangle (\langle d_1 \rangle + 1)} - 1750 \right)
\]
This time, we want to find the minimum of this quadratic polynomial. Since the leading coefficient is still negative, the minimum is reached for one of the extreme values \( \lfloor y/10 \rfloor = 0 \) or \( \lfloor y/10 \rfloor = 100 \), and we easily check the bound for those values.

We have proven that the algorithm gives us a precise enough answer. Incidentally, the upper bound that we derived tells us that \( a < 10^5/d \leq 10^3 \), hence we can compute \( a \) safely as a \TeX integer, and even add \( 10^9 \) to it to ease grabbing of all the digits. The lower bound implies \( 10^9 - 1755 < a \), which we do not care about.
The esti function evaluates $\alpha = 10^9/(d_1 + 1)$, which is used twice in the expression for $a$, and combines the exponents $\#1$ and $\#4$ (with a shift by 1 because we later compute $\langle n \rangle/(10\langle d \rangle)$). Then the estii function evaluates $10^9 + a$, and puts the exponent $\#2$ after the continuation $\#7$: from there on we can forget exponents and focus on the mantissa. The estiii function multiplies the denominator $\#7$ by $10^{-8}a$ (obtained as a split into the single digit $\#1$ and two blocks of 4 digits, $\#2\#3\#4\#5$ and $\#6$). The result $10^{-8}a(d) = (1 - \epsilon)$, and a partially packed $10^{-9}a$ (as a block of four digits, and five individual digits, not packed by lack of available macro parameters here) are passed to \__fp_ep_div_\_estii:wwnnwwn, which computes $10^{-9}a/(1 - \epsilon)$, that is, $1/(10\langle d \rangle)$ and we finally multiply this by the numerator $\#8$.

\cs_new:Npn \__fp_ep_div_esti:wwwwn #1,#2#3; #4, {
\exp_after:wN \__fp_ep_div_estii:wwnnwwn \int_value:w \__fp_int_eval:w 10 0000 0000 / ( #2 + 1 ) \exp_after:wN ; \int_value:w \__fp_int_eval:w #4 - #1 + 1 , (#2) #3; }
\cs_new:Npn \__fp_ep_div_estii:wwnnwwn #1; #2,#3#4#5; #6; #7 {
\exp_after:wN \__fp_ep_div_estiii:NNNNNwwwn \int_value:w \__fp_int_eval:w 10 0000 0000 - 1750 + #1 000 + (10 0000 0000 / #3 - #1) * (1000 - #4 / 10) ; {#3}{#4}#5; #6; { #7 #2, }
}
\cs_new:Npn \__fp_ep_div_estiii:NNNNNwwwn 1#1#2#3#4#5#6; #7; {
\exp_after:wN \__fp_fixed_mul_short:wwn #7; {#1}{#2#3#4#5}{#6}; \__fp_ep_div_\_estii:wwnnwwn 1\#1\#2\#3\#4\#5\#6; #7; \__fp_fixed_mul:wwn
}
\cs_new:Npn \__fp_ep_div_\_estii:wwnnwwn #1; #2,#3#4#5; #6; #7 {
\exp_after:wN \__fp_fixed_mul_\_estii:wwnnwwn \int_value:w \__fp_int_eval:w 1 9998 - #2 \exp_after:wN \__fp_ep_div_\_estiii:NNNNNwwwn \int_value:w \__fp_int_eval:w 1 9999 9998 - #3#4 \exp_after:wN \__fp_ep_div_\_estiii:NNNNNwwwn \int_value:w \__fp_int_eval:w 2 0000 0000 - #5#6 ; ;
}

(End definition for \__fp_ep_div_esti:wwwwn, \__fp_ep_div_estii:wwnnwwn, and \__fp_ep_div_\_estiii:NNNNNwwwn.)

The bounds shown above imply that the epsii function’s first operand is $(1 - \epsilon)$ with $\epsilon \in [0, 1.755 \cdot 10^{-5}]$. The epsii function computes $\epsilon$ as $1 - (1 - \epsilon)$. Since $\epsilon < 10^{-4}$, its first block vanishes and there is no need to explicitly use $\#1$ (which is 9999). Then epsii evaluates $10^{-9}a/(1 - \epsilon)$ as $(1 + \epsilon^2)(1 + \epsilon)(10^{-9}a) + 10^{-9}a$. Importantly, we compute $10^{-9}a$ before multiplying it with the rest, rather than multiplying by $\epsilon$ and then $10^{-9}a$, as this second option loses more precision. Also, the combination of short_mul and div_mymriad is both faster and more precise than a simple mul. 

\cs_new:Npn \__fp_ep_div_epsii:wnNNNNNn #1#2#3#4#5#6; {
\exp_after:wN \__fp_ep_div_epsiii:wnNNNNNn \int_value:w \__fp_int_eval:w 1 9998 - #2 \exp_after:wN \__fp_ep_div_epsiii:wnNNNNNn \int_value:w \__fp_int_eval:w 1 9999 9998 - #3#4 \exp_after:wN \__fp_ep_div_epsiii:wnNNNNNn \int_value:w \__fp_int_eval:w 2 0000 0000 - #5#6 ; ;
}

(End definition for \__fp_ep_div_epsii:wnNNNNNn, \__fp_ep_div_epsiii:wnNNNNNn, and \__fp_ep_div_\_estii:NNNNNwwwn.)
32.10 Inverse square root of extended precision numbers

The idea here is similar to division. Normalize the input, multiplying by powers of 100 until we have \( x \in [0.01, 1) \). Then find an integer approximation \( r \in [10^5, 10^6] \) of \( \frac{10^2}{\sqrt{x}} \), starting from a guess that optimizes the number of steps before convergence. In fact, just as there is a slight shift when computing divisions to ensure that some inequalities hold, we replace \( 10^8 \) by a slightly larger number which ensures that \( r^2 x \geq 10^4 \). This also causes \( r \in [10^5, 10^6] \). Another correction to the above is that the input is actually normalized to \([0.1, 1)\), and we use either \( 10^8 \) or \( 10^9 \) in the Newton method, depending on the parity of the exponent. Skipping those technical hurdles, once we have the approximation \( r \), we set \( y = 10^{-4} r^2 x \) (or rather, the correct power of 10 to get \( y \approx 1 \)) and compute \( y^{-1/2} \) through another application of Newton’s method. This time, the starting value is \( z = 1 \), each step maps \( z \mapsto z(1.5 - 0.5yz^2) \), and we perform a fixed number of steps. Our final result combines \( r \) with \( y^{-1/2} \) as \( x^{-1/2} = 10^{-2} ry^{-1/2} \).

First normalize the input, then check the parity of the exponent \( #1 \). If it is even, the result’s exponent will be \(-#1/2\), otherwise it will be \((#1 - 1)/2\) (except in the case where the input was an exact power of 100). The auxii function receives as \#1 the result’s exponent just computed, as \#2 the starting value for the iteration giving \( r \) (the values 168 and 535 lead to the least number of iterations before convergence, on average), as \#3 and \#4 one empty argument and one 0, depending on the parity of the original exponent, as \#5 and \#6 the normalized mantissa (\#5 \in \([1000, 9999]\)), and as \#7 the continuation. It sets up the iteration giving \( r \): the esti function thus receives the initial two guesses \#2 and 0, an approximation \#5 of \( 10^4 x \) (its first block of digits), and the empty/zero arguments \#3 and \#4, followed by the mantissa and an altered continuation where we have stored the result’s exponent.
If the last two approximations gave the same result, we are done: call the estii function to clean up. Otherwise, evaluate \((\langle prev \rangle + 10.005 \cdot 10^{8} or 9/(\langle prev \rangle \cdot x))/2\), as the next approximation: omitting the 1.005 factor, this would be Newton’s method. We can check by brute force that if \#4 is empty (the original exponent was even), the process computes an integer slightly larger than \(100/\sqrt{x}\), while if \#4 is 0 (the original exponent was odd), the result is an integer slightly larger than \(100/\sqrt{x/10}\). Once we are done, we evaluate \(10.005^2/2 or 10.005^2/2\) (when the exponent is even or odd, respectively) and feed that to estiii. This third auxiliary finds \(y_{\text{even}}/2 = 10^{-4} r^2 x/2\) or \(y_{\text{odd}}/2 = 10^{-5} r^2 x/2\) (again, depending on earlier parity). A simple program shows that \(y \in [1, 1.0201]\). The number \(y/2\) is fed to \(\langle prev \rangle + 1.0050000 \cdot \langle \text{#4} \rangle / (\langle \text{#1} \rangle \cdot \langle \text{#3} \rangle)\). We finally multiply the result by \(r\).

Here, we receive a fixed point number \(y/2\) with \(y \in [1, 1.0201]\). Starting from \(z = 1\) we iterate \(z \mapsto z(3/2 - z^2 y/2)\). In fact, we start from the first iteration \(z = 3/2 - y/2\) to avoid useless multiplications. The epsii auxiliary receives \(z\) as \(\text{#1}\) and \(y\) as \(\text{#2}\).
32.11 Converting from fixed point to floating point

After computing Taylor series, we wish to convert the result from extended precision (with or without an exponent) to the public floating point format. The functions here should be called within an integer expression for the overall exponent of the floating point.

\[\text{\texttt{\_fp\_ep\_to\_float\_o:wwN}}\]
\[\text{\texttt{\_fp\_ep\_inv\_to\_float\_o:wwN}}\]

An extended-precision number is simply a comma-delimited exponent followed by a fixed point number. Leave the exponent in the current integer expression then convert the fixed point number.

\[\text{\texttt{\_fp\_fixed\_inv\_to\_float\_o:wN}}\]

Another function which reduces to converting an extended precision number to a float.

\[\text{\texttt{\_fp\_fixed\_to\_float\_rad:o:wn}}\]

Converts the fixed point number \#1 from degrees to radians then to a floating point number. This could perhaps remain in l3fp-trig.
\__fp\_fixed\_to\_float\_{o:wN} \ldots \__fp\_int\_eval: w \langle exponent \rangle \__fp\_fixed\_to\_float\_{o:wN} \{ (a_1) \} \{ (a_2) \} \{ (a_3) \} \{ (a_4) \} \{ (a_5) \} \{ (a_6) \}; \{ \text{sign} \} \text{ yields} \langle exponent' \rangle; \{ (a'_1) \} \{ (a'_2) \} \{ (a'_3) \} \{ (a'_4) \};

And the to_fixed version gives six brace groups instead of 4, ensuring that $1000 \leq \langle a'_1 \rangle \leq 9999$. At this stage, we know that $\langle a_1 \rangle$ is positive (otherwise, it is sign of an error before), and we assume that it is less than $10^8$.

Bruno: I must double check this assumption.
33 l3fp-expo implementation

33.1 Logarithm

33.1.1 Work plan

As for many other functions, we filter out special cases in \_fp-ln-o:w. Then \_fp-ln-npos-o:w receives a positive normal number, which we write in the form \(a \cdot 10^b\) with \(a \in [0,1)\).

The rest of this section is actually not in sync with the code. Or is the code not in sync with the section? In the current code, \(c \in [1,10]\) is such that 0.7 ≤ \(ac\) < 1.4.

We are given a positive normal number, of the form \(a \cdot 10^b\) with \(a \in [0,1)\). To compute its logarithm, we find a small integer 5 ≤ \(c\) < 50 such that 0.91 ≤ \(ac/5\) < 1.1, and use the relation

\[
\ln(a \cdot 10^b) = b \cdot \ln(10) - \ln(c/5) + \ln(ac/5).
\]

The logarithms \(\ln(10)\) and \(\ln(c/5)\) are looked up in a table. The last term is computed using the following Taylor series of \(\ln\) near 1:

\[
\ln \left( \frac{ac}{5} \right) = \ln \left( \frac{1 + t}{1 - t} \right) = 2t \left( 1 + t^2 \left( \frac{1}{3} + t^2 \left( \frac{1}{5} + t^2 \left( \frac{1}{7} + t^2 \left( \frac{1}{9} + \cdots \right) \right) \right) \right)
\]
where \( t = 1 - 10/(ac + 5) \). We can now see one reason for the choice of \( ac \sim 5 \): then 
\[ ac + 5 = 10(1 - \epsilon) \]
with \(-0.05 < \epsilon \leq 0.045 \), hence

\[ t = \frac{\epsilon}{1 - \epsilon} = \epsilon(1 + \epsilon)(1 + \epsilon^2)(1 + \epsilon^4) \ldots, \]

is not too difficult to compute.

### 33.1.2 Some constants

A few values of the logarithm as extended fixed point numbers. Those are needed in the implementation. It turns out that we don’t need the value of \( \ln(5) \).

\[
\begin{align*}
\text{l_const:Nn } \c__fp_ln_i_fixed_tl & \{ {0000}{0000}{0000}{0000}{0000}{0000}; \\
\text{l_const:Nn } \c__fp_ln_ii_fixed_tl & \{ {6931}{4718}{0559}{9453}{0941}{7232}; \\
\text{l_const:Nn } \c__fp_ln_iii_fixed_tl & \{ {10986}{1228}{8668}{1096}{9139}{5245}; \\
\text{l_const:Nn } \c__fp_ln_iv_fixed_tl & \{ {13862}{9436}{1119}{8906}{1883}{4464}; \\
\text{l_const:Nn } \c__fp_ln_vi_fixed_tl & \{ {17917}{5946}{9228}{0550}{0081}{2477}; \\
\text{l_const:Nn } \c__fp_ln_vii_fixed_tl & \{ {19459}{1014}{9055}{3133}{0510}{5353}; \\
\text{l_const:Nn } \c__fp_ln_viii_fixed_tl & \{ {20794}{4154}{1679}{8359}{2825}{1696}; \\
\text{l_const:Nn } \c__fp_ln_ix_fixed_tl & \{ {21972}{2457}{7336}{2193}{8279}{0480}; \\
\text{l_const:Nn } \c__fp_ln_x_fixed_tl & \{ {23025}{8509}{2994}{0456}{8401}{7991};
\end{align*}
\]

(End definition for \( \c__fp_ln_i_fixed_tl \) and others.)

### 33.1.3 Sign, exponent, and special numbers

The logarithm of negative numbers (including \(-\infty \) and \(-0 \)) raises the “invalid” exception. The logarithm of \(+0\) is \(-\infty \), raising a division by zero exception. The logarithm of \(+\infty \) or a \text{nan} is itself. Positive normal numbers call \( \__fp_ln_npos_o:w \).

\[
\begin{align*}
\text{cs_new:Npn } \__fp_ln_o:w \#1 \s__fp \__fp_chk:w \#2\#3\#4; & \empty
\{ \text{if meaning:w 2 #3 \__fp_case_use:nw { \__fp_invalid_operation_o:nw \{ ln \} } \fi:} \\
\text{\if_case:w \#2 \exp_stop_f:} \\
\text{\__fp_case_use:nw} \\
\{ \__fp_division_by_zero_o:Nnw \c_minus_inf_fp \{ ln \} \} \\
\text{\or:} \\
\text{\else:} \\
\text{\__fp_case_return_same_o:w} \\
\text{\__fp_ln_npos_o:w \s__fp \__fp_chk:w \#2\#3\#4;}
\end{align*}
\]

(End definition for \( \__fp_ln_o:w \).)

### 33.1.4 Absolute \( \ln \)

\( \__fp_ln_npos_o:w \) We catch the case of a significand very close to 0.1 or to 1. In all other cases, the final result is at least \( 10^{-4} \), and then an error of \( 0.5 \cdot 10^{-20} \) is acceptable.

\[
\begin{align*}
\text{cs_new:Npn } \__fp_ln_npos_o:w \s__fp \__fp_chk:w \#1\#2\#3; & \empty
\{ \quad \% A todo: ln(1) should be "exact zero", not "underflow" \\
\text{\exp_after:wN \__fpsanitize:Nw} \\
\text{\int_value:w } \%	ext{ for the overall sign}
\end{align*}
\]

850
\if_int_compare:w #1 < 1 \exp_stop_f:
  2
\else:
  0
\fi:
\exp_after:wN \exp_stop_f:
\int_value:w \_\_fp_int_eval:w \#2 \#3
\_\_fp_ln_significant:NNNNnnnN \#1
\_\_fp_ln_exponent:wn \{#1\}
}

(End definition for \_\_fp_ln_npos_o:w.)
\_\_fp_ln_significant:NNNNnnnN
\langle X_1 \rangle \{\langle X_2 \rangle \} \{\langle X_3 \rangle \} \{\langle X_4 \rangle \} \{\langle X_5 \rangle \} \{\langle X_6 \rangle \};
\cs_new:Npn \_\_fp_ln_significand:NNNNnnnN \#1\#2\#3\#4
{\exp_after:wN \_\_fp_ln_x_ii:wnnnn \int_value:w \_\_fp_int_eval:w \#2 \#3 \#4
\__fp_int_to_roman:w #1 _fixed_tl \exp_after:wN \cs_end:
\int_value:w \_\_fp_ln_x_iv:wnnnnnnnnnn
\exp_after:wN \_\_fp_ln_x_iii_var:NNNNNw
\int_value:w \_\_fp_int_eval:w 9999 9990 + #1*#2#3 +
\_\_fp_int_eval:w 10 0000 0000 + #1#2#3\#4#5 ;

(End definition for \_\_fp_ln_significant:NNNNnnnN.)
\_\_fp_ln_x_ii:wnnnn
We have thus found $c \in [1, 10]$ such that $0.7 \leq ac < 1.4$ in all cases. Compute $1 + x = 1 + ac \in [1.7, 2.4)$.
\cs_new:Npn \_\_fp_ln_x_iiv:wnnnnnnnnnn
\int_value:w \_\_fp_int_eval:w \#2\#3\#4#5
\exp_after:wN \_\_fp_ln_div_after:Nw
\cs:w c\_\_fp_ln\_\_fp_int_to_roman:w #1 _fixed_tl \exp_after:wN \cs_end:
\int_value:w \_\_fp_int_eval:w \#2\#3\#4#5
\_\_fp_int_eval:w 9999 9990 + #1*#2#3 +
\_\_fp_int_eval:w 10 0000 0000 + #1#2#3\#4#5 ;

851
The Taylor series to be used is expressed in terms of \( t = (x - 1)/(x + 1) = 1 - 2/(x + 1) \). We now compute the quotient with extended precision, reusing some code from \_fp_/o:ww. Note that \( 1 + x \) is known exactly.

To reuse notations from l3fp-basics, we want to compute \( A/Z \) with \( A = 2 \) and \( Z = x + 1 \). In l3fp-basics, we considered the case where both \( A \) and \( Z \) are arbitrary, in the range \([0.1, 1]\), and we had to monitor the growth of the sequence of remainders \( A, B, C, \) etc. to ensure that no overflow occurred during the computation of the next quotient. The main source of risk was our choice to define the quotient as roughly \( 10^9 \cdot A/10^5 \cdot Z \): then \( A \) was bound to be below \( 2.147 \cdots \), and this limit was never far.

In our case, we can simply work with \( 10^8 \cdot A \) and \( 10^4 \cdot Z \), because our reason to work with higher powers has gone: we needed the integer \( y \approx 10^5 \cdot Z \) to be at least \( 10^4 \), and now, the definition \( y \approx 10^4 \cdot Z \) suffices.

Let us thus define \( y = \lfloor 10^4 \cdot Z \rfloor + 1 \in (1.7 \cdot 10^4, 2.4 \cdot 10^4] \), and

\[
Q_1 = \left[ \frac{10^8 \cdot A}{y} - \frac{1}{2} \right].
\]

(The 1/2 comes from how \$\varepsilon\$-TeX rounds.) As for division, it is easy to see that \( Q_1 \leq 10^4 A/Z \), i.e., \( Q_1 \) is an underestimate.

Exactly as we did for division, we set \( B = 10^4 A - Q_1 Z \). Then

\[
10^4 B \leq A_1 A_2 A_3 A_4 - \left( \frac{A_1 A_2}{y} - \frac{3}{2} \right) 10^4 Z \\
\leq A_1 A_2 \left( 1 - \frac{10^4 Z}{y} \right) + 1 + \frac{3}{2} y \\
\leq 10^8 \frac{A}{y} + 1 + \frac{3}{2} y
\]
In the same way, and using $1.7 \cdot 10^4 \leq y \leq 2.4 \cdot 10^4$, and convexity, we get

\[
10^4 A = 2 \cdot 10^4 \\
10^4 B \leq 10^8 \frac{A}{y} + 1.6y \leq 4.7 \cdot 10^4 \\
10^4 C \leq 10^8 \frac{B}{y} + 1.6y \leq 5.8 \cdot 10^4 \\
10^4 D \leq 10^8 \frac{C}{y} + 1.6y \leq 6.3 \cdot 10^4 \\
10^4 E \leq 10^8 \frac{D}{y} + 1.6y \leq 6.5 \cdot 10^4 \\
10^4 F \leq 10^8 \frac{E}{y} + 1.6y \leq 6.6 \cdot 10^4
\]

Note that we compute more steps than for division: since $t$ is not the end result, we need to know it with more accuracy (on the other hand, the ending is much simpler, as we don’t need an exact rounding for transcendental functions, but just a faithful rounding).

\[
\text{The number is } x. \text{ Compute } y \text{ by adding 1 to the five first digits.}
\]

853
We now have essentially

\_\_fp\_ln\_div\_after:Nw \{ fixed tl \}
\_\_fp\_div\_significand\_pack:NNN 10^6 + Q_1
\_\_fp\_div\_significand\_pack:NNN 10^6 + Q_2
\_\_fp\_div\_significand\_pack:NNN 10^6 + Q_3
\_\_fp\_div\_significand\_pack:NNN 10^6 + Q_4
\_\_fp\_div\_significand\_pack:NNN 10^6 + Q_5
\_\_fp\_div\_significand\_pack:NNN 10^6 + Q_6 ;
\langle exponent \rangle ; \langle continuation \rangle

where \langle fixed tl \rangle holds the logarithm of a number in [1, 10], and \langle exponent \rangle is the exponent. Also, the expansion is done backwards. Then \_\_fp\_div\_significand\_pack:NNN puts things in the correct order to add the Q_i together and put semicolons between each piece. Once those have been expanded, we get

\_\_fp\_ln\_div\_after:Nw \{ fixed-tl \} \{ 1d \} ; \{ 4d \} ;
\{ 4d \} ; \{ 4d \} ; \{ 4d \} ; \{ exponent \} ;

Just as with division, we know that the first two digits are 1 and 0 because of bounds on the final result of the division 2/(x + 1), which is between roughly 0.8 and 1.2. We then compute 1 - 2/(x + 1), after testing whether 2/(x + 1) is greater than or smaller than 1.

\cs_new:Npn \_\_fp\_ln\_t\_small:Nw #1 #2; #3; #4; #5; #6; #7;
\exp_after:wN \_\_fp\_ln\_t\_large:NNw
\exp_after:wN + % <sign>
\exp_after:wN #1
\int_value:w \__fp\_int\_eval:w 9999 - #2 \exp_after:wN ;
\int_value:w \__fp\_int\_eval:w 9999 - #3 \exp_after:wN ;
\int_value:w \__fp\_int\_eval:w 9999 - #4 \exp_after:wN ;
\int_value:w \__fp\_int\_eval:w 9999 - #5 \exp_after:wN ;
\int_value:w \__fp\_int\_eval:w 9999 - #6 \exp_after:wN ;
\int_value:w \__fp\_int\_eval:w 1 0000 - #7 ;
\exp_after:wN \_\_fp\_ln\_t\_large:NNw \{ sign \} \{ fixed tl \}
\{ t_1 \}; \{ t_2 \}; \{ t_3 \}; \{ t_4 \}; \{ t_5 \}; \{ t_6 \};
\{ exponent \} ; \{ continuation \}

Compute the square t^2, and keep t at the end with its sign. We know that t < 0.1765, so every piece has at most 4 digits. However, since we were not careful in \_\_fp\_ln\_-\_t\_small:w, they can have less than 4 digits.
\cs_new:Npn \__fp_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8; 
\{ 
\exp_after:wN \__fp_ln_square_t_after:w 
\int_value:w \__fp_int_eval:w 9999 0000 + #3*#3 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#4  
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#5 + #4*#4 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5  
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5 
(2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000 
\% ; ; ; 
\exp_after:wN \__fp_ln_twice_t_after:w 
\int_value:w \__fp_int_eval:w -1 + 2*#3  
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#4 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#5 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#6 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#7 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 10000 + 2*#8 ; ; 
\} 
\cs_new:Npn \__fp_ln_c:NwNw #1 #2 { + #1 ; {#2} }  
\cs_new:Npn \__fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }  
\cs_new:Npn \__fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }  
\cs_new:Npn \__fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; 
\{ + #1#2#3#4#5 ; {#6} \} 
\cs_new:Npn \__fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; 
\{ + #1#2#3#4#5 ; {#6} \} 
\cs_new:Npn \__fp_ln_twice_t_after:w #1; { ; ; ; {#1} } 
\cs_new:Npn \__fp_ln_square_t_after:w #1; { ; ; ; {#1} } 
\cs_new:Npn \__fp_ln_c:NwNw #1 #2; { + #1 ; #2 }  
\cs_new:Npn \__fp_ln_twice_t_after:w #1; { ; ; ; {#1} } 
\cs_new:Npn \__fp_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8; 
\{ 
\exp_after:wN \__fp_ln_square_t_after:w 
\int_value:w \__fp_int_eval:w 9999 0000 + #3*#3 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#4 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#5 + #4*#4 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5 
+ (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000 
\% ; ; ; 
\exp_after:wN \__fp_ln_twice_t_after:w 
\int_value:w \__fp_int_eval:w -1 + 2*#3  
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#4 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#5 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#6 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#7 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 10000 + 2*#8 ; ; 
\} 
\cs_new:Npn \__fp_ln_c:NwNw #1 #2; { + #1 ; #2 }  
\cs_new:Npn \__fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; #2 }  
\cs_new:Npn \__fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; 
\{ + #1#2#3#4#5 ; #6 \} 
\cs_new:Npn \__fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; 
\{ \__fp_ln_c:NwNw #1 \} 
\} 
\cs_new:Npn \__fp_ln_c:NwNw #1 #2; { + #1 ; #2 }  
\cs_new:Npn \__fp_ln_twice_t_after:w #1; { ; ; ; {#1} } 
\cs_new:Npn \__fp_ln_square_t_after:w #1; { ; ; ; {#1} } 
\cs_new:Npn \__fp_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8; 
\{ 
\exp_after:wN \__fp_ln_square_t_after:w 
\int_value:w \__fp_int_eval:w 9999 0000 + #3*#3 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#4 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#5 + #4*#4 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5 
\exp_after:wN \__fp_ln_square_t_pack:NNNNNw 
\int_value:w \__fp_int_eval:w 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5 
+ (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000 
\% ; ; ; 
\exp_after:wN \__fp_ln_twice_t_after:w 
\int_value:w \__fp_int_eval:w -1 + 2*#3  
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#4 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#5 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#6 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 9999 + 2*#7 
\exp_after:wN \__fp_ln_twice_t_pack:Nw 
\int_value:w \__fp_int_eval:w 10000 + 2*#8 ; ; 
\} 
\cs_new:Npn \__fp_ln_c:NwNw #1 #2; { + #1 ; {#2} }  
\cs_new:Npn \__fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }  
\cs_new:Npn \__fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; 
\{ + #1#2#3#4#5 ; {#6} \} 
\cs_new:Npn \__fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; 
\{ \__fp_ln_c:NwNw #1 \} 
\} 
\__fp_ln_Taylor:wwNw 
Denoting \( T = t^2 \), we get
\begin{verbatim}
\__fp_ln_Taylor:wwNw 
\{{T_0}\} \{\langle T_1\rangle\} \{\langle T_2\rangle\} \{\langle T_3\rangle\} \{\langle T_4\rangle\} \{\langle T_5\rangle\} \{\langle T_6\rangle\} ; ;
\{\{2t\}_1\} \{\{2t\}_2\} \{\langle 2t\rangle_3\} \{\langle 2t\rangle_4\} \{\langle 2t\rangle_5\} \{\langle 2t\rangle_6\} ;
\} \__fp_ln_c:NwNw (sign) \} \{fixed tl\} \{exponent\}; \{continuation\}
\end{verbatim}
And we want to compute
\[
\ln \left( \frac{1 + t}{1 - t} \right) = 2t \left( 1 + T \left( \frac{1}{3} + T \left( \frac{1}{5} + T \left( \frac{1}{7} + T \left( \frac{1}{9} + \cdots \right) \right) \right) \right) \right)
\]
The process looks as follows

\begin{verbatim}
(End definition for \_fp_ln_x_ii:wnnn.)
\end{verbatim}
This uses the routine for dividing a number by a small integer (\( < 10^4 \)).

We are now reduced to finding \( \ln(c) \) and (exponent) \( \ln(10) \) in a table, and adding it to the mixture. The first step is to get \( \ln(c) - \ln(x) = -\ln(a) \), then we get b \( \ln(10) \) and add or subtract.

For now, \( \ln(x) \) is given as \(-10^6\). Unless both the exponent is 1 and \( c = 1 \), we shift to working in units of \( \cdot 10^4 \), since the final result is at least \( \ln(10/7) \approx 0.35 \).
Compute $\langle exponent \rangle \times \ln(10)$. Apart from the cases where $\langle exponent \rangle$ is 0 or 1, the result is necessarily at least $\ln(10) \approx 2.3$ in magnitude. We can thus drop the least significant 4 digits. In the case of a very large (positive or negative) exponent, we can (and we need to) drop 4 additional digits, since the result is of order $10^4$. Naively, one would think that in both cases we can drop 4 more digits than we do, but that would be slightly too tight for rounding to happen correctly. Besides, we already have addition and subtraction for 24 digits fixed point numbers.

Now we painfully write all the cases.\footnote{Bruno: do rounding.} No overflow nor underflow can happen, except when computing $\ln(1)$. For small exponents, we just drop one block of digits, and set the exponent of the log to 4 (minus any shift coming from leading zeros in the conversion from fixed point to floating point). Note that here the exponent has been made positive.
33.2 Exponential

33.2.1 Sign, exponent, and special numbers

```latex
__fp_exp_o:w
__fp_exp_normal_o:w
__fp_exp_pos_o:Nnwnw
__fp_exp_overflow:NN
\cs_new:Npn __fp_exp_o:w \s__fp __fp_chk:w #1#2\#3\#4; @
\{\}
\if_case:w #2 \exp_stop_f:
__fp_case_return_o:Nw \c_one_fp
\or:
\exp_after:wN __fp_exp_normal_o:w
\or:
\if_meaning:w 0 #3
\exp_after:wN __fp_exp_normal_o:w
\else:
__fp_case_return_same_o:w
\fi:
\or:
__fp_case_return_same_o:w
\fi:
\s__fp __fp_chk:w #2#3#4;
\}
(End definition for __fp_exp_o:w.)

__fp_exp_normal_o:w
__fp_exp_pos_o:Nnwnw
__fp_exp_overflow:NN
\cs_new:Npn __fp_exp_normal_o:w \s__fp __fp_chk:w #1#2\#3\#4; @
\{\}
\if_meaning:w 0 #1
__fp_exp_pos_o:NNwnw + __fp_fixed_to_float_o:wN
\else:
__fp_exp_pos_o:NNwnw - __fp_fixed_inv_to_float_o:wN
\fi:
\fi:
\cs_new:Npn __fp_exp_pos_o:NNwnw #1#2#3 \fi: #4#5;
\{\}
\if_int_compare:w #4 > \c__fp_max_exp_exponent_int
\token_if_eq_charcode:NNTF \c__fp_max_exp_exponent_int #1
\{ __fp_exp_overflow:NN __fp_underflow:NN \c_inf_fp \}
\{ __fp_exp_overflow:NN __fp_underflow:NN \c_zero_fp \}
\exp:w
\else:
\exp_after:wN __fp_sanitize:Nw
\exp_after:wN 0
\int_value:w #1 __fp_int_eval:w
\fi:
\if_int_compare:w #4 < 0 \exp_stop_f:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\}
```

(End definition for \__fp_exp_pos_o:Nnwnw.)

858
This function is called for numbers in the range $[10^{-9}, 10^{-1})$. We compute 10 terms of the Taylor series. The first argument is irrelevant (rounding digit used by some other functions). The next three arguments, at least 16 digits, delimited by a semicolon, form a fixed point number, so we pack it in blocks of 4 digits.
The integer array has $6 \times 9 \times 4 = 216$ items encoding the values of $\exp(j \times 10^i)$ for $j = 1, \ldots, 9$ and $i = -1, \ldots, 4$. Each value is expressed as $\approx 10^p \times 0.m_1m_2m_3$ with three 8-digit blocks $m_1, m_2, m_3$ and an integer exponent $p$ (one more than the scientific exponent), and these are stored in the integer array as four items: $p$, $10^8 + m_1$, $10^8 + m_2$, $10^8 + m_3$. The various exponentials are stored in increasing order of $j \times 10^i$.

Storing this data in an integer array makes it slightly harder to access (slower, too), but uses 16 bytes of memory per exponential stored, while storing as tokens used around 40 tokens; tokens have an especially large footprint in Unicode-aware engines.
The first two arguments are irrelevant (a rounding digit, and a brace group with 8 zeros). The third argument is the integer part of our number, then we have the decimal part delimited by a semicolon, and finally the exponent, in the range [0,5]. Remove leading zeros from the integer part: putting #4 in there too ensures that an integer part of 0 is also removed. Then read digits one by one, looking up \texttt{exp(⟨digit⟩·10⟨exponent⟩)} in a table, and multiplying that to the current total. The loop is done by \texttt{\_\_fp\_exp\_large:NwN}, whose #1 is the \texttt{(exponent)}, #2 is the current mantissa, and #3 is the \texttt{(digit)}. At the end, \texttt{\_\_fp\_exp\_large\_after:wwn} moves on to the Taylor series, eventually multiplied with the mantissa that we have just computed.
Power

Raising a number $a$ to a power $b$ leads to many distinct situations. We distinguished in this table the cases of finite (positive or negative) integer exponents, as $(-1)^b$ is defined in that case. One peculiarity of this operation is that $\NaN^0 = 1^\NaN = 1$, because this relation is obeyed for any number, even $\pm \infty$.

We crammed most of the tests into a single function to save names. First treat the case $b = 0$: $a^0 = 1$ for any $a$, even $\NaN$. Then test the sign of $a$. 
• If it is positive, and $a$ is a normal number, call $\_\_fp\_pow\_normal\_o:ww$ followed by the two $fp\ a$ and $b$. For $a = +0$ or $+\infty$, call $\_\_fp\_pow\_zero\_or\_inf:ww$ instead, to return either $+0$ or $+\infty$ as appropriate.

• If $a$ is a $nan$, then skip to the next semicolon (which happens to be conveniently the end of $b$) and return $nan$.

• Finally, if $a$ is negative, compute $a^b$ ($\_\_fp\_pow\_normal\_o:ww$ which ignores the sign of its first operand), and keep an extra copy of $a$ and $b$ (the second brace group, containing $\{\ b\ a\ \}$, is inserted between $a$ and $b$). Then do some tests to find the final sign of the result if it exists.

Raising $-0$ or $-\infty$ to $nan$ yields $nan$. For other powers, the result is $+0$ if $0$ is raised to a positive power or $\infty$ to a negative power, and $+\infty$ otherwise. Thus, if the type of $a$ and the sign of $b$ coincide, the result is $0$, since those conveniently take the same possible values, $0$ and $2$. Otherwise, either $a = \pm\infty$ and $b > 0$ and the result is $+\infty$, or $a = \pm0$ with $b < 0$ and we have a division by zero unless $b = -\infty$. 

\_\_fp\_pow\_zero\_or\_inf:ww
\__fp_pow_normal_o:ww

We have in front of us \(a\) and \(b \neq 0\), we know that \(a\) is a normal number, and we wish to compute \(|a|^b\). If \(|a| = 1\), we return 1, unless \(a = -1\) and \(b\) is nan. Indeed, returning 1 at this point would wrongly raise “invalid” when the sign is considered. If \(|a| \neq 1\), test the type of \(b\):

0 Impossible, we already filtered \(b = \pm 0\).

1 Call \__fp_pow_npos_o:Nww.

2 Return +\(\infty\) or +0 depending on the sign of \(b\) and whether the exponent of \(a\) is positive or not.

3 Return \(b\).

(End definition for \__fp_pow_zero_or_inf:ww.)
We now know that $a \neq \pm 1$ is a normal number, and $b$ is a normal number too. We want to compute $|a|^b = (|x| \cdot 10^n)^y \cdot 10^p = \exp((\ln |x| + n \ln(10)) \cdot y \cdot 10^p) = \exp(z)$. To compute the exponential accurately, we need to know the digits of $z$ up to the 16th position. Since the exponential of $10^5$ is infinite, we only need at most 21 digits, hence the fixed point result of \_fp\_ln\_o:w is precise enough for our needs. Start an integer expression for the decimal exponent of $e^{|z|}$. If $z$ is negative, negate that decimal exponent, and prepare to take the inverse when converting from the fixed point to the floating point result.

\_fp\_pow\_npos\_aux:NNww

The first argument is the conversion function from fixed point to float. Then comes an exponent and the 4 brace groups of $x$, followed by $b$. Compute $-\ln(x)$.

\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \_fp\_pow\_exponent:wnN #1; #2
{
#1
\_fp\_int\_eval:w
\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \_fp\_pow\_exponent:wnN #1; #2
{
#1
\_fp\_int\_eval:w
\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \_fp\_pow\_exponent:wnN #1; #2
{
#1
\_fp\_int\_eval:w
\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \_fp\_pow\_exponent:wnN #1; #2
{
#1
\_fp\_int\_eval:w
\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \_fp\_pow\_exponent:wnN #1; #2
{
#1
\_fp\_int\_eval:w
\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \_fp\_pow\_exponent:wnN #1; #2
{
#1
\_fp\_int\_eval:w
\_fp\_ln\_significand:NNNNnnnN #4#5
\_fp\_pow\_exponent:wnN {#3}
\_fp\_fixed\_mul:ww #8 \{0000\}\{0000\} ;
\_fp\_pow\_B:wwN #7;
#1 #2 0 % fixed_to_float_o:wN
}
\cs_new:Npn \__fp_pow_exponent:Nnnnnw #1; #3#4#5#6#7#8; 
\{ %^^A todo: use that in ln. 
\exp_after:wN \__fp_fixed_mul_after:wwn 
\int_value:w \__fp_int_eval:w \c__fp_leading_shift_int
\exp_after:wN \__fp_pack:NNNNNw 
\int_value:w \__fp_int_eval:w \c__fp_middle_shift_int
 \#1#2*23025 - \#1 \#3
\exp_after:wN \__fp_pack:NNNNNw 
\int_value:w \__fp_int_eval:w \c__fp_middle_shift_int
 \#1 \#2*8509 - \#1 \#4
\exp_after:wN \__fp_pack:NNNNNw 
\int_value:w \__fp_int_eval:w \c__fp_middle_shift_int
 \#1 \#2*2994 - \#1 \#5
\exp_after:wN \__fp_pack:NNNNNw 
\int_value:w \__fp_int_eval:w \c__fp_middle_shift_int
 \#1 \#2*0456 - \#1 \#6
\exp_after:wN \__fp_pack:NNNNNw 
\int_value:w \__fp_int_eval:w \c__fp_trailing_shift_int
 \#1 \#2*8401 - \#1 \#7
\#1 ( \#2*7991 - \#8 ) / 1 0000 ; ;
\}
\cs_new:Npn \__fp_pow_B:wwN #1#2#3#4#5#6; #7; 
\{ 
\if_int_compare:w #7 < 0 \exp_stop_f:
\exp_after:wN \__fp_pow_C_neg:w \int_value:w -\else:
\if_int_compare:w #7 < 22 \exp_stop_f:
\exp_after:wN \__fp_pow_C_pos:w \int_value:w\else:
\exp_after:wN \__fp_pow_C_overflow:w \int_value:w \fi:
\fi:
\if:w \exp_after:wN \exp_after:wN \exp_after:wN \__fp_pow_C_pack:w 
\prg_replicate:nn {#1} {0}
\}
\cs_new:Npn \__fp_pow_C_neg:w #1; 1
\{ \exp_after:wN \exp_after:wN \exp_after:wN \__fp_pow_C_pos:w \int_value:w
\prg_replicate:nn \{#1\} \{0\}
\}
\cs_new:Npn \__fp_pow_C_pos:w #1; 1
\{ \__fp_pow_C_pos_loop:w #1 \}
\cs_new:Npn \__fp_pow_C_pos_loop:w #1; #2
\{ \if_meaning:w 0 \#1
\}
\begin{verbatim}
\_fp_pow_npos_aux:NNnww
This function is followed by three floating point numbers: a \( b \), \( a \in \left[ -\infty, -0 \right] \), and \( b \). If \( b \) is an even integer (case \(-1\)), \( a^b = a^b \). If \( b \) is an odd integer (case \(0\)), \( a^b = -a^b \), obtained by a call to \_fp_pow_neg_aux:ww. Otherwise, the sign is undefined. This is invalid, unless \( a^b \) turns out to be \( +0 \) or \( \text{nan}, \) in which case we return that as \( a^b \). In particular, since the underflow detection occurs before \_fp_pow_neg:ww is called, \((-0.1)^{12345.67}\) gives \( +0 \) rather than complaining that the sign is not defined.
\end{verbatim}

\begin{verbatim}
\_fp_pow_neg_case:w
\_fp_pow_neg_case_aux:nnnnn
\_fp_pow_neg_case_aux:Nnnw
This function expects a floating point number, and determines its “parity”. It should be used after \_if_case:w or in an integer expression. It gives \(-1\) if the number is an
even integer, 0 if the number is an odd integer, and 1 otherwise. Zeros and ±∞ are even (because very large finite floating points are even), while nan is a non-integer. The sign of normal numbers is irrelevant to parity. After \_fp_decimate:nNnnnn the argument #1 of \_fp_pow_neg_case_aux:Nnnw is a rounding digit, 0 if and only if the number was an integer, and #3 is the 8 least significant digits of that integer.

\cs_new:Npn \_fp_pow_neg_case:w \s__fp \_fp_chk:w #1#2#3; \exp_stop_f:
\if_case:w #1 \exp_stop_f:
-1
\or: \_fp_pow_neg_case_aux:nNNnnn #3
\or: -1
\else: 1
\fi:
\exp_stop_f:
\cs_new:Npn \_fp_pow_neg_case_aux:nnnnn #1#2#3#4#5
\if_int_compare:w #1 > \c__fp_prec_int
-1
\else:
\_fp_decimate:nNnnnn { \c__fp_prec_int - #1 }
\_fp_pow_neg_case_aux:Nnnw
{#2} {#3} {#4} {#5}
\fi:
\exp_stop_f:
\cs_new:Npn \_fp_pow_neg_case_aux:Nnnw #1#2#3#4 ;
\if_meaning:w 0 #1
\if_int_odd:w #3 \exp_stop_f:
0
\else:
-1
\fi:
\else:
1
\fi:
\exp_stop_f:
(End definition for \_fp_pow_neg_case:w, \_fp_pow_neg_case_aux:nNNnnn, and \_fp_pow_neg_case_aux:Nnnw.)

33.4 Factorial
\_fp_fact_max_arg_int The maximum integer whose factorial fits in the exponent range is 3248, as 3249! ∼ 10^{10000.8}
\int_const:Nn \c__fp_fact_max_arg_int { 3248 }
(End definition for \c__fp_fact_max_arg_int.)

\_fp_fact_o:w First detect ±0 and +∞ and nan. Then note that factorial of anything with a negative sign (except −0) is undefined. Then call \_fp_small_int:wTF to get an integer as the argument, and start a loop. This is not the most efficient way of computing the factorial,
but it works all right. Of course we work with 24 digits instead of 16. It is easy to check
that computing factorials with this precision is enough.

\begin{verbatim}
\cs_new:Npn \__fp_fact_o:w #1 \s__fp \__fp_chk:w #2#3#4; @
\if_case:w #2 \exp_stop_f:
\__fp_case_return_o:Nw \c_one_fp
\or:
\or:
\if_meaning:w 0 #3
\exp_after:wN \__fp_case_return_same_o:w
\fi:
\or:
\__fp_case_return_same_o:w
\fi:
\if_meaning:w 2 #3
\__fp_case_use:nw { \__fp_invalid_operation_o:fw { fact } }
\fi:
\__fp_fact_pos_o:w
\s__fp \__fp_chk:w #2 #3 #4 ;
\end{verbatim}

\textit{(End definition for \texttt{\__fp_fact_o:w}.)}

\begin{verbatim}
\__fp_fact_pos_o:w
\__fp_fact_int_o:w
\end{verbatim}

Then check the input is an integer, and call \texttt{\__fp_facorial_int_o:n} with that \texttt{int} as 
an argument. If it’s too big the factorial overflows. Otherwise call \texttt{\__fp_sanitize:Nw} 
with a positive sign marker \texttt{0} and an integer expression that will mop up any exponent 
in the calculation.

\begin{verbatim}
\cs_new:Npn \__fp_fact_pos_o:w #1;
\__fp_small_int:wTF #1;
\if_int_compare:w #1 > \c__fp_fact_max_arg_int
\__fp_case_return:nw
\exp_after:wN \exp_after:wN \exp_after:wN \__fp_overflow:w
\exp_after:wN \c_inf_fp
\fi:
\__fp_sanitize:Nw 0
\int_value:w \__fp_int_eval:w \__fp_fact_loop_o:w #1 . 4 , { 1 } { } { } { } { } { } ;
\end{verbatim}

\textit{(End definition for \texttt{\__fp_fact_pos_o:w} and \texttt{\__fp_fact_int_o:w}.)}

\begin{verbatim}
\__fp_fact_loop_o:w
\end{verbatim}

The loop receives an integer \texttt{#1} whose factorial we want to compute, which we progress-
ively decrement, and the result so far as an extended-precision number \texttt{#2} in the form
\texttt{⟨exponent⟩,⟨mantissa⟩}. The loop goes in steps of two because we compute \texttt{#1*#1-1} 
as an integer expression (it must fit since \texttt{#1} is at most 3248), then multiply with the
result so far. We don’t need to fill in most of the mantissa with zeros because \_fp\_ep\_mul:wwwn first normalizes the extended precision number to avoid loss of precision. When reaching a small enough number simply use a table of factorials less than $10^8$. This limit is chosen because the normalization step cannot deal with larger integers.

\begin{verbatim}
\cs_new:Npn \__fp_fact_loop_o:w #1 . #2 ;
{ \if_int_compare:w #1 < 12 \exp_stop_f:
  \__fp_fact_small_o:w #1 ;
  \exp_after:wN \__fp_ep_mul:wwww
  \exp_after:wN 4 \exp_after:wN ,
  \exp_after:wN \int_value:w \__fp_int_eval:w #1 * (#1 - 1) 
  \{ \} \{ \} \{ \} \{ \} ;
  \#2 ;
}{
  \exp_after:wN \__fp_fact_loop_o:w
  \int_value:w \__fp_int_eval:w #1 - 2 .
}
\cs_new:Npn \__fp_fact_small_o:w #1 ;
{ \if_case:w #1 \exp_stop_f:
  1 \or: 1 \or: 2 \or: 6 \or: 24 \or: 120 \or: 720 \or: 5040 
  \or: 40320 \or: 362880 \or: 3628800 \or: 39916800 
  \exp_after:wN \__fp_ep_to_float_o:wwN 0
}{
}
\end{verbatim}

(End definition for \_fp\_fact\_loop\_o:w.)

34 \l3fp-trig Implementation

\begin{verbatim}
\tl_map_inline:nn
{ {acos} {acsc} {asec} {asin} {cos} {cot} {csc} {sec} {sin} {tan} }
{ cs_new:cpx \_fp_parse_word_#1:N }
\end{verbatim}

Unary functions.
Those functions may receive a variable number of arguments.

\__fp_sin_o:w
\__fp_parse_word_acot:N
\__fp_parse_word_atan:N
\__fp_parse_word_atand:N

(End definition for \__fp_parse_word_acot:N and others.)

34.1 Direct trigonometric functions

The approach for all trigonometric functions (sine, cosine, tangent, cotangent, cosecant, and secant), with arguments given in radians or in degrees, is the same.

- Filter out special cases (±0, ±∞ and NaN).
- Keep the sign for later, and work with the absolute value |x| of the argument.
- Small numbers (|x| < 1 in radians, |x| < 10 in degrees) are converted to fixed point numbers (and to radians if |x| is in degrees).
- For larger numbers, we need argument reduction. Subtract a multiple of π/2 (in degrees, 90) to bring the number to the range to [0, π/2) (in degrees, [0, 90]).
- Reduce further to [0, π/4] (in degrees, [0, 45]) using sin x = cos(π/2 − x), and when working in degrees, convert to radians.
- Use the appropriate power series depending on the octant \left\lfloor \frac{x}{\pi/4} \right\rfloor \mod 8 (in degrees, the same formula with \pi/4 → 45), the sign, and the function to compute.

34.1.1 Filtering special cases

\__fp_sin_o:w
This function, and its analogs for cos, csc, sec, tan, and cot instead of sin, are followed either by \use_i:nn and a float in radians or by \use_ii:nn and a float in degrees. The sine of ±0 or NaN is the same float. The sine of ±∞ raises an invalid operation exception with the appropriate function name. Otherwise, call the trig function to perform argument reduction and if necessary convert the reduced argument to radians.
Then, \( \_\_fp\_sin\_series\_o:NNwww \) is called to compute the Taylor series: this function receives a sign \#3, an initial octant of 0, and the function \( \_\_fp\_ep\_to\_float\_o:wwN \) which converts the result of the series to a floating point directly rather than taking its inverse, since \( \sin(x) = \#3 \sin|x| \).

\[
\begin{align*}
21000 & \cs_new:Npn \_\_fp\_sin\_o:w #1 \s\_\_fp \_\_fp\_chk:w \#2#3#4; @ \\
21001 & \{ \\
21002 & \quad \if_case:w \#2 \exp_stop_f: \\
21003 & \quad \; \_\_fp\_case\_return\_same\_o:w \\
21004 & \quad \; \_\_fp\_case\_use:nw \\
21005 & \quad \{ \\
21006 & \quad \; \_\_fp\_trig:NNNNNwn \#1 \_\_fp\_sin\_series\_o:NNwww \\
21007 & \quad \; \_\_fp\_ep\_to\_float\_o:wwN \#3 0 \\
21008 & \quad \} \\
21009 & \quad \; \_\_fp\_case\_use:nw \\
21010 & \quad \{ \_\_fp\_invalid\_operation\_o:fw \{ \#1 \{ \sin \} \{ \sind \} \} \} \\
21011 & \quad \else: \_\_fp\_case\_return\_same\_o:w \\
21012 & \quad \fi: \\
21013 & \; \_\_fp\_chk:w \#2 \#3 \#4; \\
21014 \end{align*}
\]

(End definition for \( \_\_fp\_sin\_o:w \))

\( \_\_fp\_cos\_o:w \) The cosine of \( \pm 0 \) is 1. The cosine of \( \pm \infty \) raises an invalid operation exception. The cosine of NaN is itself. Otherwise, the \texttt{trig} function reduces the argument to at most half a right-angle and converts if necessary to radians. We then call the same series as for sine, but using a positive sign 0 regardless of the sign of \( x \), and with an initial octant of 2, because \( \cos(x) = + \sin(\pi/2 + |x|) \).

\[
\begin{align*}
21015 & \cs_new:Npn \_\_fp\_cos\_o:w #1 \s\_\_fp \_\_fp\_chk:w \#2#3; @ \\
21016 & \{ \\
21017 & \quad \if_case:w \#2 \exp_stop_f: \\
21018 & \quad \; \_\_fp\_case\_return\_o:Nw \c_one_fp \\
21019 & \quad \; \_\_fp\_case\_use:nw \\
21020 & \quad \{ \\
21021 & \quad \; \_\_fp\_trig:NNNNNwn \#1 \_\_fp\_sin\_series\_o:NNwww \\
21022 & \quad \; \_\_fp\_ep\_to\_float\_o:wwN \#3 2 \\
21023 & \quad \} \\
21024 & \quad \; \_\_fp\_case\_use:nw \\
21025 & \quad \{ \_\_fp\_invalid\_operation\_o:fw \{ \#1 \{ \cos \} \{ \cosd \} \} \} \\
21026 & \quad \else: \_\_fp\_case\_return\_same\_o:w \\
21027 & \quad \fi: \\
21028 & \; \_\_fp\_chk:w \#2 \#3 \#4; \\
21029 \end{align*}
\]

(End definition for \( \_\_fp\_cos\_o:w \))

\( \_\_fp\_csc\_o:w \) The cosecant of \( \pm 0 \) is \( \pm \infty \) with the same sign, with a division by zero exception (see \( \_\_fp\_cot\_zero\_o:Nfw \) defined below), which requires the function name. The cosecant of \( \pm \infty \) raises an invalid operation exception. The cosecant of NaN is itself. Otherwise, the \texttt{trig} function performs the argument reduction, and converts if necessary to radians before calling the same series as for sine, using the sign \#3, a starting octant of 0, and inverting during the conversion from the fixed point sine to the floating point result, because \( \csc(x) = \#3 (\sin|x|)^{-1} \).

\[
\begin{align*}
21030 & \cs_new:Npn \_\_fp\_csc\_o:w #1 \s\_\_fp \_\_fp\_chk:w \#2#3#4; @ \\
872
\end{align*}
\]
The secant of \pm 0 is 1. The secant of \pm \infty raises an invalid operation exception. The secant of NaN is itself. Otherwise, the \texttt{trig} function reduces the argument and turns it to radians before calling the same series as for sine, using a positive sign 0, a starting octant of 2, and inverting upon conversion, because \( \sec(x) = 1 / \sin(\pi/2 + |x|) \).

\begin{verbatim}
\cs_new:Npn \__fp_sec_o:w #1 \s__fp \__fp_chk:w #2 #3 #4; @
  \{
    \if_case:w #2 \exp_stop_f:
      \_\_fp_case_return_same_o:w
    \or:
      \_\_fp_case_use:nw
        { \__fp_trig:NNNNNwn #1 \__fp_sin_series_o:NNwwww
          \__fp_ep_inv_to_float_o:wwN #3 0
        }
    \or:
      \_\_fp_case_use:nw
        { \__fp_invalid_operation_o:fw { #1 { sec } { secd } } }
    \else: \_\_fp_case_return_same_o:w
      \fi:
      \s__fp \_\_fp_chk:w #2 #3 #4;
  }
\end{verbatim}

(End definition for \_\_fp_csc_o:w.)

\_\_fp_tan_o:w The tangent of \pm 0 or NaN is the same floating point number. The tangent of \pm \infty raises an invalid operation exception. Once more, the \texttt{trig} function does the argument reduction step and conversion to radians before calling \_\_fp_tan_series_o:NNwwww, with a sign \#3 and an initial octant of 1 (this shift is somewhat arbitrary). See \_\_fp_\_\_cot_o:w for an explanation of the 0 argument.

\begin{verbatim}
\cs_new:Npn \_\_fp_tan_o:w #1 \s__fp \_\_fp_chk:w #2 #3 #4; @
  \{
    \if_case:w #2 \exp_stop_f:
      \_\_fp_case_return_same_o:w
    \or:
      \_\_fp_case_return_same_o:w
        { \__fp_trig:NNNNNwn #1 \__fp_sin_series_o:NNwwww
          \__fp_ep_inv_to_float_o:wwN 0 2
        }
    \or:
      \_\_fp_case_use:nw
        { \__fp_invalid_operation_o:fw { #1 { tan } { tansec } } }
    \else: \_\_fp_case_return_same_o:w
      \fi:
      \s__fp \_\_fp_chk:w #2 #3 #4;
  }
\end{verbatim}

(End definition for \_\_fp_sec_o:w.)
The cotangent of ±0 is ±∞ with the same sign, with a division by zero exception (see \__fp_cot_zero_o:Nfw. The cotangent of ±∞ raises an invalid operation exception. The cotangent of NaN is itself. We use cotx = −tan(π/2 + x), and the initial octant for the tangent was chosen to be 1, so the octant here starts at 3. The change in sign is obtained by feeding \__fp_tan_series_o:NNwwww two signs rather than just the sign of the argument: the first of those indicates whether we compute tangent or cotangent.

Those signs are eventually combined.

The first argument is \use_i:nn if the operand is in radians and \use_ii:nn if it is in degrees. Arguments #2 to #5 control what trigonometric function we compute, and #6 to #8 are pieces of a normal floating point number. Call the _series function #2, with arguments #3, either a conversion function (\__fp_ep_to_float_o:wN or \__fp_ep_inv_to_float_o:wN) or a sign 0 or 2 when computing tangent or cotangent; #4, a sign 0 or 2; the octant, computed in an integer expression starting with #5 and stopped by a period; and a fixed point number obtained from the floating point number by argument reduction (if necessary) and conversion to radians (if necessary). Any argument reduction adjusts the octant accordingly by leaving a (positive) shift into its integer expression. Let us explain the integer comparison. Two of the four \exp_after:wN are expanded, the
expansion hits the test, which is true if the float is at least 1 when working in radians, and at least 10 when working in degrees. Then one of the remaining \texttt{exp_after:wN} hits \#1, which picks the \texttt{trig} or \texttt{trigd} function in whichever branch of the conditional was taken. The final \texttt{exp_after:wN} closes the conditional. At the end of the day, a number is \texttt{large} if it is $\geq 1$ in radians or $\geq 10$ in degrees, and \texttt{small} otherwise. All four \texttt{trig} / \texttt{trigd} auxiliaries receive the operand as an extended-precision number.

\begin{verbatim}
\cs_new:Npn \__fp_trig:NNNNNwn #1#2#3#4#5 \s__fp \__fp_chk:w 1#6#7#8; 
{ \exp_after:wN #2 \exp_after:wN #3 \exp_after:wN #4 \int_value:w \__fp_int_eval:w #5 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN \if_int_compare:w #7 > #1 0 1 \exp_stop_f:
 \begin{align*} 
\#1 \__fp_trig_large:ww \__fp_trigd_large:ww 
\end{align*}
\else:
 \begin{align*} 
\#1 \__fp_trig_small:ww \__fp_trigd_small:ww 
\end{align*}
\fi:
\begin{align*} 
\#7,#8{0000}{0000}; 
\end{align*}
}\end{verbatim}

(End definition for \texttt{\__fp_trig:NNNNNwn}.)

34.1.3 Small arguments

\texttt{\__fp_trig_small:ww} This receives a small extended-precision number in radians and converts it to a fixed point number. Some trailing digits may be lost in the conversion, so we keep the original floating point number around: when computing sine or tangent (or their inverses), the last step is to multiply by the floating point number (as an extended-precision number) rather than the fixed point number. The period serves to end the integer expression for the octant.

\begin{verbatim}
\cs_new:Npn \__fp_trig_small:ww #1,#2; 
{ \__fp_ep_to_fixed:wwn #1,#2; . #1,#2; } 
\end{verbatim}

(End definition for \texttt{\__fp_trig_small:ww}.)

\texttt{\__fp_trigd_small:ww} Convert the extended-precision number to radians, then call \texttt{\__fp_trig_small:ww} to massage it in the form appropriate for the \texttt{\_series} auxiliary.

\begin{verbatim}
\cs_new:Npn \__fp_trigd_small:ww #1,#2; 
{ \__fp_ep_mul_raw:wwwwN -1,{1745}{3292}{5199}{4329}{5769}{2369}; #1,#2; \__fp_trig_small:ww } 
\end{verbatim}

(End definition for \texttt{\__fp_trigd_small:ww}.)

34.1.4 Argument reduction in degrees

Note that $25 \times 360 = 9000$, so $10^{k+1} \equiv 10^k \pmod{360}$ for $k \geq 3$. When the exponent \#1 is very large, we can thus safely replace it by 22 (or even 19). We turn the floating point number into a fixed point number with two blocks of 8 digits followed by five blocks of 4 digits. The original float is $100 \times \langle block_1 \rangle \cdots \langle block_3 \rangle \langle block_4 \rangle \cdots \langle block_7 \rangle$, or is equal to

875
it modulo 360 if the exponent #1 is very large. The first auxiliary finds \( \langle \text{block}_1 \rangle + \langle \text{block}_2 \rangle \) (mod 9), a single digit, and prepends it to the 4 digits of \( \langle \text{block}_3 \rangle \). It also unpacks \( \langle \text{block}_4 \rangle \) and grabs the 4 digits of \( \langle \text{block}_5 \rangle \). The second auxiliary grabs the \( \langle \text{block}_3 \rangle \) plus any contribution from the first two blocks as #2, and the three other digits as #3. It finds the quotient and remainder of \( \text{#1} \text{#2} \) modulo 9, adds twice the quotient to the integer expression for the octant, and places the remainder (between 0 and 8) before #3 to form a new \( \langle \text{block}_3 \rangle \). The resulting fixed point number is \( x \in [0, \, 0.9] \). If \( x \geq 0.45 \), we add 1 to the octant and feed 0.9 – \( x \) with an exponent of 2 (to compensate the fact that we are working in units of hundreds of degrees rather than degrees) to \( \_\text{fp_trigd_small:ww} \). Otherwise, we feed \( x \) with an exponent of 2. The third auxiliary also discards digits which were not packed into the various \( \langle \text{blocks} \rangle \). Since the original exponent #1 is at least 2, those are all 0 and no precision is lost (#6 and #7 are four 0 each).

\begin{verbatim}
\cs_new:Npn \_fp_trigd_large:ww #1, #2#3#4#5#6#7;
\{
    \exp_after:wN \_fp_pack_eight:wNNNNNNNN
    \exp_after:wN \_fp_pack_eight:wNNNNNNNN
    \exp_after:wN \_fp_pack_twice_four:wNNNNNNNN
    \exp_after:wN \_fp_pack_twice_four:wNNNNNNNN
    \exp_after:wN \_fp_trigd_large_auxi:nnnnwNNNN
    \exp_after:wN ;
    \exp:w \exp_end_continue_f:w
    \prg_replicate:nn { \int_max:nn { 22 - #1 } { 0 } } { 0 }
    #2#3#4#5#6#7 0000 0000 0000 !
\}
\cs_new:Npn \_fp_trigd_large_auxi:nnnnwNNNN #1#2#3#4; #5#6#7#8#9
\{
    \exp_after:wN \_fp_trigd_large_auxii:wNw\int_value:w \_fp_int_eval:w #1 + #2
    - (#1 + #2 - 4) / 9 * 9 \_fp_int_eval_end:
    #3;
    #4; #5(#6#7#8#9);
\}
\cs_new:Npn \_fp_trigd_large_auxii:wNw #1; #2#3;
\{
    + (#1#2 - 4) / 9 * 2
    \exp_after:wN \_fp_trigd_large_auxiii:www
    \int_value:w \_fp_int_eval:w #1#2
    - (#1#2 - 4) / 9 * 9 \_fp_int_eval_end: #3 ;
\}
\cs_new:Npn \_fp_trigd_large_auxiii:www #1; #2; #3!
\{
    \if_int_compare:w #1 < 4500 \exp_stop_f:
        \exp_after:wN \_fp_use_i_until_s:wn
        \exp_after:wN \_fp_fixed_continue:wn
    \else:
        + 1
        \_fp_fixed_sub:wwn {9000}{0000}{0000}{0000}{0000}{0000};
        (\#1)#2(0000)(0000);
        { \_fp_trigd_small:ww 2, }
    \}
\}
\end{verbatim}
### 34.1.5 Argument reduction in radians

Arguments greater or equal to 1 need to be reduced to a range where we only need a few terms of the Taylor series. We reduce to the range \([0, 2\pi]\) by subtracting multiples of \(2\pi\), then to the smaller range \([0, \pi/2]\) by subtracting multiples of \(\pi/2\) (keeping track of how many times \(\pi/2\) is subtracted), then to \([0, \pi/4]\) by mapping \(x \rightarrow \pi/2 - x\) if appropriate.

When the argument is very large, say, \(10^{100}\), an equally large multiple of \(2\pi\) must be subtracted, hence we must work with a very good approximation of \(2\pi\) in order to get a sensible remainder modulo \(2\pi\).

Specifically, we multiply the argument by an approximation of \(1/(2\pi)\) with 10048 digits, then discard the integer part of the result, keeping 52 digits of the fractional part. From the fractional part of \(x/(2\pi)\) we deduce the octant (quotient of the first three digits by 125). We then multiply by 8 or \(-8\) (the latter when the octant is odd), ignore any integer part (related to the octant), and convert the fractional part to an extended precision number, before multiplying by \(\pi/4\) to convert back to a value in radians in \([0, \pi/4]\).

It is possible to prove that given the precision of floating points and their range of exponents, the 52 digits may start most with 24 zeros. The last 5 digits are affected by carries from computations which are not done, hence we are left with at least 52 - 24 - 5 = 23 significant digits, enough to round correctly up to \(6 \cdot \text{ulp}\) in all cases.

This integer array stores blocks of 8 decimals of \(10^{-16}/(2\pi)\). Each entry is \(10^8\) plus an 8 digit number storing 8 decimals. In total we store 10112 decimals of \(10^{-16}/(2\pi)\). The number of decimals we really need is the maximum exponent plus the number of digits we later need, 52, plus 12 (4 - 1 groups of 4 digits). The memory footprint (1/2 byte per digit) is the same as an earlier method of storing the data as a control sequence name, but the major advantage is that we can unpack specific subsets of the digits without unpacking the 10112 decimals.
The exponent \#1 is between 1 and 10000. We wish to look up decimals \(10^{\#1-16}/(2\pi)\) starting from the digit \(\#1 + 1\). Since they are stored in batches of 8, compute \([\#1/8]\) and fetch blocks of 8 digits starting there. The numbering of items in \c__fp_trig_intarray starts at 1, so the block \([\#1/8] + 1\) contains the digit we want, at one of the eight positions. Each call to \int_value:w \__kernel_intarray_item:Nn expands the next, until being stopped by \__fp_trig_large_auxiii:w using \exp_stop_f: Once all these blocks are unpacked, the \exp_stop_f: and \texttt{0} to \texttt{7} digits are removed by \use_...n...n. Finally, \__fp_trig_large_auxii:w packs 64 digits (there are between 65 and 72 at this point) into groups of 4 and the auxv auxiliary is called.
use_none:n \prg_replicate:nn { \#2 - \#1 * 8 } { n }
\exp_after:wN \cs_end:
\int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 1 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 2 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 3 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 4 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 5 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 6 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 7 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 8 \scan_stop: }
\exp_after:wN \__fp_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c__fp_trig_intarray
{ \__fp_int_eval:w \#1 + 9 \scan_stop: }
\exp_stop_f:
\cs_new:Npn \__fp_trig_large_auxii:w
{ \__fp_pack_twice_four:wNNNNNNNN \__fp_pack_twice_four:wNNNNNNNN
\__fp_pack_twice_four:wNNNNNNNN \__fp_pack_twice_four:wNNNNNNNN
\__fp_pack_twice_four:wNNNNNNNN \__fp_pack_twice_four:wNNNNNNNN
\__fp_trig_large_auxv:www ;
}
\cs_new:Npn \__fp_trig_large_auxv:www
\__fp_trig_large_auxvi:wnnnnnnn
\__fp_trig_large_pack:NNNNNw
(End definition for \__fp_trig_large:ww and others.)

First come the first 64 digits of the fractional part of $10^{81-16}/(2\pi)$, arranged in 16 blocks of 4, and ending with a semicolon. Then a few more digits of the same fractional part, ending with a semicolon, then 4 blocks of 4 digits holding the significand of the original argument. Multiply the 16-digit significand with the 64-digit fractional part: the auxvi auxiliary receives the significand as \#2\#3\#4\#5 and 16 digits of the fractional part as \#6\#7\#8\#9, and computes one step of the usual ladder of pack functions we use for multiplication (see e.g., \__fp_fixed_mul:wwn), then discards one block of the fractional part to set things up for the next step of the ladder. We perform 13 such steps, replacing the last middle shift by the appropriate trailing shift, then discard the significand and remaining 3 blocks from the fractional part, as there are not enough digits to compute
any more step in the ladder. The last semicolon closes the ladder, and we return control to the auxvii auxiliary.

\cs_new:Npn \__fp_trig_large_auxv:www \#1; \#2; \#3;
\{ \exp_after:wN \__fp_use_i_until_s:nw
\exp_after:wN \__fp_trig_large_auxvii:w
\int_value:w \__fp_int_eval:w \c__fp_leading_shift_int
\prg_replicate:nn { 13 } { \__fp_trig_large_auxvi:wnnnnnnnn }
+ \c__fp_trailing_shift_int - \c__fp_middle_shift_int
\__fp_use_i_until_s:nw
; \#3 \#1 ; ;
\}
\cs_new:Npn \__fp_trig_large_auxvi:wnnnnnnnn \#1; \#2\#3\#4\#5\#6\#7\#8\#9
\{ \exp_after:wN \__fp_trig_large_pack:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_middle_shift_int
+ \#2*\#9 + \#3*\#8 + \#4*\#7 + \#5*\#6
\#1; \{\#2\{\#3\{\#4\{\#5 \{\#7\{\#8\{\#9
\}
\cs_new:Npn \__fp_trig_large_pack:NNNNNw \#1\#2\#3\#4\#5; \#6 }
(End definition for \__fp_trig_large_auxv:www, \__fp_trig_large_auxvi:wnnnnnnn, and \__fp_trig_large_pack:NNNNNw.)
\__fp_trig_large_auxvii:w \__fp_trig_large_auxviii:w \__fp_trig_large_auxix:Nw \__fp_trig_large_auxx:wNNNNN \__fp_trig_large_auxxi:w
The auxvii auxiliary is followed by 52 digits and a semicolon. We find the octant as the integer part of \(8\times\) what follows, or equivalently as the integer part of \(\#1\#2\#3/125\), and add it to the surrounding integer expression for the octant. We then compute 8 times the 52-digit number, with a minus sign if the octant is odd. Again, the last middle shift is converted to a trailing shift. Any integer part (including negative values which come up when the octant is odd) is discarded by \__fp_use_i_until_s:nw. The resulting fractional part should then be converted to radians by multiplying by \(2\pi/8\), but first, build an extended precision number by abusing \__fp_ep_to_ep_loop:N with the appropriate trailing markers. Finally, \__fp_trig_small:ww sets up the argument for the functions which compute the Taylor series.

\cs_new:Npn \__fp_trig_large_auxvii:w \#1\#2\#3
\{ \exp_after:wN \__fp_trig_large_auxviii:w
\int_value:w \__fp_int_eval:w \#1\#2\#3 / 125 ; \#1\#2\#3
\}
\cs_new:Npn \__fp_trig_large_auxviii:w \#1;
\{ \exp_after:wN \__fp_trig_large_auxix:Nw \plus \#1.
\if_int_odd:w \#1 \exp_stop_f:
\exp_after:wN \__fp_trig_large_auxi:Nw
\exp_after:wN -
\else:
\exp_after:wN \__fp_trig_large_auxi:Nw
\exp_after:wN +
\fi:
\}

883
34.1.6 Computing the power series

Here we receive a conversion function \(\mathsf{\text{\_fp_to_float_o:wwN}}\) or \(\mathsf{\text{\_fp_inv_to_float_o:wwN}}\), a \(\langle\text{sign}\rangle\) (0 or 2), a (non-negative) \(\langle\text{octant}\rangle\) delimited by a dot, a (\textit{fixed point}) number delimited by a semicolon, and an extended-precision number. The auxiliary receives:

- the conversion function \#1;
- the final sign, which depends on the octant \#3 and the sign \#2;
- the octant \#3, which controls the series we use;
- the square \#4 * \#4 of the argument as a fixed point number, computed with \(\mathsf{\_fp_fixed_mul:wwn}\);
- the number itself as an extended-precision number.

If the octant is in \(\{1, 2, 5, 6, \ldots\}\), we are near an extremum of the function and we use the series

\[
\cos(x) = 1 - x^2 \left( \frac{1}{2!} - x^2 \left( \frac{1}{4!} - x^2 \left( \cdots \right) \right) \right).
\]

Otherwise, the series

\[
\sin(x) = x \left( 1 - x^2 \left( \frac{1}{3!} - x^2 \left( \frac{1}{5!} - x^2 \left( \cdots \right) \right) \right) \right).
\]
is used. Finally, the extended-precision number is converted to a floating point number with the given sign, and \texttt{\_fp\_sanitize:Nw} checks for overflow and underflow.

\begin{verbatim}
\cs_new:Npn \_fp\_sin\_series\_o:NNwwww #1#2#3. #4; 
\cs_new:Npn \_fp\_fixed\_mul:wwn #4; #4; 
\exp_after:wN \_fp\_sin\_series\_aux\_o:NNnww #1 
\int_value:w \if_int_odd:w \_fp\_int\_eval:w (#3 + 2) / 4 \_fp\_int\_eval\_end: #2
\else: \_fp\_sanitize:Nw \exp_after:wN #2 \int_value:w #1 \fi:
\fi:
{(#3)}
\cs_new:Npn \_fp\_sin\_series\_aux\_o:NNnwww #1#2#3 #4; #5,#6; 
\exp_after:wN \_fp\_fixed\_mul\_sub\_back:wwwn {0000}{0000}{0000}{0028}{1145}{7254};
\_fp\_fixed\_mul\_sub\_back:wwwn #4; {0000}{0000}{0012}{6374}{9747}{6182};
\__fp_fixed\_mul\_sub\_back:wwwn #4; {0000}{0000}{0000}{0000}{0000}{0000};
\_fp\_fixed\_mul\_sub\_back:wwwn #4; {0000}{0000}{0000}{0000}{0000}{0000};
\exp_after:wN \use_i:nn \_fp\_int\_eval\_w \_fp\_int\_eval\_w #3 / 2 \_fp\_int\_eval\_end:
\else: \_fp\_sanitize:Nw \exp_after:wN \use_ii:nn \_fp\_int\_eval\_w \_fp\_int\_eval\_w #3 / 2 \_fp\_int\_eval\_end:
\fi:
\exp_after:wN \_fp\_sin\_series\_o:NNwwww #1#2#3. #4;
\exp_after:wN \_fp\_sanitize:Nw \exp_after:wN \int_value:w \if_int_odd:w \_fp\_int\_eval:w (#3 + 2) / 4 \_fp\_int\_eval\_end: #2
\else: \_fp\_sanitize:Nw \int_value:w #1 \fi:
{(#3)}
\end{verbatim}
Contrarily to \_fp_sin_series_o:NNwwww which received a conversion auxiliary as \#1, here, \#1 is 0 for tangent and 2 for cotangent. Consider first the case of the tangent.

The octant \#3 starts at 1, which means that it is 1 or 2 for \(|x| \in [0, \pi/2]\), it is 3 or 4 for \(|x| \in [\pi/2, \pi]\), and so on: the intervals on which \(\tan|x| \geq 0\) coincide with those for which \([\#3 + 1]/2\) is odd. We also have to take into account the original sign of \(x\) to get the sign of the final result; it is straightforward to check that the first \int_value:w expansion produces 0 for a positive final result, and 2 otherwise. A similar story holds for cot(\(x\)).

The auxiliary receives the sign, the octant, the square of the (reduced) input, and the (reduced) input (an extended-precision number) as arguments. It then computes the numerator and denominator of

\[
\tan(x) \approx \frac{x(1 - x^2(a_1 - x^2(a_2 - x^2(a_3 - x^2(a_4 - x^2(a_5))))))}{1 - x^2(b_1 - x^2(b_2 - x^2(b_3 - x^2(b_4 - b_5))))}.
\]

The ratio is computed by \_fp_ep_div:wwww, then converted to a floating point number. For octants \#3 (really, quadrants) next to a pole of the functions, the fixed point numerator and denominator are exchanged before computing the ratio. Note that this \if_int_odd:w test relies on the fact that the octant is at least 1.
34.2 Inverse trigonometric functions

All inverse trigonometric functions (arcsine, arccosine, arctangent, arccotangent, arcsecant, and arccosecant) are based on a function often denoted \( \text{atan2} \). This function is accessed directly by feeding two arguments to arctangent, and is defined by \( \text{atan}(y,x) = \text{atan}(y/x) \) for generic \( y \) and \( x \). Its advantages over the conventional arctangent is that it takes values in \([−\pi, \pi]\) rather than \([−\pi/2, \pi/2]\), and that it is better behaved in boundary cases. Other inverse trigonometric functions are expressed in terms of \( \text{atan} \) as

\[
\begin{align*}
\text{acos } x &= \text{atan}(\sqrt{1 - x^2}, x) \quad (5) \\
\text{asin } x &= \text{atan}(x, \sqrt{1 - x^2}) \quad (6) \\
\text{asec } x &= \text{atan}(\sqrt{x^2 - 1}, 1) \quad (7) \\
\text{acsc } x &= \text{atan}(1, \sqrt{x^2 - 1}) \quad (8) \\
\text{atan } x &= \text{atan}(x, 1) \quad (9) \\
\text{acot } x &= \text{atan}(1, x). \quad (10)
\end{align*}
\]

Rather than introducing a new function, \( \text{atan2} \), the arctangent function \( \text{atan} \) is overloaded: it can take one or two arguments. In the comments below, following many texts, we call the first argument \( y \) and the second \( x \), because \( \text{atan}(y,x) = \text{atan}(y/x) \) is the angular coordinate of the point \((x,y)\).

As for direct trigonometric functions, the first step in computing \( \text{atan}(y,x) \) is argument reduction. The sign of \( y \) gives that of the result. We distinguish eight regions where the point \((x, |y|)\) can lie, of angular size roughly \( \pi/8 \), characterized by their “octant”, between 0 and 7 included. In each region, we compute an arctangent as a Taylor series, then shift this arctangent by the appropriate multiple of \( \pi/4 \) and sign to get the result. Here is a list of octants, and how we compute the arctangent (we assume \( y > 0 \): otherwise replace \( y \) by \(-y\) below):

\[
\begin{align*}
0 &< |y| < 0.41421x, \text{ then } \frac{|y|}{x} \text{ is given by a nicely convergent Taylor series;} \\
1 &< 0.41421x < |y| < x, \text{ then } \frac{|y|}{x} = \frac{\pi}{4} - \text{atan} \left( \frac{x-|y|}{x+|y|} \right).
\end{align*}
\]
2 \ 0 < 0.41421|y| < x < |y|, then \( \tan \frac{y}{x} = \frac{\pi}{4} + \tan \frac{-x+|y|}{x+|y|} \):

3 \ 0 < x < 0.41421|y|, then \( \tan \frac{|y|}{x} = \frac{\pi}{2} - \tan \frac{x}{|y|} \):

4 \ 0 < -x < 0.41421|y|, then \( \tan \frac{|y|}{x} = \frac{\pi}{2} + \tan \frac{-x}{|y|} \):

5 \ 0 < 0.41421|y| < -x < |y|, then \( \tan \frac{|y|}{x} = \frac{3\pi}{4} - \tan \frac{x}{x+|y|} \):

6 \ 0 < -0.41421x < |y| < -x, then \( \tan \frac{|y|}{x} = \frac{3\pi}{4} + \tan \frac{-x}{x+|y|} \):

7 \ 0 < |y| < -0.41421x, then \( \tan \frac{|y|}{x} = \pi - \tan \frac{y}{x} \).

In the following, we denote by \( z \) the ratio among \( \frac{|y|}{x} \), \( \frac{|x|}{y} \), \( \frac{|x|+|y|}{x-y} \), \( \frac{|x|-|y|}{x+y} \) which appears in the right-hand side above.

### 34.2.1 Arctangent and arccotangent

The parsing step manipulates \( \tan \) and \( \cot \) like \( \min \) and \( \max \), reading in an array of operands, but also leaves \use_i:nn or \use_ii:nn depending on whether the result should be given in radians or in degrees. The helper \_fp_parse_function_one_two:nnw checks that the operand is one or two floating point numbers (not tuples) and leaves its second argument or its tail accordingly (its first argument is used for error messages). More precisely if we are given a single floating point number \_fp_atan_default:w places \c_one_fp (expanded) after it; otherwise \_fp_atan_default:w is omitted by \_fp_parse_function_one_two:nnw.

\[
\begin{align*}
\text{\_fp_atan_o:Nw} & \cs_new:Npn \_fp_atan_o:Nw #1 \#2#3 \@ { #1 #2 #3 \c_one_fp \@ } \\
\text{\_fp_acot_o:Nw} & \cs_new:Npn \_fp_acot_o:Nw #1 \#2#3 \@ { #1 #2 #3 \c_one_fp \@ } \\
\text{\_fp_atan_default:w} & \(cs_new:N px \_fp_atan_default:w #1#2#3 @ { #1 #2 #3 \c_one_fp \@ } & \text{(End definition for \_fp_atan_o:Nw, \_fp_acot_o:Nw, and \_fp_atan_default:w.)}
\end{align*}
\]

\_fp_atanii_o:NNw
\_fp_acotii_o:NNw

If either operand is \texttt{nan}, we return it. If both are normal, we call \_fp_atan_normal:o:NNwNwNw. If both are zero or both infinity, we call \_fp_atan_inf:o:NNwNwNw with argument \texttt{2}, leading to a result among \( \{\pm\pi/4, \pm 3\pi/4\} \) (in degrees, \( \{\pm 45, \pm 135\} \)). Otherwise, one is much bigger than the other, and we call \_fp_atan_inf:o:NNwNw with either an argument of \texttt{4}, leading to the values \( \pm\pi/2 \) (in degrees, \( \pm 90 \)), or \texttt{0}, leading to \( \{\pm0, \pm\pi\} \) (in degrees, \( \{\pm0, \pm 180\} \)). Since \( \cot(x, y) = \tan(y, x) \), \_fp_acotii_o:ww simply reverses its two arguments.

\[
\begin{align*}
\text{\_fp_atanii_o:Nww} & \cs_new:Npn \_fp_atanii_o:Nww \#1 \#2\#3 \@ { \#1 \#2 \#3 \#4 \& } \\
\text{\_fp_acotii_o:NNw} & \cs_new:Npn \_fp_acotii_o:NNw \#1 \#2\#3 \@ { \#1 \#2 \#3 \#4 \& } \\
\end{align*}
\]

888
\_fp_case_return_ii_o:ww \fi:
\if_case:w
\if_meaning:w #2 #5
\if_meaning:w 1 #2 10 \else: 0 \fi:
\else:
\if_int_compare:w #2 > #5 \exp_stop_f: 1 \else: 2 \fi:
\exp_stop_f:
\__fp_case_return:nw { \__fp_atan_inf_o:NNNw #1 #3 2 }
or: \__fp_case_return:nw { \__fp_atan_inf_o:NNNw #1 #3 4 }
or: \__fp_case_return:nw { \__fp_atan_inf_o:NNNw #1 #3 0 }
\fi:
\__fp_atan_normal_o:NNnwNnw #1
\s__fp \__fp_chk:w #2#3#4;
\s__fp \__fp_chk:w #5 #6
}
\cs_new:Npn \__fp_acotii_o:Nww #1#2; #3;
{ \__fp_atanii_o:Nww #1#3; #2; }
(End definition for \__fp_atanii_o:Nww and \__fp_acotii_o:Nww.)
\__fp_atan_inf_o:NNNw This auxiliary is called whenever one number is ±0 or ±∞ (and neither is NaN). Then
the result only depends on the signs, and its value is a multiple of \( \pi/4 \). We use the same
auxiliary as for normal numbers, \__fp_atan_combine_o:NwwwwN, with arguments the
final sign #2; the octant #3; atan \( z/z \) = 1 as a fixed point number; \( z = 0 \) as a fixed
point number; and \( z = 0 \) as an extended-precision number. Given the values we provide,
atan \( z \) is computed to be 0, and the result is \([#3/2] \cdot \pi/4 \) if the sign #5 of \( x \) is positive,
and \([(7 − #3)/2] \cdot \pi/4 \) for negative \( x \), where the divisions are rounded up.
\cs_new:Npn \__fp_atan_inf_o:NNNw #1#2#3 \s__fp \__fp_chk:w #4#5#6;
{ \exp_after:wN \__fp_atan_combine_o:NwwwwN \exp_after:wN #2
\int_value:w \__fp_int_eval:w
\if_meaning:w 2 #5 7 - \fi: #3 \exp_after:wN ;
\c__fp_one_fixed_tl {0000}{0000}{0000}{0000}{0000}{0000}; #1
}
(End definition for \__fp_atan_inf_o:NNNw.)
\__fp_atan_normal_o:NNnwNnw Here we simply reorder the floating point data into a pair of signed extended-precision
numbers, that is, a sign, an exponent ending with a comma, and a six-block mantissa
ending with a semi-colon. This extended precision is required by other inverse trigono-
metric functions, to compute things like atan\( (x, \sqrt{1 - x^2}) \) without intermediate rounding
errors.
\cs_new_protected:Npn \__fp_atan_normal_o:NNnwN #1#2#3 \s__fp \__fp_chk:w #4#5#6;
{ \exp_after:wN \__fp_atan_test_o:NwwwwN \exp_after:wN #1
\int_value:w \__fp_int_eval:w
\if_meaning:w 2 #5 7 - \fi: #3 \exp_after:wN ;
\c__fp_one_fixed_tl {0000}{0000}{0000}{0000}{0000}{0000}; #1
}

This receives: the sign \#1 of \( y \), its exponent \#2, its 24 digits \#3 in groups of 4, and similarly for \( x \). We prepare to call \__fp_atan_normal_o:NNnwNnw which expects the sign \#1, the octant, the ratio \((\tan z)/z = 1 - \ldots\), and the value of \( z \), both as a fixed point number and as an extended-precision floating point number with a mantissa in \([0.01,1)\). For now, we place \#1 as a first argument, and start an integer expression for the octant. The sign of \( x \) does not affect \( z \), so we simply leave a contribution to the octant: \( \langle \text{octant} \rangle \rightarrow 7 - \langle \text{octant} \rangle \) for negative \( x \). Then we order \(|y|\) and \(|x|\) in a non-decreasing order: if \(|y| > |x|\), insert \(-3-\) in the expression for the octant, and swap the two numbers. The finer test with 0.41421 is done by \__fp_atan_div:wnwwnw after the operands have been ordered.

\begin{verbatim}
\cs_new:Npn \__fp_atan_test_o:NwwNwwN \#1\#2,#3; \#4\#5,#6; 
\exp_after:wN \__fp_atan_combine_o:NwwwwwN \exp_after:wN \#1 \int_value:w \__fp_int_eval:w \if_meaning:w 2 \#4 7 - \__fp_int_eval:w \fi: \if_int_compare:w \__fp_ep_compare:wwww \#2,#3; \#5,#6; > 0 \exp_stop_f: 3 - \exp_after:wN \__fp_reverse_args:Nww \fi: \__fp_atan_div:wnwwnw \#2,#3; \#5,#6; \}
\end{verbatim}

(End definition for \__fp_atan_normal_o:NNnwNnw.)

This receives two positive numbers \( a \) and \( b \) (equal to \(|x|\) and \(|y|\) in some order), each as an exponent and 6 blocks of 4 digits, such that \( 0 < a < b \). If 0.41421 \( b < a \), the two numbers are “near”, hence the point \((y,x)\) that we started with is closer to the diagonals \(\{|y| = |x|\}\) than to the axes \(\{xy = 0\}\). In that case, the octant is 1 (possibly combined with the \(-7-\) and \(-3-\) inserted earlier) and we wish to compute \(\tan b - a/a + b\). Otherwise, the octant is 0 (again, combined with earlier terms) and we wish to compute \(\tan \frac{b-a}{a+b}\). In any case, call \__fp_atan_div:wnwwnw followed by \( z \), as a comma-delimited exponent and a fixed point number.

\begin{verbatim}
\cs_new:Npn \__fp_atan_div:wnwwnw \#1,#2#3; \#4,#5#6; 
\if_int_compare:w \__fp_int_eval:w 41421 * \#5 < \#2 000 \if_case:w \__fp_int_eval:w \#4 - \#1 \__fp_int_eval_end:w 00 \or: 0 \fi: \exp_stop_f: \exp_after:wN \__fp_reverse_args:Nww \fi: \__fp_atan_div:wnwwnw #1,#2; \#5,#6; }
\end{verbatim}

(End definition for \__fp_atan_normal_o:NNnwNnw.)
\__fp_atan_near_aux:wwn (#1 - #3; #2;)
\__fp_atan_near_aux:wwn 
\cs_new:Npn \__fp_atan_near_aux:wwn #1; #2; 
{ \__fp_fixed_add:wwn #1; #2; 
\{ \__fp_fixed_sub:wwn #2; #1; \{ \__fp_ep_div:wwwwn 0, } 0, \}
}
\__fp_atan_div:wnwwnw, \__fp_atan_near:wwwn, and \__fp_atan_near_aux:wwn.
\__fp_atan_auxi:ww
\__fp_atan_auxii:w
Convert \(z\) from a representation as an exponent and a fixed point number in \([0, 0.01, 1)\) to a fixed point number only, then set up the call to \__fp_atan_Taylor_loop:www, followed by the fixed point representation of \(z\) and the old representation.
\__fp_atan_Taylor_loop:www
\__fp_atan_Taylor_break:w
We compute the series of \((\text{atan} z)/z\). A typical intermediate stage has \(\#1 = 2k - 1, \#2 = 1/2k^2 - z^2(1/2k^2 - z^2(\cdots - z^2(1/2k^2 - z^2(\cdots)))))\), and \(\#3 = z^2\). To go to the next step \(k \rightarrow k - 1\), we compute \(1/2k^2 - 1\), then subtract from it \(z^2\) times \#2. The loop stops when \(k = 0\); then \#2 is \((\text{atan } z)/z\), and there is a need to clean up all the unnecessary data, end the integer expression computing the octant with a semicolon, and leave the result \#2 afterwards.
\__fp_atan_Taylor_loop:www
\__fp_atan_Taylor_break:w
\__fp_atan_Taylor_break:w
(End definition for \__fp_atan_auxi:ww and \__fp_atan_auxii:w.)
\__fp_atan_Taylor_loop:www
\__fp_atan_Taylor_break:w
(End definition for \__fp_atan_div:wnwwnw, \__fp_atan_near:wwwn, and \__fp_atan_near_aux:wwn.)
This receives a \langle sign\rangle, an \langle octant\rangle, a fixed point value of (atan \ z)/z, a fixed point number z, and another representation of z, as an \langle exponent\rangle and the fixed point number 10^{-\langle exponent\rangle}z, followed by either \use_i:nn (when working in radians) or \use_ii:nn (when working in degrees). The function computes the floating point result
\[(sign) \left( \frac{(octant)}{2} \pi + (-1)^{(octant)} \frac{atan z}{z} \cdot z \right), \tag{11}\]
multiplied by 180/\pi if working in degrees, and using in any case the most appropriate representation of z. The floating point result is passed to \_\_fp_sanitize:Nw, which checks for overflow or underflow. If the octant is 0, leave the exponent #5 for \_\_fp_sanitize:Nw, and multiply #3 = \frac{atan z}{z} with #6, the adjusted z. Otherwise, multiply #3 = \frac{atan z}{z} with #4 = z, then compute the appropriate multiple of \frac{\pi}{4} and add or subtract the product #3 \cdot #4. In both cases, convert to a floating point with \_\_fp_fixed_to_float_o:wN.

21704 \cs_new:Npn \_\_fp_atan_combine_o:NwwwwwN #1 #2; #3; #4; #5,#6; #7
21705 \{\exp_after:wN \_\_fp_sanitize:Nw
21706 \exp_after:wN \_\_fp_int_eval:w
21707 \if_meaning:w 0 #2 \exp_after:wN \use_i:nn
21708 \else:\exp_after:wN \use_ii:nn
21709 \fi:
21710 \{ #5 \_\_fp_fixed_mul:wN \_\_fp_fixed_to_float_o:wN \#1 \#2; \#3; \#4; \#5; \#6; \#7 \}
21711 \}
21712 \cs_new:Npn \_\_fp_atan_combine_aux:ww \{ #1 \}
21713 \}
21714 \}
21715 \}
21716 \}
21717 \}
21718 \}
21719 \}
21720 \}
21721 \}
21722 \}
21723 \}
21724 \}
21725 \}
21726 \}
21727 \}
21728 \}
21729 \}
21730 \}
21731 \}
21732 \}
21733 \}
21734 \}
21735 \}
21736 \}
21737 \}

(End definition for \_\_fp_atan_combine_o:NwwwwwN and \_\_fp_atan_combine_aux:ww.)
34.2.2 Arcsine and arccosine

\__fp_asin_o:w
Again, the first argument provided by \texttt{l3fp-parse} is \texttt{\use_i:nn} if we are to work in radians and \texttt{\use_ii:nn} for degrees. Then comes a floating point number. The arcsine of $\pm0$ or NaN is the same floating point number. The arcsine of $\pm\infty$ raises an invalid operation exception. Otherwise, call an auxiliary common with \__fp_acos_o:w, feeding it information about what function is being performed (for “invalid operation” exceptions).

\texttt{\cs_new:Npn \__fp_asin_o:w #1 \s__fp \__fp_chk:w #2#3; @}
\texttt{\if_case:w #2 \exp_stop_f: }
\texttt{\__fp_case_return_same_o:w}
\texttt{\or:}
\texttt{\__fp_case_use:nw }
\texttt{\__fp_asin_normal_o:NfwNnnnnw #1 \{ asin \} asind }
\texttt{\or:}
\texttt{\__fp_case_use:nw }
\texttt{\__fp_invalid_operation_o:fw \{ asin \} asind }
\texttt{\else:}
\texttt{\__fp_case_return_same_o:w}
\texttt{\fi:}
\texttt{\s__fp \__fp_chk:w #2 #3;}

(End definition for \__fp_asin_o:w.)

\__fp_acos_o:w
The arccosine of $\pm0$ is $\pi/2$ (in degrees, 90). The arccosine of $\pm\infty$ raises an invalid operation exception. The arccosine of NaN is itself. Otherwise, call an auxiliary common with \__fp_sin_o:w, informing it that it was called by acos or acosd, and preparing to swap some arguments down the line.

\texttt{\cs_new:Npn \__fp_acos_o:w #1 \s__fp \__fp_chk:w #2#3; @}
\texttt{\if_case:w #2 \exp_stop_f: }
\texttt{\__fp_case_use:nw \__fp_atan_inf_o:NNNw #1 0 4}
\texttt{\or:}
\texttt{\__fp_case_use:nw }
\texttt{\__fp_asin_normal_o:NfwNnnnnw #1 \{ acos \} acosd }
\texttt{\__fp_reverse_args:Nww}
\texttt{\or:}
\texttt{\__fp_case_use:nw }
\texttt{\__fp_invalid_operation_o:fw \{ acos \} acosd }
\texttt{\else:}
\texttt{\__fp_case_return_same_o:w}
\texttt{\fi:}
\texttt{\s__fp \__fp_chk:w #2 #3;}

(End definition for \__fp_acos_o:w.)

\__fp_asin_normal_o:NfwNnnnnw
If the exponent \texttt{#5} is at most 0, the operand lies within $(-1, 1)$ and the operation is permitted: call \__fp_asin_auxi_o:NmNww with the appropriate arguments. If the number is exactly $\pm1$ (the test works because we know that \texttt{#5} ≥ 1, \texttt{#6#7} ≥ 10000000, \texttt{#8#9} ≥ 0,

893
with equality only for \(\pm 1\), we also call \(\_\_fp\_asin\_auxi\_o:NNw\). Otherwise, \(\_\_fp\_use\_i:ww\) gets rid of the \(asin\) auxiliary, and raises instead an invalid operation, because the operand is outside the domain of arcsine or arccosine.

```
\cs_new:Npn __fp_asin_normal_o:NfwNnnnnw
\#1\#2\#3 \s__fp __fp_chk:w \#4\#5\#6\#7\#8\#9;
\{\if_int_compare:w \#5 < \#1 \exp_stop_f:\n\exp_after:wN __fp_use_none_until_s:w\fi:\n\if_int_compare:w __fp_int_eval:w \#5 + \#6\#7 + \#8\#9 = 1000 0001 -\exp_after:wN __fp_use_none_until_s:w\fi:\n__fp_use_i:ww\n__fp_invalid_operation_o:fw \#2\n__fp\chk:w \#4\#5\#6\#7\#8\#9;\n__fp_asin_auxi_o:NNw\n\#1 \#3 \#4\#5\#6\#7\#8\#9\{0000\}{0000};\}
```

(End definition for \(\_\_fp\_asin\_normal\_o:NNw\nnw\).)

\(\_\_fp\_asin\_auxi\_o:NNw\)

We compute \(x/\sqrt{1-x^2}\). This function is used by \(asin\) and \(acos\), but also by \(acsc\) and \(asec\) after inverting the operand, thus it must manipulate extended-precision numbers. First evaluate \(1-x^2\) as \((1+x)(1-x)\): this behaves better near \(x=1\). We do the addition/subtraction with fixed point numbers (they are not implemented for extended-precision floats), but go back to extended-precision floats to multiply and compute the inverse square root \(1/\sqrt{1-x^2}\). Finally, multiply by the (positive) extended-precision float \(|x|\), and feed the (signed) result, and the number \(+1\), as arguments to the arctangent function. When computing the arccosine, the arguments \(x/\sqrt{1-x^2}\) and \(+1\) are swapped by \#2 (\(\_\_fp\_reverse\_args:Nww\) in that case) before \(\_\_fp\_atan\_test\_o:NwwNww\) is evaluated. Note that the arctangent function requires normalized arguments, hence the need for \(ep\_to\_ep\) and continue after \(ep\_mul\).

```
\cs_new:Npn __fp_asin_isqrt:wn \#1;
\{\exp_after:wN __fp_fixed_sub:wwn \c__fp_one_fixed_tl \#1;\n\{__fp_fixed_add_one:wN \#1;\n__fp_fixed_continue:wn \{ __fp_ep_mul:wwwn 0, \} 0,\n__fp_ep_isqrt:wn;\}
```

(End definition for \(\_\_fp\_asin\_auxi\_o:NNw\) and \(\_\_fp\_asin\_isqrt:wn\).)

894
34.2.3 Arccosecant and arcsecant

Cases are mostly labelled by \#2, except when \#2 is 2: then we use \#3\#2, which is 02 = 2 when the number is \(+\infty\) and 22 when the number is \(-\infty\). The arccosecant of \(\pm0\) raises an invalid operation exception. The arccosecant of \(\pm\infty\) is \(\pm0\) with the same sign. The arccosecant of NaN is itself. Otherwise, \(\\text{\_fp_acsc\_normal\_o:NfwNnw}\) does some more tests, keeping the function name (acsc or acscd) as an argument for invalid operation exceptions.

\(\text{\_fp_acsc\_o:w}\)

(End definition for \(\text{\_fp_acsc\_o:w}\).)

\(\text{\_fp_asec\_o:w}\)

The arccosecant of \(\pm0\) raises an invalid operation exception. The arccosecant of \(\pm\infty\) is \(\pi/2\) (in degrees, 90). The arccosecant of NaN is itself. Otherwise, do some more tests, keeping the function name asec (or asecd) as an argument for invalid operation exceptions, and a \(\text{\_fp_reverse_args\_Nww}\) following precisely that appearing in \(\text{\_fp_acos\_o:w}\).

\(\text{\_fp_acsc\_normal\_o:NfwNnw}\)

If the exponent is non-positive, the operand is less than 1 in absolute value, which is always an invalid operation: complain. Otherwise, compute the inverse of the operand, and feed it to \(\text{\_fp_asin\_auxi\_o:NNw}\) (with all the appropriate arguments). This computes what we want thanks to \(\text{acsc}(x) = \text{asin}(1/x)\) and \(\text{asec}(x) = \text{acos}(1/x)\).

\(\text{\_fp_acsc\_normal\_o:NfwNnw}\)

(End definition for \(\text{\_fp_asec\_o:w}\).)
35 \texttt{13fp-convert} implementation

The first argument is for instance \texttt{\_\_fp_to_tl_dispatch:w}, which converts any floating point object to the appropriate representation. We loop through all items, putting ,~ between all of them and making sure to remove the leading ,~.

\begin{verbatim}
\cs_new:Npn \_\_fp_tuple_convert:Nw #1 \s__fp_tuple \_\_fp_tuple_chk:w #2 ;
{ \int_case:nnF { \_\_fp_array_count:n {#2} } { 0 } { ( ) } { 1 } { \_\_fp_tuple_convert:w @ { \_\_fp_tuple_convert_loop:nNw #2 #1 } } }
\cs_new:Npn \_\_fp_tuple_convert_loop:nNw #1#2#3#4; #5 @ #6
{ \use_none:n #3 \exp_args:Nf \_\_fp_tuple_convert_loop:nNw { #2 #3#4 ; } #2 #5 @ { #6 , ~ #1 } }
\cs_new:Npn \_\_fp_tuple_convert_end:w #1 @ #2
{ \exp_after:wN ( \exp:w \exp_end_continue_f:w #2 ) }
\end{verbatim}

(End definition for \_\_fp_acsc_normal_o:Nfw\_\_fw.)

35.1 Dealing with tuples

The first argument is for instance \_\_fp_to_tl_dispatch:w, which converts any floating point object to the appropriate representation. We loop through all items, putting ,~ between all of them and making sure to remove the leading ,~.
35.2 Trimming trailing zeros

If #1 ends with a 0, the loop auxiliary takes that zero as an end-delimiter for its first argument, and the second argument is the same loop auxiliary. Once the last trailing zero is reached, the second argument is the dot auxiliary, which removes a trailing dot if any. We then clean-up with the end auxiliary, keeping only the number.

```latex
\begin{verbatim}
\cs_new:Npn __fp_trim_zeros:w \ #1 \ ;
__fp_trim_zeros_loop:w \ #1 ; __fp_trim_zeros_loop:w \ 0 ; __fp_trim_zeros_dot:w . ; \s_stop
\end{verbatim}
```

(End definition for \__fp_trim_zeros:w and others.)

35.3 Scientific notation

The three public functions evaluate their argument, then pass it to \__fp_to_scientific_dispatch:w.

```latex
\begin{verbatim}
\cs_new:Npn \fp_to_scientific:N #1 \ {
\exp_after:wN __fp_to_scientific_dispatch:w \ #1
\}
\cs_generate_variant:Nn \fp_to_scientific:N \ { c }
\cs_new:Npn \fp_to_scientific:n \ {
\exp_after:wN __fp_to_scientific_dispatch:w
\exp:w \exp_end_continue_f:w __fp_parse:n
\}
\end{verbatim}
```

(End definition for \fp_to_scientific:N and \fp_to_scientific:n. These functions are documented on page 201.)

We allow tuples.

```latex
\begin{verbatim}
\cs_new:Npn __fp_to_scientific_dispatch:w \ #1 \ ;
__fp_change_func_type:NNN \ #1 __fp_to_scientific:w __fp_to_scientific_recover:w \ #1
\}
\cs_new:Npn __fp_to_scientific_recover:w \ #1 \ #2 \ ;
__fp_error:nffn \ { fp-unknown-type } \ { \tl_to_str:n \ { #2 \ ; } \ } \ { } \ { }
\}
\cs_new:Npn __fp_tuple_to_scientific:w \ {
__fp_tuple_convert:Nw __fp_to_scientific_dispatch:w
\}
```

(End definition for \__fp_to_scientific_dispatch:w, \__fp_to_scientific_recover:w, and \__fp_tuple_to_scientific:w.)

Expressing an internal floating point number in scientific notation is quite easy: no rounding, and the format is very well defined. First cater for the sign: negative numbers \((#2 = 2)\) start with \texttt{-}; we then only need to care about positive numbers and \texttt{nan}. Then
filter the special cases: \( \pm 0 \) are represented as 0; infinities are converted to a number slightly larger than the largest after an “invalid_operation” exception; \( \text{\texttt{nan}} \) is represented as 0 after an “invalid_operation” exception. In the normal case, decrement the exponent and unbrace the 4 brace groups, then in a second step grab the first digit (previously hidden in braces) to order the various parts correctly.

\[
\begin{align*}
\text{\texttt{21901}} & \quad \texttt{\textbackslash cs_new:Npn \__fp_to_scientific:w \_s__fp \___fp_chk:w \#1\#2} \\
\text{\texttt{21902}} & \quad \texttt{\{} \\
\text{\texttt{21903}} & \quad \texttt{\textbackslash if_meaning:w 2 \#2 \textbackslash exp_after:wN - \textbackslash exp:w \textbackslash exp_end_continue_f:w \textbackslash fi:} \\
\text{\texttt{21904}} & \quad \texttt{\_\_fp_case:w \#1 \textbackslash exp_stop_f:} \\
\text{\texttt{21905}} & \quad \texttt{\_\_fp_case_return:wnw \{ 0.000000000000000 \}} \\
\text{\texttt{21908}} & \quad \texttt{\_\_fp_case_use:wnw} \\
\text{\texttt{21909}} & \quad \texttt{\{} \\
\text{\texttt{21910}} & \quad \texttt{\_\_fp_invalid_operation:nnw} \\
\text{\texttt{21911}} & \quad \texttt{\{ \texttt{\_\_fp_to_scientific:N} \texttt{\_\_fp_overflowing_fp} \}} \\
\text{\texttt{21912}} & \quad \texttt{\{ \texttt{\_\_fp_to_scientific} \}} \\
\text{\texttt{21913}} & \quad \texttt{\} \\
\text{\texttt{21914}} & \quad \texttt{\textbackslash or:} \\
\text{\texttt{21915}} & \quad \texttt{\_\_fp_case_use:wnw} \\
\text{\texttt{21916}} & \quad \texttt{\{} \\
\text{\texttt{21917}} & \quad \texttt{\_\_fp_invalid_operation:nnw} \\
\text{\texttt{21918}} & \quad \texttt{\{ \texttt{\_\_fp_to_scientific:N} \texttt{\_\_fp_zero_fp} \}} \\
\text{\texttt{21919}} & \quad \texttt{\{ \texttt{\_\_fp_to_scientific} \}} \\
\text{\texttt{21920}} & \quad \texttt{\} \\
\text{\texttt{21921}} & \quad \texttt{\textbackslash fi:} \\
\text{\texttt{21922}} & \quad \texttt{\_s__fp \_\_fp_chk:w \#1 \#2} \\
\text{\texttt{21923}} & \quad \texttt{\} } \\
\text{\texttt{21924}} & \quad \texttt{\_\_fp_to_scientific_normal:wnnnnn} \\
\text{\texttt{21925}} & \quad \texttt{\_\_fp_chk:w \#1 \#2 \#3\#4\#5\#6 ;} \\
\text{\texttt{21926}} & \quad \texttt{\{} \\
\text{\texttt{21927}} & \quad \texttt{\exp_after:wN \_\_fp_to_scientific_normal:wnw} \\
\text{\texttt{21928}} & \quad \texttt{\exp_after:wN e} \\
\text{\texttt{21929}} & \quad \texttt{\int_value:w \_\_fp_int_eval:w \#2 - 1} \\
\text{\texttt{21930}} & \quad \texttt{\#3 \#4 \#5 \#6 ;} \\
\text{\texttt{21931}} & \quad \texttt{\} } \\
\text{\texttt{21932}} & \quad \texttt{\_\_fp_to_scientific_normal:wnw \#1 \#2\#3;} \\
\text{\texttt{21933}} & \quad \texttt{\{ \#2, \#3 \#1 \}}
\end{align*}
\] (End definition for \_\_fp_to_scientific:w, \_\_fp_to_scientific_normal:wnnnn, and \_\_fp_to_scientific_normal:wnw.)

### 35.4 Decimal representation

\begin{itemize}
\item \texttt{\_fp_to_decimal:N} \texttt{\_fp_to_decimal:c} \texttt{\_fp_to_decimal:n}
\end{itemize}

All three public variants are based on the same \_\_fp_to_decimal_dispatch:w after evaluating their argument to an internal floating point.
We allow tuples.

The structure is similar to \texttt{\_\_fp_to_scientific:w}. Insert \texttt{-} for negative numbers. Zero gives 0, ±∞ and NaN yield an “invalid operation” exception; note that ±∞ produces a very large output, which we don’t expand now since it most likely won’t be needed. Normal numbers with an exponent in the range [1, 15] have that number of digits before the decimal separator: “decimate” them, and remove leading zeros with \texttt{\_int_value:w}, then trim trailing zeros and dot. Normal numbers with an exponent 16 or larger have no decimal separator, we only need to add trailing zeros. When the exponent is non-positive, the result should be \langle \texttt{zeros} \rangle \langle \texttt{digits} \rangle, trimmed.
\int_compare:nNnTF \{#2\} > 0
\int_compare:nNnTF \{#2\} < \c__fp_prec_int
\__fp_decimate:nNnnn \{ \c__fp_prec_int - \#2 \}
\__fp_to_decimal_large:Nnnw
\exp_after:wN \exp_after:wN
\exp_after:wN \__fp_to_decimal_huge:wnnnn
\prg_replicate:nn \{ \#2 - \c__fp_prec_int \} \{ 0 \};
\exp_after:wN \exp_after:wN
\__fp_trim_zeros:w \exp_after:wN 0 \exp_after:wN .
\exp:w \exp_end_continue_f:w \prg_replicate:nn \{ - \#2 \} \{ 0 \}
\#3#4#5#6 ;
\cs_new:Npn \__fp_to_decimal_large:Nnnw #1#2#3#4;\exp_after:wN \__fp_to_decimal_huge:wnnnn #1; \#2#3#4#5 \{ \#2#3#4#5 \#1 \}
(End definition for \__fp_to_decimal:w and others.)

35.5 Token list representation
\fp_to_tl:N These three public functions evaluate their argument, then pass it to \__fp_to_tl_dispatch:w.
\fp_to_tl:c \fp_to_tl:n \cs_new:Npn \fp_to_tl:N \#1 \{ \exp_after:wN \__fp_to_tl_dispatch:w \#1 \}
\cs_generate_variant:Nn \fp_to_tl:N \{ c \}
\cs_new:Npn \fp_to_tl:n \exp_after:wN \__fp_to_tl_dispatch:w
\exp:w \exp_end_continue_f:w \__fp_parse:n
(End definition for \fp_to_tl:N and \fp_to_tl:n. These functions are documented on page 202.)

\__fp_to_tl_dispatch:w \__fp_to_tl_recover:w \__fp_tuple_to_tl:w We allow tuples.
\cs_new:Npn \__fp_to_tl_dispatch:w \#1 \{ \__fp_change_func_type:NNN \#1 \__fp_to_tl:w \__fp_to_tl_recover:w \#1 \}
\cs_new:Npn \__fp_to_tl_recover:w \#1 \#2 ; 900
\_\_fp\_to\_tl:w
\_\_fp\_to\_tl\_normal:nnnn
\_\_fp\_to\_tl\_scientific:wWw
\_\_fp\_to\_tl\_check:w #1#2
{\if meaning:w 2 \#2 \exp after:wN - \exp w \exp end continue f:w \fi:
  \if case:w \#1 \exp stop f:
    \_\_fp\_case\_return:nw \{ 0 \}
  \or: \exp after:wN \_\_fp\_to\_tl\_normal:nnnn
  \or: \_\_fp\_case\_return:nw \{ inf \}
  \else: \_\_fp\_case\_return:nw \{ nan \}
  \fi:
}
\cs new:Npn \_\_fp\_to\_tl\_normal:nnnn \#1
{\int compare:nTF
  \{ -2 <= \#1 <= c\_fp\_prec\_int \}
  \_\_fp\_to\_decimal\_normal:wnnnn
  \_\_fp\_to\_tl\_scientific:wWw
  \s\_fp \_\_fp\_chk:w 1 0 \{\1\}
}
\cs new:Npn \_\_fp\_to\_tl\_scientific:wWw
\s\_fp \_\_fp\_chk:w 1 \#1 \#2 \#3\#4\#5\#6
{\exp after:wN \_\_fp\_to\_tl\_scientific:wWw
 \exp after:wN e
 \int value:w \_\_fp\_int\_eval:w \#2 - 1
  ; \#3 \#4 \#5 \#6
}
\cs new:Npn \_\_fp\_to\_tl\_scientific:wWw \#1 \; \#2\#3
{\_\_fp\_trim\_zeros:w \#2.\#3 \; \#1}
(End definition for \_\_fp\_to\_tl:w and others.)

35.6 Formatting

This is not implemented yet, as it is not yet clear what a correct interface would be, for this kind of structured conversion from a floating point (or other types of variables) to a string. Ideas welcome.
### 35.7 Convert to dimension or integer

All three public variants are based on the same \_\_fp_to_dim_dispatch:w after evaluating their argument to an internal floating point. We only allow floating point numbers, not tuples.

```latex
\cs_new:Npn \fp_to_dim:N #1
\cs_generate_variant:Nn \fp_to_dim:N { c }
\cs_new:Npn \fp_to_dim:n
\exp_after:wN __fp_to_dim_dispatch:w #1
\cs_new:Npn __fp_to_dim_dispatch:w #1#2 ;
__fp_change_func_type:NNN #1 __fp_to_dim:w __fp_to_dim_recover:w #1 #2 ;
\cs_new:Npn __fp_to_dim_recover:w #1
{ __fp_invalid_operation:nnw { 0pt } \fp_to_dim }
\cs_new:Npn __fp_to_dim:w #1 ;
\exp_after:wN __fp_to_decimal:w \exp:w \exp_end_continue_f:w __fp_round:Nwn __fp_round_to_nearest:NNN #1; { 0 }
```

(End definition for \fp_to_dim:N and others. These functions are documented on page 201.)

### 35.8 Convert from a dimension

For the most part identical to \fp_to_dim:N but without pt, and where \_\_fp_to_int:w does more work. To convert to an integer, first round to 0 places (to the nearest integer), then express the result as a decimal number: the definition of \_\_fp_to_decimal_dispatch:w is such that there are no trailing dot nor zero.

```latex
\cs_new:Npn \fp_to_int:N #1
\cs_generate_variant:Nn \fp_to_int:N { c }
\cs_new:Npn \fp_to_int:n
\exp_after:wN __fp_to_int_dispatch:w
\exp:w \exp_end_continue_f:w __fp_parse:n
\cs_new:Npn __fp_to_int_dispatch:w #1#2 ;
__fp_change_func_type:NNN #1 __fp_to_int:w __fp_to_int_recover:w #1 #2 ;
\cs_new:Npn __fp_to_int_recover:w #1
{ __fp_invalid_operation:nnw { 0 } \fp_to_int }
\cs_new:Npn __fp_to_int:w #1;
\exp_after:wN __fp_to_decimal:w \exp:w \exp_end_continue_f:w __fp_round:Nwn __fp_round_to_nearest:NNN #1; { 0 }
```

(End definition for \fp_to_int:N and others. These functions are documented on page 201.)

### 35.8 Convert from a dimension

The dimension expression (which can in fact be a glue expression) is evaluated, converted to a number (i.e., expressed in scaled points), then multiplied by \(2^{-16} = 902\).
0.0000152587890625 to give a value expressed in points. The auxiliary \texttt{\_\_fp_mul_npos_o:Nww} expects the desired (final sign) and two floating point operands (of the form \texttt{\_\_fp...;}) as arguments. This set of functions is also used to convert dimension registers to floating points while parsing expressions: in this context there is an additional exponent, which is the first argument of \texttt{\_\_fp_from_dim_test:wN}, and is combined with the exponent $-4$ of $2^{-16}$. There is also a need to expand afterwards: this is performed by \texttt{\_\_fp_mul_npos_o:Nww}, and cancelled by \texttt{\prg_do_nothing}: here.

\begin{verbatim}
\cs_new:Npn \dim_to_fp:n #1
\exp_after:wN \__fp_from_dim_test:ww
\exp_after:wN 0
\exp_after:wN ,
\int_value:w \tex_glueexpr:D #1 ;
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__fp_from_dim_test:ww #1, #2
\if_meaning:w 0 #2
\__fp_case_return:nw { \exp_after:wN \c_zero_fp }
\else:
\exp_after:wN \__fp_from_dim:wNw
\int_value:w \__fp_int_eval:w #1 - 4
\if_meaning:w - #2
\exp_after:wN , \exp_after:wN 2 \int_value:w #2
\else:
\exp_after:wN , \exp_after:wN 0 \int_value:w #2
\fi:
\fi:
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__fp_from_dim:wNw #1,#2#3; #4; #5; #6; #7#8
\__fp_from_dim:wnnnnwNn #1 {#2#300} {0000} ;
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__fp_from_dim:wnnnnwNn #1; #2#3#4#5#6#7#8
{ \__fp_mul_npos_o:Nww \#7
\s__fp \__fp_chk:w 1 \#7 \{#5\} \#1 ;
\s__fp \__fp_chk:w 1 0 \{#8\} \{1525\} \{8789\} \{0625\} \{0000\} ;
\prg_do_nothing:
}
\end{verbatim}

(End definition for \texttt{\_\_fp_from_dim:NN} and others. This function is documented on page 175.)

### 35.9 Use and eval

\begin{verbatim}
\fp_use:N \fp_use:c \fp_eval:n
\end{verbatim}

Those public functions are simple copies of the decimal conversions.

\begin{verbatim}
\cs_new_eq:NN \fp_use:N \fp_to_decimal:N
\cs_generate_variant:Nn \fp_use:N { c }
\cs_new_eq:NN \fp_eval:n \fp_to_decimal:n
\end{verbatim}

(End definition for \texttt{\fp_use:N} and \texttt{\fp_eval:n}. These functions are documented on page 202.)
\texttt{\texttt{fp\_sign:n}} Trivial but useful. See the implementation of \texttt{fp\_add:Nn} for an explanation of why to use \texttt{\_\_fp\_parse:n}, namely, for better error reporting.

\begin{verbatim}
\cs_new:Npn \fp\_sign:n #1
{ \fp_to_decimal:n { sign \_\_fp\_parse:n {#1} } }
\end{verbatim}

(End definition for \texttt{fp\_sign:n}. This function is documented on page 201.)

\texttt{\texttt{fp\_abs:n}} Trivial but useful. See the implementation of \texttt{fp\_add:Nn} for an explanation of why to use \texttt{\_\_fp\_parse:n}, namely, for better error reporting.

\begin{verbatim}
\cs_new:Npn \fp\_abs:n #1
{ \fp_to_decimal:n { abs \_\_fp\_parse:n {#1} } }
\end{verbatim}

(End definition for \texttt{fp\_abs:n}. This function is documented on page 216.)

\texttt{\texttt{fp\_max:nn}} \texttt{\texttt{fp\_min:nn}} Similar to \texttt{fp\_abs:n}, for consistency with \texttt{int\_max:nn}, etc.

\begin{verbatim}
\cs_new:Npn \fp\_max:nn #1#2
{ \fp_to_decimal:n { max ( \_\_fp\_parse:n {#1} , \_\_fp\_parse:n {#2} ) } }
\cs_new:Npn \fp\_min:nn #1#2
{ \fp_to_decimal:n { min ( \_\_fp\_parse:n {#1} , \_\_fp\_parse:n {#2} ) } }
\end{verbatim}

(End definition for \texttt{fp\_max:nn} and \texttt{fp\_min:nn}. These functions are documented on page 216.)

35.10 Convert an array of floating points to a comma list

Converts an array of floating point numbers to a comma-list. If speed here ends up irrelevant, we can simplify the code for the auxiliary to become

\begin{verbatim}
\cs_new:Npn \_\_fp\_array\_to\_clist\_loop:Nw #1#2;
{ \use\_none:n \_\_fp\_array\_to\_clist\_loop:Nw }
\end{verbatim}

The \texttt{\_\_fp\_array\_to\_clist\_loop:Nw} function is expanded after \texttt{\_\_fp\_expand:n} is done, and it removes ,~ from the start of the representation.

\begin{verbatim}
\cs_new:Npn \_\_fp\_array\_to\_clist\_loop:Nw #1
{ \tl\_if\_empty:nF {#1} }
{ \exp\_last\_unbraced:Ne \use\_iii:n \\
  { \_\_fp\_array\_to\_clist\_loop:Nw #1 \_\_fp\_array\_to\_clist\_loop:Nw }
  \_\_fp\_array\_to\_clist\_loop:Nw
}
\end{verbatim}

904
Those functions may receive a variable number of arguments. We won’t use the argument ?.

\cs_new:Npn \__fp_rand_o:Nw ? #1 @
\cs_new_eq:NN \__fp_randint_o:Nw \__fp_rand_o:Nw
\cs_new:Npn \int_rand:nn #1#2
\cs_new:Npn \int_rand:n #1
\sys_if_rand_exist:F
\sys_if_rand_exist:T

Obviously, every word “random” below means “pseudo-random”, as we have no access to entropy (except a very unreliable source of entropy: the time it takes to run some code).
The primitive random number generator (RNG) is provided as \(\texttt{\textbackslash tex\_uniformdeviate:D}\). Under the hood, it maintains an array of 55 28-bit numbers, updated with a linear recursion relation (similar to Fibonacci numbers) modulo \(2^{28}\). When \(\texttt{\textbackslash tex\_uniformdeviate:D}\langle \text{integer}\rangle\) is called (for brevity denote by \(N\) the \(\langle \text{integer}\rangle\)), the next 28-bit number is read from the array, scaled by \(N/2^{28}\), and rounded. To prevent 0 and \(N\) from appearing half as often as other numbers, they are both mapped to the result 0.

This process means that \(\texttt{\textbackslash tex\_uniformdeviate:D}\) only gives a uniform distribution from 0 to \(N-1\) if \(N\) is a divisor of \(2^{28}\), so we will mostly call the RNG with such power of 2 arguments. If \(N\) does not divide \(2^{28}\), then the relative non-uniformity (difference between probabilities of getting different numbers) is about \(N/2^{28}\). This implies that detecting deviation from \(1/N\) of the probability of a fixed value \(X\) requires about \(2^{26}/N\) random trials. But collective patterns can reduce this to about \(2^{46}/N^2\). For instance with \(N = 3 \times 2^4\), the modulo 3 repartition of such random numbers is biased with a non-uniformity about \(2^4/2^{28}\) (which is much worse than the circa \(3/2^{28}\) non-uniformity from taking directly \(N = 3\)). This is detectable after about \(2^{50}/2^{2k} = 9 \cdot 2^{50}/N^2\) random numbers. For \(k = 15\), \(N = 98304\), this means roughly \(2^{20}\) calls to the RNG (experimentally this takes at the very least 16 seconds on a 2 giga-hertz processor). While this bias is not quite problematic, it is uncomfortably close to being so, and it becomes worse as \(N\) is increased. In our code, we shall thus combine several results from the RNG.

The RNG has three types of unexpected correlations. First, everything is linear modulo \(2^{28}\), hence the lowest \(k\) bits of the random numbers only depend on the lowest \(k\) bits of the seed (and of course the number of times the RNG was called since setting the seed). The recommended way to get a number from 0 to \(N-1\) is thus to scale the raw 28-bit integer, as the engine’s RNG does. We will go further and in fact typically we discard some of the lowest bits.

Second, suppose that we call the RNG with the same argument \(N\) to get a set of \(K\) integers in \([0,N-1]\) (throwing away repeats), and suppose that \(N > K^3\) and \(K > 55\). The recursion used to construct more 28-bit numbers from previous ones is linear: \(x_n = x_{n-55} - x_{n-24}\) or \(x_n = x_{n-55} - x_{n-24} + 2^{28}\). After rescaling and rounding we find that the result \(N_n \in [0,N-1]\) is among \(N_{n-55} - N_{n-24} + \{-1,0,1\}\) modulo \(N\) (a more detailed analysis shows that 0 appears with frequency close to 3/4). The resulting set thus has more triplets \((a,b,c)\) than expected obeying \(a = b + c\) modulo \(N\). Namely it will have of order \((K-55) \times 3/4\) such triplets, when one would expect \(K^3/(6N)\). This starts to be detectable around \(N = 2^{18} > 55^3\) (earlier if one keeps track of positions too, but this is more subtle than it looks because the array of 28-bit integers is read backwards by the engine). Hopefully the correlation is subtle enough to not affect realistic documents so we do not specifically mitigate against this. Since we typically use two calls to the RNG per \texttt{\textbackslash int\_rand:nn} we would need to investigate linear relations between the \(x_{2n}\) on the one hand and between the \(x_{2n+1}\) on the other hand. Such relations will have more complicated coefficients than \(\pm 1\), which alleviates the issue.

Third, consider successive batches of 165 calls to the RNG (with argument \(2^{28}\) or with argument \(2\) for instance), then most batches have more odd than even numbers. Note that this does not mean that there are more odd than even numbers overall. Similar issues are discussed in Knuth’s TAOCP volume 2 near exercise 3.3.2-31. We do not have any mitigation strategy for this.

Ideally, our algorithm should be:

- Uniform. The result should be as uniform as possible assuming that the RNG’s underlying 28-bit integers are uniform.
• Uncorrelated. The result should not have detectable correlations between different seeds, similar to the lowest-bit ones mentioned earlier.

• Quick. The algorithm should be fast in \textsc{tex}, so no “bit twiddling”, but “digit twiddling” is ok.

• Simple. The behaviour must be documentable precisely.

• Predictable. The number of calls to the RNG should be the same for any \texttt{rand::nn}, because then the algorithm can be modified later without changing the result of other uses of the RNG.

• Robust. It should work even for \texttt{rand::nn} \{- \texttt{c_max_int} \} \{ \texttt{c_max_int} \} where the range is not representable as an integer. In fact, we also provide later a floating-point \texttt{randint} whose range can go all the way up to \(2 \times 10^{16} - 1\) possible values.

Some of these requirements conflict. For instance, uniformity cannot be achieved with a fixed number of calls to the RNG.

Denote by \texttt{random}(N) one call to \texttt{tex_uniformdeviate:D} with argument \(N\), and by \texttt{ediv}(p, q) the \(\varepsilon\)-\textsc{tex} rounding division giving \([p/q + 1/2]\). Denote by \langle \texttt{min} \rangle, \langle \texttt{max} \rangle and \(R = \langle \texttt{max} \rangle - \langle \texttt{min} \rangle + 1\) the arguments of \texttt{int::nn} and the number of possible outcomes. Note that \(R \in [1, 2^{32} - 1]\) cannot necessarily be represented as an integer (however, \(R - 2^{31}\) can). Our strategy is to get two 28-bit integers \(X\) and \(Y\) from the RNG, split each into 14-bit integers, as \(X = X_1 \times 2^{14} + X_0\) and \(Y = Y_1 \times 2^{14} + Y_0\) then return essentially \(\langle \texttt{min} \rangle + \{R(X_1 \times 2^{14} + Y_1 \times 2^{-28} + Y_0 \times 2^{-42} + X_0 \times 2^{-56})\}\). For small \(R\) the \(X_0\) term has a tiny effect so we ignore it and we can compute \(R \times Y/2^{28}\) much more directly by \texttt{random}(R).

• If \(R \leq 2^{17} - 1\) then return \(\texttt{ediv}(R \texttt{random}(2^{14}) + \texttt{random}(R) + 2^{13}, 2^{14}) - 1 + \langle \texttt{min} \rangle\). The shifts by \(2^{13}\) and \(-1\) convert \(\varepsilon\)-\textsc{tex} division to truncated division. The bound on \(R\) ensures that the number obtained after the shift is less than \texttt{c_max_int}. The non-uniformity is at most of order \(2^{17}/2^{22} = 2^{-25}\).

• Split \(R = R_2 \times 2^{28} + R_1 \times 2^{14} + R_0\), where \(R_2 \in [0, 15]\). Compute \(\langle \texttt{min} \rangle + R_2 X_1 2^{14} + (R_2 Y_1 + R_1 X_1) + \texttt{ediv}(R_2 Y_0 + R_1 Y_1 + R_0 X_1 + \texttt{ediv}(R_2 X_0 + R_0 Y_1 + \texttt{ediv}((2^{14} R_1 + R_0)(2^{14} X_0 + X_0), 2^{28}), 2^{14}), 2^{14})\) then map a result of \langle \texttt{max} \rangle + 1 to \langle \texttt{min} \rangle. Writing each \texttt{ediv} in terms of truncated division with a shift, and using \(\lfloor (p + \lceil r/s \rceil)/q \rfloor = \lfloor (ps + r)/(sq) \rfloor\), what we compute is equal to \(\langle \texttt{exact} \rangle + 2^{-20} + 2^{-15} + 2^{-1}\) with \langle \texttt{exact} \rangle = \langle \texttt{min} \rangle + R \times 0.X_1 Y_1 X_0 Y_0.\) Given we map \langle \texttt{max} \rangle + 1 to \langle \texttt{min} \rangle, the shift has no effect on uniformity. The non-uniformity is bounded by \(R/2^{56} < 2^{-24}\). It may be possible to speed up the code by dropping tiny terms such as \(R_0 X_0\), but the analysis of non-uniformity proves too difficult.

To avoid the overflow when the computation yields \langle \texttt{max} \rangle + 1 with \langle \texttt{max} \rangle = 2^{31} - 1 (note that \(R\) is then arbitrary), we compute the result in two pieces. Compute \langle \texttt{first} \rangle = \langle \texttt{min} \rangle + R_2 X_1 2^{14} if \(R_2 < 8\) or \langle \texttt{min} \rangle + 8X_1 2^{14} + (R_2 - 8)X_1 2^{14} if \(R_2 \geq 8\), the expressions being chosen to avoid overflow. Compute \langle \texttt{second} \rangle = R_2 Y_1 + R_1 X_1 + \texttt{ediv}(\ldots), at most \(R_2 2^{14} + R_1 2^{14} + R_0 \leq 2^{28} + 15 \times 2^{14} - 1\), not at risk of overflowing. We have \langle \texttt{first} \rangle + \langle \texttt{second} \rangle = \langle \texttt{max} \rangle + 1 = \langle \texttt{min} \rangle + R\) if and only if \langle \texttt{second} \rangle = R_1 2^{14} + R_0 + R_2 2^{14} and \(2^{14} R_2 X_1 = 2^{28} R_2 - 2^{14} R_2\) (namely \(R_2 = 0\) or \(X_1 = 2^{14} - 1\)). In that case, return \langle \texttt{min} \rangle, otherwise return \langle \texttt{first} \rangle + \langle \texttt{second} \rangle, which is safe because it is at most \langle \texttt{max} \rangle. Note that the decision of what to return
does not need (first) explicitly so we don’t actually compute it, just put it in an
integer expression in which (second) is eventually added (or not).

• To get a floating point number in \([0, 1)\) just call the \(R = 10000 \leq 2^{17} - 1\) procedure
above to produce four blocks of four digits.

• To get an integer floating point number in a range (whose size can be up to \(2 \times 10^{16} - 1\)), work with fixed-point numbers: get six times four digits to build a fixed
point number, multiply by \(R\) and add (\(\text{min}\)). This requires some care because
\text{fp-extended} only supports non-negative numbers.

\c__kernel_randint_max_int
\text{Constant equal to } 2^{17} - 1, \text{ the maximal size of a range that } \text{int\_range:nn} \text{ can do with its “simple” algorithm.}

\c__kernel_const:Nn \c__kernel_randint_max_int \{ 131071 \}
(End definition for \c__kernel_randint_max_int.)

\__kernel_randint:n
\text{Used in an integer expression, } \__kernel_randint:n \{ R \} \text{ gives a random number } 1 + \lfloor \big( R \text{random}(2^{14}) + \text{random}(R) \big)/2^{14} \rfloor \text{ that is in } [1, R]. \text{ Previous code was computing } \lfloor p/2^{14} \rfloor \text{ as } \text{ediv}(p - 2^{13}, 2^{14}) \text{ but that wrongly gives } -1 \text{ for } p = 0.

\cs_new:Npn \__kernel_randint:n #1
\{ \cs_new:Npn \__kernel_randint:n \{+ \text{randomdeviate:D #1 + 8192 } \} / 16384
\}
(End definition for \__kernel_randint:n.)

\__fp_rand_myriads:n
\__fp_rand_myriads_loop:w
\__fp_rand_myriads_get:w
\text{Used as } \__fp_rand_myriads:n \{ \text{XXX} \} \text{ with one letter } X \text{ (specifically) per block of four
digit we want; it expands to ; followed by the requested number of brace groups, each
containing four (pseudo-random) digits. Digits are produced as a random number in
[10000, 19999] \text{ for the usual reason of preserving leading zeros.}

\cs_new:Npn \__fp_rand_myriads:n #1
\{ \__fp_rand_myriads_loop:w #1 \prg_break: X \prg_break_point: ; \}
\cs_new:Npn \__fp_rand_myriads_loop:w #1 X
\{ \exp_after:wN \__fp_rand_myriads_get:w \int_value:w \__fp_int_eval:w 9999 + \__kernel_randint:n \{ 10000 \}
\__fp_rand_myriads_loop:w \}
\cs_new:Npn \__fp_rand_myriads_get:w 1 \#1 ; \{ ; \#1 \}
(End definition for \__fp_rand_myriads:n, \__fp_rand_myriads_loop:w, and \__fp_rand_myriads_get:w.)
### 36.2 Random floating point

First we check that \texttt{random} was called without argument. Then get four blocks of four digits and convert that fixed point number to a floating point number (this correctly sets the exponent). This has a minor bug: if all of the random numbers are zero then the result is correctly 0 but it raises the \texttt{underflow} flag; it should not do that.

\begin{verbatim}
\cs_new:Npn \__fp_rand_o:Nw ? #1 @
  { \tl_if_empty:nTF {#1}
    { \exp_after:wN \__fp_rand_o:w
      \exp:w \exp_end_continue_f:w
      \__fp_rand_myriads:n { XXXX } { 0000 } { 0000 } ; 0
    }
    \__kernel_msg_expandable_error:nnnnn
      { kernel } { fp-num-args } { rand() } { 0 } { 0 }
    \exp_after:wN \c_nan_fp
  }
\cs_new:Npn \__fp_rand_o:w ;
  { \exp_after:wN \__fp_sanitize:Nw
    \exp_after:wN 0
    \int_value:w \__fp_int_eval:w \c_zero_int
    \__fp_fixed_to_float_o:wN
  }
\end{verbatim}

(End definition for \texttt{\_fp_rand_o:Nw} and \texttt{\_fp_rand_o:w}.)

### 36.3 Random integer

Enforce that there is one argument (then add first argument 1) or two arguments. Call \texttt{\_fp_randint_badarg:w} on each; this function inserts 1 \texttt{\exp_stop_f:} to end the \texttt{\if_case:w} statement if either the argument is not an integer or if its absolute value is \texttt{\geq 10^{16}}. Also bail out if \texttt{\_fp_compare_back:ww} yields 1, meaning that the bounds are not in the right order. Otherwise an auxiliary converts each argument times \texttt{10^{-16}} (hence the shift in exponent) to a 24-digit fixed point number (see \texttt{l3fp-extended}). Then compute the number of choices, \langle \texttt{max} \rangle + 1 - \langle \texttt{min} \rangle. Create a random 24-digit fixed-point number with \texttt{\_fp_randint_myriads:n}, then use a fused multiply-add instruction to multiply the number of choices to that random number and add it to \langle \texttt{min} \rangle. Then truncate to 16 digits (namely select the integer part of \texttt{10^{16}} times the result) before converting back to a floating point number (\texttt{\_fp_sanitize:Nw} takes care of zero). To avoid issues with negative numbers, add 1 to all fixed point numbers (namely \texttt{10^{16}} to the integers they represent), except of course when it is time to convert back to a float.

\begin{verbatim}
\cs_new:Npn \__fp_randint_o:Nw ?
  { \__fp_parse_function_one_two:nnw
    { randint }
    { \__fp_randint_default:w \__fp_randint_o:w }
  }
\cs_new:Npn \__fp_randint_o:w
  { \exp_after:wN \__fp_randint_default:w \__fp_randint_badarg:w
    \__fp_randint_myriads:n \__fp_randint_auxi:o:ww
    \__fp_randint_auxii:o:ww
    \__fp_randint_auxiii:o:ww
    \__fp_randint_auxiv:o:ww
    \__fp_randint_auxv:o:ww
  }
\end{verbatim}
{% fp_int:wTF \s__fp \__fp_chk:w #1#2#3;
{  
  \if_meaning:w 1 #1
  \if_int_compare:w
    \__fp_use_i_until_s:nw #3 ; > \c__fp_prec_int
    1 \exp_stop_f:
    \fi:
  \fi:
}
{ 1 \exp_stop_f: }
\cs_new:Npn \__fp_randint_o:w #1; #2; @
{  
  \if_case:w
    \__fp_randint_badarg:w #1;
    \__fp_randint_badarg:w #2;
    \if:w 1 \__fp_compare_back:ww #2; #1; 1 \exp_stop_f: \fi:
    0 \exp_stop_f:
    \__fp_randint_auxi_o:ww #1; #2;
  \or:
    \__fp_invalid_operation_tl_o:ff
    \{ randint \} \{ \__fp_array_to_clist:n \{ #1; #2; \} \}
  \exp:w
  \fi:
  \exp_after:wN \exp_end:
}
\cs_new:Npn \__fp_randint_auxi_o:ww #1 ; #2 ; #3 \exp_end:
{  
  \if:
    \__fp_randint_badarg:wn #1 ; #2 ; #3 \exp_stop_f:
  \else:
    \__fp_randint_badarg:wn #1 ; #2 ; #3 \exp_stop_f:
  \fi:
}
\cs_new:Npn \__fp_randint_auxii:wn #2 ; #3 \exp_end:
{  
  \__fp_randint_auxiii_o:ww \__fp_randint_auxi_o:ww \__fp_randint_auxii_o:ww
}
\cs_new:Npn \__fp_randint_auxiii:o:ww #1; \__fp_randint_auxii:wn \__fp_randint_auxi:wn \__fp_chk:w #1#2#3#4 ;
{  
  \if_meaning:w 0 #1
    \exp_after:wN \use_i:nn
  \else:
    \exp_after:wN \use_ii:nn
  \if:
    \exp_after:wN \__fp_fixed_continue:wn \c__fp_one_fixed_tl 
  \else:
    \exp_after:wN \__fp_fixed_continue:wn \c__fp_one_fixed_tl
  \fi:
}
{ \exp_after:wN \__fp_ep_to_fixed:wwn \int_value:w \__fp_int_eval:w
  \c__fp_prec_int , #3 \{0000\} \{0000\} ;
  \if_meaning:w 0 #2
    \exp_after:wN \use_ii:nn
    \exp_after:wN \__fp_fixed_add_one:wn
    \fi:
    \exp_after:wN \__fp_fixed_sub:wwn \c__fp_one_fixed_tl
  \else:
    \exp_after:wN \__fp_fixed_sub:wwn \c__fp_one_fixed_tl
  \fi:
\__fp_fixed_continue:wn}
\cs_new:Npn \__fp_randint_auxiii_o:ww #1 ; #2 ;
{
  \__fp_fixed_add:wwn #2 ;
  {0000} {0000} {0000} {0001} {0000} {0000} ;
  \__fp_fixed_sub:wwn #1 ;
  {
    \exp_after:wN \use_i:nn
    \exp_after:wN \__fp_fixed_mul_add:wwwn
    \exp:w \exp_end_continue_f:w \__fp_rand_myriads:n\{ XXXXX \} ;
  }
  #1 ;
  \__fp_randint_auxiv_o:ww #2 ;
  \__fp_randint_auxv_o:w #1 ; @
}
\cs_new:Npn \__fp_randint_auxiv_o:ww #1#2#3#4#5 ; #6#7#8#9
{
  \if_int_compare:w #1#2 > #6#7 \exp_stop_f: 1 \else:
    \if_int_compare:w #1#2 < #6#7 \exp_stop_f: - \fi: \fi:
  #3#4 > #8#9 \exp_stop_f:
  \__fp_use_i_until_s:nw
  \__fp_randint_auxv_o:w {#1}{#2}{#3}{#4}#5
}
\cs_new:Npn \__fp_randint_auxv_o:w #1#2#3#4#5 ; #6 #0
{
  \exp_after:wN \__fp_signature:Nw
  \int_value:w \__fp_int_eval:w \__fp_fixed_to_float_o:wN \c__fp_one_fixed_tl
  {#1} {#2} {#3} {#4} {0000} {0000} ;
  \__fp_use_i_until_s:nw
  \__fp_randint_auxv_o:w {#1}{#2}{#3}{#4}#5
}
(End definition for \__fpRandintO:Nw and others.)

\int_rand:nn \__fp_randint:ww
Evaluate the argument and filter out the case where the lower bound #1 is more than
the upper bound #2. Then determine whether the range is narrower than \c__kernelRandintMaxInt; #2-#1 may overflow for very large positive #2 and negative #1. If the
range is narrow, call \__kernelRandint:n \langle choices \rangle where \langle choices \rangle is the number
of possible outcomes. If the range is wide, use somewhat slower code.

\begin{verbatim}
\cs_new:Npn \int_rand:nn #1#2
{\int_eval:n
  {\exp_after:wN \_fp_randint:ww
    \int_value:w \int_eval:n {#1} \exp_after:wN ;
    \int_value:w \int_eval:n {#2} ;}
}
\cs_new:Npn \_fp_randint:ww #1; #2;
{\if_int_compare:w #1 > #2 \exp_stop_f:
  \__kernel_msg_expandable_error:nnnn
    { kernel } { randint-backward-range } {#1} {#2}
  \__fp_randint:ww #2; #1;
\else:
  \if_int_compare:w \__fp_int_eval:w #2
    \if_int_compare:w #1 > \c_zero_int
      - #1 < \__fp_int_eval:w
    \else:
      < \__fp_int_eval:w #1 +
    \fi:
    \c__kernel_randint_max_int
  \__fp_int_eval_end:
  \__kernel_randint:n
  { \__fp_int_eval:w #2 - #1 + 1 \__fp_int_eval_end: }
  - 1 + #1
\else:
  \__kernel_randint:nn {#1} {#2}
\fi:
\fi:
}
\end{verbatim}

(End definition for \texttt{\int_rand:nn} and \texttt{\_fp_randint:ww}. This function is documented on page 98.)

Any $n \in [-2^{31} + 1, 2^{31} - 1]$ is uniquely written as $2^{14}n_1 + n_2$ with $n_1 \in [-2^{17}, 2^{17} - 1]$ and $n_2 \in [0, 2^{14} - 1]$. Calling \texttt{\_fp_randint_split_o:Nw} $n$ ; gives $n_1$ ; $n_2$ ; and expands the next token once. We do this for two random numbers and apply \texttt{\_fp_randint_split_o:Nw} twice to fully decompose the range $R$. One subtlety is that we compute $R - 2^{31} = (\text{max}) - (\text{min}) - (2^{31} - 1) \in [-2^{31} + 1, 2^{31} - 1]$ rather than $R$ to avoid overflow. Then we have \texttt{\_fp_randint wide_aux:w} $\langle X_1 \rangle ; \langle X_0 \rangle ; \langle Y_1 \rangle ; \langle Y_0 \rangle ; \langle R_2 \rangle ; \langle R_1 \rangle ; \langle R_0 \rangle$ ; and we apply the algorithm described earlier.

\begin{verbatim}
\cs_new:Npn \_kernel_randint:nn \_fp_randint:nn #1#2
{\exp_after:wN \_fp_randint:nn \_fp_randint:nn #1#2
  \begin{verbatim}
  \exp_after:wN \_fp_randint:nn
    \_fp_randint:nn #1#2
    \int_value:w
    \_fp_randint:nn \_fp_randint:nn #1#2
    \int_value:w
    \_fp_randint:nn \_fp_randint:nn #1#2
    \int_value:w
  \end{verbatim}
}
\end{verbatim}
\exp_after:wN \__fp_randint_split_o:Nw
\int_value:w \__fp_int_eval:w 131072 +
\exp_after:wN \__fp_randint_split_o:Nw
\int_value:w
\__kernel_int_add:nnn {#2} { -#1 } { -\c_max_int } ;
\.
\cs_new:Npn \__fp_randint_split_o:Nw #1#2 ;
{\if_meaning:w 0 #1
  0 \exp_after:wN ; \int_value:w 0
\else:
  \exp_after:wN \__fp_randint_split_aux:w
  \int_value:w \__fp_int_eval:w (#1#2 - 8192) / 16384 ;
  + #1#2
  \fi:
  \exp_after:wN ;
}
\cs_new:Npn \__fp_randint_split_aux:w #1 ;
{ #1 \exp_after:wN ; \int_value:w - #1 * 16384}
\cs_new:Npn \__fp_randint_wide_aux:w #1;#2; #3;#4; #5;#6;#7; .
{\exp_after:wN \__fp_randint_wide_auxii:w
\int_value:w \__fp_int_eval:w #5 * #3 + #6 * #1 +
  (#5 * #4 + #6 * #3 + #7 * #1 +
  (#5 * #2 + #7 * #3 +
   (16384 * #6 + #7) * (16384 * #4 + #2) / 268435456) / 16384
  ) / 16384 \exp_after:wN ;
\int_value:w \__fp_int_eval:w (#5 + #6) * 16384 + #7 ;
#1 ; #5 ;
}
\cs_new:Npn \__fp_randint_wide_auxii:w #1; #2; #3; #4;
{\if_int_odd:w 0
  \if_int_compare:w #1 = #2 \else: \exp_stop_f: \fi:
  \if_int_compare:w #4 = \c_zero_int 1 \fi:
  \if_int_compare:w #3 = 16383 - 1 \fi:
  \exp_stop_f:
  \exp_after:wN \prg_break:
\fi:
  \if_int_compare:w #4 < 8 \exp_stop_f:
    + #4 * #3 * 16384
  \else:
    + 8 * #3 * 16384 + (#4 - 8) * #3 + 16384
  \fi:
  + #1
  \prg_break_point:
}

(End definition for \__kernel_randint:nn and others.)
\int_rand:n \__fp_randint:n

Similar to \int_rand:nn, but needs fewer checks.

\cs_new:Npn \int_rand:n #1
{\int_eval:n
{\exp_args:Nf \__fp_randint:n {\int_eval:n {#1} } }
}
\cs_new:Npn \__fp_randint:n #1
{\if_int_compare:w #1 < 1 \exp_stop_f:
\__kernel_msg_expandable_error:nnnn
{ kernel } { randint-backward-range } { 1 } {#1}
\__fp_randint:ww #1; 1;
\else:
\if_int_compare:w #1 > \c__kernel_randint_max_int
\__kernel_randint:nn { 1 } {#1}
\else:
\__kernel_randint:n {#1}
\fi:
\fi:
}

(End definition for \int_rand:n and \__fp_randint:n. This function is documented on page 98.)

End the initial conditional that ensures these commands are only defined in engines that support random numbers.

37 \l3fparray implementation

37.1 Allocating arrays

There are somewhat more than \((2^{31} - 1)^2\) floating point numbers so we store each floating point number as three entries in integer arrays. To avoid having to multiply indices by three or to add 1 etc, a floating point array is just a token list consisting of three tokens: integer arrays of the same size.

\g__fp_array_int
Used to generate unique names for the three integer arrays.

\int_new:N \g__fp_array_int
(End definition for \g__fp_array_int.)

\l__fp_array_loop_int
Used to loop in \__fp_array_gzero:N.

\int_new:N \l__fp_array_loop_int
(End definition for \l__fp_array_loop_int.)
Build a three-token token list, then define all three tokens to be integer arrays of the same size. No need to initialize the data: the integer arrays start with zeros, and three zeros denote precisely \c_zero_fp, as we want.

\cs_new_protected:Npn \fparray_new:Nn \#1\#2
\tl_new:N \#1
\prg_replicate:nn { 3 }
{ \int_gincr:N \g__fp_array_int
\exp_args:NNc \tl_gput_right:Nn \#1
{ \_fp_array_bounds_\_fp_int_to_roman:w \_fp_array_int_\_intarray }
}
\exp_last_unbraced:Nfo \_fp_array_new:nNNNN
{ \int_eval:n {\#2} } \#1 \#1
\cs_generate_variant:Nn \fparray_new:Nn { c }

\cs_new:Npn \__fp_array_new:nNNNN \#1\#2\#3\#4\#5
{ \int_compare:nNnTF {\#1} < 0
{ \_kernel_msg_error:nnn { kernel } { negative-array-size } {\#1}
\cs_undefine:N \#1
\int_gsub:Nn \g__fp_array_int { 3 }
}
{ \intarray_new:Nn \#2 {\#1}
\intarray_new:Nn \#3 {\#1}
\intarray_new:Nn \#4 {\#1}
}
}

(End definition for \fparray_new:Nn and \_fp_array_new:nNNNN. This function is documented on page 219.)

\cs_new:Npn \fparray_count:N \#1
\exp_after:wN \use_i:nnn
\exp_after:wN \intarray_count:N \#1
\cs_generate_variant:Nn \fparray_count:N { c }

(End definition for \fparray_count:N. This function is documented on page 219.)

37.2 Array items
See the l3intarray analogue: only names change. The functions \fparray_gset:Nnn and \fparray_item:Nn share bounds checking. The T branch is used if \#3 is within bounds of the array \#2.

\cs_new:Npn \_fp_array_bounds:NnTF \_fp_array_bounds_error:Nn
{ \if_int_compare:w 1 > \#3 \exp_stop_f:
\_fp_array_bounds_error:Nn \#1 \#2 \#3
\else:
\_fp_array_bounds:Nn \#2 \#3
\fi:
}
[#5]
Evaluate, then store exponent in one intarray, sign and 8 digits of mantissa in the next, and 8 trailing digits in the last.
\s__fp \s__fp_chk:w #1 #2
\s__fp \s__fp_chk:w 1 #1 #2 #3#4#5 ; #6#7#8#9
{ \__kernel_intarray_gset:Nnn #7 {#2} \__kernel_intarray_gset:Nnn #8 {#6} 
{ \if_meaning:w 2 #1 3 \else: 1 \fi: #3#4 } \__kernel_intarray_gset:Nnn #9 {#6} { 1 \use:nn #5 }
}
\cs_new_protected:Npn \__fp_array_gset_normal:w  
\s__fp \s__fp_chk:w 1 #1 #2 #3#4#5 ; #6#7#8#9
{ \__kernel_intarray_gset:Nnn #7 {#6} \__kernel_intarray_gset:Nnn #8 {#2} 
\__kernel_intarray_gset:Nnn #9 {#6} { 1 \use:nn #5 }
}
\cs_new_protected:Npn \__fp_array_gset_special:nnNNN #1#2#3#4#5
{ \__kernel_intarray_gset:Nnn #3 {#2} {#1} \__kernel_intarray_gset:Nnn #4 {#2} {0} \__kernel_intarray_gset:Nnn #5 {#2} {0} 
}
(End definition for \fparray_gset:Nnn and others. This function is documented on page 219.)

\fparray_gzero:N
\fparray_gzero:c
\cs_new_protected:Npn \fparray_gzero:N #1
{ \int_zero:N \l__fp_array_loop_int 
\prg_replicate:nn { \fparray_count:N #1 } \int_value:w \int_eval:n {#2} 
\__fp_to_decimal:w 
}
\cs_generate_variant:Nn \fparray_gzero:N { c }

\fparray_item:Nn \fparray_item:cn
\fparray_item_to_tl:Nn \fparray_item_to_tl:cn
\fparray_item_to_tl:NNN\fparray_item:N \fparray_item:w \fparray_item_special:w \fparray_item_normal:w
\cs_new:Npn \fparray_item:Nn #1#2 ; #3
{ \exp_after:wN \__fp_array_item:NwN \exp_after:wN #1 \int_value:w \int_eval:n {#2} ; \__fp_to_decimal:w 
}
\cs_generate_variant:Nn \fparray_item:Nn { c }

(End definition for \fparray_gzero:N. This function is documented on page 219.)

917
\__fp_array_bounds:NNnTF \__kernel_msg_expandable_error:nnfff #1 \{#2
\} \exp_after:wN \__fp_array_item:NNNnN #1 {#2} #3
\{ \exp_after:wN \c_nan_fp \}
\cs_new:Npn \__fp_array_item:NNNnN #1#2#3#4
\{ \exp_after:wN \__fp_array_item:N \int_value:w \__kernel_intarray_item:Nn #2 {#4} \exp_after:wN ;
\int_value:w \__kernel_intarray_item:Nn #3 {#4} \exp_after:wN ;
\int_value:w \__kernel_intarray_item:Nn #1 {#4} ; \}
\cs_new:Npn \__fp_array_item:N #1
\{ \if_meaning:w 0 #1 \exp_after:wN \__fp_array_item_special:w \fi:
\__fp_array_item:w #1 \}
\cs_new:Npn \__fp_array_item:w #1 #2#3#4#5 \; 1 \; #7 ;
\{ \exp_after:wN \__fp_array_item_normal:w \int_value:w \if_meaning:w #1 1 0 \else: 2 \fi: \exp_stop_f:
\#7 ; \{#2#3#4#5} \{#6} ; \}
\cs_new:Npn \__fp_array_item_special:w #1 \; #2 \; #3 \; #4
\{ \exp_after:wN \if_case:w #3 \exp_stop_f:
\exp_after:wN \c_zero_fp \or: \exp_after:wN \c_nan_fp \or: \exp_after:wN \c_minus_zero_fp
\or: \exp_after:wN \c_inf_fp \else: \exp_after:wN \c_minus_inf_fp \fi:
\}
\cs_new:Npn \__fp_array_item_normal:w #1 #2#3#4#5 \; #7 ; #8 ; #9
\{ #9 \__fp_array_item_normal:w #1 #2#3#4#5 \; #7 ; #8 ; #9
\}
(End definition for \fparray_item:Nn and others. These functions are documented on page 219.)
\endinput

38 l3sort implementation

\g__sort_internal_seq \g__sort_internal_tl

38.1 Variables

Sorting happens in a group; the result is stored in those global variables before being
copied outside the group to the proper places. For seq and tl this is more efficient than
using \use:x (or some \exp_args:NNNx) to smuggle the definition outside the group
since \TeX{} does not need to re-read tokens. For clist we don’t gain anything since the
result is converted from seq to clist anyways.
The sequence has \l__sort_length_int items and is stored from \l__sort_min_int to \l__sort_top_int – 1. While reading the sequence in memory, we check that \l__sort_top_int remains at most \l__sort_max_int, precomputed by \__sort_compute_range:. That bound is such that the merge sort only uses \toks registers less than \l__sort_true_max_int, namely those that have not been allocated for use in other code: the user’s comparison code could alter these.

Merge sort is done in several passes. In each pass, blocks of size \l__sort_block_int are merged in pairs. The block size starts at 1, and, for a length in the range \[2^n + 1, 2^{n+1}\], reaches \(2^n\) in the last pass.

When merging two blocks, \l__sort_begin_int marks the lowest index in the two blocks, and \l__sort_end_int marks the highest index, plus 1.

When merging two blocks (whose end-points are \beg and \end), \A starts from the high end of the low block, and decreases until reaching \beg. The index \B starts from the top of the range and marks the register in which a sorted item should be put. Finally, \C points to the copy of the high block in the interval of registers starting at \l__sort_length_int, upwards. \C starts from the upper limit of that range.

Finding available \toks registers

After \__sort_compute_range: (defined below) determines that \toks registers between \l__sort_min_int (included) and \l__sort_true_max_int (excluded) have not yet been assigned, \__sort_shrink_range: computes \l__sort_max_int to reflect the need for a buffer when merging blocks in the merge sort. Given \(2^n \leq A \leq 2^n + 2^{n-1}\) registers we can sort \(\lceil A/2 \rceil + 2^{n-2}\) items while if we have \(2^n + 2^{n-1} \leq A \leq 2^{n+1}\) registers we can sort \(A - 2^{n-1}\) items. We first find out a power \(2^n\) such that \(2^n \leq A \leq 2^{n+1}\) by repeatedly halving \l__sort_block_int, starting at \(2^{15}\) or \(2^{14}\) namely half the total number of registers, then we use the formulas and set \l__sort_max_int.
\cs_new_protected:Npn \__sort_shrink_range:
\{ \int_set:Nn \l__sort_A_int
\{ \l__sort_true_max_int - \l__sort_min_int + 1 \}
\int_set:Nn \l__sort_block_int \{ \c_max_register_int / 2 \}
\__sort_shrink_range_loop:
\int_set:Nn \l__sort_max_int
\{ \int_compare:nNnTF
\{ \l__sort_block_int * 3 / 2 \} > \l__sort_A_int
\{ \l__sort_min_int
+ ( \l__sort_A_int - 1 ) / 2
+ \l__sort_block_int / 4
- 1
\}
\{ \l__sort_true_max_int - \l__sort_block_int / 2 \}
\}
\cs_new_protected:Npn \__sort_shrink_range_loop:
\{ \if_int_compare:w \l__sort_A_int < \l__sort_block_int
\tex_divide:D \l__sort_block_int 2 \exp_stop_f:
\fi:
\}
(End definition for \__sort_shrink_range: and \__sort_shrink_range_loop:.)
\__sort_compute_range: \__sort_redefine_compute_range:
\c__sort_max_length_int

First find out what \toks have not yet been assigned. There are many cases. In \LaTeXe with no package, available \toks range from \count15 + 1 to \c_max_register_int included (this was not altered despite the 2015 changes). When \loctoks is defined, namely in plain \LaTeX, or when the package etex is loaded in \LaTeXe, redefine \__sort_compute_range: to use the range \count265 to \count275 - 1. The \elocalloc package also defines \loctoks but uses yet another number for the upper bound, namely \e@alloc@top (minus one). We must check for \loctoks every time a sorting function is called, as etex or elocalloc could be loaded.

In Con\TeXt MkIV the range is from \c_syst_last_allocated_toks+1 to \c_max_register_int, and in MkII it is from \lastallocatedtoks+1 to \c_max_register_int. In all these cases, call \__sort_shrink_range:. The \LaTeXx format mode is easiest: no \toks are ever allocated so available \toks range from 0 to \c_max_register_int and we precompute the result of \__sort_shrink_range:.

\package
\cs_new_protected:Npn \__sort_compute_range:
\{ \int_set:Nn \l__sort_min_int \{ \tex_count:D 15 + 1 \}
\int_set:Nn \l__sort_true_max_int \{ \c_max_register_int + 1 \}
\__sort_shrink_range:
\if_meaning:w \loctoks \tex_undefined:D \else:
\if_meaning:w \loctoks \scan_stop: \else:
\__sort_redefine_compute_range:
\__sort_compute_range:
\fi:
\}

920
\_\_sort\_main:NNNn

Sorting happens in three steps. First store items in \toks registers ranging from \l__\_sort\_min\_int to \l__\_sort\_top\_int \textdaggerDash 1, while checking that the list is not too long. If
we reach the maximum length, that’s an error; exit the group. Secondly, sort the array of \texttt{toks} registers, using the user-defined sorting function: \_\_\_sort\_level: calls \_\_\_sort\_compare:nn as needed. Finally, unpack the \texttt{toks} registers (now sorted) into the target \texttt{tl}, or into \texttt{g\_\_sort\_internal\_seq} for seq and clist. This is done by \_\_\_sort\_seq:NNNNn and \_\_\_sort\_tl:NNn.

\begin{verbatim}
cs_new_protected:Npn \_\_\_sort\_main:NNNn #1#2#3#4 22724 \{
 \langle package \rangle \_\_\_sort\_disable_toksdef:
 \_\_\_sort\_compute_range:
 \int_set_eq:NN \l__sort_top_int \l__sort_min_int
 #1 #3
 {
 \if_int_compare:w \l__sort_top_int = \l__sort_max_int
 \_\_\_sort\_too\_long\_error:NNw #2 #3
 \fi:
 \tex_toks:D \l__sort_top_int {#1}
 \int_incr:N \l__sort_top_int
 \int_set:Nn \l__sort_length_int
 { \l__sort_top_int - \l__sort_min_int }
 \cs_set:Npn \_\_\_sort\_compare:nn ##1 ##2 {#4}
 \int_set:Nn \l__sort_block_int { 1 }
 \_\_\_sort\_level:
}
\end{verbatim}

\texttt{\_\_\_sort\_main:NNNn} (End definition for \_\_\_sort\_main:NNNn.)

\begin{verbatim}
\tl\_sort:NN
\tl\_sort:cn
\tl\_gsort:NN
\tl\_gsort:cn
\_\_\_sort\_tl:NNN
\_\_\_sort\_tl\_toks:w
\end{verbatim}

Call the main sorting function then unpack \texttt{toks} registers outside the group into the target token list. The unpacking is done by \_\_\_sort\_tl\_toks:w; registers are numbered from \_\_\_sort\_min_int to \_\_\_sort\_top_int − 1. For expansion behaviour we need a couple of primitives. The \texttt{\tl\_gclear:N} reduces memory usage. The \texttt{\prg\_break\_point:} is used by \_\_\_sort\_main:NNNn when the list is too long.

\begin{verbatim}
\cs_new_protected:Npn \tl\_sort:NN { \_\_\_sort\_tl:NNN \tl\_set\_eq:NN }
\cs_generate_variant:Nn \tl\_sort:NN { c }
\cs_new_protected:Npn \tl\_gsort:NN { \_\_\_sort\_tl:NNN \tl\_gsset\_eq:NN }
\cs_generate_variant:Nn \tl\_gsort:NN { c }
\cs_new_protected:Npn \_\_\_sort\_tl:NNN \_\_\_sort\_tl\_toks:w
\{
\group\begin:
\_\_\_sort\_main:NNNn \tl\_map\_inline:Nn \tl\_map\_break:n #2 {#3}
\tl\_gsset:Nx \_g\_\_sort\_internal\_tl
 { \_\_\_sort\_tl\_toks:w \l\_\_sort\_min_int ; }
\group\end:
#1 #2 \_g\_\_sort\_internal\_tl
\tl\_gclear:N \_g\_\_sort\_internal\_tl
\prg\_break\_point:
}
\cs_new:Npn \_\_\_sort\_tl\_toks:w #1
\{
\if_int_compare:w #1 < \l\_\_sort\_top\_int
 { \tex\_the:D \tex\_toks:D #1 }
 \exp\_after:wN \_\_\_sort\_tl\_toks:w
 \int\_value:w \int\_eval:n { #1 + 1 } \exp\_after:wN ;
\end{verbatim}
\seq_sort:Nn \seq_sort:cn \seq_gsort:Nn \seq_gsort:cn \clist_sort:Nn \clist_sort:cn \clist_gsort:Nn \clist_gsort:cn \__sort_seq:NNNNn

Use the same general framework for seq and clist. Apply the general sorting code, then unpack \toks into \g__sort_internal_seq. Outside the group copy or convert (for clist) the data to the target variable. The \seq_gclear:N reduces memory usage. The \prg_break_point: is used by \__sort_main:NNNn when the list is too long.

\cs_new_protected:Npn \seq_sort:Nn { \__sort_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_set_eq:NN }
\cs_generate_variant:Nn \seq_sort:Nn { c }
\cs_new_protected:Npn \seq_gsort:Nn { \__sort_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_gset_eq:NN }
\cs_generate_variant:Nn \seq_gsort:Nn { c }
\cs_new_protected:Npn \clist_sort:Nn { \__sort_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n \clist_set_from_seq:NN }
\cs_generate_variant:Nn \clist_sort:Nn { c }
\cs_new_protected:Npn \clist_gsort:Nn { \__sort_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n \clist_gset_from_seq:NN }
\cs_generate_variant:Nn \clist_gsort:Nn { c }
\cs_new_protected:Npm \__sort_main:NNNn \__sort_seq:NNNNn #1#2#3#4#5
\group_begin:
\__sort_main:NNNn \__sort_seq:NNNNn #1\#2\#3\#4\#5
\group_end:
\seq_gset_from_inline_x:Nnn \g__sort_internal_seq
\int_step_function:nnN { \l__sort_min_int } { \l__sort_top_int - 1 }
{ \tex_the:D \tex_toks:D ##1 }
\prg_break_point:

(End definition for \seq_sort:Nn and others. These functions are documented on page 79.)

\__sort_level:
\__sort_level:

This function is called once blocks of size \l__sort_block_int (initially 1) are each sorted. If the whole list fits in one block, then we are done (this also takes care of the case of an empty list or a list with one item). Otherwise, go through pairs of blocks starting from 0, then double the block size, and repeat.

\cs_new_protected:Npm \__sort_level:
{ \if_int_compare:w \l__sort_block_int < \l__sort_length_int

38.4 Merge sort

\__sort_level:
\_\_sort_merge_blocks: This function is called to merge a pair of blocks, starting at the last value of \_\_\_sort_end_int (end-point of the previous pair of blocks). If shifting by one block to the right we reach the end of the list, then this pass has ended: the end of the list is sorted already. Otherwise, store the result of that shift in A, which indexes the first block starting from the top end. Then locate the end-point (maximum) of the second block: shift end upwards by one more block, but keeping it ≤ top. Copy this upper block of \texttt{toks} registers in registers above length, indexed by C: this is covered by \_\_\_sort_copy_block:. Once this is done we are ready to do the actual merger using \_\_\_sort_merge_blocks_aux:: after shifting A, B and C so that they point to the largest index in their respective ranges rather than pointing just beyond those ranges. Of course, once that pair of blocks is merged, move on to the next pair.

\_\_\_sort_copy_block: We wish to store a copy of the “upper” block of \texttt{toks} registers, ranging between the initial value of \_\_\_sort_B_int (included) and \_\_\_sort_end_int (excluded) into a new range starting at the initial value of \_\_\_sort_C_int, namely \_\_\_sort_top_int.
\_sort\_merge\_blocks\_aux:: At this stage, the first block starts at \_\_sort\_begin\_int, and ends at \_\_sort\_-\_A\_int, and the second block starts at \_\_sort\_top\_int and ends at \_\_sort\_C\_int. The result of the merger is stored at positions indexed by \_\_sort\_B\_int, which starts at \_\_sort\_end\_int − 1 and decreases down to \_\_sort\_begin\_int, covering the full range of the two blocks. In other words, we are building the merger starting with the largest values. The comparison function is defined to return either \textit{swapped} or \textit{same}. Of course, this means the arguments need to be given in the order they appear originally in the list.

\texttt{\cs\_new\_protected:Npn \_\_sort\_merge\_blocks\_aux:\ }
\qquad \{}\texttt{\exp\_after:wN \_\_sort\_compare:nn \exp\_after:wN \{ \tex\_the:D \tex\_toks:D \exp\_after:wN \_\_sort\_A\_int \exp\_after:wN \} \exp\_after:wN \{ \tex\_the:D \tex\_toks:D \_\_sort\_C\_int \} \prg\_do\_nothing:\}
\quad \_\_sort\_return\_mark:w \_\_sort\_return\_mark:w \_\_sort\_return\_none\_error:\}
\qquad \}

(End definition for \_\_sort\_merge\_blocks\_aux::)

\texttt{\cs\_new\_protected:Npn \sort\_return\_same:\ }
\qquad \#1 \_\_sort\_return\_mark:w \#2 \q\_mark \_\_sort\_return\_two\_error:\}
\qquad \}

(End definition for \_\_sort\_merge\_blocks\_aux::)

Each comparison should call \sort\_return\_same: or \sort\_return\_swapped: exactly once. If neither is called, \_\_sort\_return\_none\_error: is called, since the return\_mark removes tokens until \q\_mark. If one is called, the return\_mark auxiliary removes everything except \_\_sort\_return\_same:w (or its swapped analogue) followed by \_\_sort\_return\_none\_error:. Finally if two or more are called, \_\_sort\_return\_two\_error: ends up before any \_\_sort\_return\_mark:w, so that it produces an error.
\__sort_return_same:w
If the comparison function returns same, then the second argument fed to \__sort_compare:nn should remain to the right of the other one. Since we build the merger starting from the right, we copy that \toks register into the allotted range, then shift the pointers B and C, and go on to do one more step in the merger, unless the second block has been exhausted: then the remainder of the first block is already in the correct registers and we are done with merging those two blocks.

\__sort_return_swapped:w
If the comparison function returns swapped, then the next item to add to the merger is the first argument, contents of the \toks register A. Then shift the pointers A and B to the left, and go for one more step for the merger, unless the left block was exhausted (A goes below the threshold). In that case, all remaining \toks registers in the second block, indexed by C, are copied to the merger by \__sort_merge_blocks_end:.

(End definition for \__sort_return_same:) and others. These functions are documented on page 220.)
This function’s task is to copy the \toks registers in the block indexed by C to the merger indexed by B. The end can equally be detected by checking when B reaches the threshold begin, or when C reaches top.

\cs_new_protected:Npn \__sort_merge_blocks_end:
\{ 
 \tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_C_int
 \int_decr:N \l__sort_B_int
 \int_decr:N \l__sort_C_int
 \if_int_compare:w \l__sort_B_int < \l__sort_begin_int
 \use_i:nn
 \fi:
 \__sort_merge_blocks_end:
\}

(End definition for \__sort_merge_blocks_end:)

38.5 Expandable sorting

Sorting expandably is very different from sorting and assigning to a variable. Since tokens cannot be stored, they must remain in the input stream, and be read through at every step. It is thus necessarily much slower (at best $O(n^2 \ln n)$) than non-expandable sorting functions ($O(n \ln n)$).

A prototypical version of expandable quicksort is as follows. If the argument has no item, return nothing, otherwise partition, using the first item as a pivot (argument #4 of \__sort:nnNnn). The arguments of \__sort:nnNnn are 1. items less than #4, 2. items greater or equal to #4, 3. comparison, 4. pivot, 5. next item to test. If #5 is the tail of the list, call \tl_sort:nN on #1 and on #2, placing #4 in between; \use:ff expands the parts to make \tl_sort:nN f-expandable. Otherwise, compare #4 and #5 using #3. If they are ordered, place #5 amongst the “greater” items, otherwise amongst the “lesser” items, and continue partitioning.

\cs_new:Npn \tl_sort:nN #1#2
\{ 
 \tl_if_blank:nF {#1} 
 \{ \__sort:nnNnn { } { } #2 
 #1 \q_recursion_tail \q_recursion_stop 
 \}
\}
\cs_new:Npn \__sort:nnNnn #1#2#3#4#5
\{ 
 \quark_if_recursion_tail_stop_do:nn {#5} 
 \{ \use:ff { \tl_sort:nN {#1} #3 {#4} } { \tl_sort:nN {#2} #3 } \} 
 #3 {#4} {#5} 
 \{ \__sort:nnNnn {#1} {#2 {#5}} #3 {#4} \} 
 \{ \__sort:nnNnn {#1} {#5} {#2} #3 {#4} \}
\}
\cs_generate_variant:Nn \use:nn { ff }

There are quite a few optimizations available here: the code below is less legible, but more than twice as fast.
In the simple version of the code, \texttt{\_\_sort:nnNnn} is called $O(n \log n)$ times on average (the number of comparisons required by the quicksort algorithm). Hence most of our focus is on optimizing that function.

The first speed up is to avoid testing for the end of the list at every call to \texttt{\_\_sort:nnNnn}. For this, the list is prepared by changing each ⟨\texttt{item}⟩ of the original token list into ⟨\texttt{command}⟩ {⟨\texttt{item}⟩}, just like sequences are stored. We arrange things such that the ⟨\texttt{command}⟩ is the ⟨\texttt{conditional}⟩ provided by the user: the loop over the ⟨\texttt{prepared tokens}⟩ then looks like

```
\cs_new:Npn __sort_loop:wNNN ... #6#7
 { #6 {⟨pivot⟩} {#7} ⟨loop big⟩ ⟨loop small⟩ ⟨extra arguments⟩ } __sort_loop:wNNN ... ⟨prepared tokens⟩ ⟨end-loop⟩ } \q_stop
```

In this example, which matches the structure of \texttt{\_\_sort_quick_split_i:nnnNnn} and a few other functions below, the \texttt{\_\_sort_loop:wNN} auxiliary normally receives the user’s ⟨\texttt{conditional}⟩ as #6 and an ⟨\texttt{item}⟩ as #7. This is compared to the ⟨\texttt{pivot}⟩ (the argument #5, not shown here), and the ⟨\texttt{conditional}⟩ leaves the ⟨\texttt{loop big}⟩ or ⟨\texttt{loop small}⟩ auxiliary, which both have the same form as \texttt{\_\_sort_loop:wNN}, receiving the next pair ⟨\texttt{conditional}⟩ ⟨\langle\texttt{item}⟩⟩ as #6 and #7. At the end, #6 is the ⟨\texttt{end-loop}⟩ function, which terminates the loop.

The second speed up is to minimize the duplicated tokens between the \texttt{true} and \texttt{false} branches of the conditional. For this, we introduce two versions of \texttt{\_\_sort:nnNnn}, which receive the new item as #1 and place it either into the list #2 of items less than the pivot #4 or into the list #3 of items greater or equal to the pivot.

```
\cs_new:Npn __sort_i:nnnnNn #1#2#3#4#5#6
 { #5 {#4} {#6} __sort_ii:nnnnNn __sort_i:nnnnNn
 {#6} {#2 {#1}} {#3} {#4} }
```

```
\cs_new:Npn __sort_ii:nnnnNn #1#2#3#4#5#6
 { #5 {#4} {#6} __sort_ii:nnnnNn __sort_i:nnnnNn
 {#6} {#2} {#3 {#1}} {#4} }
```

Note that the two functions have the form of \texttt{\_\_sort_loop:wNN} above, receiving as #5 the conditional or a function to end the loop. In fact, the lists #2 and #3 must be made of pairs ⟨\texttt{conditional}⟩ ⟨\langle\texttt{item}⟩⟩, so we have to replace ⟨#6⟩ above by { ⟨#5 {#6} ⟩ }, and ⟨#1⟩ by #1. The actual functions have one more argument, so all argument numbers are shifted compared to this code.

The third speed up is to avoid \texttt{\use:ff} using a continuation-passing style: \texttt{\_\_sort_quick_split:Nnnn} expects a list followed by \texttt{\q_mark {⟨code⟩}}, and expands to ⟨⟨code⟩⟩ ⟨\texttt{sorted list}⟩. Sorting the two parts of the list around the pivot is done with

```
__sort_quick_split:Nnnn #2 ... \q_mark
 { __sort_quick_split:Nnnn #1 ... \q_mark {⟨code⟩} }
```

928
Items which are larger than the \langle pivot \rangle are sorted, then placed after code that sorts the smaller items, and after the (braced) \langle \text{pivot} \rangle.

The fourth speed up is avoid the recursive call to \texttt{\tl_sort:nN} with an empty first argument. For this, we introduce functions similar to the \texttt{\_sort_i:nnnnNn} of the last example, but aware of whether the list of \langle \text{conditional} \rangle \{\langle \text{item} \rangle\} read so far that are less than the pivot, and the list of those greater or equal, are empty or not: see \texttt{\_sort_quick_split:NnNn} and functions defined below. Knowing whether the lists are empty or not is useless if we do not use distinct ending codes as appropriate. The splitting auxiliaries communicate to the \langle \text{end-loop} \rangle function (that is initially placed after the “prepared” list) by placing a specific ending function, ignored when looping, but useful at the end. In fact, the \langle \text{end-loop} \rangle function does nothing but place the appropriate ending function in front of all its arguments. The ending functions take care of sorting non-empty sublists, placing the pivot in between, and the continuation before.

The final change in fact slows down the code a little, but is required to avoid memory issues: schematically, when \TeX{} encounters
\begin{verbatim}
\use:n { \use:n { \use:n { ... } ... } ... }
\end{verbatim}
the argument of the first \texttt{\use:n} is not completely read by the second \texttt{\use:n}, hence must remain in memory; then the argument of the second \texttt{\use:n} is not completely read when grabbing the argument of the third \texttt{\use:n}, hence must remain in memory, and so on. The memory consumption grows quadratically with the number of nested \texttt{\use:n}. In practice, this means that we must read everything until a trailing \texttt{\q_stop} once in a while, otherwise sorting lists of more than a few thousand items would exhaust a typical \TeX{}’s memory.

The code within the \texttt{\exp_not:f} sorts the list, leaving in most cases a leading \texttt{\exp_not:f}, which stops the expansion, letting the result be return within \texttt{\exp_not:n}. We filter out the case of a list with no item, which would otherwise cause problems. Then prepare the token list \#1 by inserting the conditional \#2 before each item. The \texttt{prepare} auxiliary receives the conditional as \#1, the prepared token list so far as \#2, the next prepared item as \#3, and the item after that as \#4. The loop ends when \#4 contains \texttt{\prg_break_point}; then the \texttt{prepare_end} auxiliary finds the prepared token list as \#4. The scene is then set up for \texttt{\_sort_quick_split:NnNn}, which sorts the prepared list and perform the post action placed after \texttt{\q_mark}, namely removing the trailing \texttt{\s_stop} and \texttt{\q_stop} and leaving \texttt{\exp_stop_f}: to stop f-expansion.

\begin{verbatim}
\cs_new:Npn \tl_sort:nN #1#2
{ \exp_not:f
\tl_if_blank:nF {#1}
{ \_sort_quick_prepare:NNnn #2 { } { }
\prg_break_point: \_sort_quick_prepare_end:NNNnw }
\q_stop
}
\end{verbatim}
The only_i, only_ii, split_i and split_ii auxiliaries receive a useless first argument, the new item #2 (that they append to either one of the next two arguments), the list #3 of items less than the pivot, bigger items #4, the pivot #5, a \(function\) #6, and an item #7. The \(function\) is the user’s \(conditional\) except at the end of the list where it is \__sort_quick_end:nnTFNn. The comparison is applied to the \(pivot\) and the \(item\), and calls the only_i or split_i auxiliaries if the \(item\) is smaller, and the only_ii or split_ii auxiliaries otherwise. In both cases, the next auxiliary goes to work right away, with no intermediate expansion that would slow down operations. Note that the argument #2 left for the next call has the form \(conditional\) {\(item\)}, so that the lists #3 and #4 keep the right form to be fed to the next sorting function. The split auxiliary differs from these in that it is missing three of the arguments, which would be empty, and its first argument is always the user’s \(conditional\) rather than an ending function.
\cs_new:Npn \__sort_quick_split_ii:NnnnnNn #1#2#3#4#5#6#7
{ #6 {#5} {#7} \__sort_quick_split_ii:NnnnnNn
\__sort_quick_split_i:NnnnnNn
\__sort_quick_split_end:nnnwnw
{ #6 {#7} } {#3} { #4 #2 } {#5} }

\__sort_quick_end:nnTFNn #1#2#3#4#5#6 #5
\__sort_quick_single_end:nnnwnw #1#2#3\q_mark #5#6 \q_stop
\__sort_quick_only_i_end:nnnwnw #1#2#3\q_mark #5#6 \q_stop
\__sort_quick_split_end:nnnwnw #1#2#3\q_mark #5#6 \q_stop

(End definition for \__sort_quick_split:Nnnn and others.)

The \__sort_quick_end:nnTFNn appears instead of the user's conditional, and receives as its arguments the pivot \#1, a fake item \#2, a true and a false branches \#3 and \#4, followed by an ending function \#5 (one of the four auxiliaries here) and another copy \#6 of the fake item. All those are discarded except the function \#5. This function receives lists \#1 and \#2 of items less than or greater than the pivot \#3, then a continuation code \#5 just after \q_mark. To avoid a memory problem described earlier, all of the ending functions read \#6 until \q_stop and place \#6 back into the input stream. When the lists \#1 and \#2 are empty, the single auxiliary simply places the continuation \#5 before the pivot \{#3\}. When \#2 is empty, \#1 is sorted and placed before the pivot \{#3\}, taking care to feed the continuation \#5 as a continuation for the function sorting \#1. When \#1 is empty, \#2 is sorted, and the continuation argument is used to place the continuation \#5 and the pivot \{#3\} before the sorted result. Finally, when both lists are non-empty, items larger than the pivot are sorted, and the continuations are done in such a way to place the pivot in between.

\cs_new:Npn \__sort_quick_end:nnTFNn #1#2#3#4#5#6 #5
\cs_new:Npn \__sort_quick_single_end:nnnwnw #1#2#3\q_mark #5#6 \q_stop
\cs_new:Npn \__sort_quick_only_i_end:nnnwnw #1#2#3\q_mark #5#6 \q_stop
\cs_new:Npn \__sort_quick_split_end:nnnwnw #1#2#3\q_mark #5#6 \q_stop

(End definition for \__sort_quick_end:nnTFNn and others.)
38.6 Messages

\_sort\_error: Bailing out of the sorting code is a bit tricky. It may not be safe to use a delimited argument, so instead we redefine many l3sort commands to be trivial, with \_sort\_level: jumping to the break point. This error recovery won’t work in a group.

\cs_new_protected:Npn \_sort\_error: 
\{ 
\cs_set_eq:NN \__sort\_merge\_blocks\_aux: \prg\_do\_nothing: 
\cs_set_eq:NN \__sort\_merge\_blocks: \prg\_do\_nothing: 
\cs_set_protected:Npn \__sort\_level: \{ \group_end: \prg\_break: \} 
\}

(End definition for \_sort\_error:.)

\_sort\_disable\_toks\_def: While sorting, \toks\_def is locally disabled to prevent users from using \newtoks or similar commands in their comparison code: the \toks registers that would be assigned are in use by l3sort. In format mode, none of this is needed since there is no \toks allocator.

\cs_new_protected:Npn \_sort\_disable\_toks\_def: 
\{ \cs_set_eq:NN \toks\_def \__sort\_disabled\_toks\_def:n \}
\cs_new_protected:Npn \__sort\_disabled\_toks\_def:n \#1 
\{ \__kernel\_msg\_error:nnx \{ kernel \} \{ toks\_def \} 
\{ \token\_to\_str:N \#1 \} 
\__sort\_error: 
\tex\_toks\_def:D \#1 
\}
\__kernel\_msg\_new:nnnn \{ kernel \} \{ toks\_def \} 
\{ Allocation-of-\iow\_char:N\toks\_registers-impossible-while-sorting. \} 
\{ The-comparison-code-used-for-sorting-a-list-has-attempted-to-define-\#1-as-a-new-\iow\_char:N\toks\_register-using-\iow\_char:N\newtoks- or-a-similar-command.-The-list-will-not-be-sorted. \}
\}
\} 
\} 
\}

(End definition for \_sort\_disable\_toks\_def: and \_sort\_disabled\_toks\_def:n.)

\_sort\_too\_long\_error:NNw When there are too many items in a sequence, this is an error, and we clean up properly the mapping over items in the list: break using the type-specific breaking function \#1.

\cs_new_protected:Npn \_sort\_too\_long\_error:NNw #1 \fi: 
\{ \fi: 
\__kernel\_msg\_error:nnxx \{ kernel \} \{ too\_large \} 
\{ \token\_to\_str:N \#2 \} 
\{ \int\_eval:n \{ \_sort\_true\_max\_int - \_sort\_min\_int \} \} 
\{ \int\_eval:n \{ \_sort\_top\_int - \_sort\_min\_int \} \} 
\#1 \_sort\_error: 
\} 
\__kernel\_msg\_new:nnnn \{ kernel \} \{ too\_large \} 
\{ The\_list-\#1-is-too\_long\_to\_be\_sorted\_by\_TeX. \} 
\}
TeX has #2 toks registers still available:
this only allows to sort with up to #3 items. The list will not be sorted.
}

(End definition for \_sort\_too\_long\_error:NNw.)
\__kernel\_msg\_new:nnnn { kernel } { return\_none }
{ The comparison code did not return. }
{ When sorting a list, the code to compare items #1 and #2 did not call\-
\iow\_char:N\\sort\_return\_same: -nor-
\iow\_char:N\\sort\_return\_swapped: -. }
Exactly one of these should be called.
\__kernel\_msg\_new:nnnn { kernel } { return\_two }
{ The comparison code returned multiple times. }
{ When sorting a list, the code to compare items #1 and #2 called-
\iow\_char:N\\sort\_return\_same: -or-
\iow\_char:N\\sort\_return\_swapped: -multiple\_times.- }
Exactly one of these should be called.
⟨/intex | package⟩

39 \texttt{l3tl-analysis implementation}
⟨@@=tl⟩

39.1 Internal functions
\texttt{\_\_tl} The format used to store token lists internally uses the scan mark \texttt{\_\_tl} as a delimiter.
(End definition for \texttt{\_\_tl}.)

39.2 Internal format
The task of the l3tl-analysis module is to convert token lists to an internal format which allows us to extract all the relevant information about individual tokens (category code, character code), as well as reconstruct the token list quickly. This internal format is used in l3regex where we need to support arbitrary tokens, and it is used in conversion functions in l3str-convert, where we wish to support clusters of characters instead of single tokens.

We thus need a way to encode any \texttt{token} (even begin-group and end-group character tokens) in a way amenable to manipulating tokens individually. The best we can do is to find \texttt{tokens} which both \texttt{o-expand} and \texttt{x-expand} to the given \texttt{token}. Collecting more information about the category code and character code is also useful for regular expressions, since most regexes are catcode-agnostic. The internal format thus takes the form of a succession of items of the form

\texttt{tokens} \texttt{\_\_tl} \texttt{catcode} \texttt{char code} \texttt{\_\_tl}
The ⟨tokens⟩ o- and x-expand to the original token in the token list or to the cluster of tokens corresponding to one Unicode character in the given encoding (for l3str-convert).

The ⟨catcode⟩ is given as a single hexadecimal digit, 0 for control sequences. The ⟨char code⟩ is given as a decimal number, −1 for control sequences.

Using delimited arguments lets us build the ⟨tokens⟩ progressively when doing an encoding conversion in l3str-convert. On the other hand, the delimiter \s__tl may not appear unbraced in ⟨tokens⟩. This is not a problem because we are careful to wrap control sequences in braces (as an argument to \exp_not:n) when converting from a general token list to the internal format.

The current rule for converting a ⟨token⟩ to a balanced set of ⟨tokens⟩ which both o-expands and x-expands to it is the following.

• A control sequence \cs becomes \exp_not:n \{ \cs \} \s__tl 0 −1 \s__tl.
• A begin-group character { becomes \exp_after:wN \{ \if_false: \fi: \s__tl 1 ⟨char code⟩ \s__tl.
• An end-group character } becomes \if_false: \{ \fi: \s__tl 2 ⟨char code⟩ \s__tl.
• A character with any other category code becomes \exp_not:n \{ ⟨character⟩ \} \s__tl.

\l__tl_analysis_token
\l__tl_analysis_char_token

The tokens in the token list are probed with the TEX primitive \futurelet. We use \l__tl_analysis_token in that construction. In some cases, we convert the following token to a string before probing it: then the token variable used is \l__tl_analysis_char_token.

\l__tl_analysis_normal_int
The number of normal (N-type argument) tokens since the last special token.

\l__tl_analysis_index_int
During the first pass, this is the index in the array being built. During the second pass, it is equal to the maximum index in the array from the first pass.

39.3 Variables and helper functions

\s__tl
The scan mark \s__tl is used as a delimiter in the internal format. This is more practical than using a quark, because we would then need to control expansion much more carefully: compare \int_value:w \#1 \s__tl with \int_value:w \#1 \exp_stop_f: \exp_not:N \q_mark to extract a character code followed by the delimiter in an x-expansion.

End definition for \s__tl.

\l__tl_analysis_token
\l__tl_analysis_char_token

End definition for \l__tl_analysis_token and \l__tl_analysis_char_token.

\l__tl_analysis_normal_int
End definition for \l__tl_analysis_normal_int.

\l__tl_analysis_index_int
End definition for \l__tl_analysis_index_int.
Nesting depth of explicit begin-group and end-group characters during the first pass. This lets us detect the end of the token list without a reserved end-marker.

When encountering special characters, we record their “type” in this integer.

The result of the conversion is stored in this token list, with a succession of items of the form

\begin{verbatim}
⟨tokens⟩ \s__tl \langle catcode⟩ \langle char code⟩ \s__tl
\end{verbatim}

Extracting the character code from the meaning of \l__tl_analysis_token. This has no error checking, and should only be assumed to work for begin-group and end-group character tokens. It produces a number in the form ‘⟨char⟩’.

Counts the number of spaces in the string representation of its second argument, as well as the number of characters following the last space in that representation, and feeds the two numbers as semicolon-delimited arguments to the first argument. When this function is used, the escape character is printable and non-space.
39.4 Plan of attack

Our goal is to produce a token list of the form roughly

\( \langle \text{token 1} \rangle \s@__ \langle \text{catcode 1} \rangle \langle \text{char code 1} \rangle \s@__ \langle \text{token 2} \rangle \s__tl \langle \text{catcode 2} \rangle \langle \text{char code 2} \rangle \s__tl \ldots \langle \text{token N} \rangle \s__tl \langle \text{catcode N} \rangle \langle \text{char code N} \rangle \s__tl \)

Most but not all tokens can be grabbed as an undelimited (\(\text{N}\)-type) argument by \TeX{}. The plan is to have a two pass system. In the first pass, locate special tokens, and store them in various \texttt{toks} registers. In the second pass, which is done within an \(x\)-expanding assignment, normal tokens are taken in as \(\text{N}\)-type arguments, and special tokens are retrieved from the \texttt{toks} registers, and removed from the input stream by some means. The whole process takes linear time, because we avoid building the result one item at a time.

We make the escape character printable (backslash, but this later oscillates between slash and backslash): this allows us to distinguish characters from control sequences.

A token has two characteristics: its \texttt{meaning}, and what it looks like for \TeX{} when it is in scanning mode (e.g., when capturing parameters for a macro). For our purposes, we distinguish the following meanings:

- begin-group token (category code 1), either space (character code 32), or non-space;
- end-group token (category code 2), either space (character code 32), or non-space;
- space token (category code 10, character code 32);
- anything else (then the token is always an \(\text{N}\)-type argument).

The token itself can “look like” one of the following

- a non-active character, in which case its meaning is automatically that associated to its character code and category code, we call it “true” character;
- an active character;
- a control sequence.

The only tokens which are not valid \(\text{N}\)-type arguments are true begin-group characters, true end-group characters, and true spaces. We detect those characters by scanning ahead with \texttt{\futurelet}, then distinguishing true characters from control sequences set equal to them using the \texttt{\string} representation.

The second pass is a simple exercise in expandable loops.

\begin{verbatim}
\__tl_analysis:n
Everything is done within a group, and all definitions are local. We use \texttt{\group_align_safe_begin/end} to avoid problems in case \texttt{\__tl_analysis:n} is used within an alignment and its argument contains alignment tab tokens.

\end{verbatim}
39.5 Disabling active characters

Active characters can cause problems later on in the processing, so we provide a way to disable them, by setting them to `undefined`. Since Unicode contains too many characters to loop over all of them, we instead do this whenever we encounter a character. For \(\text{pLPX}\) and \(\text{upLPX}\) we skip characters beyond \([0, 255]\) because \(\text{lccode}\) only allows those values.

\[
\text{\_\_\_tl\_analysis\_disable:n}
\]

\[
\text{\_\_\_tl\_analysis\_disable:n}
\]

\[
\begin{align*}
&\text{\char_set_catcode_active:N} \text{"@} \\
&\cs_new_protected:Npn \_\_\_tl\_analysis\_disable:n \ #1 \\
&\{ \\
&\tex_lccode:D 0 = \#1 \exp_stop_f: \\
&\tex_lowercase:D \{ \tex_let:D \"@ \} \tex_undefined:D \\
&\}
\end{align*}
\]

\[
\bool_lazy_or:nnT \\
{ \sys_if_engine_ptex_p: } \\
{ \sys_if_engine_uptex_p: }
\]

\[
\{ \\
\cs_gset_protected:Npn \_\_\_tl\_analysis\_disable:n \ #1 \\
{ \\
\if_int_compare:w 256 > \#1 \exp_stop_f: \\
\tex_lccode:D 0 = \#1 \exp_stop_f: \\
\tex_lowercase:D \{ \tex_let:D \"@ \} \tex_undefined:D \\
\}
\fi:
\}
\]

\[
\text{(End definition for \_\_\_tl\_analysis\_disable:n.)}
\]

39.6 First pass

The goal of this pass is to detect special (non-N-type) tokens, and count how many N-type tokens lie between special tokens. Also, we wish to store some representation of each special token in a \(\text{toks}\) register.

We have 11 types of tokens:

1. a true non-space begin-group character;
2. a true space begin-group character;
3. a true non-space end-group character;
4. a true space end-group character;
5. a true space blank space character;
6. an active character;
7. any other true character;
8. a control sequence equal to a begin-group token (category code 1);
9. a control sequence equal to an end-group token (category code 2);
10. a control sequence equal to a space token (character code 32, category code 10);
11. any other control sequence.

Our first tool is \texttt{\textbackslash futurelet}. This cannot distinguish case 8 from 1 or 2, nor case 9 from 3 or 4, nor case 10 from case 5. Those cases are later distinguished by applying the \texttt{\textbackslash string} primitive to the following token, after possibly changing the escape character to ensure that a control sequence’s string representation cannot be mistaken for the true character.

In cases 6, 7, and 11, the following token is a valid \texttt{N}-type argument, so we grab it and distinguish the case of a character from a control sequence: in the latter case, \texttt{\str_tail:n \{\langle token\rangle\}} is non-empty, because the escape character is printable.

\texttt{\_\_tl\_analysis\_a:n} We read tokens one by one using \texttt{\textbackslash futurelet}. While performing the loop, we keep track of the number of true begin-group characters minus the number of true end-group characters in \texttt{l\_\_tl\_analysis\_nesting\_int}. This reaches $-1$ when we read the closing brace.

\begin{verbatim}
\cs_new_protected:Npn \_\_tl\_analysis\_a:n #1
\begin{verbatim}
\_\_tl\_analysis\_disable:n \{ 32 \}
\int_set:Nn \tex\_escapechar:D \{ 92 \}
\int_zero:N \_\_tl\_analysis\_normal\_int
\int_zero:N \_\_tl\_analysis\_index\_int
\int_zero:N \_\_tl\_analysis\_nesting\_int
\if\_false:\ \fi: \_\_tl\_analysis\_a\_loop:w #1
\int_decr:N \_\_tl\_analysis\_index\_int
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}

\texttt{\_\_tl\_analysis\_a\_loop:w} Read one character and check its type.

\begin{verbatim}
\cs_new_protected:Npn \_\_tl\_analysis\_a\_loop:w
\begin{verbatim}
\\tex\_futurelet:D \_\_tl\_analysis\_token \_\_tl\_analysis\_a\_type:w
\end{verbatim}
\end{verbatim}

\texttt{\_\_tl\_analysis\_a\_type:w} At this point, \texttt{l\_\_tl\_analysis\_token} holds the meaning of the following token. We store in \texttt{l\_\_tl\_analysis\_type\_int} information about the meaning of the token ahead:

- 0 space token;
- 1 begin-group token;
- -1 end-group token;
- 2 other.

The values 0, 1, $-1$ correspond to how much a true such character changes the nesting level (2 is used only here, and is irrelevant later). Then call the auxiliary for each case. Note that nesting conditionals here is safe because we only skip over \texttt{l\_\_tl\_analysis\_token} if it matches with one of the character tokens (hence is not a primitive conditional).

\begin{verbatim}
\cs_new_protected:Npn \_\_tl\_analysis\_a\_type:w
\begin{verbatim}
\\if\_false:\ \fi: \_\_tl\_analysis\_type\_int = \_\_tl\_analysis\_token \c\_space\_token
\end{verbatim}
\end{verbatim}

938
\else:
  \if_catcode:w \exp_not:N \l__tl_analysis_token \c_group_begin_token
  1
  \else:
  \if_catcode:w \exp_not:N \l__tl_analysis_token \c_group_end_token
    - 1
  \else:
    2
  \fi:
  \fi:
\fi:
\fi:
\exp_stop_f:
\if_case:w \l__tl_analysis_type_int
  \exp_after:wN \__tl_analysis_a_space:w
  \or: \exp_after:wN \__tl_analysis_a_bgroup:w
  \or: \exp_after:wN \__tl_analysis_a_safe:N
  \else: \exp_after:wN \__tl_analysis_a_egroup:w
  \fi:
\}

(End definition for \__tl_analysis_a_type:w)

\__tl_analysis_a_space:w
\__tl_analysis_a_space_test:w
In this branch, the following token's meaning is a blank space. Apply \string to that
token: a true blank space gives a space, a control sequence gives a result starting with
the escape character, an active character gives something else than a space since we
disabled the space. We grab as \l__tl_analysis_char_token the first character of
the string representation then test it in \__tl_analysis_a_space_test:w. Also, since
\__tl_analysis_a_store: expects the special token to be stored in the relevant \toks
register, we do that. The extra \exp_not:n is unnecessary of course, but it makes
the treatment of all tokens more homogeneous. If we discover that the next token was
actually a control sequence or an active character instead of a true space, then we step
the counter of normal tokens. We now have in front of us the whole string representation
of the control sequence, including potential spaces; those will appear to be true spaces
later in this pass. Hence, all other branches of the code in this first pass need to consider
the string representation, so that the second pass does not need to test the meaning of
tokens, only strings.
\cs_new_protected:Npn \__tl_analysis_a_space:w
\cs_new_protected:Npn \__tl_analysis_a_space_test:w
\}
The token is most likely a true character token with catcode 1 or 2, but it might be a control sequence, or an active character. Optimizing for the first case, we store in a tokrs register some code that expands to that token. Since we will turn what follows into a string, we make sure the escape character is different from the current character code (by switching between solidus and backslash). To detect the special case of an active character let to the catcode 1 or 2 character with the same character code, we disable the active character with that character code and re-test: if the following token has become undefined we can in fact safely grab it. We are finally ready to turn what follows to a string and test it. This is one place where we need \l_{\_\_tl_analysis_char_token} to be a separate control sequence from \l_{\_\_tl_analysis_token}, to compare them.
This function is called each time we meet a special token; at this point, the \toks register \l__tl_analysis_index_int holds a token list which expands to the given special token. Also, the value of \l__tl_analysis_type_int indicates which case we are in:

- -1 end-group character;
- 0 space character;
- 1 begin-group character.

We need to distinguish further the case of a space character (code 32) from other character codes, because they behave differently in the second pass. Namely, after testing the \lccode of 0 (which holds the present character code) we change the cases above to

- -2 space end-group character;
- -1 non-space end-group character;
- 0 space blank space character;
- 1 non-space begin-group character;
- 2 space begin-group character.

This has the property that non-space characters correspond to odd values of \l__tl_analysis_type_int. The number of normal tokens until here and the type of special token are packed into a \skip register. Finally, we check whether we reached the last closing brace, in which case we stop by disabling the looping function (locally).

This should be the simplest case: since the upcoming token is safe, we can simply grab it in a second pass. If the token is a single character (including space), the \if_charcode test yields true; we disable a potentially active character (that could otherwise masquerade as the true character in the next pass) and we count one “normal” token. Instead of slowly looping through
the characters with the main code, we use the knowledge of how the second pass works: if the control sequence name contains no space, count that token as a number of normal tokens equal to its string length. If the control sequence contains spaces, they should be registered as special characters by increasing \l__tl_analysis_index_int (no need to carefully count character between each space), and all characters after the last space should be counted in the following sequence of “normal” tokens.

```latex
\cs_new_protected:Npn __tl_analysis_a_safe:N #1
\begin{verbatim}
 \if_charcode:w \scan_stop:
 \exp_after:wN \use_none:n \token_to_str:N #1 \prg_do_nothing:
 \scan_stop:
 \exp_after:wN \use_i:nn \else:
 \exp_after:wN \use_ii:nn \fi:
 __tl_analysis_disable:n { '#1 }
 \int_incr:N \l__tl_analysis_normal_int
 \l__tl_analysis_cs_space_count:NN __tl_analysis_a_cs:ww #1
\end{verbatim}
\cs_new_protected:Npn __tl_analysis_a_cs:ww #1; #2;
\begin{verbatim}
 \if_int_compare:w #1 > 0 \exp_stop_f:
 \tex_skip:D \l__tl_analysis_index_int
 = \int_eval:n { \l__tl_analysis_normal_int + 1 } \sp \exp_stop_f:
 \tex_advance:D \l__tl_analysis_index_int #1 \exp_stop_f:
 \else:
 \tex_advance:D \l__tl_analysis_normal_int #2 \exp_stop_f:
\end{verbatim}
\end{verbatim}
(End definition for __tl_analysis_a_safe:N and __tl_analysis_a_cs:ww.)

39.7 Second pass

The second pass is an exercise in expandable loops. All the necessary information is stored in \skip and \toks registers.

Start the loop with the index 0. No need for an end-marker: the loop stops by itself when the last index is read. We repeatedly oscillate between reading long stretches of normal tokens, and reading special tokens.

```latex
\cs_new_protected:Npn \__tl_analysis_b:n \__tl_analysis_b_loop:w
\begin{verbatim}
  \if_int_compare:w #1 > 0 \exp_stop_f:
    \tl_gset:Nx \g__tl_analysis_result_tl \__tl_analysis_b_loop:w
    \prg_break_point:
  \end{verbatim}
\end{verbatim}
```
\cs_new:Npn __tl_analysis_b_loop:w #1;
{| \exp_after:wN __tl_analysis_b_normals:ww
\int_value:w \tex_skip:D #1 ; #1 ;
\}

(End definition for __tl_analysis_b:n and __tl_analysis_b_loop:w.)

__tl_analysis_b_normals:ww __tl_analysis_b_normal:wwN
The first argument is the number of normal tokens which remain to be read, and the
second argument is the index in the array produced in the first step. A character’s string
representation is always one character long, while a control sequence is always longer (we
have set the escape character to a printable value). In both cases, we leave \exp_not:n
{⟨token⟩} \s__tl in the input stream (after x-expansion). Here, \exp_not:n is used
rather than \exp_not:N because #3 could be a macro parameter character or could be
\s__tl (which must be hidden behind braces in the result).

\cs_new:Npn __tl_analysis_b_normals:ww #1;
{| \if_int_compare:w #1 = 0 \exp_stop_f:
__tl_analysis_b_special:w
\fi:
__tl_analysis_b_normal:wwN #1;
\}
\cs_new:Npn __tl_analysis_b_normal:wwN #1; #2; #3
{| \exp_not:n { \exp_not:n { #3 } } \s__tl
\if_charcode:w
\exp_after:wN \use_none:n \token_to_str:N #3 \prg_do_nothing:
\scan_stop:
\exp_after:wN __tl_analysis_b_char:Nww
\else:
\exp_after:wN __tl_analysis_b_cs:Nww
\fi:
#3 #1; #2;
}

(End definition for __tl_analysis_b_normals:ww and __tl_analysis_b_normal:wwN.)

__tl_analysis_b_char:Nww
If the normal token we grab is a character, leave ⟨\texttt{catcode}⟩⟨\texttt{charcode}⟩
followed by \s__tl in the input stream, and call __tl_analysis_b_normals:ww with its first argument
decremented.

\cs_new:Npx __tl_analysis_b_char:Nww #1
{| \exp_not:N \if_meaning:w #1 \exp_not:N \tex_undefined:D
\token_to_str:N D \exp_not:N \else:
\exp_not:N \if_catcode:w #1 \c_catcode_other_token
\token_to_str:N C \exp_not:N \else:
\exp_not:N \if_catcode:w #1 \c_catcode_letter_token
\token_to_str:N B \exp_not:N \else:
\exp_not:N \if_catcode:w #1 \c_math_toggle_token 3
\exp_not:N \else:
\exp_not:N \if_catcode:w #1 \c_alignment_token 4
\exp_not:N \else:
\exp_not:N \if_catcode:w #1 \c_math_superscript_token 7

943
If the token we grab is a control sequence, leave 0 -1 (as category code and character code) in the input stream, followed by \s__tl, and call __tl_analysis_b_normals:ww with updated arguments.

Here, #1 is the current index in the array built in the first pass. Check now whether we reached the end (we shouldn’t keep the trailing end-group character that marked the end of the token list in the first pass). Unpack the \toks register: when x-expanding again, we will get the special token. Then leave the category code in the input stream, followed by the character code, and call __tl_analysis_b_loop:w with the next index.
\begin{verbatim}
\token_to_str:N \ or: 1 \ or: 1 \ else: 2 \fi:
\if_int_odd:w \tex_gluestretch:D \tex_skip:D #1 \exp_stop_f:
 \exp_after:wN __tl_analysis_b_special_char:wN \int_value:w
\else:
 \exp_after:wN __tl_analysis_b_special_space:w \int_value:w
\fi:
\int_eval:n { 1 + #1 } \exp_after:wN ;
\token_to_str:N }
\group_end:
\cs_new:Npn __tl_analysis_b_special_char:wN #1 ; #2
{
 \int_value:w '#2 \s__tl __tl_analysis_b_loop:w #1 ;
}
\cs_new:Npn __tl_analysis_b_special_space:w #1 ; ~
{
 32 \s__tl __tl_analysis_b_loop:w #1 ;
}
\cs_new_protected:Npn \tl_analysis_map_inline:nn #1
{
 __tl_analysis:n {#1}
 \int_gincr:N \g__kernel_prg_map_int
 \exp_args:Nc __tl_analysis_map_inline_aux:Nn
 { __tl_analysis_map_inline_ \int_use:N \g__kernel_prg_map_int :wNw }
}
\cs_new_protected:Npn \tl_analysis_map_inline:Nn #1
{
 \exp_args:No \tl_analysis_map_inline:nn #1
}
\cs_new_protected:Npn __tl_analysis_map_inline_aux:Nn #1#2#3
{
 \cs_gset_protected:Npn \tl_analysis_map_inline:nn #1 \#1 \s__tl \#2 \#2 \#2 \s__tl
 \use_none:n \#2 __tl_analysis_map_inline_aux:nnn \#1\#1\#1\#2\#2\#2
}
\end{verbatim}

(End definition for __tl_analysis_b_special:w, __tl_analysis_b_special_char:wN, and __tl_analysis_b_special_space:w.)

39.8 Mapping through the analysis

First obtain the analysis of the token list into \g__tl_analysis_result_tl. To allow nested mappings, increase the nesting depth \g__kernel_prg_map_int (shared between all modules), then define the looping macro, which has a name specific to that nesting depth. That looping grabs the \langle tokens \rangle, \langle catcode \rangle and \langle char code \rangle; it checks for the end of the loop with \use_none:n \#2, normally empty, but which becomes \tl_map_break: at the end; it then performs the user’s code \#2, and loops by calling itself. When the loop ends, remember to decrease the nesting depth.
39.9 Showing the results

\tl_analysis_show:N
\tl_analysis_show:n

Add to __tl_analysis:n a third pass to display tokens to the terminal. If the token list variable is not defined, throw the same error as \tl_show:N by simply calling that function.

\cs_new_protected:Npn \tl_analysis_show:N #1
\cs_new_protected:Npn \tl_analysis_show:n #1

Here, #1 oand x-expands to the token; #2 is the category code (one uppercase hexadecimal digit), 0 for control sequences; #3 is the character code, which we ignore. In the cases of control sequences and active characters, the meaning may overflow one line, and we want to truncate it. Those cases are thus separated out.
Non-active characters are a simple matter of printing the character, and its meaning. Our test suite checks that begin-group and end-group characters do not mess up \TeX's alignment status.

\begin{verbatim}
\cs_new:Npn __tl_analysis_show_normal:n #1
\{ \exp_after:wN \token_to_str:N #1 ~ \exp_after:wN \token_to_meaning:N #1 \}
\end{verbatim}

This expands to the value of \texttt{#1} if it has any.

\begin{verbatim}
\cs_new:Npn __tl_analysis_show_value:N #1
\{ \token_if_expandable:NF #1 \\
\token_if_chardef:NTF #1 \prg_break: { } \token_if_mathchardef:NTF #1 \prg_break: { } \token_if_dim_register:NTF #1 \prg_break: { } \token_if_int_register:NTF #1 \prg_break: { } \token_if_skip_register:NTF #1 \prg_break: { } \token_if_toks_register:NTF #1 \prg_break: { } \use_none:nnn \prg_break_point: \use:n { \exp_after:wN = \tex_the:D #1 } \}
\end{verbatim}

Control sequences and active characters are printed in the same way, making sure not to go beyond the \texttt{l_iow_line_count_int}. In case of an overflow, we replace the last characters by \texttt{__tl_analysis_show_etc_str}.

\begin{verbatim}
\cs_new:Npn __tl_analysis_show_cs:n #1 __tl_analysis_show_active:n __tl_analysis_show_long:nn __tl_analysis_show_long_aux:nnnn
\end{verbatim}
When a control sequence (or active character) and its meaning are too long to fit in one line of the terminal, the end is replaced by this token list.

\tl_const:Nx \c__tl_analysis_show_etc_str \% (\token_to_str:NN \ETC.)

(End definition for \c__tl_analysis_show_etc_str.)

__kernel_msg_new:nnn \{ kernel \} \{ show-tl-analysis \}
\tl_if_empty:nF \{ #1 \} \{ #1 - \}
\tl_if_empty:nTF \{ #2 \} \{ is-empty \}
\{ contains-the-tokens: #2 \}

\langle /initex | package \rangle

40 l3regex implementation

\langle *initex | package \rangle
\langle @@=regex \rangle

40.1 Plan of attack

Most regex engines use backtracking. This allows to provide very powerful features (back-references come to mind first), but it is costly, and raises the problem of catastrophic
backtracking. Since \TeX\ is not first and foremost a programming language, complicated code tends to run slowly, and we must use faster, albeit slightly more restrictive, techniques, coming from automata theory.

Given a regular expression of \(n \) characters, we do the following:

- **(Compiling.)** Analyse the regex, finding invalid input, and convert it to an internal representation.
- **(Building.)** Convert the compiled regex to a non-deterministic finite automaton (NFA) with \(O(n) \) states which accepts precisely token lists matching that regex.
- **(Matching.)** Loop through the query token list one token (one “position”) at a time, exploring in parallel every possible path (“active thread”) through the NFA, considering active threads in an order determined by the quantifiers’ greediness.

We use the following vocabulary in the code comments (and in variable names).

- **Group:** index of the capturing group, \(-1\) for non-capturing groups.
- **Position:** each token in the query is labelled by an integer \(\langle \text{position} \rangle \), with \(\min\text{pos} - 1 \leq \langle \text{position} \rangle \leq \max\text{pos} \). The lowest and highest positions correspond to imaginary begin and end markers (with inaccessible category code and character code).
- **Query:** the token list to which we apply the regular expression.
- **State:** each state of the NFA is labelled by an integer \(\langle \text{state} \rangle \) with \(\min\text{state} \leq \langle \text{state} \rangle < \max\text{state} \).
- **Active thread:** state of the NFA that is reached when reading the query token list for the matching. Those threads are ordered according to the greediness of quantifiers.
- **Step:** used when matching, starts at \(0 \), incremented every time a character is read, and is not reset when searching for repeated matches. The integer \(\llangle \text{regex-} \text{step-int} \rrangle \) is a unique id for all the steps of the matching algorithm.

We use \texttt{l3intarray} to manipulate arrays of integers (stored into some dimension registers in scaled points). We also abuse \TeX’s \texttt{toks} registers, by accessing them directly by number rather than tying them to control sequence using the \texttt{newtoks} allocation functions. Specifically, these arrays and \texttt{toks} are used as follows. When building, \texttt{toks(state)} holds the tests and actions to perform in the \(\langle \text{state} \rangle \) of the NFA. When matching,

- \texttt{_ regex state active intarray} holds the last \(\langle \text{step} \rangle \) in which each \(\langle \text{state} \rangle \) was active.
- \texttt{_ regex thread state intarray} maps each \(\langle \text{thread} \rangle \) (with \(\min\text{active} \leq \langle \text{thread} \rangle < \max\text{active} \)) to the \(\langle \text{state} \rangle \) in which the \(\langle \text{thread} \rangle \) currently is. The \(\langle \text{threads} \rangle \) are ordered starting from the best to the least preferred.
- \texttt{toks(thread)} holds the submatch information for the \(\langle \text{thread} \rangle \), as the contents of a property list.
- \texttt{_ regex charcode intarray} and \texttt{_ regex catcode intarray} hold the character codes and category codes of tokens at each \(\langle \text{position} \rangle \) in the query.
\g__regex_balance_intarray holds the balance of begin-group and end-group character tokens which appear before that point in the token list.

\toks⟨position⟩ holds ⟨tokens⟩ which o- and x-expand to the ⟨position⟩-th token in the query.

\g__regex_submatch_prev_intarray, \g__regex_submatch_begin_intarray and \g__regex_submatch_end_intarray hold, for each submatch (as would be extracted by \regex_extract_all:nnN), the place where the submatch started to be looked for and its two end-points. For historical reasons, the minimum index is twice max_state, and the used registers go up to \l__regex_submatch_int. They are organized in blocks of \l__regex_capturing_group_int entries, each block corresponding to one match with all its submatches stored in consecutive entries.

The code is structured as follows. Variables are introduced in the relevant section. First we present some generic helper functions. Then comes the code for compiling a regular expression, and for showing the result of the compilation. The building phase converts a compiled regex to NFA states, and the automaton is run by the code in the following section. The only remaining brick is parsing the replacement text and performing the replacement. We are then ready for all the user functions. Finally, messages, and a little bit of tracing code.

40.2 Helpers

__regex_int_eval:w Access the primitive: performance is key here, so we do not use the slower route via \int_eval:n.

__regex_toks_use:w Unpack a \toks given its number.

__regex_toks_clear:N, __regex_toks_set:Nn, __regex_toks_set:No Empty a \toks or set it to a value, given its number.

(End definition for __regex_int_eval:w.)

(End definition for __regex_toks_use:w.)

(End definition for __regex_toks_clear:N and __regex_toks_set:Nn.)
__regex_toks_memcpy:NNn

Copy \#3 \toks registers from \#2 onwards to \#1 onwards, like C's memcpy.

\cs_new_protected:Npn __regex_toks_memcpy:NNn \#1\#2\#3
\prg_replicate:nn {\#3}
\{ \tex_toks:D \#1 = \tex_toks:D \#2 \int_incr:N \#1 \int_incr:N \#2 \}
\}

(End definition for __regex_toks_memcpy:NNn.)

__regex_toks_put_left:Nx __regex_toks_put_right:Nx __regex_toks_put_right:Nn

During the building phase we wish to add x-expanded material to \toks, either to the left or to the right. The expansion is done “by hand” for optimization (these operations are used quite a lot). The Nn version of __regex_toks_put_right:Nx is provided because it is more efficient than x-expanding with \exp_not:n.

\cs_new_protected:Npn __regex_toks_put_left:Nx \#1\#2
\cs_set:Npx __regex_tmp:w { \#2 } \tex_toks:D \#1 \exp_after:wN \exp_after:wN \exp_after:wN { \exp_after:wN __regex_tmp:w \tex_the:D \tex_toks:D \#1 } \}
\}
\cs_new_protected:Npn __regex_toks_put_right:Nx \#1\#2
\cs_set:Npx __regex_tmp:w {\#2} \tex_toks:D \#1 \exp_after:wN { \tex_the:D \tex_toks:D \#1 } \exp_after:wN \#1 __regex_tmp:w \}
\}
\cs_new_protected:Npn __regex_toks_put_right:Nn \#1\#2
{ \tex_toks:D \#1 \exp_after:wN \exp_after:wN \exp_after:wN \\#2 } { \tex_toks:D \#1 } \exp_after:wN \#1 __regex_curr_pos_int \}
\}

(End definition for __regex_toks_put_left:Nx and __regex_toks_put_right:Nx.)

__regex_curr_cs_to_str:

Expands to the string representation of the token (known to be a control sequence) at the current position \l__regex_curr_pos_int. It should only be used in x-expansion to avoid losing a leading space.

\cs_new:Npn __regex_curr_cs_to_str:
\{ \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN \\tex_the:D \\tex_toks:D \l__regex_curr_pos_int \}
\}

(End definition for __regex_curr_cs_to_str.)

40.2.1 Constants and variables

__regex_tmp:w

Temporary function used for various short-term purposes.

\cs_new:Npn __regex_tmp:w \{ \}

(End definition for __regex_tmp:w.)

951
Temporary variables used for various purposes.

\tl_new:N \l__regex_internal_a_tl
\tl_new:N \l__regex_internal_b_tl
\tl_new:N \l__regex_internal_a_int
\tl_new:N \l__regex_internal_b_int
\int_new:N \l__regex_internal_a_int
\int_new:N \l__regex_internal_b_int
\int_new:N \l__regex_internal_c_int
\bool_new:N \l__regex_internal_bool
\seq_new:N \l__regex_internal_seq
\tl_new:N \g__regex_internal_tl

(End definition for \l__regex_internal_a_tl and others.)

\l__regex_build_tl This temporary variable is specifically for use with the tl_build machinery.
\tl_new:N \l__regex_build_tl

(End definition for \l__regex_build_tl.)

\c__regex_no_match_regex This regular expression matches nothing, but is still a valid regular expression. We could use a failing assertion, but I went for an empty class. It is used as the initial value for regular expressions declared using \regex_new:N.
\tl_const:Nn \c__regex_no_match_regex
__regex_branch:n\c__regex_class:NnnnN \c_true_bool { } { 1 } { 0 } \c_true_bool

(End definition for \c__regex_no_match_regex.)

\g__regex_charcode_intarray, \g__regex_catcode_intarray, and \g__regex_balance_intarray The first thing we do when matching is to go once through the query token list and store the information for each token into \g__regex_charcode_intarray, \g__regex_catcode_intarray and \toks registers. We also store the balance of begin-group/end-group characters into \g__regex_balance_intarray.
\intarray_new:Nn \g__regex_charcode_intarray { 65536 }
\intarray_new:Nn \g__regex_catcode_intarray { 65536 }
\intarray_new:Nn \g__regex_balance_intarray { 65536 }

(End definition for \g__regex_charcode_intarray, \g__regex_catcode_intarray, and \g__regex_balance_intarray.)

\l__regex_balance_int During this phase, \l__regex_balance_int counts the balance of begin-group and end-group character tokens which appear before a given point in the token list. This variable is also used to keep track of the balance in the replacement text.
\int_new:N \l__regex_balance_int

(End definition for \l__regex_balance_int.)

\l__regex_cs_name_tl This variable is used in __regex_item_cs:n to store the csname of the currently-tested token when the regex contains a sub-regex for testing csnames.
\tl_new:N \l__regex_cs_name_tl

(End definition for \l__regex_cs_name_tl.)
40.2.2 Testing characters

\c__regex_ascii_min_int
\c__regex_ascii_max_control_int
\c__regex_ascii_max_int
\int_const:Nn \c__regex_ascii_min_int { 0 }
\int_const:Nn \c__regex_ascii_max_control_int { 31 }
\int_const:Nn \c__regex_ascii_max_int { 127 }
(End definition for \c__regex_ascii_min_int, \c__regex_ascii_max_control_int, and \c__regex_ascii_max_int.)

\c__regex_ascii_lower_int
\int_const:Nn \c__regex_ascii_lower_int { 'a - 'A }
(End definition for \c__regex_ascii_lower_int.)

__regex_break_point:TF
__regex_break_true:w
When testing whether a character of the query token list matches a given character class in the regular expression, we often have to test it against several ranges of characters, checking if any one of those matches. This is done with a structure like

\langle test1 \rangle \ldots \langle testn \rangle
__regex_break_point:TF \langle true code \rangle \langle false code \rangle
If any of the tests succeeds, it calls __regex_break_true:w, which cleans up and leaves \langle true code \rangle in the input stream. Otherwise, __regex_break_point:TF leaves the \langle false code \rangle in the input stream.

\cs_new_protected:Npn __regex_break_true:w #1 __regex_break_point:TF #2 #3 {#2}
(End definition for __regex_break_point:TF and __regex_break_true:w.)

__regex_item_reverse:n
This function makes showing regular expressions easier, and lets us define \D in terms of \d for instance. There is a subtlety: the end of the query is marked by \-2, and thus matches \D and other negated properties; this case is caught by another part of the code.

\cs_new_protected:Npn __regex_item_reverse:n #1
{ #1 __regex_break_point:TF { } __regex_break_true:w }
(End definition for __regex_item_reverse:n.)

__regex_item_caseful_equal:n
__regex_item_caseful_range:nn
Simple comparisons triggering __regex_break_true:w when true.

\cs_new_protected:Npn __regex_item_caseful_equal:n #1
{ \if_int_compare:w #1 = \l__regex_curr_char_int \exp_after:wN __regex_break_true:w \fi: }
\cs_new_protected:Npn __regex_item_caseful_range:nn #1 #2
{ \reverse_if:N \if_int_compare:w #1 > \l__regex_curr_char_int \reverse_if:N \if_int_compare:w #2 < \l__regex_curr_char_int \exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w \fi: \fi: }
(End definition for __regex_item_caseful_equal:n, __regex_item_caseful_range:nn.)
For caseless matching, we perform the test both on the current_char and on the case_changed_char. Before doing the second set of tests, we make sure that case_changed_char has been computed.

```latex
\begin{verbatim}
\__regex_item_caseless_equal:n #1
\__regex_item_caseless_range:nn #1 #2
\end{verbatim}
```

For caseless matching, we perform the test both on the current_char and on the case_changed_char. Before doing the second set of tests, we make sure that case_changed_char has been computed.

```latex
\__regex_compute_case_changed_char:
```

This function is called when \texttt{\l__regex_case_changed_char_int} has not yet been computed (or rather, when it is set to the marker value \texttt{\c_max_int}). If the current character code is in the range \([65,90]\) (upper-case), then add 32, making it lowercase. If it is in the lower-case letter range \([97,122]\), subtract 32.

```latex
\begin{verbatim}
\__regex_compute_case_changed_char:
\end{verbatim}
```
Those must always be defined to expand to a caseful (default) or caseless version, and not be protected: they must expand when compiling, to hard-code which tests are caseless or caseful.

\cs_new_eq:NN __regex_item_equal:n
\cs_new_eq:NN __regex_item_range:nn

Those must always be defined to expand to a caseful (default) or caseless version, and not be protected: they must expand when compiling, to hard-code which tests are caseless or caseful.

\cs_new_protected:Npn __regex_item_catcode:nT #1
\cs_new_protected:Npn __regex_item_catcode_reverse:nT #1#2
\cs_new_protected:Npn __regex_item_exact:nn
\cs_new_protected:Npn __regex_item_exact_cs:n

This matches an exact \emph{category}-\emph{character code} pair, or an exact control sequence, more precisely one of several possible control sequences.
\int_compare:nNnTF \l__regex_curr_catcode_int = 0
{
 \tl_set:Nx \l__regex_internal_a_tl
 { \scan_stop: __regex_curr_cs_to_str: \scan_stop: }
 \tl_if_in:noTF { \scan_stop: #1 \scan_stop: }
 \l__regex_internal_a_tl
 { __regex_break_true:w } { }
}{ }
\exp_after:wN \toks\langle current\ position\ \rangle \langle control\ sequence\ \rangle
\exp_not:n { \langle control\ sequence\ \rangle}
\group_end:

(End definition for __regex_item_exact:nn and __regex_item_exact_cs:n.)

__regex_item_cs:n
\cs_new_protected:Npn __regex_item_cs:n #1
{
 \int_compare:nNnT \l__regex_curr_catcode_int = 0
 {
 \group_begin:
 \tl_set:Nx \l__regex_cs_name_tl { __regex_curr_cs_to_str: }
 __regex_single_match:
 __regex_disable_submatches:
 __regex_build_for_cs:n {#1}
 \bool_set_eq:NN \l__regex_saved_success_bool \g__regex_success_bool
 \exp_args:NV __regex_match_cs:n \l__regex_cs_name_tl
 \if_meaning:w \c\true_bool \g__regex_success_bool
 \group_insert_after:N __regex_break_true:w
 \fi:
 \bool_gset_eq:NN \g__regex_success_bool \l__regex_saved_success_bool
 \group_end:
 }
}(End definition for __regex_item_cs:n.)

40.2.3 Character property tests
__regex_prop_d:__regex_prop_h:__regex_prop_s:__regex_prop_v:__regex_prop_w:__regex_prop_N:
\cs_new_protected:Npn __regex_prop_d:
{
 __regex_item_caseful_range:nn { '0 } { '9 }
}\cs_new_protected:Npn __regex_prop_h:
{
 __regex_item_caseful_equal:n { '\'}
}(End definition for __regex_item_cs:n.)

40.2.3 Character property tests
__regex_prop_d: Character property tests for \d, \D, etc. These character properties are not affected
by the (?i) option. The characters recognized by each one are as follows: \d=\[0-9\],
\w=\[0-9A-Z_a-z\], \s=\[\[^a\-I\-J\-L\-M\]\], \h=\[\[^a\-I\-J\-L\-M\]\], \v=\[^a\-I\-J\-L\-M\].
and the
upper case counterparts match anything that the lower case does not match. The order
in which the various tests appear is optimized for usual mostly lower case letter text.
__regex_item_caseful_equal:n { ‘\"I } \
\cs_new_protected:Npn __regex_prop_s:
{
__regex_item_caseful_equal:n { ‘\ }
__regex_item_caseful_equal:n { ‘\"I }
__regex_item_caseful_equal:n { ‘\"J }
__regex_item_caseful_equal:n { ‘\"L }
__regex_item_caseful_equal:n { ‘\"M }
}
\cs_new_protected:Npn __regex_prop_v:
{ __regex_item_caseful_range:nn { ‘\"J } { ‘\"M } } % lf, vtab, ff, cr
\cs_new_protected:Npn __regex_prop_w:
{ __regex_item_caseful_range:nn { ‘a } { ‘z }
__regex_item_caseful_range:nn { ‘A } { ‘Z }
__regex_item_caseful_range:nn { ‘0 } { ‘9 }
__regex_item_caseful_equal:n { ‘_ }
}
\cs_new_protected:Npn __regex_prop_N:
{ __regex_item_reverse:n
__regex_item_caseful_equal:n { ‘\"J }
}
(End definition for __regex_prop_d: and others.)

__regex_posix_alnum: POSIX properties. No surprise.
__regex_posix_alpha: __regex_posix_alnum:
__regex_posix_ascii:
__regex_posix_cntrl:
__regex_posix_digit:
__regex_posix_graph:
__regex_posix_lower:
__regex_posix_print:
__regex_posix_punct:
__regex_posix_space:
__regex_posix_upper:
__regex_posix_word:
__regex_posix_xdigit:
\cs_new_protected:Npn __regex_posix_blank: __regex_prop_h:
\cs_new_protected:Npn __regex_posix_cntrl:
{ __regex_item_caseful_range:nn
__regex_ascii_min_int
__regex_ascii_max_int
__regex_ascii_min_int
\c__regex_ascii_max_control_int
__regex_item_caseful_equal:n \c__regex_ascii_max_int
__regex_item_reverse:n
__regex_item_caseful_equal:n { ‘\"J }
}
\cs_new_eq:NN __regex_posix_punct:
\cs_new_protected:Npn __regex_posix_digit:
\cs_new_protected:Npn __regex_posix_graph:
\cs_new_protected:Npn __regex_posix_lower:
\cs_new_protected:Npn __regex_posix_print:
\cs_new_protected:Npn __regex_posix_punct:
957
Before actually parsing the regular expression or the replacement text, we go through
them once, converting \n to the character 10, etc. In this pass, we also convert any special
character (*, ?, {, etc.) or escaped alphanumeric character into a marker indicating that
this was a special sequence, and replace escaped special characters and non-escaped
alphanumeric characters by markers indicating that those were “raw” characters. The
rest of the code can then avoid caring about escaping issues (those can become quite
complex to handle in combination with ranges in character classes).

Usage: \regex_escape_use:nnnn (inline 1) (inline 2) (inline 3) {⟨token list⟩}
The ⟨token list⟩ is converted to a string, then read from left to right, interpreting back-
slashes as escaping the next character. Unescaped characters are fed to the function
⟨inline 1⟩, and escaped characters are fed to the function ⟨inline 2⟩ within an x-expansion
context (typically those functions perform some tests on their argument to decide how
to output them). The escape sequences \a, \e, \f, \n, \r, and \t are recognized, and
those are replaced by the corresponding character, then fed to ⟨inline 3⟩. The result is
then left in the input stream. Spaces are ignored unless escaped.

The conversion is done within an x-expanding assignment.

\regex_escape_use:nnnn

The result is built in \l__regex_internal_a_tl, which is then left in the input stream.
Tracing code is added as appropriate inside this token list. Go through #4 once, applying
#1, #2, or #3 as relevant to each character (after de-escaping it).

\cs_new_protected:Npn __regex_escape_use:nnnn #1#2#3#4
 \group_begin:
 \tl_clear:N \l__regex_internal_a_tl
\cs_set:Npn __regex_escape_unescaped:N #1 \{ \#1 \}
\cs_set:Npn __regex_escapeescaped:N #1 \{ \#1 \}
\cs_set:Npn __regex_escape/raw:N #1 \{ \#3 \}
__regex_standard_escapechar:
_\text{regex_escape}_loop:N _\text{regex_escape}_\text{:w}
_\text{regex_escape}_\text{unescaped}_N
_\text{regex_escape}_escaped_N
_\text{regex_escape}_raw_N

The loop is ended upon seeing the end-marker “break”, with an error if the string ended in a backslash. Spaces are ignored, and \a, \e, \f, \n, \r, \t take their meaning here.

Those functions are never called before being given a new meaning, so their definitions here don’t matter.

After a backslash, the same is done, but unknown characters are “escaped”.

The loop is ended upon seeing the end-marker “break”, with an error if the string ended in a backslash. Spaces are ignored, and \a, \e, \f, \n, \r, \t take their meaning here.

Those functions are never called before being given a new meaning, so their definitions here don’t matter.
When \(x \) is encountered, \(__regex_escape_x_test:N \) is responsible for grabbing some hexadecimal digits, and feeding the result to \(__regex_escape_x_end:w \). If the number is too big interrupt the assignment and produce an error, otherwise call \(__regex_escape_raw:N \) on the corresponding character token.

\begin{verbatim}
 \cs_new:Npn __regex_escape_x_test:N #1
 { \str_if_eq:nnTF {#1} { break } { ; } { \if_charcode:w \c_space_token #1 \exp_after:wN __regex_escape_x_test:N \else: \exp_after:wN __regex_escape_x_testii:N \exp_after:wN #1 \fi: }\}
\end{verbatim}

Find out whether the first character is a left brace (allowing any number of hexadecimal digits), or not (allowing up to two hexadecimal digits). We need to check for the end-of-string marker. Eventually, call either \(__regex_escape_x_loop:N \) or \(__regex_escape_x:N \).

\begin{verbatim}
 \cs_new:Npn __regex_escape_x_testii:N #1
 { \exp_last_unbraced:Nf __regex_escape_raw:N \char_generate:nn {#1} { 12 } }
\end{verbatim}

(End definition for \(__regex_escape_/x:w \), \(__regex_escape_x_end:w \), and \(__regex_escape_x_large:n \).)
\if_charcode:w \c_left_brace_str #1
\exp_after:wN __regex_escape_x_loop:N
\else:
__regex_hexadecimal_use:NTF #1
{ \exp_after:wN __regex_escape_x_loop:N }
{ ; \exp_after:wN __regex_escape_loop:N \exp_after:wN #1 }
\fi:
}

(End definition for __regex_escape_x_test:N and __regex_escape_x_testii:N.)

__regex_escape_x:N
This looks for the second digit in the unbraced case.
\cs_new:Npn __regex_escape_x:N #1
{ \str_if_eq:nnTF {#1} { break } { ; } { __regex_hexadecimal_use:NTF #1
{ ; __regex_escape_loop:N }
{ ; __regex_escape_loop:N #1 }
}
}

(End definition for __regex_escape_x:N.)

__regex_escape_x_loop:N
__regex_escape_x_loop_error:
Grab hexadecimal digits, skip spaces, and at the end, check that there is a right brace, otherwise raise an error outside the assignment.
\cs_new:Npn __regex_escape_x_loop:N #1
{ \str_if_eq:nnTF {#1} { break } { ; } { __regex_hexadecimal_use:NTF #1
{ __regex_escape_x_loop:N }
{ \token_if_eq_charcode:NNTF \c_space_token #1
{ __regex_escape_x_loop:N }
{ __regex_escape_x_loop_error:n {#1} }
}
{ ; \exp_after:wN \token_if_eq_charcode:NNTF \c_right_brace_str #1
{ __regex_escape_loop:N }
{ __regex_escape_x_loop_error:n {#1} }
}
}
}

(End definition for __regex_escape_x_loop:N and __regex_escape_x_loop_error:n.)
__regex_hexadecimal_use:NTF \textit{\LaTeX} detects uppercase hexadecimal digits for us but not the lowercase letters, which we need to detect and replace by their uppercase counterpart.

\begin{verbatim}
\prg_new_conditional:Npnn __regex_hexadecimal_use:N #1 { TF }
{ }
\if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f:
#1 \prg_return_true:
\else:
\if_case:w
 \int_eval:n { \exp_after:wN ' \token_to_str:N #1 - 'a }
 A
 \or: B
 \or: C
 \or: D
 \or: E
 \or: F
\else:
 \prg_return_false:
 \exp_after:wN \use_none:n
 \fi:
 \prg_return_true:
\fi:
\end{verbatim}

(End definition for __regex_hexadecimal_use:NTF.)

__regex_char_if_alphanumeric:NTF __regex_char_if_special:NTF

These two tests are used in the first pass when parsing a regular expression. That pass is responsible for finding escaped and non-escaped characters, and recognizing which ones have special meanings and which should be interpreted as “raw” characters. Namely,

- alphanumeric are “raw” if they are not escaped, and may have a special meaning when escaped;
- non-alphanumeric printable ascii characters are “raw” if they are escaped, and may have a special meaning when not escaped;
- characters other than printable ascii are always “raw”.

The code is ugly, and highly based on magic numbers and the ascii codes of characters. This is mostly unavoidable for performance reasons. Maybe the tests can be optimized a little bit more. Here, “alphanumeric” means 0–9, A–Z, a–z; “special” character means non-alphanumeric but printable ascii, from space (hex 20) to del (hex 7E).

\begin{verbatim}
\prg_new_conditional:Npnn __regex_char_if_alphanumeric:N #1 { TF }
{ }
\if_int_compare:w '#1 > 'Z \exp_stop_f:
 \if_int_compare:w '#1 > 'z \exp_stop_f:
 \if_int_compare:w '#1 < \c__regex_ascii_max_int
 \prg_return_true: \else: \prg_return_false: \fi:
 \else:
 \if_int_compare:w '#1 < 'a \exp_stop_f:
 \prg_return_true:
 \fi:
 \prg_return_false: \fi:
\else:
 \if_int_compare:w '#1 > '9 \exp_stop_f:
 \if_int_compare:w '#1 < 'A \exp_stop_f:
 \end{verbatim}

\prg_return_true: \else: \prg_return_false: \fi:
\else:
 \if_int_compare:w \#1 < '0 \exp_stop_f:
 \if_int_compare:w \#1 < '\ \exp_stop_f:
 \prg_return_false: \else: \prg_return_true: \fi:
 \else: \prg_return_false: \fi:
 \fi:
}\else: \prg_return_false: \fi:
\fi:
\prg_new_conditional:Npnn __regex_char_if_alphanumeric:N #1 { TF }
{\if_int_compare:w \#1 > 'Z \exp_stop_f:
 \if_int_compare:w \#1 > 'z \exp_stop_f:
 \prg_return_false:
 \else:
 \if_int_compare:w \#1 < 'a \exp_stop_f:
 \prg_return_false: \else: \prg_return_true: \fi:
 \fi:
 \else:
 \if_int_compare:w \#1 < '9 \exp_stop_f:
 \if_int_compare:w \#1 < 'A \exp_stop_f:
 \prg_return_false: \else: \prg_return_true: \fi:
 \else:
 \if_int_compare:w \#1 < '0 \exp_stop_f:
 \prg_return_false: \else: \prg_return_true: \fi:
 \fi:
 \fi:
 \fi:
}\end{definition for __regex_char_if_alphanumeric:NTF and __regex_char_if_special:NTF.}

40.3 Compiling

A regular expression starts its life as a string of characters. In this section, we convert it to internal instructions, resulting in a “compiled” regular expression. This compiled expression is then turned into states of an automaton in the building phase. Compiled regular expressions consist of the following:

- __regex_class:NnnnN \{boolean\} \{\langle tests\rangle\} \{\langle min\rangle\} \{\langle more\rangle\} \{lazy\ness\}

- __regex_group:nnnN \{\langle branches\rangle\} \{\langle min\rangle\} \{\langle more\rangle\} \{lazy\ness\}, also __regex_-group_no_capture:nnnN and __regex_group_resetting:nnnN with the same syntax.

- __regex_branch:n \{\langle contents\rangle\}

- __regex_command_K:

- __regex_assertion:Nn \{boolean\} \{\langle assertion test\rangle\}, where the \langle assertion test\rangle is __regex_b_test: or \{__regex_anchor:N \langle integer\rangle\}

Tests can be the following:

- __regex_item_caseful_equal:n \{\langle char code\rangle\}

- __regex_item_caseless_equal:n \{\langle char code\rangle\}

963
• __regex_item_caseful_range:nn \{min\} \{max\}
• __regex_item_caseless_range:nn \{min\} \{max\}
• __regex_item_catcode:nT \{\langle\text{catcode bitmap}\rangle\} \{\langle\text{tests}\rangle\}
• __regex_item_catcode_reverse:nT \{\langle\text{catcode bitmap}\rangle\} \{\langle\text{tests}\rangle\}
• __regex_item_reverse:n \{\langle\text{tests}\rangle\}
• __regex_item_exact:nn \{\langle\text{catcode}\rangle\} \{\langle\text{char code}\rangle\}
• __regex_item_exact_cs:n \{\langle\text{csnames}\rangle\}, more precisely given as \langle\text{csname}\rangle \\scan_
\text{stop}: \langle\text{csname}\rangle \\scan_
\text{stop}: \langle\text{csname}\rangle and so on in a brace group.
• __regex_item_cs:n \{\langle\text{compiled regex}\rangle\}

40.3.1 Variables used when compiling

We make sure to open the same number of groups as we close.

\l__regex_group_level_int

We wish to allow constructions such as \c{[^BE]}(\ldots\c{L[a-z]}\ldots), where the outer catcode test applies to the whole group, but is superseded by the inner catcode test. For this to work, we need to keep track of lists of allowed category codes: \l__regex_catcodes_int and \l__regex_default_catcodes_int are bitmaps, sums of 4^c, for all allowed catcodes c. The latter is local to each capturing group, and we reset \l__regex_catcodes_int to that value when each character or class, changing it only when encountering a \c escape. The boolean records whether the list of categories of a catcode test has to be inverted: compare \c[^BE] and \c[BE].

\l__regex_catcodes_int
\l__regex_default_catcodes_int
\l__regex_catcodes_bool
\c__regex_catcode_C_int \n\c__regex_catcode_B_int
\c__regex_catcode_E_int
\c__regex_catcode_M_int
\c__regex_catcode_T_int
\c__regex_catcode_P_int
\c__regex_catcode_U_int
\c__regex_catcode_D_int
\c__regex_catcode_S_int
\c__regex_catcode_L_int
\c__regex_catcode_O_int
\c__regex_catcode_A_int
\c__regex_all_catcodes_int

Constants: 4^2 for each category, and the sum of all powers of 4.

\int_const:Nn \c__regex_catcode_C_int { "1 \}
\int_const:Nn \c__regex_catcode_B_int { "4 \}
\int_const:Nn \c__regex_catcode_E_int { "10 \}
\int_const:Nn \c__regex_catcode_M_int { "40 \}
\int_const:Nn \c__regex_catcode_T_int { "100 \}
\int_const:Nn \c__regex_catcode_P_int { "1000 \}
\int_const:Nn \c__regex_catcode_U_int { "4000 \}
\int_const:Nn \c__regex_catcode_D_int { "10000 \}
\int_const:Nn \c__regex_catcode_S_int { "100000 \}
\int_const:Nn \c__regex_catcode_L_int { "400000 \}
\int_const:Nn \c__regex_catcode_A_int { "1000000 \}
\int_const:Nn \c__regex_all_catcodes_int { "5515155 \}

(End definition for \c__regex_catcode_C_int and others.)

\l__regex_internal_regex \n\cs_new_eq:NN \l__regex_internal_regex \c__regex_no_match_regex

(End definition for \l__regex_internal_regex)

\l__regex_show_prefix_seq \n\seq_new:N \l__regex_show_prefix_seq

(End definition for \l__regex_show_prefix_seq)

\l__regex_show_lines_int \n\int_new:N \l__regex_show_lines_int

(End definition for \l__regex_show_lines_int)

40.3.2 Generic helpers used when compiling

__regex_two_if_eq:NNNNTF
Used to compare pairs of things like __regex_compile_special:N ? together. It’s often inconvenient to get the catcodes of the character to match so we just compare the character code. Besides, the expanding behaviour of \if:w is very useful as that means we can use \c_left_brace_str and the like.

\prg_new_conditional:Npnn __regex_two_if_eq:NNNN #1#2#3#4 { TF }
{
 \if_meaning:w #1 #3
 \if:w #2 #4
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 \else:
 \prg_return_false:
 \fi:
}
If followed by some raw digits, collect them one by one in the integer variable #1, and take the true branch. Otherwise, take the false branch.

\begin{verbatim}
\cs_new_protected:Npn __regex_get_digits:NTFw #1#2#3#4#5
__regex_if_raw_digit:NNTF #4 #5
{ #1 = #5 __regex_get_digits_loop:nw {#2} }
{ #3 #4 #5 }
\cs_new:Npn __regex_get_digits_loop:nw #1#2#3
__regex_if_raw_digit:NNTF #2 #3
{ #3 __regex_get_digits_loop:nw {#1} }
{ \scan_stop: #1 #2 #3 }
\end{verbatim}

Test used when grabbing digits for the \{m,n\} quantifier. It only accepts non-escaped digits.

\begin{verbatim}
\prg_new_conditional:Npnn __regex_if_raw_digit:NN #1#2 { TF }
\if_meaning:w __regex_compile_raw:N #1\if_int_compare:w 1 < 1 #2 \exp_stop_f:
\prg_return_true:
\else:
\prg_return_false:
\fi:
\else:
\prg_return_false:
\fi:
\end{verbatim}

40.3.3 Mode

When compiling the NFA corresponding to a given regex string, we can be in ten distinct modes, which we label by some magic numbers:

-6 \[\text{c{\ldots}}\] control sequence in a class,
-2 \text{c{\ldots}} control sequence,
0 ... outer,
2 \text{c...} catcode test,
6 \text{c{\ldots}} catcode test in a class,
-63 \text{c{[\ldots]}} class inside mode −6,
-23 \text{c{[\ldots]}} class inside mode −2,
3 [...] class inside mode 0,
23 \c{[...]} class inside mode 2,

63 \[\c{[...]}\] class inside mode 6.

This list is exhaustive, because \c escape sequences cannot be nested, and character classes cannot be nested directly. The choice of numbers is such as to optimize the most useful tests, and make transitions from one mode to another as simple as possible.

- Even modes mean that we are not directly in a character class. In this case, a left bracket appends 3 to the mode. In a character class, a right bracket changes the mode as \(m \rightarrow (m - 15)/13 \), truncated.

- Grouping, assertion, and anchors are allowed in non-positive even modes (0, −2, −6), and do not change the mode. Otherwise, they trigger an error.

- A left bracket is special in even modes, appending 3 to the mode; in those modes, quantifiers and the dot are recognized, and the right bracket is normal. In odd modes (within classes), the left bracket is normal, but the right bracket ends the class, changing the mode from \(m \) to \((m - 15)/13\), truncated; also, ranges are recognized.

- In non-negative modes, left and right braces are normal. In negative modes, however, left braces trigger a warning; right braces end the control sequence, going from −2 to 0 or −6 to 3, with error recovery for odd modes.

- Properties (such as the \d character class) can appear in any mode.

__regex_if_in_class:TF Test whether we are directly in a character class (at the innermost level of nesting). There, many escape sequences are not recognized, and special characters are normal. Also, for every raw character, we must look ahead for a possible raw dash.

__regex_if_in_cs:TF Right braces are special only directly inside control sequences (at the inner-most level of nesting, not counting groups).
Assertions are only allowed in modes 0, −2, and −6, i.e., even, non-positive modes.

\cs_new:Npn __regex_if_in_class_or_catcode:TF
\begin{verbatim}
{ \if_int_odd:w \l__regex_mode_int \exp_after:wN \use_i:nn \else:
 \if_int_compare:w \l__regex_mode_int > \c__regex_outer_mode_int \exp_after:wN \exp_after:wN \exp_after:wN \use_i:nn
 \else:
 \exp_after:wN \exp_after:wN \exp_after:wN \use_ii:nn
 \fi:
 \fi:
}
\end{verbatim}

This test takes the true branch if we are in a catcode test, either immediately following it (modes 2 and 6) or in a class on which it applies (modes 23 and 63). This is used to tweak how left brackets behave in modes 2 and 6.

\cs_new:Npn __regex_if_within_catcode:TF
\begin{verbatim}
{ \if_int_compare:w \l__regex_mode_int > \c__regex_outer_mode_int \exp_after:wN \use_i:nn \else:
 \exp_after:wN \use_ii:nn \fi:
}
\end{verbatim}

The \c escape sequence is only allowed in modes 0 and 3, i.e., not within any other \c escape sequence.

\cs_new_protected:Npn __regex_chk_c_allowed:T
\begin{verbatim}
{ \if_int_compare:w \l__regex_mode_int = \c__regex_outer_mode_int \exp_after:wN \use:n \else:
 \if_int_compare:w \l__regex_mode_int = \c__regex_class_mode_int \exp_after:wN \exp_after:wN \exp_after:wN \use:n
 \else:
 __kernel_msg_error:nn { kernel } { c-bad-mode }
 \exp_after:wN \exp_after:wN \exp_after:wN \use_none:n
 \fi:
 \fi:
}
\end{verbatim}

This function changes the mode as it is needed just after a catcode test.

\cs_new_protected:Npn __regex_mode_quit_c:
\begin{verbatim}
{ \if_int_compare:w \l__regex_mode_int = \c__regex_catcode_mode_int
}
\end{verbatim}
\int_set_eq:NN \l__regex_mode_int \c__regex_outer_mode_int
\else:
 \if_int_compare:w \l__regex_mode_int =
 \c__regex_catcode_in_class_mode_int
 \int_set_eq:NN \l__regex_mode_int \c__regex_class_mode_int
 \fi:
 \fi:
\}

(End definition for __regex_mode_quit_c:)

40.3.4 Framework

Used when compiling a user regex or a regex for the \{...\} escape sequence within another regex. Start building a token list within a group (with x-expansion at the outset), and set a few variables (group level, catcodes), then start the first branch. At the end, make sure there are no dangling classes nor groups, close the last branch: we are done building \l__regex_internal_regex.

\cs_new_protected:Npn __regex_compile:w
 \group_begin:
 \tl_build_begin:N \l__regex_build_tl
 \int_zero:N \l__regex_group_level_int
 \int_set_eq:NN \l__regex_default_catcodes_int \c__regex_all_catcodes_int
 \int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
 \cs_set:Npn __regex_item_equal:n { __regex_item_caseful_equal:n }
 \cs_set:Npn __regex_item_range:nn { __regex_item_caseful_range:nn }
 \tl_build_put_right:Nn \l__regex_build_tl { __regex_branch:n { \if_false: } \fi: }\}
\cs_new_protected:Npn __regex_compile_end:
 __regex_if_in_class:TF
 __kernel_msg_error:nn { kernel } { missing-rbrack }
 \use:c { __regex_compile_]: }
 \prg_do_nothing: \prg_do_nothing:
 }
\group_end:

\cs_new_protected:Npn __regex_compile_end:
 __regex_if_in_class:TF
 __kernel_msg_error:nn { kernel } { missing-rbrack }
 \use:c { __regex_compile_]: }
 \prg_do_nothing: \prg_do_nothing:
 }
\group_end:
The compilation is done between __regex_compile:w and __regex_compile_end:, starting in mode 0. Then __regex_escape_use:nnnn distinguishes special characters, escaped alphanumerics, and raw characters, interpreting \a, \x and other sequences. The 4 trailing \prg_do_nothing: are needed because some functions defined later look up to 4 tokens ahead. Before ending, make sure that any \c{...} is properly closed. No need to check that brackets are closed properly since __regex_compile_end: does that. However, catch the case of a trailing \cL construction.

__regex_compile:n

If the special character or escaped alphanumeric has a particular meaning in regexes, the corresponding function is used. Otherwise, it is interpreted as a raw character. We
distinguish special characters from escaped alphanumeric characters because they behave
differently when appearing as an end-point of a range.

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_special:N #1
\cs_if_exist_use:cF { __regex_compile_#1: }
{ __regex_compile_raw:N #1 }
\end{verbatim}
\begin{verbatim}
\cs_new_protected:Npn __regex_compile_escaped:N #1
\cs_if_exist_use:cF { __regex_compile_/#1: }
{ __regex_compile_raw:N #1 }
\end{verbatim}

(End definition for __regex_compile_escaped:N and __regex_compile_special:N.)

__regex_compile_one:n This is used after finding one “test”, such as \d, or a raw character. If that followed a
catcode test (e.g., \cL), then restore the mode. If we are not in a class, then the test is
“standalone”, and we need to add __regex_class:NnnnN and search for quantifiers. In
any case, insert the test, possibly together with a catcode test if appropriate.
\begin{verbatim}
\cs_new_protected:Npn __regex_compile_one:n #1
{ __regex_mode_quit_c: __regex_if_in_class:TF { }
\tl_build_put_right:Nn \l__regex_build_tl { __regex_class:NnnnN \c_true_bool { \if_false: } \fi: }
\tl_build_put_right:Nx \l__regex_build_tl { \if_int_compare:w \l__regex_catcodes_int < \c__regex_all_catcodes_int
__regex_item_catcode:nT { \int_use:N \l__regex_catcodes_int }
\exp_not:N \exp_not:n {#1} }
\else: \exp_not:N \exp_not:n {#1} \tl: \fi: }
\int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
__regex_if_in_class:TF { } { __regex_compile_quantifier:w }
\end{verbatim}

(End definition for __regex_compile_one:n.)

__regex_compile_abort_tokens:n __regex_compile_abort_tokens:x This function places the collected tokens back in the input stream, each as a raw character.
Spaces are not preserved.
\begin{verbatim}
\cs_new_protected:Npn __regex_compile_abort_tokens:n #1
\use:x \exp_args:No \tl_map_function:nN { \tl_to_str:n {#1} } __regex_compile_raw:N
\end{verbatim}
\begin{verbatim}
\cs_generate_variant:Nn __regex_compile_abort_tokens:n { x }
\end{verbatim}
40.3.5 Quantifiers

This looks ahead and finds any quantifier (special character equal to either of \texttt{?*+}\).

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier:w \1\2
 { \if_meaning:NNTF \1 __regex_compile_special:N
 { \cs_if_exist_use:cF { __regex_compile_quantifier_\2:w } #1 #2 } #1 #2
 }
\end{verbatim}

Those functions are called whenever there is no quantifier, or a braced construction is invalid (equivalent to no quantifier, and whatever characters were grabbed are left raw).

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_lazyness:nnNN \1\2\3\4
 { \tl_build_put_right:Nn \l__regex_build_tl { \if_meaning:NNTF \3 __regex_compile_special:N ?
 { \tl_build_put_right:Nn \l__regex_build_tl { \tl_if_meaning:NNTF \3 \false: { \fi: } { \fi: } } #1 } \c_false_bool } #1 \c_true_bool
 \tl_build_put_right:Nn \l__regex_build_tl { \tl_if_meaning:NNTF \3 \false: { \fi: } { \fi: } } #2 \c_false_bool
 } #3 #4
\end{verbatim}

Once the “main” quantifier (?, *, + or a braced construction) is found, we check whether it is lazy (followed by a question mark). We then add to the compiled regex a closing brace (ending \texttt{__regex_class:NnnnN} and friends), the start-point of the range, its end-point, and a boolean, \texttt{true} for lazy and \texttt{false} for greedy operators.

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_lazyness:nnNN \1\2\3\4
 { \tl_build_put_right:Nn \l__regex_build_tl { \tl_if_meaning:NNTF \3 \false: { \fi: } { \fi: } } #1 #2 \c_true_bool
 \tl_build_put_right:Nn \l__regex_build_tl { \tl_if_meaning:NNTF \3 \false: { \fi: } { \fi: } } #1 #2 \c_false_bool
 } #3 #4
\end{verbatim}

(End definition for \texttt{__regex_compile_quantifier:}.)

(End definition for \texttt{__regex_compile_quantifier:none:} and \texttt{__regex_compile_quantifier_abort:}.)

(End definition for \texttt{__regex_compile_quantifier:}.)

(End definition for \texttt{__regex_compile_quantifier_lazyness:}.)

972
For each “basic” quantifier, ?,.*,+, feed the correct arguments to __regex_compile_quantifier_lazyness:nnNN. −1 means that there is no upper bound on the number of repetitions.

Three possible syntaxes: {⟨int⟩}, {⟨int⟩}, or {⟨int⟩,⟨int⟩}. Any other syntax causes us to abort and put whatever we collected back in the input stream, as raw characters, including the opening brace. Grab a number into \l__regex_internal_a_int. If the number is followed by a right brace, the range is \[a,a\]. If followed by a comma, grab one more number, and call the _ii or _iii auxiliary. Those auxiliaries check for a closing brace, leading to the range \[a,\infty\] or \[a,b\], encoded as {a}{−1} and {a}{b−a}.

\begin{verbatim}
\cs_new_protected:cpn { __regex_compile_quantifier_?:w }
\cs_new_protected:cpn { __regex_compile_quantifier_*:w }
\cs_new_protected:cpn { __regex_compile_quantifier_+:w }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:cpn { __regex_compile_quantifier_braced_auxi:w }
\cs_new_protected:cpn { __regex_compile_quantifier_braced_auxii:w }
\cs_new_protected:cpn { __regex_compile_quantifier_braced_auxiii:w }
\end{verbatim}
40.3.6 Raw characters

Within character classes, and following catcode tests, some escaped alphanumeric sequences such as `\b` do not have any meaning. They are replaced by a raw character, after spitting out an error.

If we are in a character class and the next character is an unescaped dash, this denotes a range. Otherwise, the current character #1 matches itself.
We have just read a raw character followed by a dash; this should be followed by an end-point for the range. Valid end-points are: any raw character; any special character, except a right bracket. In particular, escaped characters are forbidden.
40.3.7 Character properties

In a class, the dot has no special meaning. Outside, insert \texttt{__regex_prop_..:}, which matches any character or control sequence, and refuses −2 (end-marker).

\begin{verbatim}
__regex_compile_: __regex_prop_:
\cs_new_protected:cpx { __regex_compile_: } \{ \exp_not:N __regex_if_in_class:TF \{ __regex_compile_raw:N . \} __regex_compile_one:n \exp_not:c { __regex_prop_: } \}
\cs_new_protected:cpn { __regex_prop_: } \{ \if_int_compare:w \l__regex_curr_char_int > - 2 \exp_stop_f: \exp_after:wN __regex_break_true:w \fi: \}
\end{verbatim}

(End definition for \texttt{__regex_compile_:} and \texttt{__regex_prop_:}.)

The constants \texttt{__regex_prop_d:}, etc. hold a list of tests which match the corresponding character class, and jump to the \texttt{__regex_break_point:TF} marker. As for a normal character, we check for quantifiers.

\begin{verbatim}
__regex_compile_/d: __regex_compile_/D:
__regex_compile_/h: __regex_compile_/H:
__regex_compile_/s: __regex_compile_/S:
__regex_compile_/v: __regex_compile_/V:
__regex_compile_/w: __regex_compile_/W:
__regex_compile_/N:
\cs_set_protected:No __regex_tmp:w #1\#2
__regex_compile_/d:
__regex_compile_/s:
__regex_compile_/v:
__regex_compile_/N:
\end{verbatim}

976
40.3.8 Anchoring and simple assertions

In modes where assertions are allowed, anchor to the start of the query, the start of the match, or the end of the query, depending on the integer \#1. In other modes, \#2 treats the character as raw, with an error for escaped letters ($ is valid in a class, but \A is definitely a mistake on the user's part).

Contrarily to ^ and $, which could be implemented without really knowing what precedes in the token list, this requires more information, namely, the knowledge of the last character code.
40.3.9 Character classes

__regexCompile\]: Outside a class, right brackets have no meaning. In a class, change the mode \((m \rightarrow (m - 15)/13,\) truncated) to reflect the fact that we are leaving the class. Look for quantifiers, unless we are still in a class after leaving one (the case of \([\ldots\backslash\text{cL}[\ldots]\ldots]\)). quantifiers.

__regexCompile[\]: In a class, left brackets might introduce a POSIX character class, or mean nothing. Immediately following \langle\text{category}\rangle, we must insert the appropriate catcode test, then parse the class; we pre-expand the catcode as an optimization. Otherwise (modes \(0\), \(-2\) and \(-6\)) just parse the class. The mode is updated later.

__regexCompile_class_normal\: In the “normal” case, we insert \texttt{__regexClass:NnnnN} \langle\textit{boolean}\rangle in the compiled code. The \langle\textit{boolean}\rangle is true for positive classes, and false for negative classes, characterized by a leading \(^{\wedge}\). The auxiliary \texttt{__regexCompile_class:TFNN} also checks for a leading \] which has a special meaning.
_regex_compile_class:TFNN
_regex_compile_class:NN

This function is called for a left bracket in modes 2 or 6 (catcode test, and catcode test within a class). In mode 2 the whole construction needs to be put in a class (like single character). Then determine if the class is positive or negative, inserting _regex_item_catcode:nT or the reverse variant as appropriate, each with the current catcodes bitmap #1 as an argument, and reset the catcodes.

\cs\new\protected\Npn _regex_compile_class_catcode:w #1;
\cs\new\protected\Npn _regex_compile_class_catcode:TFNN #1#2#3#4
\cs\new\protected\Npn _regex_compile_class_catcode:NN #1#2

If the first character is ^, then the class is negative (use #2), otherwise it is positive (use #1). If the next character is a right bracket, then it should be changed to a raw one.

\cs\new\protected\Npm _regex_compile_class_posix_test:w
\cs\new\protected\Npm _regex_compile_class_posix:NNNNw
\cs\new\protected\Npm _regex_compile_class_posix_loop:w
\cs\new\protected\Npm _regex_compile_class_posix_end:w

Here we check for a syntax such as [:alpha:]. We also detect [= and [, which have a meaning in POSIX regular expressions, but are not implemented in \texttt{l3regex}. In case we see [:, grab raw characters until hopefully reaching :]. If that’s missing, or the POSIX
class is unknown, abort. If all is right, add the test to the current class, with an extra __regex_item_reverse:n for negative classes.

```latex
\cs_new_protected:Npn \__regex_compile_class_posix_test:w #1#2
\token_if_eq_meaning:NNT \__regex_compile_special:N #1
{\str_case:nn { #2 }
 : \{ \__regex_compile_class_posix:NNNNw }
 = \{ \kernel_msg_warning:nx \{ kernel \}
 \{ posix-unsupported \} { = } }
 . { \kernel_msg_warning:nx \{ kernel \}
 \{ posix-unsupported \} { . } }
\}
\__regex_compile_raw:N \[ #1 #2 }
\cs_new_protected:Npn \__regex_compile_class_posix:NNNNw #1#2#3#4#5#6
\__regex_two_if_eq:NNNNTF #5 #6 \__regex_compile_special:N ^
\{ \bool_set_false:N \l__regex_internal_bool
 \tl_set:Nx \l__regex_internal_a_tl \{ \if_false: \} \fi:
 \__regex_compile_class_posix_loop:w
\}
\{ \bool_set_true:N \l__regex_internal_bool
 \tl_set:Nx \l__regex_internal_a_tl \{ \if_false: \} \fi:
 \__regex_compile_class_posix_loop:w #5 #6
\}
\cs_new:Npn \__regex_compile_class_posix_loop:w #1#2
\token_if_eq_meaning:NNTF \__regex_compile_raw:N #1
{ #2 \__regex_compile_class_posix_loop:w }
\{ \if_false: { \fi: } \__regex_compile_class_posix_end:w #1 #2 }
\cs_new_protected:Npn \__regex_compile_class_posix_end:w #1#2#3#4
\__regex_two_if_eq:NNNNTF #1 #2 \__regex_compile_special:N ^
\{ \cs_if_exist:cTF \{ __regex_posix_ \l__regex_internal_a_tl : \}
 \bool_if:NF \l__regex_internal_bool \__regex_item_reverse:n
 \exp_not:c \{ __regex_posix_ \l__regex_internal_a_tl : \}
\}
```

980
40.3.10 Groups and alternations

The contents of a regex group are turned into compiled code in _regex_compile_class_posix_test:w, which ends up with items of the form _regex_branch:n \{concatenation\}. This construction is done using \tl_build... functions within a TeX group, which automatically makes sure that options (case-sensitivity and default catcode) are reset at the end of the group. The argument \#1 is _regex_group:nnnN or a variant thereof. A small subtlety to support \cL(abc) as a shorthand for \cLa\cLb\cLc: exit any pending catcode test, save the category code at the start of the group as the default catcode for that group, and make sure that the catcode is restored to the default outside the group.

\cs_new_protected:Npn _regex_compile_group_begin:N #1
\tl_build_put_right:Nn \l__regex_build_tl { #1 { \if_false: } \fi: }
_regex_mode_quit_c:
\group_begin:
\tl_build_begin:N \l__regex_build_tl
\int_set_eq:NN \l__regex_default_catcodes_int \l__regex_catcodes_int
\int_incr:N \l__regex_group_level_int
\tl_build_put_right:Nn \l__regex_build_tl
_regex_branch:n { \if_false: } \fi: }
\group_end:
\cs_new_protected:Npn _regex_compile_group_end:
\if_int_compare:w \l__regex_group_level_int > 0 \exp_stop_f:
\tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } }
\tl_build_end:N \l__regex_build_tl
\exp_args:NNN\x
\group_end:
\tl_build_put_right:Nn \l__regex_build_tl _regex_compile_quantifier:w

981
__regex_compile_(::) \hfill In a class, parentheses are not special. In a catcode test inside a class, a left parenthesis gives an error, to catch [a\cL(bcd)e]. Otherwise check for a ?, denoting special groups, and run the code for the corresponding special group.

\cs_new_protected:cpn { __regex_compile_(::) }
\{

__regex_if_in_class:TF { __regex_compile_raw:N (}
\{
\if_int_compare:w \l__regex_mode_int = \c__regex_catcode_in_class_mode_int
__kernel_msg_error:nn { kernel } { c-lparen-in-class }
\exp_after:wN __regex_compile_raw:N \exp_after:wN (
\else:
\exp_after:wN __regex_compile_lparen:w
\fi:
\}
\}
\cs_new_protected:Npn __regex_compile_lparen:w #1#2#3#4
\{
__regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N ?
\{
_\cs_if_exist_use:cF
\{ __regex_compile_special_group_\token_to_str:N #4 :w \}
\{ __kernel_msg_warning:nxx { kernel } { special-group-unknown }
\{ (?) #4 \}
__regex_compile_group_begin:N __regex_group:nnN
__regex_compile_raw:N ? #3 #4
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
__regex_compile_

Within a class, parentheses are not special. Outside, close a group.

```
cs_new_protected:cpn { __regex_compile_::w }
cs_new_protected:cpn { __regex_compile_::w }
```

(End definition for __regex_compile_::w and __regex_compile_::w)

__regex_compile_special_group::w
__regex_compile_special_group_::w

Non-capturing, and resetting groups are easy to take care of during compilation; for those
groups, the harder parts come when building.

```
cs_new_protected:cpn { __regex_compile_special_group::w }
cs_new_protected:cpn { __regex_compile_special_group_::w }
```

(End definition for __regex_compile_special_group::w and __regex_compile_special_group_::w)

__regex_compile_special_group_i:w
__regex_compile_special_group_-:w

The match can be made case-insensitive by setting the option with (?i); the original
behaviour is restored by (?-i). This is the only supported option.

```
cs_new_protected:Npn \__regex_compile_special_group_i:w #1#2
{ \_regex_two_if_eq:NNNNTF #1 #2 \_regex_compile_special:N )
{ \_regex_two_if_eq:NNNNTF #3 #4 \_regex_compile_special:N )
{ \use_ii:nn }
{ \_kernel_msg_warning:nnx { kernel } { unknown-option } { (?i #2 }
{ \_regex_compile_raw:N ( \_regex_compile_raw:N ?
{ \_regex_compile_raw:N i #1 #2
}
}
```

```
cs_new_protected:cpn { __regex_compile_special_group_-:w } #1#2#3#4
{ \_regex_two_if_eq:NNNNTF #1 #2 \_regex_compile_raw:N i
{ \_regex_two_if_eq:NNNNTF #3 #4 \_regex_compile_special:N )
{ \use_ii:nn }
{ \cs_set:Npn \_regex_item_equal:n
{ \_regex_item_caseful_equal:n }
{ \cs_set:Npn \_regex_item_range:nn
{ \_regex_item_caseful_range:nn }
}
{ \_kernel_msg_warning:nnx { kernel } { unknown-option } { (?-#2#4 }
```

_regex_compile_raw:N
40.3.11 Catcodes and csnames

The \c escape sequence can be followed by a capital letter representing a character category, by a left bracket which starts a list of categories, or by a brace group holding a regular expression for a control sequence name. Otherwise, raise an error.

\cs_new_protected:cpn { __regex_compile_/c: } \{ __regex_chk_c_allowed:T \{ __regex_compile_c_test:NN \} \}
\cs_new_protected:Npn __regex_compile_c_test:NN #1#2
{ \token_if_eq_meaning:NNTF #1 __regex_compile_raw:N \int_if_exist:cTF { c__regex_catcode_#2_int } \int_set_eq:Nc \l__regex_catcodes_int { c__regex_catcode_#2_int } \l__regex_mode_int = \if_case:w \l__regex_mode_int \c__regex_catcode_mode_int \else: \c__regex_catcode_in_class_mode_int \fi: \token_if_eq_charcode:NNT C #2 { __regex_compile_c_C:NN } \}
{ \cs_if_exist_use:cF { __regex_compile_c_#2:w } }
{ \use_none:n }
{ \token_if_eq_charcode:NNF #2 () % }
__kernel_msg_error:nnn { kernel } { c-C-invalid } {#2} #1 #2

(End definition for __regex_compile_/c: and __regex_compile_c_test:NN.)

__regex_compile_c_C:NN

If \cC is not followed by . or (...) then complain because that construction cannot match anything, except in cases like \cC\{\c(...)\}, where it has no effect.

\cs_new_protected:Npn __regex_compile_c_C:NN #1#2
{ \token_if_eq_charcode:NNTF \c __regex_compile_special:N \{ \use_none:n \} \token_if_eq_charcode:NNF #2 () % }
{ \use:n }
{ __kernel_msg_error:nnn { kernel } { c-C-invalid } {#2} } #1 #2
(End definition for __regex_compile_/c: and __regex_compile_c_test:NN.)
When encountering `\c[`, the task is to collect uppercase letters representing character categories. First check for `^` which negates the list of category codes.

```latex
\cs_new_protected:cpn { __regex_compile_c_[:w } #1#2
\ cs_new_protected:Npn \__regex_compile_c_lbrack_loop:NN #1#2
\{ 
\token_if_eq_meaning:NNTF #1 \__regex_compile_raw:N 
\{ 
\int_if_exist:cTF { c__regex_catcode_#2_int } 
\{ 
\exp_args:Nc \__regex_compile_c_lbrack_add:N \ c__regex_catcode_#2_int 
\__regex_compile_c_lbrack_loop:NN 
\} 
\} 
\{ 
\token_if_eq_charcode:NNTF #2 ] \__regex_compile_c_lbrack_end: 
\} 
\} 
\cs_new_protected:Npn \__regex_compile_c_lbrack_add:N #1 
\{ 
\if_int_odd:w \int_eval:n { \l__regex_catcodes_int / #1 } \exp_stop_f: 
\else: 
\int_add:Nn \l__regex_catcodes_int {#1} \exp_stop_f: 
\fi: 
\} 
\cs_new_protected:Npn \__regex_compile_c_lbrack_end: 
\{ 
\end{definition}
```

(End definition for `_regex_compill_c_C:NN`.)
\if_meaning:w \c_false_bool \l__regex_catcodes_bool
\int_set:Nn \l__regex_catcodes_int
{ \c__regex_all_catcodes_int - \l__regex_catcodes_int }
\fi:
\fi:
\end{verbatim}

__regex_compile_c{::}

The case of a left brace is easy, based on what we have done so far: in a group, compile the regular expression, after changing the mode to forbid nesting \c. Additionally, disable submatch tracking since groups don’t escape the scope of \c{...}.
\cs_new_protected:cpn { __regex_compile_c_ \c_left_brace_str :w }
{
__regex_compile:w __regex_disable_submatches:
\l__regex_mode_int
= \if_case:w \l__regex_mode_int
\c__regex_cs_mode_int
\else:
\c__regex_cs_in_class_mode_int
\fi:
\exp_after:wN __regex_compile_raw:N \c_right_brace_str }
\cs_new_protected:Npn __regex_compile_end_cs:
{ __regex_compile_end:
\flag_clear:n { __regex_cs }
\tl_set:Nx \l__regex_internal_a_tl
{ \exp_after:wN __regex_compile_cs_aux:Nn \l__regex_internal_regex
\q_nil \q_nil \q_recursion_stop }
\exp_args:Nx __regex_compile_one:n
{ \flag_if_raised:nTF { __regex_cs }
{ __regex_item_cs:n { \exp_not:o \l__regex_internal_regex } }
{ __regex_item_exact_cs:n }
__regex_compile_end:
\flag_new:n { __regex_cs }
\cs_new_protected:cpn { __regex_compile_ \c_right_brace_str : }
{
__regex_if_in_cs:TF
{ __regex_compile_end_cs: }
{ \exp_after:wN __regex_compile_raw:N \c_right_brace_str }
}
\cs_new_protected:Npm __regex_compile_end_cs:
{ __regex_compile_end:
\flag_clear:n { __regex_cs }
\tl_set:Nx \l__regex_internal_a_tl
{ \exp_after:wN __regex_compile_cs_aux:Nn \l__regex_internal_regex
\q_nil \q_nil \q_recursion_stop }
\exp_args:Nx __regex_compile_one:n
{ \flag_if_raised:nTF { __regex_cs }
{ __regex_item_cs:n { \exp_not:o \l__regex_internal_regex } }
{ __regex_item_exact_cs:n }
__regex_compile_end:

(End definition for __regex_compile_c{::})

__regex_compile_cs_aux:Nn
__regex_compile_cs_aux:NnnnN

Non-escaped right braces are only special if they appear when compiling the regular expression for a csname, but not within a class: \c{\{\}} matches the control sequences \{ and \}. So, end compiling the inner regex (this closes any dangling class or group). Then insert the corresponding test in the outer regex. As an optimization, if the control sequence test simply consists of several explicit possibilities (branches) then use __regex_item_exact_cs:n with an argument consisting of all possibilities separated by \scan_stop:

\flag_new:n { __regex_cs }
\cs_new_protected:cpn { __regex_compile_ \c_right_brace_str : }
{
__regex_if_in_cs:TF
{ __regex_compile_end_cs: }
{ \exp_after:wN __regex_compile_raw:N \c_right_brace_str }
}
\cs_new_protected:Npm __regex_compile_end_cs:
{ __regex_compile_end:
\flag_clear:n { __regex_cs }
\tl_set:Nx \l__regex_internal_a_tl
{ \exp_after:wN __regex_compile_cs_aux:Nn \l__regex_internal_regex
\q_nil \q_nil \q_recursion_stop }
\exp_args:Nx __regex_compile_one:n
{ \flag_if_raised:nTF { __regex_cs }
{ __regex_item_cs:n { \exp_not:o \l__regex_internal_regex } }
{ __regex_item_exact_cs:n

986
(40.3.12 Raw token lists with \u)

The \u escape is invalid in classes and directly following a catcode test. Otherwise, it must be followed by a left brace. We then collect the characters for the argument of \u within an \texttt{x}-expanding assignment. In principle we could just wait to encounter a right brace, but this is unsafe: if the right brace was missing, then we would reach the end-markers of the regex, and continue, leading to obscure fatal errors. Instead, we only allow raw and special characters, and stop when encountering a special right brace, any escaped character, or the end-marker.
__regex_compile_u_end:

Once we have extracted the variable’s name, we store the contents of that variable in \l__regex_internal_a_tl. The behaviour of \u then depends on whether we are within a \c{...} escape (in this case, the variable is turned to a string), or not.
When \u appears within a control sequence, we convert the variable to a string with escaped spaces. Then for each character insert a class matching exactly that character, once.

\cs_new_protected:Npn _regex_compile_u_in_cs:n #1
\tl_analysis_map_inline:Nn \l__regex_internal_a_tl
\tl_build_put_right:Nx \l__regex_build_tl
__regex_class:NnnnN \c_true_bool
{ __regex_item_exact_cs:n \exp_after:wN \cs_to_str:N ##1 }\else:
{ __regex_item_exact:nn { \int_value:w "##3 } { ##2 }
\fi:
{ 1 } { 0 } \c_false_bool
\}
)(End definition for _regex_compile_u_in_cs:n.)

In mode 0, the \u escape adds one state to the NFA for each token in \l__regex_internal_a_tl. If a given (token) is a control sequence, then insert a string comparison test, otherwise, _regex_item_exact:nn which compares catcode and character code.

\cs_new_protected:Npn _regex_compile_u_not_cs:n #1
\tl_analysis_map_inline:Nn \l__regex_internal_a_tl
\tl_build_put_right:Nx \l__regex_build_tl
__regex_class:NnnnN \c_true_bool
{ __regex_item_exact_cs:n \exp_after:wN \cs_to_str:N ##1 }\else:
{ __regex_item_exact:nn { \int_value:w "##3 } { ##2 }
\fi:
{ 1 } { 0 } \c_false_bool
\}
)(End definition for _regex_compile_u_not_cs:n.)

40.3.13 Other
_regex_compile_/K: The \K control sequence is currently the only “command”, which performs some action, rather than matching something. It is allowed in the same contexts as \b. At the
compilation stage, we leave it as a single control sequence, defined later.

\cs_new_protected:cpn { __regex_compile_/K: }
\{
\int_compare:nNnTF \l__regex_mode_int = \c__regex_outer_mode_int
{ \tl_build_put_right:Nn \l__regex_build_tl { __regex_command_K: } }
{ __regex_compile_raw_error:N K }
\}

(End definition for __regex_compile_/K:)

40.3.14 Showing regexes

_\ regex_show:N Within a group and within \tl_build_begin:N \ldots \tl_build_end:N we redefine all the function that can appear in a compiled regex, then run the regex. The result stored in \l__regex_internal_a_tl is then meant to be shown.

\cs_new_protected:Npn __regex_show:N #1
\{
\group_begin:
\tl_build_begin:N \l__regex_build_tl
\cs_set_protected:Npn __regex_branch:n
\{ \seq_pop_right:NN \l__regex_show_prefix_seq
\l__regex_internal_a_tl
__regex_show_one:n { +\text{-branch} }
\seq_put_right:No \l__regex_show_prefix_seq
\l__regex_internal_a_tl
\use:n \}
\cs_set_protected:Npn __regex_group:nnnN \{ __regex_show_group_aux_nnnN \}
\cs_set_protected:Npn __regex_group_no_capture:nnnN \{ \text{-no-capture} \}
\cs_set_protected:Npn __regex_group_resetting:nnnN \{ \text{-resetting} \}
\cs_set_eq:NN __regex_class:NnnnN __regex_show_class:NnnnN
\cs_set_protected:Npn __regex_command_K:
\{ __regex_show_one:n { \text{reset-match-start-(\textbackslash K) } } \}
\cs_set_protected:Npn __regex_assertion:Nn ##1##2
\{ __regex_show_one:n { \text{negative- assertion:~##2} } \}
\cs_set_protected:Npn __regex_b_test: \{ word_boundary \}
\cs_set_eq:NN __regex_anchor:N \l__regex_show_anchor_to_str:N
\cs_set_protected:Npn __regex_item_caseful_equal:n ##1
\{ __regex_show_one:n { \text{char-code-int_eval:n(#1) } } \}
\cs_set_protected:Npn __regex_item_caseful_range:nn ##1##2
\{ __regex_show_one:n { \text{range-[int_eval:n(#1), int_eval:n(#2)]} } \}
\cs_set_protected:Npn __regex_item_caseless_equal:n #1
\{ __regex_show_one:n { \text{char-code-int_eval:n(#1)-(caseless)} } \}
\cs_set_protected:Npn __regex_item_caseless_range:nn #1##2

990
__regex_show_one:n

Every part of the final message goes through this function, which adds one line to the output, with the appropriate prefix.

__regex_show_push:n
__regex_show_pop:
__regex_show_scope:nn

Enter and exit levels of nesting. The scope function prints its first argument as an “introduction”, then performs its second argument in a deeper level of nesting.
We display all groups in the same way, simply adding a message, (no capture) or (resetting), to special groups. The odd \use_ii:nn avoids printing a spurious ++-branch for the first branch.

__regex_show_group_aux:nnnnN

\cs_new_protected:Npn __regex_show_group_aux:nnnnN \#1\#2\#3\#4\#5
\{
 __regex_show_one:n { , -group~begin \#1 }
 __regex_show_push:n { | }
 \use_ii:nn \#2
 __regex_show_pop:
 __regex_show_one:n
 \{ `-group-end __regex_msg_repeated:nnN \#3 \#4 \#5 \}
\}

(End definition for __regex_show_group_aux:nnnnN.)

__regex_show_class:NNnnN

I’m entirely unhappy about this function: I couldn’t find a way to test if a class is a single test. Instead, collect the representation of the tests in the class. If that had more than one line, write Match or Don’t match on its own line, with the repeating information if any. Then the various tests on lines of their own, and finally a line. Otherwise, we need to evaluate the representation of the tests again (since the prefix is incorrect). That’s clunky, but not too expensive, since it’s only one test.

\cs_set:Npn __regex_show_class:NNnnN \#1\#2\#3\#4\#5
\{
 \group_begin:
 \tl_build_begin:N \l__regex_build_tl
 \int_zero:N \l__regex_show_lines_int
 __regex_show_push:n {~}
 \#2
 \int_compare:nTF { \l__regex_show_lines_int = 0 }
 \{ \group_end:
 __regex_show_one:n { \bool_if:NTF \#1 { Fail } \{ Pass \} }
 \}
 \{ \bool_if:nTF
 \{ \#1 && \int_compare_p:n { \l__regex_show_lines_int = 1 } \}
 \{ \group_end:
 \#2
 \tl_build_put_right:Nn \l__regex_build_tl
 \{ __regex_msg_repeated:mnN \#3 \#4 \#5 \}
 \}
 \}
 \tl_build_end:N \l__regex_build_tl
 \exp_args:NNNo
 \group_end:
 \tl_set:Nn \l__regex_internal_a_tl \l__regex_build_tl
 __regex_show_one:n
 \{ \bool_if:nTF \#1 \{ Match \} \{ Don’t~match \}
 __regex_msg_repeated:mnN \#3 \#4 \#5 \}
\}

992
\tl_build_put_right:Nx \l__regex_build_tl
\{ \exp_not:o \l__regex_internal_a_tl \}
\}
\}
\}

(End definition for __regex_show_class:Nnnn.)

__regex_show_anchor_to_str:N
The argument is an integer telling us where the anchor is. We convert that to the relevant info.
\cs_new:Npn __regex_show_anchor_to_str:N #1
\{ \str_case:nnF { #1 } \{ \l__regex_min_pos_int \} \{ start-\{\iow_char:N\A\} \}
\{ \l__regex_start_pos_int \} \{ start-of-match-\{\iow_char:N\G\} \}
\{ \l__regex_max_pos_int \} \{ end-\{\iow_char:N\Z\} \}
\} \{ <error:-'#1'-not-recognized> \}
\}

(End definition for __regex_show_anchor_to_str:N.)

__regex_show_item_catcode:NnT
Produce a sequence of categories which the catcode bitmap #2 contains, and show it, indenting the tests on which this catcode constraint applies.
\cs_new_protected:Npn __regex_show_item_catcode:NnT #1#2
\{ \seq_set_split:Nnn \l__regex_internal_seq \{ \scan_stop: \} \{ CBEMTPUDSLOA \}
\seq_set_filter:NNn \l__regex_internal_seq \l__regex_internal_seq
\{ \int_if_odd_p:n { #2 / \int_use:c { c__regex_catcode_##1_int } } \}
__regex_show_scope:nn
\{ categories-\}
\seq_map_function:NN \l__regex_internal_seq \use:n \-
\boW_if:WF #1 \{ negative- \} class
\}
\}

(End definition for __regex_show_item_catcode:NnT.)

__regex_show_item_exact_cs:n
\cs_new_protected:Npn __regex_show_item_exact_cs:n #1
\{ \seq_set_split:Nnn \l__regex_internal_seq \{ \scan_stop: \} \{#1\}
\seq_set_map:Nnn \l__regex_internal_seq \l__regex_internal_seq
\l__regex_internal_seq \{ \iow_char:N\#1 \}
__regex_show_one:n
\{ control-sequence- \seq_use:Nn \l__regex_internal_seq \{ -or- \} \}
\}

(End definition for __regex_show_item_exact_cs:n.)
40.4 Building

40.4.1 Variables used while building

The last state that was allocated is \texttt{\l__regex_max_state_int} \texttt{- 1}, so that \texttt{\l__regex_max_state_int} always points to a free state. The \texttt{min_state} variable is 1 to begin with, but gets shifted in nested calls to the matching code, namely in \texttt{\c{...}} constructions.

\begin{verbatim}
\int_new:N \l__regex_min_state_int
\int_set:Nn \l__regex_min_state_int { 1 }
\int_new:N \l__regex_max_state_int
\end{verbatim}

(End definition for \texttt{\l__regex_min_state_int} and \texttt{\l__regex_max_state_int}.)

\begin{verbatim}
\int_new:N \l__regex_left_state_int
\int_new:N \l__regex_right_state_int
\seq_new:N \l__regex_left_state_seq
\seq_new:N \l__regex_right_state_seq
\end{verbatim}

(End definition for \texttt{\l__regex_left_state_int} and others.)

\begin{verbatim}
\int_new:N \l__regex_capturing_group_int
\end{verbatim}

(End definition for \texttt{\l__regex_capturing_group_int}.)

40.4.2 Framework

This phase is about going from a compiled regex to an \texttt{nfa}. Each state of the \texttt{nfa} is stored in a \texttt{toks}. The operations which can appear in the \texttt{toks} are

- \texttt{\l__regex_action_start_wildcard}: inserted at the start of the regular expression to make it unanchored.

- \texttt{\l__regex_action_success}: marks the exit state of the \texttt{nfa}.

- \texttt{\l__regex_action_cost:n {\langle state\rangle}} is a transition from the current \texttt{\langle state\rangle} to \texttt{\langle state\rangle + \langle shift\rangle}, which consumes the current character: the target state is saved and will be considered again when matching at the next position.

- \texttt{\l__regex_action_free:n {\langle shift\rangle}}, and \texttt{\l__regex_action_free_group:n {\langle shift\rangle}} are free transitions, which immediately perform the actions for the state \texttt{\langle state\rangle + \langle shift\rangle} of the \texttt{nfa}. They differ in how they detect and avoid infinite loops. For now, we just need to know that the \texttt{group} variant must be used for transitions back to the start of a group.

- \texttt{\l__regex_action_submatch:n {\langle key\rangle}} where the \texttt{\langle key\rangle} is a group number followed by \texttt{<} or \texttt{>} for the beginning or end of group. This causes the current position in the query to be stored as the \texttt{\langle key\rangle} submatch boundary.
We strive to preserve the following properties while building.

- The current capturing group is \texttt{capturing_group} \(-1\), and if a group opened now it would be labelled \texttt{capturing_group}.
- The last allocated state is \texttt{max_state} \(-1\), so \texttt{max_state} is a free state.
- The \texttt{left_state} points to a state to the left of the current group or of the last class.
- The \texttt{right_state} points to a newly created, empty state, with some transitions leading to it.
- The \texttt{left/right} sequences hold a list of the corresponding end-points of nested groups.

\texttt{_regex_build:n} The \texttt{n}-type function first compiles its argument. Reset some variables. Allocate two states, and put a wildcard in state \texttt{0} (transitions to state \texttt{1} and \texttt{0} state). Then build the regex within a (capturing) group numbered \texttt{0} (current value of \texttt{capturing_group}). Finally, if the match reaches the last state, it is successful.

\texttt{_regex_build_for_cs:n} The matching code relies on some global intarray variables, but only uses a range of their entries. Specifically,

- \texttt{__regex_state_active_intarray} from \texttt{__regex_min_state_int} to \texttt{__regex_max_state_int} \(-1\);
- \texttt{__regex_thread_state_intarray} from \texttt{__regex_min_active_int} to \texttt{__regex_max_active_int} \(-1\).

In fact, some data is stored in \texttt{\toks} registers (local) in the same ranges so these ranges mustn’t overlap. This is done by setting \texttt{__regex_min_active_int} to \texttt{__regex_max_state_int} after building the NFA. Here, in this nested call to the matching code, we need the new versions of these ranges to involve completely new entries of the intarray.
variables, so we begin by setting (the new) \l__regex_min_state_int to (the old) \l__regex_max_active_int to use higher entries.

When using a regex to match a cs, we don’t insert a wildcard, we anchor at the end, and since we ignore submatches, there is no need to surround the expression with a group. However, for branches to work properly at the outer level, we need to put the appropriate left and right states in their sequence.

\begin{verbatim}
\cs_new_protected:Npn __regex_build_for_cs:n #1
\begin{verbatim}
{ \int_set_eq:NN \l__regex_min_state_int \l__regex_max_active_int
\int_set_eq:NN \l__regex_max_state_int \l__regex_min_state_int
__regex_build_new_state:
__regex_build_new_state:
__regex_push_lr_states:
__regex_pop_lr_states:
__regex_toks_put_right:Nn \l__regex_right_state_int
{ \if_int_compare:w \l__regex_curr_pos_int = \l__regex_max_pos_int
 \exp_after:wN __regex_action_success:
 \fi:
}
(End definition for __regex_build_for_cs:n.)
\end{verbatim}

40.4.3 Helpers for building an nfa

__regex_push_lr_states: When building the regular expression, we keep track of pointers to the left-end and right-end of each group without help from \TeX’s grouping.

\begin{verbatim}
\cs_new_protected:Npn __regex_push_lr_states:
{ \seq_push:No \l__regex_left_state_seq \int_use:N \l__regex_left_state_int
\seq_push:No \l__regex_right_state_seq \int_use:N \l__regex_right_state_int
}
\cs_new_protected:Npn __regex_pop_lr_states:
{ \seq_pop:NN \l__regex_left_state_seq \l__regex_internal_a_tl
\int_set:Nn \l__regex_left_state_int \l__regex_internal_a_tl
\seq_pop:NN \l__regex_right_state_seq \l__regex_internal_a_tl
\int_set:Nn \l__regex_right_state_int \l__regex_internal_a_tl
}
(End definition for __regex_push_lr_states: and __regex_pop_lr_states:.)
\end{verbatim}

Add a transition from #2 to #3 using the function #1. The left function is used for higher priority transitions, and the right function for lower priority transitions (which should be performed later). The signatures differ to reflect the differing usage later on. Both functions could be optimized.

\begin{verbatim}
\cs_new_protected:Npn __regex_build_transition_left:NNN #1#2#3
{ __regex_toks_put_left:Nx \l__regex_internal_a_tl #2 { \int_eval:n \l__regex_internal_a_tl { #3 - #2 } } }
\cs_new_protected:Npn __regex_build_transition_right:NN #1#2#3
{ __regex_toks_put_right:Nx #2 { \int_eval:n \l__regex_internal_a_tl { #3 - #2 } } }
\end{verbatim}

996
__regex_build_new_state:
Add a new empty state to the NFA. Then update the left, right, and max states, so that the right state is the new empty state, and the left state points to the previously “current” state.

\cs_new_protected:Npn __regex_build_new_state:
__regex_toks_clear:N \l__regex_max_state_int
\int_set_eq:NN \l__regex_left_state_int \l__regex_right_state_int
\int_set_eq:NN \l__regex_right_state_int \l__regex_max_state_int
\int_incr:N \l__regex_max_state_int

(End definition for __regex_build_new_state:.)

__regex_build_transitions_lazyness:NNNNN
This function creates a new state, and puts two transitions starting from the old current state. The order of the transitions is controlled by \#1, true for lazy quantifiers, and false for greedy quantifiers.

\cs_new_protected:Npn __regex_build_transitions_lazyness:NNNNN #1#2#3#4#5
__regex_build_new_state:
__regex_toks_put_right:Nx \l__regex_left_state_int
\if_meaning:w \c_true_bool #1
#2 { \int_eval:n { #3 - \l__regex_left_state_int } }
#4 { \int_eval:n { #5 - \l__regex_left_state_int } }
\else:
#4 { \int_eval:n { #5 - \l__regex_left_state_int } }
#2 { \int_eval:n { #3 - \l__regex_left_state_int } }
\fi:
\cs_set:Npx __regex_tests_action_cost:n ##1
\exp_not:n { \exp_not:n {#2} }
\bool_if:NTF #1
{ __regex_break_point:TF { __regex_action_cost:n {##1} } { } }
{ __regex_break_point:TF { } { __regex_action_cost:n {##1} } }
\if_case:w - #4 \exp_stop_f:
__regex_class_repeat:n {#3}

(End definition for __regex_build_transitions_lazyness:NNNNN.)

40.4.4 Building classes

The arguments are: \(\langle boolean \rangle \ \langle \{ tests \} \rangle \ \langle \{ min \} \rangle \ \langle \{ more \} \rangle \ \langle lazyness \rangle\). First store the tests with a trailing __regex_action_cost:n in the true branch of __regex_break_point:TF for positive classes, or the false branch for negative classes. The integer \(\langle more \rangle\) is 0 for fixed repetitions, \(-1\) for unbounded repetitions, and \(\langle max \rangle - \langle min \rangle\) for a range of repetitions.

\cs_new_protected:Npn __regex_class:NnnnN #1#2#3#4#5
\cs_set:Npx __regex_tests_action_cost:n #1#2#3#4#5
\exp_not:n { \exp_not:n {#2} }
\bool_if:NTF #1
{ __regex_break_point:TF { __regex_action_cost:n {#1#1} } { } }
{ __regex_break_point:TF { } { __regex_action_cost:n {#1#1} } }
\if_case:w - #4 \exp_stop_f:
__regex_class_repeat:n {#3}
\or: __regex_class_repeat:nN {#3} #5
\else: __regex_class_repeat:nnN {#3} {#4} #5
\fi:
\)
\cs_new:Npn __regex_tests_action_cost:n { __regex_action_cost:n }

(End definition for __regex_class:NNnnN and __regex_tests_action_cost:n.)

__regex_class_repeat:n

This is used for a fixed number of repetitions. Build one state for each repetition, with a
transition controlled by the tests that we have collected. That works just fine for \#1 = 0
repetitions: nothing is built.
\cs_new_protected:Npn __regex_class_repeat:n #1
\{
\prg_replicate:nn {#1}
\{ __regex_build_new_state:
__regex_build_transition_right:nNn __regex_tests_action_cost:n
\l__regex_left_state_int \l__regex_right_state_int
\}
\}

(End definition for __regex_class_repeat:n.)

__regex_class_repeat:nnN

This implements unbounded repetitions of a single class (e.g. the * and + quantifiers). If
the minimum number \#1 of repetitions is 0, then build a transition from the current state
to itself governed by the tests, and a free transition to a new state (hence skipping the
tests). Otherwise, call __regex_class_repeat:n for the code to match \#1 repetitions,
and add free transitions from the last state to the previous one, and to a new one. In
both cases, the order of transitions is controlled by the lazyness boolean \#2.
\cs_new_protected:Npn __regex_class_repeat:nnN #1#2
\{
\if_int_compare:w #1 = 0 \exp_stop_f:
__regex_build_transitions_lazyness:NNNNN #2
__regex_action_free:n \l__regex_right_state_int
__regex_tests_action_cost:n \l__regex_left_state_int
\else:
__regex_class_repeat:n {#1}
\int_set_eq:NN \l__regex_internal_a_int \l__regex_left_state_int
__regex_build_transitions_lazyness:NNNNN #2
__regex_action_free:n \l__regex_right_state_int
__regex_action_free:n \l__regex_internal_a_int
\fi:
\}

(End definition for __regex_class_repeat:nnN.)

__regex_class_repeat:nnN

We want to build the code to match from \#1 to \#1 + \#2 repetitions. Match \#1 repetitions
(can be 0). Compute the final state of the next construction as a. Build \#2 > 0 states,
each with a transition to the next state governed by the tests, and a transition to the
final state a. The computation of a is safe because states are allocated in order, starting
from max_state.
\cs_new_protected:Npn __regex_class_repeat:nnN #1#2#3
\{
__regex_class_repeat:n {#1}
\}
25225 \int_set:Nn \l__regex_internal_a_int
25226 { \l__regex_max_state_int + #2 - 1 }
25227 \prg_replicate:nn { #2 }
25228 {
25229 __regex_build_transitions_lazyness:NNNNN #3
25230 __regex_action_free:n \l__regex_internal_a_int
25231 __regex_tests_action_cost:n \l__regex_right_state_int
25232 }
25233 }

(End definition for __regex_class_repeat:nn.)

40.4.5 Building groups

__regex_group_aux:nnnnN

Arguments: \{⟨label⟩\} \{⟨contents⟩\} \{⟨min⟩\} \{⟨more⟩\} \{⟨lazyness⟩\}. If \{⟨min⟩\} is 0, we need to add a state before building the group, so that the thread which skips the group does not also set the start-point of the submatch. After adding one more state, the left_state is the left end of the group, from which all branches stem, and the right_state is the right end of the group, and all branches end their course in that state. We store those two integers to be queried for each branch, we build the NFA states for the contents \#2 of the group, and we forget about the two integers. Once this is done, perform the repetition: either exactly \#3 times, or \#3 or more times, or between \#3 and \#3 + \#4 times, with lazyness \#5. The \{⟨label⟩\} \#1 is used for submatch tracking. Each of the three auxiliaries expects left_state and right_state to be set properly.

\cs_new_protected:Npn __regex_group:nnnN #1
25256 { \exp_args:No __regex_group_aux:nnnnN #1#2#3#4#5
25257 { \if_int_compare:w #3 = 0 \exp_stop_f:
25258 __regex_build_new_state:
25259 \assert_int:n \l__regex_max_state_int = \l__regex_right_state_int + 1
25260 __regex_build_transition_right:nNn __regex_action_free_group:n
25261 \l__regex_left_state_int \l__regex_right_state_int
25262 \f:\
25263 __regex_build_new_state:
25264 __regex_push_lr_states:
25265 \l__regex_pop_lr_states:
25266 \if_case:w - #4 \exp_stop_f:
25267 __regex_group_repeat:nn \{#1\} \{#3\}
25268 \or: __regex_group_repeat:nnN \{#1\} \{#3\} \#5
25269 \else: __regex_group_repeat:nnnN \{#1\} \{#3\} \{#4\} \#5
25270 \f:
25271 }

(End definition for __regex_group_aux:nnnnN.)

__regex_group:nnnN __regex_group_no_capture:nnnN

Hand to __regex_group_aux:nnnnN the label of that group (expanded), and the group itself, with some extra commands to perform.

\cs_new_protected:Npn __regex_group:nnnN #1
25323 { \exp_args:No __regex_group_aux:nnnnN
25324 { \int_use:N \l__regex_capturing_group_int }
25325 { \int_incr:N \l__regex_capturing_group_int

999
Again, hand the label -1 to $______\text{regex_group}:nnnN$, but this time we work a little bit harder to keep track of the maximum group label at the end of any branch, and to reset the group number at each branch. This relies on the fact that a compiled regex always is a sequence of items of the form $_____\text{regex_branch}:n \{(\text{branch})\}$.

Add a free transition from the left state of the current group to a brand new state, starting point of this branch. Once the branch is built, add a transition from its last state to the right state of the group. The left and right states of the group are extracted from the relevant sequences.
This function is called to repeat a group a fixed number of times \#2; if this is 0 we remove the group altogether (but don’t reset the \texttt{capturing_group} label). Otherwise, the auxiliary \texttt{__regex_group_repeat_aux:n} copies \#2 times the \texttt{toks} for the group, and leaves \texttt{internal_a} pointing to the left end of the last repetition. We only record the submatch information at the last repetition. Finally, add a state at the end (the transition to it has been taken care of by the replicating auxiliary).

\begin{verbatim}
\cs_new_protected:Npn __regex_group_repeat:nn #1#2
\{\if_int_compare:w #2 = 0 \exp_stop_f:
 \int_set:Nn \l__regex_max_state_int { \l__regex_left_state_int - 1 }
 __regex_build_new_state:
\else:
 __regex_group_repeat_aux:n {#2}
 __regex_group_submatches:nNN {#1}
 \l__regex_internal_a_int \l__regex_right_state_int
 __regex_build_new_state:
\fi:\}
\end{verbatim}

\textit{(End definition for \texttt{__regex_group_repeat:nn}.)}

This inserts in states \#2 and \#3 the code for tracking submatches of the group \#1, unless inhibited by a label of \texttt{-1}.

\begin{verbatim}
\cs_new_protected:Npn __regex_group_submatches:nNN #1#2#3
\{\if_int_compare:w #1 > -1 \exp_stop_f:
 __regex_toks_put_left:Nx #2 { __regex_action_submatch:n { #1 < } }
 __regex_toks_put_left:Nx #3 { __regex_action_submatch:n { #1 > } }
\fi:\}
\end{verbatim}

\textit{(End definition for \texttt{__regex_group_submatches:nNN}.)}

Here we repeat \texttt{toks} ranging from \texttt{left_state} to \texttt{max_state}, \#1 > 0 times. First add a transition so that the copies “chain” properly. Compute the shift \(c\) between the original copy and the last copy we want. Shift the \texttt{right_state} and \texttt{max_state} to their final values. We then want to perform \(c\) copy operations. At the end, \(b\) is equal to the \texttt{max_state}, and \(a\) points to the left of the last copy of the group.

\begin{verbatim}
\cs_new_protected:Npn __regex_group_repeat_aux:n #1
\{ __regex_build_transition_right:nNN __regex_action_free:n
 \l__regex_right_state_int \l__regex_max_state_int
 \int_set_eq:NN \l__regex_internal_a_int \l__regex_left_state_int
 \int_set_eq:NN \l__regex_internal_b_int \l__regex_max_state_int
 \if_int_compare:w \int_eval:n {#1} > 1 \exp_stop_f:
 \int_set:Nn \l__regex_internal_c_int {(#1 - 1) * (\l__regex_internal_b_int - \l__regex_internal_a_int)}
 \else:
 \int_add:Nn \l__regex_right_state_int { \l__regex_internal_c_int }
 \int_add:Nn \l__regex_max_state_int { \l__regex_internal_c_int }
 \fi:\}
\end{verbatim}

\textit{(End definition for \texttt{__regex_group_repeat_aux:n}.)}
This function is called to repeat a group at least n times; the case $n = 0$ is very different from $n > 0$. Assume first that $n = 0$. Insert submatch tracking information at the start and end of the group, add a free transition from the right end to the “true” left state a (remember: in this case we had added an extra state before the left state). This forms the loop, which we break away from by adding a free transition from a to a new state.

Now consider the case $n > 0$. Repeat the group n times, chaining various copies with a free transition. Add submatch tracking only to the last copy, then add a free transition from the right end back to the left end of the last copy, either before or after the transition to move on towards the rest of the NFA. This transition can end up before submatch tracking, but that is irrelevant since it only does so when going again through the group, recording new matches. Finally, add a state; we already have a transition pointing to it from __regex_group_repeat_aux:n.

\(End\ definition\ for\ __regex_group_repeat_aux:n.\)
We wish to repeat the group between #2 and #2 + #3 times, with a laziness controlled by #4. We insert submatch tracking up front: in principle, we could avoid recording submatches for the first #2 copies of the group, but that forces us to treat specially the case #2 = 0. Repeat that group with submatch tracking #2 + #3 times (the maximum number of repetitions). Then our goal is to add #3 transitions from the end of the #2-th group, and each subsequent groups, to the end. For a lazy quantifier, we add those transitions to the left states, before submatch tracking. For the greedy case, we add the transitions to the right states, after submatch tracking and the transitions which go on with more repetitions. In the greedy case with #2 = 0, the transition which skips over all copies of the group must be added separately, because its starting state does not follow the normal pattern: we had to add it “by hand” earlier.

```latex
\texttt{\textbackslash cs\textunderscore new\textunderscore protected:npm \textbackslash_\textunderscore regex\textunderscore group\textunderscore repeat:nnnN #1#2#3#4
{
  \_\_regex\textunderscore group\textunderscore submatches:nNN \{#1\}
  \_\_regex\textunderscore group\textunderscore repeat\textunderscore aux:n \{ #2 + #3 \}
  \if\textmeaning:w \texttt{c\_true\_bool} #4
    \int\textset_eq:NN \l__regex\textunderscore left\textunderscore state\textunderscore int \l__regex\textunderscore right\textunderscore state\textunderscore int
    \_\_regex\textunderscore group\textunderscore repeat\textunderscore aux:n \{ #3 \}
    \{
      \int\textsub:n \l__regex\textunderscore left\textunderscore state\textunderscore int
      \{ \_\_regex\textunderscore internal\textunderscore b\textunderscore int - \_\_regex\textunderscore internal\textunderscore a\textunderscore int \}
      \_\_regex\textunderscore build\textunderscore transition\textunderscore left:nNN \_\_regex\textunderscore action\textunderscore free:n
      \l__regex\textunderscore left\textunderscore state\textunderscore int \l__regex\textunderscore max\textunderscore state\textunderscore int
    \}
  \else:
    \prg\textreplicate:nn \{ #3 - 1 \}
    \{
      \int\textsub:n \l__regex\textunderscore right\textunderscore state\textunderscore int
      \{ \_\_regex\textunderscore internal\textunderscore b\textunderscore int - \_\_regex\textunderscore internal\textunderscore a\textunderscore int \}
      \_\_regex\textunderscore build\textunderscore transition\textunderscore right:nNN \_\_regex\textunderscore action\textunderscore free:n
      \l__regex\textunderscore right\textunderscore state\textunderscore int \l__regex\textunderscore max\textunderscore state\textunderscore int
    \}
  \if\int\textcompare:w \#2 = 0 \textexp\textstop\textf:
    \int\textset:n \l__regex\textunderscore right\textunderscore state\textunderscore int
    \{ \l__regex\textunderscore left\textunderscore state\textunderscore int - 1 \}
  \else:
    \int\textsub:n \l__regex\textunderscore right\textunderscore state\textunderscore int
    \{ \_\_regex\textunderscore internal\textunderscore b\textunderscore int - \_\_regex\textunderscore internal\textunderscore a\textunderscore int \}
  \fi:
  \_\_regex\textunderscore build\textunderscore transition\textunderscore right:nNN \_\_regex\textunderscore action\textunderscore free:n
  \l__regex\textunderscore right\textunderscore state\textunderscore int \l__regex\textunderscore max\textunderscore state\textunderscore int
  \fi:
  \_\_regex\textunderscore build\textunderscore new\textunderscore state:
}
(End definition for \_\_regex\textunderscore group\textunderscore repeat:nnnN.)
```

40.4.6 Others

```latex
\_\_regex\textunderscore assertion:Nn
\_\_regex\textunderscore b\textunderscore test:
\_\_regex\textunderscore anchor:N

Usage: \_\_regex\textunderscore assertion:Nn \{\texttt{boolean}\} \{\texttt{test}\}, where the \{\texttt{test}\} is either of the two other functions. Add a free transition to a new state, conditionally to the assertion test. The \_\_regex\textunderscore b\textunderscore test: test is used by the \texttt{b} and \texttt{B} escape: check if the last character

1003
```
was a word character or not, and do the same to the current character. The boundary-marks of the string are non-word characters for this purpose. Anchors at the start or end of match use __regex_anchor:N, with a position controlled by the integer \#1.

\cs_new_protected:Npm __regex_assertion:Nn #1\#2
\{__regex_build_new_state:\n__regex_toks_put_right:Nx \l__regex_left_state_int
\exp not:n \#2\}
__regex_break_point:TF
\bool_if:NF #1 \{ \} \}
{
__regex_action_free:n
\int_eval:n
{ \l__regex_right_state_int - \l__regex_left_state_int }
\}
\bool_if:NT #1 \{ \} \}
\cs_new_protected:Npn __regex_anchor:N #1
\{\if_int_compare:w #1 = \l__regex_curr_pos_int
\exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_b_test:
\group_begin:
\int_set_eq:NN \l__regex_curr_char_int \l__regex_last_char_int
__regex_prop_w:
__regex_break_point:TF
\{ \group_end: __regex_item_reverse:n __regex_prop_w: \}
\group_end: __regex_prop_w: \}
\}
\cs_new_protected:Npm __regex_assertion:Nn __regex_b_test:\n__regex_anchor:N}
__regex_command_K: Change the starting point of the 0-th submatch (full match), and transition to a new state, pretending that this is a fresh thread.
\cs_new_protected:Npm __regex_command_K:
\{__regex_build_new_state:\n__regex_toks_put_right:Nx \l__regex_left_state_int
__regex_action_submatch:n \{ __ \}
\bool_set_true:N \l__regex_fresh_thread_bool
__regex_action_free:n
\int_eval:n
{ \l__regex_right_state_int - \l__regex_left_state_int }
\}
\bool_set_false:N \l__regex_fresh_thread_bool

(End definition for __regex_assertion:Nn, __regex_b_test:, and __regex_anchor:N.)
40.5 Matching

We search for matches by running all the execution threads through the NFA in parallel, reading one token of the query at each step. The NFA contains “free” transitions to other states, and transitions which “consume” the current token. For free transitions, the instruction at the new state of the NFA is performed immediately. When a transition consumes a character, the new state is appended to a list of “active states”, stored in $\texttt{\textbackslash g_regex_thread_state_intarray}$: this thread is made active again when the next token is read from the query. At every step (for each token in the query), we unpack that list of active states and the corresponding submatch props, and empty those.

If two paths through the NFA “collide” in the sense that they reach the same state after reading a given token, then they only differ in how they previously matched, and any future execution would be identical for both. (Note that this would be wrong in the presence of back-references.) Hence, we only need to keep one of the two threads: the thread with the highest priority. Our NFA is built in such a way that higher priority actions always come before lower priority actions, which makes things work.

The explanation in the previous paragraph may make us think that we simply need to keep track of which states were visited at a given step: after all, the loop generated when matching $(a?)*$ against a is broken, isn’t it? No. The group first matches a, as it should, then repeats; it attempts to match a again but fails; it skips a, and finds out that this state has already been seen at this position in the query: the match stops. The capturing group is (wrongly) a. What went wrong is that a thread collided with itself, and the later version, which has gone through the group one more times with an empty match, should have a higher priority than not going through the group.

We solve this by distinguishing “normal” free transitions __regex_action_free:n from transitions __regex_action_free_group:n which go back to the start of the group. The former keeps threads unless they have been visited by a “completed” thread, while the latter kind of transition also prevents going back to a state visited by the current thread.

40.5.1 Variables used when matching

The tokens in the query are indexed from $\texttt{\l__regex_min_pos_int}$ for the first to $\texttt{\l__regex_max_pos_int}$ for the last, and their information is stored in several arrays and $\texttt{\toks}$ registers with those numbers. We don’t start from 0 because the $\texttt{\toks}$ registers with low numbers are used to hold the states of the NFA. We match without backtracking, keeping all threads in lockstep at the $\texttt{\l__regex_curr_pos_int}$ in the query. The starting point of the current match attempt is $\texttt{\l__regex_start_pos_int}$, and $\texttt{\l__regex_success_pos_int}$, updated whenever a thread succeeds, is used as the next starting position.

(End definition for $\texttt{\l__regex_min_pos_int}$ and others.)
The character and category codes of the token at the current position; the character code of the token at the previous position; and the character code of the result of changing the case of the current token (A-Z ↔ a-z). This last integer is only computed when necessary, and is otherwise \c_max_int. The current_char variable is also used in various other phases to hold a character code.

25454 \int_new:N \l__regex_curr_char_int
25455 \int_new:N \l__regex_curr_catcode_int
25456 \int_new:N \l__regex_last_char_int
25457 \int_new:N \l__regex_case_changed_char_int

(End definition for \l__regex_curr_char_int and others.)

\l__regex_curr_state_int

For every character in the token list, each of the active states is considered in turn. The variable \l__regex_curr_state_int holds the state of the NFA which is currently considered: transitions are then given as shifts relative to the current state.

25458 \int_new:N \l__regex_curr_state_int

(End definition for \l__regex_curr_state_int.)

\l__regex_curr_submatches_prop \l__regex_success_submatches_prop

The submatches for the thread which is currently active are stored in the current_submatches property list variable. This property list is stored by __regex_action_cost:n into the \toks register for the target state of the transition, to be retrieved when matching at the next position. When a thread succeeds, this property list is copied to \l__regex_success_submatches_prop: only the last successful thread remains there.

25459 \prop_new:N \l__regex_curr_submatches_prop
25460 \prop_new:N \l__regex_success_submatches_prop

(End definition for \l__regex_curr_submatches_prop and \l__regex_success_submatches_prop.)

\l__regex_step_int

This integer, always even, is increased every time a character in the query is read, and not reset when doing multiple matches. We store in \g__regex_state_active_intarray the last step in which each ⟨state⟩ in the NFA was encountered. This lets us break infinite loops by not visiting the same state twice in the same step. In fact, the step we store is equal to step when we have started performing the operations of \toks⟨state⟩, but not finished yet. However, once we finish, we store step + 1 in \g__regex_state_active_intarray. This is needed to track submatches properly (see building phase). The step is also used to attach each set of submatch information to a given iteration (and automatically discard it when it corresponds to a past step).

25461 \int_new:N \l__regex_step_int

(End definition for \l__regex_step_int.)

\l__regex_min_active_int \l__regex_max_active_int

All the currently active threads are kept in order of precedence in \g__regex_thread_state_intarray, and the corresponding submatches in the \toks. For our purposes, those serve as an array, indexed from min_active (inclusive) to max_active (excluded). At the start of every step, the whole array is unpacked, so that the space can immediately be reused, and max_active is reset to min_active, effectively clearing the array.

25462 \int_new:N \l__regex_min_active_int
25463 \int_new:N \l__regex_max_active_int

(End definition for \l__regex_min_active_int and \l__regex_max_active_int.)
\g__regex_state_active_intarray \g__regex_thread_state_intarray
\g__regex_state_active_intarray stores the last ⟨step⟩ in which each ⟨state⟩ was active. \g__regex_thread_state_intarray stores threads to be considered in the next step, more precisely the states in which these threads are.

\intarray_new:Nn \g__regex_state_active_intarray \{ 65536 \}
\intarray_new:Nn \g__regex_thread_state_intarray \{ 65536 \}

(End definition for \g__regex_state_active_intarray and \g__regex_thread_state_intarray.)

\l__regex_every_match_tl
Every time a match is found, this token list is used. For single matching, the token list is empty. For multiple matching, the token list is set to repeat the matching, after performing some operation which depends on the user function. See __regex_single_match: and __regex_multi_match:n.

\tl_new:N \l__regex_every_match_tl
(End definition for \l__regex_every_match_tl.)

\l__regex_fresh_thread_bool \l__regex_empty_success_bool __regex_if_two_empty_matches:F
When doing multiple matches, we need to avoid infinite loops where each iteration matches the same empty token list. When an empty token list is matched, the next successful match of the same empty token list is suppressed. We detect empty matches by setting \l__regex_fresh_thread_bool to true for threads which directly come from the start of the regex or from the \K command, and testing that boolean whenever a thread succeeds. The function __regex_if_two_empty_matches:F is redefined at every match attempt, depending on whether the previous match was empty or not: if it was, then the function must cancel a purported success if it is empty and at the same spot as the previous match; otherwise, we definitely don’t have two identical empty matches, so the function is \use:n.

\bool_new:N \l__regex_fresh_thread_bool
\bool_new:N \l__regex_empty_success_bool
\cs_new_eq:NN __regex_if_two_empty_matches:F \use:n

(End definition for \l__regex_fresh_thread_bool, \l__regex_empty_success_bool, and __regex_if_two_empty_matches:F.)

\g__regex_success_bool \l__regex_saved_success_bool \l__regex_match_success_bool
The boolean \l__regex_match_success_bool is true if the current match attempt was successful, and \g__regex_success_bool is true if there was at least one successful match. This is the only global variable in this whole module, but we would need it to be local when matching a control sequence with \c{...}. This is done by saving the global variable into \l__regex_saved_success_bool, which is local, hence not affected by the changes due to inner regex functions.

\bool_new:N \g__regex_success_bool
\bool_new:N \l__regex_saved_success_bool
\bool_new:N \l__regex_match_success_bool

(End definition for \g__regex_success_bool, \l__regex_saved_success_bool, and \l__regex_match_success_bool.)
40.5.2 Matching: framework

First store the query into \toks registers and arrays (see __regex_query_set:nnn).
Then initialize the variables that should be set once for each user function (even for multiple matches). Namely, the overall matching is not yet successful; none of the states should be marked as visited (\g__regex_state_active_intarray), and we start at step 0; we pretend that there was a previous match ending at the start of the query, which was not empty (to avoid smothering an empty match at the start). Once all this is set up, we are ready for the ride. Find the first match.

\cs_new_protected:Npn __regex_match:n #1
\cs_new_protected:Npn __regex_match_cs:n #1
__regex_match_once: This function finds one match, then does some action defined by the every_match token list, which may recursively call __regex_match_once:. First initialize some variables: set the conditional which detects identical empty matches; this match attempt starts at the previous success_pos, is not yet successful, and has no submatches yet; clear the array of active threads, and put the starting state 0 in it. We are then almost ready to read our first token in the query, but we actually start one position earlier than the start, and get that token, to set last_char properly for word boundaries. Then call __regex_match_loop:, which runs through the query until the end or until a successful match breaks early.

__regex_single_match: For a single match, the overall success is determined by whether the only match attempt is a success. When doing multiple matches, the overall matching is successful as soon as any match succeeds. Perform the action #1, then find the next match.
\cs_new_protected:Npn __regex_multi_match:n #1

\tl_set:Nn \l__regex_every_match_tl

\if_meaning:w \c_true_bool \l__regex_match_success_bool
 \bool_gset_true:N \g__regex_success_bool
 #1
 \exp_after:wN __regex_match_once:
 \fi:

__regex_match_loop:

__regex_match_one_active:n

At each new position, set some variables and get the new character and category from the query. Then unpack the array of active threads, and clear it by resetting its length (max_active). This results in a sequence of __regex_use_state_and_submatches:nn \{\{state\}\} \{\{prop\}\}, and we consider those states one by one in order. As soon as a thread succeeds, exit the step, and, if there are threads to consider at the next position, and we have not reached the end of the string, repeat the loop. Otherwise, the last thread that succeeded is what __regex_match_once: matches. We explain the \texttt{fresh_thread} business when describing \texttt{__regex_action_wildcard:}.

\cs_new_protected:Npn __regex_match_loop:
\begin{verbatim}
\int_add:Nn \l__regex_step_int { 2 }
\int_incr:N \l__regex_curr_pos_int
\int_set_eq:NN \l__regex_last_char_int \l__regex_curr_char_int
\int_set_eq:NN \l__regex_case_changed_char_int \c_max_int
__regex_query_get:
\use:x
\begin{verbatim}
\int_step_function:nnN \l__regex_min_active_int \l__regex_max_active_int
__regex_match_one_active:n
\end{verbatim}
\end{verbatim}
\prg_break_point:
\bool_set_false:N \l__regex_fresh_thread_bool
\if_int_compare:w \l__regex_max_active_int > \l__regex_min_active_int
 \if_int_compare:w \l__regex_curr_pos_int < \l__regex_max_pos_int
 \exp_after:wN \exp_after:wN \exp_after:wN __regex_match_loop:
\fi:
\fi:
\end{verbatim}
\cs_new:Npn __regex_match_one_active:n #1
\begin{verbatim}
__regex_use_state_and_submatches:nn
\{\{state\}\} \{\{prop\}\}
\end{verbatim}
\cs_new:Npn __regex_use_state_and_submatches:nn
\{\{state\}\} \{\{prop\}\}

{ __kernel_intarray_item:Nn \g__regex_thread_state_intarray {#1} }
{ __regex_toks_use:w #1 }
}
The arguments are: tokens that o and x expand to one token of the query, the catcode, and the character code. Store those, and the current brace balance (used later to check for overall brace balance) in a \texttt{toks} register and some arrays, then update the balance.

\begin{verbatim}
\cs_new_protected:Npn __regex_query_set:nnn #1#2#3
__kernel_intarray_gset:Nnn \g__regex_charcode_intarray \l__regex_curr_pos_int {#3}
__kernel_intarray_gset:Nnn \g__regex_catcode_intarray \l__regex_curr_pos_int {#2}
__kernel_intarray_gset:Nnn \g__regex_balance_intarray \l__regex_curr_pos_int \l__regex_balance_int
__regex_toks_set:Nn \l__regex_curr_pos_int {#1}
\int_incr:N \l__regex_curr_pos_int
\if_case:w #2 \exp_stop_f:
\or: \int_incr:N \l__regex_balance_int
\or: \int_decr:N \l__regex_balance_int
\fi:
\}
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __regex_query_get:
__kernel_intarray_item:Nn \g__regex_charcode_intarray \l__regex_curr_pos_int \scan_stop:
\l__regex_curr_char_int
__kernel_intarray_item:Nn \g__regex_catcode_intarray \l__regex_curr_pos_int \scan_stop:
\l__regex_curr_catcode_int
\}
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __regex_use_state:
__kernel_intarray_gset:Nnn \g__regex_state_active_intarray \l__regex_curr_state_int \l__regex_step_int
__regex_toks_use:w \l__regex_curr_state_int
__kernel_intarray_gset:Nnn \g__regex_state_active_intarray \l__regex_curr_state_int \int_eval:n { \l__regex_step_int + 1 }
\}
\end{verbatim}

\subsection{Using states of the nfa}

\begin{verbatim}
\cs_new_protected:Npn __regex_use_state:
\}
\end{verbatim}

\section*{40.5.3 Using states of the nfa}

Use the current NFA instruction. The state is initially marked as belonging to the current step: this allows normal free transition to repeat, but group-repeating transitions won't. Once we are done exploring all the branches it spawned, the state is marked as step + 1: any thread hitting it at that point will be terminated.

\begin{verbatim}
\cs_new_protected:Npn __regex_use_state:
\}
\end{verbatim}

(End definition for \texttt{_regex_match_loop: and _regex_match_one_active:n}.)

(End definition for \texttt{_regex_query_set:nnn}.)

(End definition for \texttt{_regex_query_get:}.)

(End definition for \texttt{_regex_use_state:}.)
This function is called as one item in the array of active threads after that array has been unpacked for a new step. Update the `current_state` and `current_submatches` and use the state if it has not yet been encountered at this step.

```latex
\cs_new_protected:Npm \_\_regex_use_state_and_submatches:nn #1 #2
\{
  \int_set:Nn \l__regex_curr_state_int {#1}
  \if_int_compare:w
    \_kernel_intarray_item:Nn \g__regex_state_active_intarray
    { \l__regex_curr_state_int }
    < \l__regex_step_int
  \tl_set:Nn \l__regex_curr_submatches_prop {#2}
  \exp_after:wN \__regex_use_state:
  \fi:
\scan_stop:
\}
```

(End definition for __regex_use_state_and_submatches:nn.)

40.5.4 Actions when matching

__regex_action_start_wildcard:

For an unanchored match, state 0 has a free transition to the next and a costly one to itself, to repeat at the next position. To catch repeated identical empty matches, we need to know if a successful thread corresponds to an empty match. The instruction resetting \l__regex_fresh_thread_bool may be skipped by a successful thread, hence we had to add it to __regex_match_loop: too.

```latex
\cs_new_protected:Npm \_\_regex_action_start_wildcard:
\{
  \bool_set_true:N \l__regex_fresh_thread_bool
  \_\_regex_action_free:n {1}
  \bool_set_false:N \l__regex_fresh_thread_bool
  \_\_regex_action_cost:n {0}
\}
```

(End definition for __regex_action_start_wildcard.)

__regex_action_free:n __regex_action_free_group:n __regex_action_free_aux:nn

These functions copy a thread after checking that the NFA state has not already been used at this position. If not, store submatches in the new state, and insert the instructions for that state in the input stream. Then restore the old value of \l__regex_curr_state_int and of the current submatches. The two types of free transitions differ by how they test that the state has not been encountered yet: the group version is stricter, and will not use a state if it was used earlier in the current thread, hence forcefully breaking the loop, while the “normal” version will revisit a state even within the thread itself.

```latex
\cs_new_protected:Npm \_\_regex_action_free:n
\{ \_\_regex_action_free_aux:nn { > \l__regex_step_int \else: } \}
\cs_new_protected:Npm \_\_regex_action_free_group:n
\{ \_\_regex_action_free_aux:nn { < \l__regex_step_int } \}
\cs_new_protected:Npm \_\_regex_action_free_aux:nn #1#2
\{
  \use:x
  \{
    \int_add:Nn \l__regex_curr_state_int {#2}
    \exp_not:n
    \{
```
__regex_action_cost:n

A transition which consumes the current character and shifts the state by \#1. The resulting state is stored in the appropriate array for use at the next position, and we also store the current submatches.

\cs_new_protected:Npm __regex_action_cost:n \#1
\{
\exp_args:Nx __regex_store_state:n \{ \int_eval:n { \l__regex_curr_state_int + \#1 } \}
\}

\cs_new_protected:Npn __regex_disable_submatches:
\cs_set_protected:Npn __regex_store_submatches: { }
\cs_set_protected:Npn __regex_action_submatch:n \##1 { }
\}

(End definition for __regex_disable_submatches:.)

__regex_disable_submatches:

Some user functions don’t require tracking submatches. We get a performance improvement by simply defining the relevant functions to remove their argument and do nothing with it.

\cs_new_protected:Npm __regex_disable_submatches:
\{ \cs_set_protected:Npm __regex_store_submatches: { } \}
\cs_set_protected:Npm __regex_action_submatch:n \#1 \{ \}
\}

(End definition for __regex_disable_submatches:)
__regex_action_submatch:n \ Update the current submatches with the information from the current position. Maybe a bottleneck.
\begin{verbatim}
\cs_new_protected:Npn __regex_action_submatch:n #1
\prop_put:Nno \l__regex_curr_submatches_prop {#1}
\int_use:N \l__regex_curr_pos_int }
\end{verbatim}
\end{verbatim}
(End definition for __regex_action_submatch:n.)

__regex_action_success: \ There is a successful match when an execution path reaches the last state in the NFA, unless this marks a second identical empty match. Then mark that there was a successful match; it is empty if it is “fresh”; and we store the current position and submatches. The current step is then interrupted with \prg_break:, and only paths with higher precedence are pursued further. The values stored here may be overwritten by a later success of a path with higher precedence.
\begin{verbatim}
\cs_new_protected:Npn __regex_action_success:
__regex_if_two_empty_matches:F
\bool_set_true:N \l__regex_match_success_bool
\bool_set_eq:NN \l__regex_empty_success_bool \l__regex_fresh_thread_bool
\int_set_eq:NN \l__regex_success_pos_int \l__regex_curr_pos_int
\prop_set_eq:NN \l__regex_success_submatches_prop \l__regex_curr_submatches_prop
\prg_break:
\end{verbatim}
\end{verbatim}
(End definition for __regex_action_success:.)

\l__regex_replacement_csnames_int \ The behaviour of closing braces inside a replacement text depends on whether a sequences \c{ or \u{ has been encountered. The number of “open” such sequences that should be closed by } is stored in \l__regex_replacement_csnames_int, and decreased by 1 by each }.
\begin{verbatim}
\int_new:N \l__regex_replacement_csnames_int
\end{verbatim}
(End definition for \l__regex_replacement_csnames_int.)

\l__regex_replacement_category_tl \l__regex_replacement_category_seq \ This sequence of letters is used to correctly restore categories in nested constructions such as \cL(abc\cD(_d).
\begin{verbatim}
\tl_new:N \l__regex_replacement_category_tl
\seq_new:N \l__regex_replacement_category_seq
\end{verbatim}
(End definition for \l__regex_replacement_category_tl and \l__regex_replacement_category_seq.)

\l__regex_balance_tl \ This token list holds the replacement text for __regex_replacement_balance_one-match:n while it is being built incrementally.
\begin{verbatim}
\tl_new:N \l__regex_balance_tl
\end{verbatim}
This expects as an argument the first index of a set of entries in \g__:regsubmatch_begin_intarray (and related arrays) which hold the submatch information for a given match. It can be used within an integer expression to obtain the brace balance incurred by performing the replacement on that match. This combines the braces lost by removing the match, braces added by all the submatches appearing in the replacement, and braces appearing explicitly in the replacement. Even though it is always redefined before use, we initialize it as for an empty replacement. An important property is that concatenating several calls to that function must result in a valid integer expression (hence a leading $+$ in the actual definition).

\begin{verbatim}
\cs_new:Npn _regex_replacement_balance_one_match:n #1
\{ - _regex_submatch_balance:n {#1} \}
\end{verbatim}

The input is the same as _regex_replacement_balance_one_match:n. This function is redefined to expand to the part of the token list from the end of the previous match to a given match, followed by the replacement text. Hence concatenating the result of this function with all possible arguments (one call for each match), as well as the range from the end of the last match to the end of the string, produces the fully replaced token list. The initialization does not matter, but (as an example) we set it as for an empty replacement.

\begin{verbatim}
\cs_new:Npn _regex_replacement_do_one_match:n #1
\{ _regex_query_range:nn { _kernel_intarray_item:Nn \g__:regsubmatch_prev_intarray {#1} } { _kernel_intarray_item:Nn \g__:regsubmatch_begin_intarray {#1} } \}
\end{verbatim}

This function lets us navigate around the fact that the primitive $\exp_not:n$ requires a braced argument. As far as I can tell, it is only needed if the user tries to include in the replacement text a control sequence set equal to a macro parameter character, such as $\c:parameter_token$. Indeed, within an \textit{x}-expanding assignment, $\exp_not:N \#$ behaves as a single $\#$, whereas $\exp_not:n \{\#\}$ behaves as a doubled $##$.

\begin{verbatim}
\cs_new:Npn _regex_replacement_exp_not:N #1 \{ \exp_not:n {#1} \}
\end{verbatim}

When it is time to extract submatches from the token list, the various tokens are stored in \toks registers numbered from $\lfloor _regex_min_pos_int \rfloor$ inclusive to $\lceil _regex_max_pos_int \rceil$ exclusive. The function _regex_query_range:nn \{\langle min\rangle\} \{\langle max\rangle\} unpacks registers from the position $\langle min\rangle$ to the position $\langle max\rangle - 1$ included. Once this is expanded, a second \textit{x}-expansion results in the actual tokens from the query. That second expansion is only done by user functions at the very end of their operation, after checking (and correcting) the brace balance first.

\begin{verbatim}
\cs_new:Npn _regex_query_range:nn \#1#2 \{
\end{verbatim}
\exp_after:wN __regex_query_range_loop:ww
\int_value:w __regex_int_eval:w #1 \exp_after:wN ;
\int_value:w __regex_int_eval:w #2 ;
prg_break_point:
}
\cs_new:Npn __regex_query_range_loop:ww #1 ; #2 ;
{
\if_int_compare:w #1 < #2 \exp_stop_f:
\else:
\exp_after:wN \prg_break:
\fi:
\exp_after:wN __regex_toks_use:w #1 \exp_stop_f:
\exp_after:wN __regex_query_range_loop:ww
\int_value:w __regex_int_eval:w #1 + 1 ; #2 ;
}

(End definition for __regex_query_range:nn and __regex_query_range_loop:ww.)

__regex_query_submatch:n
Find the start and end positions for a given submatch (of a given match).
\cs_new:Npn __regex_query_submatch:n #1
{
__regex_query_range:nn
\{ __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1} \}
\{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} \}
}

(End definition for __regex_query_submatch:n.)

__regex_submatch_balance:n
Every user function must result in a balanced token list (unbalanced token lists cannot
be stored by \TeX). When we unpacked the query, we kept track of the brace balance,
hence the contribution from a given range is the difference between the brace balances
at the \langle max pos \rangle and \langle min pos \rangle. These two positions are found in the corresponding
"submatch" arrays.
\cs_new_protected:Npn __regex_submatch_balance:n #1
{
\int_eval:n
\{\int_compare:nNnTF
\{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} \}
\{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} \}
\} = 0
\{ 0 \}
\{ __kernel_intarray_item:Nn \g__regex_balance_intarray
\{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} \}
\} -
\int_compare:nNnTF
\{
__kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1}
\}
= 0
{ 0 }
{
__kernel_intarray_item:Nn \g__regex_balance_intarray
{
__kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1}
}
}
}
\}

(End definition for __regex_submatch_balance:n.)

40.6.3 Framework

The replacement text is built incrementally. We keep track in __regex_balance_int of
the balance of explicit begin- and end-group tokens and we store in __regex_balance tl
some code to compute the brace balance from submatches (see its description). Detect
unescape right braces, and escaped characters, with trailing \prg_do_nothing: because
some of the later function look-ahead. Once the whole replacement text has been parsed,
make sure that there is no open csname. Finally, define the balance_one_match and
do_one_match functions.

\cs_new_protected:Npn __regex_replacement:n #1
{\group_begin:
\tl_build_begin:N \l__regex_build_tl
\int_zero:N \l__regex_balance_int
\tl_clear:N \l__regex_balance_tl
__regex_escape_use:nnnn
{ \if_charcode:w \c_right_brace_str ##1
__regex_replacement_rbrace:N
\else:
__regex_replacement_normal:n
\fi:
##1}
{ __regex_replacement_escaped:N ##1 }
{ __regex_replacement_normal:n ##1 }
{#1}
\prg_do_nothing: \prg_do_nothing:
\if_int_compare:w \l__regex_replacement_csnames_int > 0 \exp_stop_f:
\{ __kernel_msg_error:nx \{ kernel \} \{ replacement-missing-rbrace \}
\{ \int_use:N \l__regex_replacement_csnames_int \}
\tl_build_put_right:Nx \l__regex_build_tl
\{ \prg_replicate:nn \l__regex_replacement_csnames_int \cs_end: \}
\fi:
\seq_if_empty:NF \l__regex_replacement_category_seq
{ __kernel_msg_error:nx \{ kernel \} \{ replacement-missing-rparen \}

Most characters are simply sent to the output by `\tl_build_put_right:Nn`, unless a particular category code has been requested: then `__regex_replacement_c_A:w` or a similar auxiliary is called. One exception is right parentheses, which restore the category code in place before the group started. Note that the sequence is non-empty there: it contains an empty entry corresponding to the initial value of `\l__regex_replacement_category_tl`.

```
\cs_new_protected:Npn \__regex_replacement_normal:n #1
\{" \exp_args:NNo \group_end: \__regex_replacement_aux:n \l__regex_build_tl \}
\cs_set:Npn \__regex_replacement_do_one_match:n ##1
\{" \__regex_query_range:nn
\{ \__kernel_intarray_item:Nn \g__regex_submatch_prev_intarray {##1}
\} \__kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {##1}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
As in parsing a regular expression, we use an auxiliary built from \#1 if defined. Otherwise, check for escaped digits (standing from submatches from 0 to 9): anything else is a raw character. We use \token_to_str:N to give spaces the right category code.

\__regex_replacement_escaped:N

Insert a submatch in the replacement text. This is dropped if the submatch number is larger than the number of capturing groups. Unless the submatch appears inside a \c{...} or \u{...} construction, it must be taken into account in the brace balance. Later on, \#1 will be replaced by a pointer to the 0-th submatch for a given match. There is an \exp_not:N here as at the point-of-use of \l__regex_balance_tl there is an x-type expansion which is needed to get \#1 in correctly.

\__regex_replacement_g:w

Grab digits for the \g escape sequence in a primitive assignment to the integer \l__regex_internal_a_int. At the end of the run of digits, check that it ends with a right brace.
40.6.5 Csnames in replacement
\_\_regex_replacement_c:w \c may only be followed by an unescaped character. If followed by a left brace, start a control sequence by calling an auxiliary common with \u. Otherwise test whether the category is known; if it is not, complain.

```latex
\cs_new_protected:Npn __regex_replacement_g:w #1#2
\{__regex_two_if_eq:NNNNTF #1 #2 __regex_replacement_normal:n \c_left_brace_str
\{ \l__regex_internal_a_int = __regex_replacement_g_digits:NN \}
\{ __regex_replacement_error:NNN g #1 #2 \}
\}
\cs_new:Npn __regex_replacement_g_digits:NN #1#2
\{ \token_if_eq_meaning:NNTF #1 __regex_replacement_normal:n
\{ \if_int_compare:w 1 < 1#2 \exp_stop_f:
#2 \exp_after:wN \use_i:nmn \exp_after:wN __regex_replacement_g_digits:NN\else:
\exp_stop_f:
\exp_after:wN __regex_replacement_error:NNN g\fi:
\}
\{ \exp_stop_f:
\if_meaning:w __regex_replacement_rbrace:N #1 \exp_args:No __regex_replacement_put_submatch:n
\{ \int_use:N \l__regex_internal_a_int \}
\exp_after:wN \use_none:nn\else:
\exp_after:wN __regex_replacement_error:NNN g\fi:
\}
\} \exp_after:wN __regex_replacement_normal:n \c_left_brace_str \{ \int_use:N \l__regex_internal_a_int \}
\exp_after:wN \use_none:nn\else:
\exp_after:wN __regex_replacement_error:NNN g\fi:
\}
\} \exp_stop_f:
\if_meaning:w __regex_replacement_rbrace:N #1 \exp_args:No __regex_replacement_put_submatch:n
\{ \int_use:N \l__regex_internal_a_int \}
\exp_after:wN \use_none:nn\else:
\exp_after:wN __regex_replacement_error:NNN g\fi:
\}
\}
\}
```

(End definition for \__regex_replacement_g:w and \__regex_replacement_g_digits:NN.)
Start a control sequence with \cs:w, protected from expansion by #1 (either \__regex_replacement_exp_not:N or \exp_not:V), or turned to a string by \tl_to_str:V if inside another csname construction \c or \u. We use \tl_to_str:V rather than \tl_to_str:N to deal with integers and other registers.

\cs_new_protected:Npn \__regex_replacement_cu_aux:Nw #1
{ \if_case:w \l__regex_replacement_csnames_int
\tl_build_put_right:Nn \l__regex_build_tl { \exp_not:n { \exp_after:wN #1 \cs:w } }\else:
\tl_build_put_right:Nn \l__regex_build_tl { \exp_not:n { \exp_after:wN \tl_to_str:V \cs:w } } \fi:
\int_incr:N \l__regex_replacement_csnames_int
}

(End definition for \__regex_replacement_cu_aux:Nw.)

\__regex_replacement_u:w
Check that \u is followed by a left brace. If so, start a control sequence with \cs:w, which is then unpacked either with \exp_not:V or \tl_to_str:V depending on the current context.

\cs_new_protected:Npn \__regex_replacement_u:w #1#2
{ \__regex_two_if_eq:NNNNTF #1 #2 \__regex_replacement_normal:n \c_left_brace_str
\__regex_replacement_cu_aux:Nw \exp_not:V
\__regex_replacement_normal:n {#1}
\__regex_replacement_error:NNN u #1#2 }

(End definition for \__regex_replacement_u:w.)

\__regex_replacement_rbrace:N
Within a \c{...} or \u{...} construction, end the control sequence, and decrease the brace count. Otherwise, this is a raw right brace.

\cs_new_protected:Npn \__regex_replacement_rbrace:N #1
{ \if_int_compare:w \l__regex_replacement_csnames_int > 0 \exp_stop_f:
\tl_build_put_right:Nn \l__regex_build_tl { \cs_end: }
\int_decr:N \l__regex_replacement_csnames_int
\else:
\__regex_replacement_normal:n {#1}
\fi: }

(End definition for \__regex_replacement_rbrace:N.)
40.6.6 Characters in replacement

Here, #1 is a letter among BEMTPUDSLOA and #2#3 denote the next character. Complain if we reach the end of the replacement or if the construction appears inside \c{...} or \u{...}, and detect the case of a parenthesis. In that case, store the current category in a sequence and switch to a new one.

\cs_new_protected:Npn \__regex_replacement_cat:NNN #1#2#3
\begin{Verbatim}
\token_if_eq_meaning:NNTF \prg_do_nothing: #3
{ \__kernel_msg_error:nn { kernel } { replacement-catcode-end } }
{ \int_compare:nNnTF { \l__regex_replacement_csnames_int } > 0
{ \__kernel_msg_error:nnnn
{ kernel } { replacement-catcode-in-cs } {#1} {#3}
\#2 #3
}
{ \__regex_two_if_eq:NNNNTF #2 #3 \__regex_replacement_normal:n ( \seq_push:NV \l__regex_replacement_category_seq \l__regex_replacement_category_tl \tl_set:Nn \l__regex_replacement_category_tl {#1} }
\end{Verbatim}
\{ \__regex_two_if_eq:NNNNTF #2 #3 \__regex_replacement_normal:n ( \seq_push:NV \l__regex_replacement_category_seq \l__regex_replacement_category_tl \tl_set:Nn \l__regex_replacement_category_tl {#1} }
\end{Verbatim}
\begin{Verbatim}
\token_if_eq_meaning:NNT #2 \__regex_replacementescaped: N
{ \__regex_char_if_alphanumeric:NTF #3
{ \__kernel_msg_error:nnnn
{ kernel } { replacement-catcode-escaped } {#1} {#3}
\}
\}
\use:c { \__regex_replacement_c_#1:w } #2 #3
\}
\}
\end{Verbatim}

\(\text{(End definition for } \__regex_replacement_cat:NNN.\text{)}\)

We now need to change the category code of the null character many times, hence work in a group. The catcode-specific macros below are defined in alphabetical order; if you are trying to understand the code, start from the end of the alphabet as those categories are simpler than active or begin-group.

\group_begin:

\__regex_replacement_char:nNN

The only way to produce an arbitrary character–catcode pair is to use the \texttt{lowercase} or \texttt{uppercase} primitives. This is a wrapper for our purposes. The first argument is the null character with various catcodes. The second and third arguments are grabbed from the input stream: #3 is the character whose character code to reproduce. We could use
but only for some catcodes (active characters and spaces are not supported).

\char_generate:nn

\cs_new_protected:Npn \_regex_replacement_char:nNN #1#2#3
\tex_lccode:D 0 = '\#3 \scan_stop:
\tex_lowercase:D { \tl_build_put_right:Nn \l__regex_build_tl {#1} }

(End definition for \_regex_replacement_char:nNN.)

\_regex_replacement_c_A:w

For an active character, expansion must be avoided, twice because we later do two x-expansions, to unpack \toks for the query, and to expand their contents to tokens of the query.

\char_set_catcode_active:N \^^@\cs_new_protected:Npn \_regex_replacement_c_A:w
\{ \_regex_replacement_char:nNN \{ \exp_not:n \{ \exp_not:N \^^@ \} \} \}

(End definition for \_regex_replacement_c_A:w.)

\_regex_replacement_c_B:w

An explicit begin-group token increases the balance, unless within a \c{...} or \u{...} construction. Add the desired begin-group character, using the standard \if_false: trick. We eventually x-expand twice. The first time must yield a balanced token list, and the second one gives the bare begin-group token. The \exp_after:wN is not strictly needed, but is more consistent with l3tl-analysis.

\char_set_catcode_group_begin:N \^^@\cs_new_protected:Npn \_regex_replacement_c_B:w
\{ \_regex_replacement_char:nNN \{ \exp_not:n \{ \exp_after:wN \^^@ \if_false: \fi: \} \} \}

(End definition for \_regex_replacement_c_B:w.)

\_regex_replacement_c_C:w

This is not quite catcode-related: when the user requests a character with category “control sequence”, the one-character control symbol is returned. As for the active character, we prepare for two x-expansions.

\cs_new_protected:Npn \_regex_replacement_c_C:w \#1#2\{ \tl_build_put_right:Nn \l__regex_build_tl \{ \exp_not:N \exp_not:N \exp_not:c \#2 \} \}

(End definition for \_regex_replacement_c_C:w.)

\_regex_replacement_c_D:w

Subscripts fit the mould: \lowercase the null byte with the correct category.

\char_set_catcode_math_subscript:N \^^@\cs_new_protected:Npn \_regex_replacement_c_D:w
\{ \_regex_replacement_char:nNN \{ ^\^^@ \} \}

(End definition for \_regex_replacement_c_D:w.)
\texttt{\_\_regex_replacement\_c\_E:w} Similar to the begin-group case, the second x-expansion produces the bare end-group token.

\begin{verbatim}
\char_set_catcode_group_end:N \^^@
\cs_new_protected:Npn \_\_regex_replacement\_c\_E:w
  { \if_int_compare:w \l__regex_replacement\_c\_snames_int = 0 \exp_stop_f:
    \int_decr:N \l__regex_balance_int
  \fi:
    \_\_regex_replacement\_char:nnN
  \exp_not:n \{ \if_false: \{ \fi: \^^@ \}
\end{verbatim}

(End definition for \_\_regex_replacement\_c\_E:w.)

\texttt{\_\_regex_replacement\_c\_L:w} Simply \texttt{\texttt{\lowercase}} a letter null byte to produce an arbitrary letter.

\begin{verbatim}
\char_set_catcode_letter:N \^^@
\cs_new_protected:Npn \_\_regex_replacement\_c\_L:w
  \_\_regex_replacement\_char:nnN { \^^@ }
\end{verbatim}

(End definition for \_\_regex_replacement\_c\_L:w.)

\texttt{\_\_regex_replacement\_c\_M:w} No surprise here, we lowercase the null math toggle.

\begin{verbatim}
\char_set_catcode_math_toggle:N \^^@
\cs_new_protected:Npn \_\_regex_replacement\_c\_M:w
  \_\_regex_replacement\_char:nnN \{ \^^@ \}
\end{verbatim}

(End definition for \_\_regex_replacement\_c\_M:w.)

\texttt{\_\_regex_replacement\_c\_O:w} Lowercase an other null byte.

\begin{verbatim}
\char_set_catcode_other:N \^^@
\cs_new_protected:Npn \_\_regex_replacement\_c\_O:w
  \_\_regex_replacement\_char:nnN \{ \^^@ \}
\end{verbatim}

(End definition for \_\_regex_replacement\_c\_O:w.)

\texttt{\_\_regex_replacement\_c\_P:w} For macro parameters, expansion is a tricky issue. We need to prepare for two x-expansions and passing through various macro definitions. Note that we cannot replace one \texttt{\exp_not:n} by doubling the macro parameter characters because this would misbehave if a mischievous user asks for \texttt{\c P\#}, since that macro parameter character would be doubled.

\begin{verbatim}
\char_set_catcode_parameter:N \^^@
\cs_new_protected:Npn \_\_regex_replacement\_c\_P:w
  \_\_regex_replacement\_char:nnN
  \exp_not:n \{ \exp_not:n \{ \^^@\^^@\^^@\^^@ \} \}
\end{verbatim}

(End definition for \_\_regex_replacement\_c\_P:w.)

\texttt{\_\_regex_replacement\_c\_S:w} Spaces are normalized on input by \LaTeX{} to have character code 32. It is in fact impossible to get a token with character code 0 and category code 10. Hence we use 32 instead of 0 as our base character.

\begin{verbatim}
\cs_new_protected:Npn \_\_regex_replacement\_c\_S:w \#1#2
  \{}
\end{verbatim}

1024
No surprise for alignment tabs here. Those are surrounded by the appropriate braces whenever necessary, hence they don’t cause trouble in alignment settings.

Simple call to \__regex_replacement_char:nNN which lowercases the math superscript \textsuperscript{^\textasciitilde{0}}.

Simple error reporting by calling one of the messages replacement-c, replacement-g, or replacement-u.

The usual scratch space.
Compile, then store the result in the user variable with the appropriate assignment function.

\begin{verbatim}
\cs_new_protected:Npn \regex_set:Nn #1 #2
\__regex_compile:n {#2}
\tl_set_eq:NN #1 \l__regex_internal_regex
\cs_new_protected:Npn \regex_gset:Nn #1 #2
\__regex_compile:n {#2}
\tl_gset_eq:NN #1 \l__regex_internal_regex
\cs_new_protected:Npn \regex_const:Nn #1 #2
\__regex_compile:n {#2}
\tl_const:Nx #1 { \exp_not:o \l__regex_internal_regex }
\end{verbatim}

(End definition for \regex_set:Nn, \regex_gset:Nn, and \regex_const:Nn. These functions are documented on page 229.)

User functions: the n variant requires compilation first. Then show the variable with some appropriate text. The auxiliary is defined in a different section.

\begin{verbatim}
\cs_new_protected:Npn \regex_show:n #1
\__regex_compile:n {#1}
\__regex_show:N \l__regex_internal_regex
\msg_show:nnxxxx { LaTeX / kernel } { show-regex }
\tl_to_str:n {#1} { }
\l__regex_internal_a_tl { }
\cs_new_protected:Npn \regex_show:N #1
\__kernel_chk_defined:NT #1
\__regex_show:N #1
\msg_show:nnxxxx { LaTeX / kernel } { show-regex }
\token_to_str:N #1 { }
\l__regex_internal_a_tl { }
\end{verbatim}

(End definition for \regex_show:N and \regex_show:n. These functions are documented on page 229.)

The conditional operators are based on a common auxiliary defined later. Its first argument builds the NFA corresponding to the regex, and the second argument is the query token list. Once we have performed the match, convert the resulting boolean to \prg_return_true: or \prg_return_false:.

\begin{verbatim}
\prg_new_protected_conditional:Nppn \regex_match:nn { T, F, TF }
\__regex_if_match:nn { \__regex_build:n {#1} } {#2}
\__regex_return:
\prg_new_protected_conditional:Nppn \regex_match:Nn { T, F, TF }
\end{verbatim}

1026
(End definition for \regex_match:nnTF and \regex_match:NnTF. These functions are documented on page 229.)

Again, use an auxiliary whose first argument builds the NFA.

We define here 40 user functions, following a common pattern in terms of :nnN auxiliaries, defined in the coming subsections. The auxiliary is handed \__regex_build:n or \__regex_build:N with the appropriate regex argument, then all other necessary arguments (replacement text, token list, etc. The conditionals call \__regex_return: to return either true or false once matching has been performed.

(End definition for \regex_count:nnN and \regex_count:NnN. These functions are documented on page 230.)

40.7.1 Variables and helpers for user functions

The number of matches found so far is stored in \l__regex_match_count_int. This is only used in the \regex_count:nnN functions.

(End definition for \l__regex_match_count_int.)

Those flags are raised to indicate extra begin-group or end-group tokens when extracting submatches.
The end-points of each submatch are stored in two arrays whose index (submatch) ranges from \l__regex_min_submatch_int (inclusive) to \l__regex_submatch_int (exclusive). Each successful match comes with a 0-th submatch (the full match), and one match for each capturing group: submatches corresponding to the last successful match are labelled starting at \l__regex_zeroth_submatch_int. The entry \l__regex_zeroth_submatch_int in \g__regex_submatch_prev_intarray holds the position at which that match attempt started: this is used for splitting and replacements.

\l__regex_min_submatch_int \l__regex_submatch_int \l__regex_zeroth_submatch_int

\g__regex_submatch_prev_intarray \g__regex_submatch_begin_intarray \g__regex_submatch_end_intarray

Hold the place where the match attempt begun and the end-points of each submatch.

\l__regex_min_submatch_int \l__regex_submatch_int \l__regex_zeroth_submatch_int

\g__regex_submatch_prev_intarray \g__regex_submatch_begin_intarray \g__regex_submatch_end_intarray

\l__regex_return:

This function triggers either \prg_return_false: or \prg_return_true: as appropriate to whether a match was found or not. It is used by all user conditionals.

\l__regex_if_match:nn

We don’t track submatches, and stop after a single match. Build the NFA with #1, and perform the match on the query #2.

\l__regex_if_match:nn

(End definition for \__regex_begin and \__regex_end.)

(End definition for \l__regex_min_submatch_int, \l__regex_submatch_int, and \l__regex_zeroth_submatch_int.)

(End definition for \g__regex_submatch_prev_intarray, \g__regex_submatch_begin_intarray, and \g__regex_submatch_end_intarray.)

(End definition for \l__regex_return:.)

40.7.2 Matching

\l__regex_if_match:nn

(End definition for \__regex_if_match:nn.)
Again, we don’t care about submatches. Instead of aborting after the first “longest match” is found, we search for multiple matches, incrementing \_\_regex_match_count_int every time to record the number of matches. Build the NFA and match. At the end, store the result in the user’s variable.

\cs_new_protected:Npn \_\_regex_count:nnN #1#2#3
\group_begin:
\_\_regex_disable_submatches:
\int_zero:N \l__regex_match_count_int
\_\_regex_multi_match:n { \int_incr:N \l__regex_match_count_int }
\_\_regex_match:n {#2}
\exp_args:NNNo
\group_end:
\int_set:Nn #3 { \int_use:N \l__regex_match_count_int }
\group_end:

(End definition for \_\_regex_count:nnN.)

40.7.3 Extracting submatches

\_\_regex_extract_once:nnN
\_\_regex_extract_all:nnN

Match once or multiple times. After each match (or after the only match), extract the submatches using \_\_regex_extract:. At the end, store the sequence containing all the submatches into the user variable #3 after closing the group.

\cs_new_protected:Npn \_\_regex_extract_once:nnN #1#2#3
\group_begin:
\_\_regex_single_match:
#1
\_\_regex_match:n {#2}
\_\_regex_extract:
\_\_regex_group_end_extract_seq:N #3
\group_end:
\cs_new_protected:Npn \_\_regex_extract_all:nnN #1#2#3
\group_begin:
\_\_regex_multi_match:n { \_\_regex_extract: }
#1
\_\_regex_match:n {#2}
\_\_regex_group_end_extract_seq:N #3
\group_end:

(End definition for \_\_regex_extract_once:nnN and \_\_regex_extract_all:nnN.)

\_\_regex_split:nnN

Splitting at submatches is a bit more tricky. For each match, extract all submatches, and replace the zeroth submatch by the part of the query between the start of the match attempt and the start of the zeroth submatch. This is inhibited if the delimiter matched an empty token list at the start of this match attempt. After the last match, store the last part of the token list, which ranges from the start of the match attempt to the end of the query. This step is inhibited if the last match was empty and at the very end: decrement \_\_regex_submatch_int, which controls which matches will be used.

\cs_new_protected:Npn \_\_regex_split:nnN #1#2#3
\group_begin:
\group_begin:
\_regex_multi_match:n
{
  \if_int_compare:w
    \_regex_start_pos_int < \_regex_success_pos_int
    \_regex_extract:
    \_kernel_intarray_gset:Nnn \g__regex_zeroth_submatch_intarray
    \{ \l__regex_zeroth_submatch_int \} \{ 0 \}
    \_kernel_intarray_gset:Nnn \g__regex_submatch_end_intarray
    \{ \l__regex_zeroth_submatch_int \}
    \{ \_kernel_intarray_item:Nn \g__regex_submatch_begin_intarray
    \{ \l__regex_zeroth_submatch_int \}
    \}
    \_kernel_intarray_gset:Nnn \g__regex_submatch_begin_intarray
    \{ \l__regex_start_pos_int \}
    \{ \l__regex_start_pos_int \}
  \fi:
}

#1
\_regex_match:n \{#2\}
\assert_int:n \{ \l__regex_curr_pos_int = \l__regex_max_pos_int \}
\_kernel_intarray_gset:Nnn \g__regex_submatch_prev_intarray
\{ \l__regex_submatch_int \} \{ 0 \}
\_kernel_intarray_gset:Nnn \g__regex_submatch_end_intarray
\{ \l__regex_submatch_int \}
\{ \l__regex_max_pos_int \}
\_kernel_intarray_gset:Nnn \g__regex_submatch_begin_intarray
\{ \l__regex_submatch_int \}
\{ \l__regex_start_pos_int \}
\int_incr:N \l__regex_submatch_int
\if_meaning:w \c_true_bool \l__regex_empty_success_bool
  \if_int_compare:w \_regex_start_pos_int = \_regex_max_pos_int
    \int_decr:N \l__regex_submatch_int
  \fi:
  \fi:
\_regex_group_end_extract_seq:N \{#3\}

(End definition for \_regex_split:nnN.)

\_regex_group_end_extract_seq:N The end-points of submatches are stored as entries of two arrays from \l__regex_min_submatch_int to \l__regex_submatch_int (exclusive). Extract the relevant ranges into \l__regex_internal_a_tl. We detect unbalanced results using the two flags \_regex_begin and \_regex_end, raised whenever we see too many begin-group or end-group tokens in a submatch.
\cs_new_protected:Npn \_regex_group_end_extract_seq:N \{#1\}
{
  \flag_clear:n \{ \_regex_begin \}
  \flag_clear:n \{ \_regex_end \}
  \seq_set_from_function:NnnN \l__regex_internal_seq
  \{ \int_step_function:nN \{ \l__regex_min_submatch_int \}
  \{ \l__regex_submatch_int \ - 1 \} \}

1030
\__regex_extract_seq_aux:n
\int_compare:nNnF
{
  \flag_height:n { __regex_begin } +
  \flag_height:n { __regex_end }
}
= 0
{
  \_kernel_msg_error:nnxxx { kernel } { result-unbalanced }
  \{ splitting-or-extracting-submatches \}
  \{ \flag_height:n { __regex_end } \}
  \{ \flag_height:n { __regex_begin } \}
}
\seq_set_map:NNn \l__regex_internal_seq \l__regex_internal_seq {##1}
\exp_args:NNNo
\group_end:
\tl_set:Nn #1 { \l__regex_internal_seq }
}

(End definition for \__regex_group_end_extract_seq:N.)

\__regex_extract_seq_aux:ww
The \texttt{auxiliary} builds one item of the sequence of submatches. First compute the
brace balance of the submatch, then extract the submatch from the query, adding the
appropriate braces and raising a flag if the submatch is not balanced.
\cs_new:Npn \__regex_extract_seq_aux:n #1
{
  \exp_after:wN \__regex_extract_seq_aux:ww
  \int_value:w \__regex_submatch_balance:n {#1} ; #1;
}
\cs_new:Npn \__regex_extract_seq_aux:ww #1; #2;
{
  \if_int_compare:w #1 < 0 \exp_stop_f:
    \flag_raise:n { __regex_end }
  \else:
    \__regex_query_submatch:n {#2}
  \fi:
}

(End definition for \__regex_extract_seq_aux:n and \__regex_extract_seq_aux:ww.)

\__regex_extract:
\__regex_extract_b:wn
\__regex_extract_e:wn
Our task here is to extract from the property list \texttt{\l__regex_success_submatches_prop}
the list of end-points of submatches, and store them in appropriate array entries, from
\texttt{\l__regex_zeroth_submatch_int} upwards. We begin by emptying those entries. Then
for each \texttt{(key)}–\texttt{(value)} pair in the property list update the appropriate entry. This
is somewhat a hack: the \texttt{(key)} is a non-negative integer followed by \texttt{<} or \texttt{>}, which we use in
a comparison to \texttt{−1}. At the end, store the information about the position at which the
match attempt started, in \texttt{\g__regex_submatch_prev_intarray}.
\cs_new:No \__regex_extract:
{
Build the NFA and the replacement functions, then find a single match. If the match failed, simply exit the group. Otherwise, we do the replacement. Extract submatches. Compute the brace balance corresponding to replacing this match by the replacement (this depends on submatches). Prepare the replaced token list: the replacement function produces the tokens from the start of the query to the start of the match and the replacement text for this match; we need to add the tokens from the end of the match to the end of the query. Finally, store the result in the user's variable after closing the group: this step involves an additional x-expansion, and checks that braces are balanced in the final result.
\__regex_replace_all:nnN  
Match multiple times, and for every match, extract submatches and additionally store  
the position at which the match attempt started. The entries from \l__regex_min_-
submatch_int to \l__regex_submatch_int hold information about submatches of every  
match in order; each match corresponds to \l__regex_capturing_group_int consecu-
tive entries. Compute the brace balance corresponding to doing all the replacements:
this is the sum of brace balances for replacing each match. Join together the replacement  
texts for each match (including the part of the query before the match), and the end of  
the query.

\cs_new_protected:Npn \__regex_replace_all:nnN #1#2#3  
{  
\group_begin:  
\__regex_multi_match:n \__regex_extract:  
#1  
\__regex_replacement:n \__regex_replace_all:nnN #1#2#3  
\exp_args:No \spacing:n \__regex_match:n \__regex_balance_int  
\int_set:Nn \l__regex_min_submatch_int  
\l__regex_capturing_group_int  
\l__regex_submatch_int - 1  
\__regex_replacement_balance_one_match:n  
\ti_set:Nx \l__regex_internal_a_tl  
\int_step_function:mmn  
\l__regex_min_submatch_int  
\l__regex_capturing_group_int  
\l__regex_submatch_int - 1  
\__regex_replacement_balance_one_match:n
}
If the brace balance is not 0, raise an error. Then set the user’s variable \#1 to the x-expansion of \l__regex_internal_a_tl, adding the appropriate braces to produce a balanced result. And end the group.

(End definition for \__regex_group_end_replace:N.)

40.7.5 Storing and showing compiled patterns

40.8 Messages

Messages for the preparsing phase.

(End definition for \__regex_group_end_replace:N.)
Invalid quantifier.

```latex
_\texttt{kernel_msg_new:nnnn} \texttt{\{ kernel \}} { invalid-quantifier }
\{ \texttt{Braced-quantifier-\'#1\'-may-not-be-followed-by-\'#2\'.} \}
\{ \texttt{The-character-\'#2\'-is-invalid-in-the-braced-quantifier-\'#1\'.}
\texttt{The-only-valid-quantifiers-are-\'\star\',-\'\?\',-\'\+\',-\'\{<\texttt{int}>\}\',-}
\texttt{\'\{<\texttt{min}>\},-\'and-\'\{<\texttt{min},<\texttt{max}>\}',-\texttt{optionally-followed-by-\'?\'.}} \}
```

Messages for missing or extra closing brackets and parentheses, with some fancy singular/plural handling for the case of parentheses.

```latex
_\texttt{kernel_msg_new:nnnn} \texttt{\{ kernel \}} { missing-rbrack }
\{ \texttt{Missing-right-bracket-inserted-in-regular-expression.} \}
\{ \texttt{LaTeX\,was\,given\,a\,regular\,expression\,where\,a\,character\,class-}
\texttt{was\,started\,with\,\'\[\',\,but\,the\,matching\,\']\,'\,is\,missing.}} \}
```

```latex
_\texttt{kernel_msg_new:nnnn} \texttt{\{ kernel \}} { missing-rparen }
\{ \texttt{Missing-right-}
\texttt{\int_compare:nTF \{ #1 = 1 \} \{ parenthesis \} \{ parentheses \} -}
\texttt{inserted-in-regular-expression.} \}
```

```latex
_\texttt{kernel_msg_new:nnnn} \texttt{\{ kernel \}} { extra-rparen }
\{ \texttt{Extra-right-parenthesis-ignored-in-regular-expression.} \}
\{ \texttt{LaTeX\,came\,across\,a\,closing-parenthesis\,when\,no\,submatch\,group-}
\texttt{was\,open.-\,The\,parenthesis\,will\,be\,ignored.}} \}
```

Some escaped alphanumerics are not allowed everywhere.

```latex
_\texttt{kernel_msg_new:nnnn} \texttt{\{ kernel \}} { bad-escape }
\{ \texttt{Invalid-escape-\'iow_char:N\\#1\'-}
_\texttt{regex_if_in_cs:TF \{ within-a-control-sequence.} \}
```

```latex
_\texttt{regex_if_in_class:TF}
\{ in-a-character-class. \}
\{ following-a-category-test. \}
```

```
_\texttt{regex_if_in_cs:TF}
```

```latex
_\texttt{regex_if_in_class:TF}
```

```latex
_\texttt{regex_if_in_cs:TF}
```

```latex
The\,escape\,sequence-\'iow_char:N\\#1\'-may\,not\,appear-
Range errors.

Errors related to \c and \u.

1036
LaTeX was given a regular expression where a `\iow_char:N\c\iow_char:N\{...` construction was not ended with a closing brace `\iow_char:N\}'.
}

_kernel_msg_new:nnnn { kernel } { c-missing-rbrack }
{ Missing-right-bracket-inserted-for-'\iow_char:N\c' escape. }
{ A-construction-'\iow_char:N\c[...'-appears-in-a-
regular-expression,-but-the-closing-']'-is-not-present. }

_kernel_msg_new:nnnn { kernel } { c-missing-category }
{ Invalid-character-'#1'-following-\iow_char:N\c'-escape. }
{ In-regular-expressions,-the-'\iow_char:N\c'-escape-sequence-
may-only-be-followed-by-a-left-brace,-a-left-bracket,-or-a-
capital-letter-representing-a-character-category,-namely-
one-of-'ABCDELMOPSTU'. }

_kernel_msg_new:nnnn { kernel } { c-trailing }
{ Trailing-category-code-escape-'\iow_char:N\c'... }
{ A-regular-expression-ends-with-'\iow_char:N\c'-followed-
y-by-a-letter.-It-will-be-ignored. }

_kernel_msg_new:nnnn { kernel } { u-missing-lbrace }
{ Missing-left-brace-following-\iow_char:N\u'-escape. }
{ The-'\iow_char:N\u'-escape-sequence-must-be-followed-by-
a-brace-group-with-the-name-of-the-variable-to-use. }

_kernel_msg_new:nnnn { kernel } { u-missing-rbrace }
{ Missing-right-brace-inserted-for-\iow_char:N\u'-escape. }
{ LaTeX-\str_if_eq:eeTF { } {#2}
{ reached-the-end-of-the-string- }
{ encountered-an-escaped-alphanumeric-character \iow_char:N\#2'- }
when-parsing-the-argument-of-an-
'\iow_char:N\iow_char:N\{...\}'-escape. }

Errors when encountering the POSIX syntax [:...:].

_kernel_msg_new:nnnn { kernel } { posix-unsupported }
{ POSIX-collating-element-'[#1 - #1]'-not-supported. }
{ The-'[.foo.]-and-[=bar=]'-syntaxes-have-a-special-meaning-
in-POSIX-regular-expressions.-This-is-not-supported-by-LaTeX.-
Maybe-you-forgot-to-escape-a-left-bracket-in-a-character-class? }

_kernel_msg_new:nnnn { kernel } { posix-unknown }
{ POSIX-class-'][#1:]'-unknown. }
{ '[#1:]'-is-not-among-the-known-POSIX-classes-
'[alnum:]','-'[alpha:]','-'[ascii:]','-'[blank:]','--
'[cntrl:]','-'[digit:]','-'[graph:]','-'[lower:]',-}
In various cases, the result of a \texttt{f3regex} operation can leave us with an unbalanced token list, which we must re-balance by adding begin-group or end-group character tokens.

LaTeX was asked to do some regular expression operation, and the resulting token list would not have the same number of begin-group and end-group tokens. Braces were inserted: #1 left, #2 right.

Error message for unknown options.

LaTeX was asked to do some regular expression operation, and the resulting token list would not have the same number of begin-group and end-group tokens. Braces were inserted: #1 left, #2 right.

Errors in the replacement text.
submatches are represented either as `\iow_char:N \g{dd..d}'`, or `\d`, where `d` are single digits. Here, a brace is missing.

__kernel_msg_new:nnnn { kernel } { replacement-catcode-end }

{ Missing-character-for-the-'\iow_char:N\c<category><character>'-
construction-in-a-replacement-text. }

{ In-a-replacement-text, the-'\iow_char:N\c'-escape-sequence-
can-be-followed-by-one-of-the-letters-'ABCDLMOPSTU'-representing-
the-character-category. Then, a character must follow. -LaTeX-
reached-the-end-of-the-replacement-when-looking-for-that. }

__kernel_msg_new:nnnn { kernel } { replacement-catcode-escaped }

{ Escaped-letter-or-digit-after-category-code-in-replacement-text. }

{ In-a-replacement-text, the-'\iow_char:N\c'-escape-sequence-
can-be-followed-by-one-of-the-letters-'ABCDLMOPSTU'-representing-
the-character-category. Then, a character must follow, not-
'\iow_char:N\#2'. }

__kernel_msg_new:nnnn { kernel } { replacement-catcode-in-cs }

{ Category-code-'\iow_char:N\c#1#3'-ignored-inside-
'\iow_char:N\c{...}'-in-a-replacement-text. }

{ In-a-replacement-text, the-category-codes-of-the-argument-of-
'\iow_char:N\c{...}'-are-ignored-when-building-the-control-
sequence-name. }

__kernel_msg_new:nnnn { kernel } { replacement-null-space }

{ TeX cannot build a space token with character code 0. }

{ You asked for a character token with category space, and character code 0, for instance through-
'\iow_char:N\cS\iow_char:N\x00'. -
This specific case is impossible and will be replaced-
by-a-normal-space. }

__kernel_msg_new:nnnn { kernel } { replacement-missing-rbrace }

{ Missing-right-brace-inserted-in-replacement-text. }

{ There \int_compare:nTF { #1 = 1 } { was } { were } - #1-
missing-right-\int_compare:nTF { #1 = 1 } { brace } { braces } . }

__kernel_msg_new:nnnn { kernel } { replacement-missing-rparen }

{ Missing-right-parenthesis-inserted-in-replacement-text. }

{ There \int_compare:nTF { #1 = 1 } { was } { were } - #1-
missing-right-
\int_compare:nTF { #1 = 1 } { \text{parenthesis} } { \text{parentheses} } .

Used when showing a regex.

__kernel_msg_new:nnn { kernel } { show-regex }
\{-Compiled-regex-
\tl_if_empty:nTF {#1} { variable- #2 } { (#1) } :
\#3
\}

This is not technically a message, but seems related enough to go there. The arguments are: #1 is the minimum number of repetitions; #2 is the number of allowed extra repetitions (−1 for infinite number), and #3 tells us about lazyness.

\cs_new:Npn __regex_msg_repeated:nnN #1#2#3
\{ \str_if_eq:eeF { #1 #2 } { 1 0 }
\{ - repeated - \int_case:nnF {#2}
\{ -1 \} { #1-or-more-times,-\bool_if:NTF #3 { lazy } { greedy } }
\{ 0 \} { #1-times }
\}
\{ between-#1-and-\int_eval:n {#1+#2}-times,- \bool_if:NTF #3 { lazy } { greedy } \}
\}

(End definition for __regex_msg_repeated:nnN.)

40.9 Code for tracing

There is a more extensive implementation of tracing in the \l3trial package \l3trace. Function names are a bit different but could be merged.

\cs_new:Npn __regex_trace_push:nnN __regex_trace_pop:nnN __regex_trace:nnx
\{ \str_if_eq:eeF { #1 #2 } { 1 0 }
\{ - repeated - \int_case:nnF {#2}
\{ -1 \} { #1-or-more-times,-\bool_if:NTF #3 { lazy } { greedy } }
\{ 0 \} { #1-times }
\}
\{ between-#1-and-\int_eval:n {#1+#2}-times,- \bool_if:NTF #3 { lazy } { greedy } \}
\}

(End definition for __regex_trace_push:nnN, __regex_trace_pop:nnN, and __regex_trace:nnx.)

\g__regex_trace_regex_int
\int_new:N \g__regex_trace_regex_int

\int_compare:nNnF
\{ \int_use:c { g__regex_trace_#1_int } \} < {#2}
\{ \iow_term:x { Trace:-#3 } \}

(End definition for __regex_trace_push:nnN, __regex_trace_pop:nnN, and __regex_trace:nnx.)
This function lists the contents of all states of the NFA, stored in \toks from 0 to __-regex_max_state_int (excluded).

\cs_new_protected:Npn __regex_trace_states:n #1
 \int_step_inline:nnn __regex_min_state_int { __regex_max_state_int - 1 } { __regex_trace:nnx { regex } {#1} { \low_char:N \toks ##1 = { __regex_toks_use:w ##1 } } }

\cs_new_eq:NN __box_dim_eval:w \tex_dimexpr:D
\cs_new:Npn __box_dim_eval:n #1 { __box_dim_eval:w #1 \scan_stop: }

\cs_new_protected:Npn \box_new:N #1 { __kernel_chk_if_free_cs:N #1 \cs:w newbox \cs_end: #1 }
\cs_generate_variant:Nn \box_new:N { c }
\cs_new_protected:Npn \box_clear:N #1 { \box_set_eq:NN #1 \c_empty_box }
\cs_new_protected:Npn \box_gclear:N #1 { __box_dim_eval:w #1 \scan_stop: }

\cs_new_protected:Npn \box_new:c \{ \package \}
\cs_new_protected:Npn \box_clear:c \{ \package \}
\cs_new_protected:Npn \box_gclear:c \{ \package \}

41 \textbf{l3box implementation}

41.1 Support code

Evaluating a dimension expression expandably. The only difference with \dim_eval:n is the lack of \dim_use:N, to produce an internal dimension rather than expand it into characters.

\cs_new_eq:NN __box_dim_eval:w \tex_dimexpr:D
\cs_new:Npn __box_dim_eval:n #1 { __box_dim_eval:w #1 \scan_stop: }

\cs_new_protected:Npn \box_new:N #1 { __kernel_chk_if_free_cs:N #1 \cs:w newbox \cs_end: #1 }
\cs_generate_variant:Nn \box_new:N { c }
\cs_new_protected:Npn \box_clear:N #1 { \box_set_eq:NN #1 \c_empty_box }
\cs_new_protected:Npn \box_gclear:N #1 { __box_dim_eval:w #1 \scan_stop: }

\cs_new_protected:Npn \box_new:c \{ \package \}
\cs_new_protected:Npn \box_clear:c \{ \package \}
\cs_new_protected:Npn \box_gclear:c \{ \package \}

41.2 Creating and initialising boxes

The following test files are used for this code: m3box001.lvt.

\box_new:N \{ \package \}
\cs:w newbox \cs_end:
\cs_generate_variant:Nn \box_new:N { c }

Clear a \langle box \rangle register.

\box_clear:N \{ \package \}
\box_gclear:N \{ \package \}
Clear or new.

Assigning the contents of a box to be another box.

Assigning the contents of a box to be another box, then drops the original box.

Copies of the \texttt{cs} functions defined in \texttt{l3basics}.

41.3 Measuring and setting box dimensions

Accessing the height, depth, and width of a ⟨box⟩ register.

Setting the size whilst respecting local scope requires copying; the same issue does not come up when working globally. When debugging, the dimension expression #2 is surrounded by parentheses to catch early termination.
41.4 Using boxes

Using a ⟨box⟩. These are just \TeX primitives with meaningful names.

\begin{align*}
\text{\texttt{\box_use_drop:N}} & \\
\text{\texttt{\box_use_drop:c}} & \\
\text{\texttt{\box_use:N}} & \\
\text{\texttt{\box_use:c}} & \\
\text{\texttt{\box_move_left:nn}} & \\
\text{\texttt{\box_move_right:nn}} & \\
\text{\texttt{\box_move_up:nn}} & \\
\text{\texttt{\box_move_down:nn}} & \\
\end{align*}

Move box material in different directions. When debugging, the dimension expression \#1 is surrounded by parentheses to catch early termination.

41.5 Box conditionals

The primitives for testing if a ⟨box⟩ is empty/void or which type of box it is.

\begin{align*}
\text{\texttt{\if_hbox:N}} & \\
\text{\texttt{\if_vbox:N}} & \\
\text{\texttt{\if_box_empty:N}} & \\
\text{\texttt{\if_horizontal_p:N}} & \\
\text{\texttt{\if_horizontal_p:c}} & \\
\text{\texttt{\if_horizontal:N}} & \text{TF} \\
\text{\texttt{\if_vertical_p:N}} & \\
\text{\texttt{\if_vertical_p:c}} & \\
\text{\texttt{\if_vertical:N}} & \text{TF} \\
\end{align*}
Testing if a \textit{<box> is empty/void.}

\begin{verbatim}
\prg_generate_conditional_variant:Nnn \box_if_horizontal:N
{ c } { p , T , F , TF }
\prg_generate_conditional_variant:Nnn \box_if_vertical:N
{ c } { p , T , F , TF }
\box_if_empty_p:N
\box_if_empty_p:c
\box_if_empty:N
\box_if_empty:c
\box_if_empty:TF
\end{verbatim}

(End definition for \texttt{\box_new:N} and others. These functions are documented on page 235.)

\section{41.6 The last box inserted}

\begin{verbatim}
\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c
\end{verbatim}

(End definition for \texttt{\box_set_to_last:N} and \texttt{\box_gset_to_last:N}. These functions are documented on page 237.)

\section{41.7 Constant boxes}

\begin{verbatim}
\c_empty_box
\end{verbatim}

A box we never use.

(End definition for \texttt{\c_empty_box}. This variable is documented on page 237.)

\section{41.8 Scratch boxes}

\begin{verbatim}
\l_tmpa_box
\l_tmpb_box
\g_tmpa_box
\g_tmpb_box
\end{verbatim}

(End definition for \texttt{\l_tmpa_box} and others. These variables are documented on page 238.)

\section{41.9 Viewing box contents}

\LaTeX{}'s \texttt{\showbox} is not really that helpful in many cases, and it is also inconsistent with other \LaTeX{}\texttt{3 show} functions as it does not actually shows material in the terminal. So we provide a richer set of functionality.
\box_show:N
\box_show:c
\box_show:Nnn
\box_show:cnn

Essentially a wrapper around the internal function, but evaluating the breadth and depth arguments now outside the group.

\cs_new_protected:Npn \box_show:N #1
\cs_generate_variant:Nn \box_show:N { c }
\cs_new_protected:Npn \box_show:Nnn #1 #2 #3
\cs_generate_variant:Nn \box_show:Nnn { c }

(End definition for \box_show:N and \box_show:Nnn. These functions are documented on page 238.)

\box_log:N
\box_log:c
\box_log:Nnn
\box_log:cnn
__box_log:nNnn

Getting \TeX{} to write to the log without interruption the run is done by altering the interaction mode. For that, the \TeX{} extensions are needed.

\cs_new_protected:Npn \box_log:N #1
\cs_generate_variant:Nn \box_log:N { c }
\cs_new_protected:Npn \box_log:Nnn
\exp_args:No __box_log:nNnn { \tex_the:D \tex_interactionmode:D }
\cs_new_protected:Npn __box_log:nNnn #1 #2 #3 #4
\int_set:Nn \tex_interactionmode:D { 0 }
__box_show:NNff 0 #2 { \int_eval:n {#3} } { \int_eval:n {#4} }
\int_set:Nn \tex_interactionmode:D {#1}
\cs_generate_variant:Nn \box_log:Nnn { c }

(End definition for \box_log:N, \box_log:Nnn, and __box_log:nNnn. These functions are documented on page 238.)

__box_show:NNnn
__box_show:NNff

The internal auxiliary to actually do the output uses a group to deal with breadth and depth values. The \use:n here gives better output appearance. Setting \texttt{\texttt{tracingonline}} and \texttt{\texttt{\texttt{errorcontextlines}}} is used to control what appears in the terminal.

\cs_new_protected:Npm __box_show:NNnn #1 #2 #3 #4
\group_begin:
\int_set:Nn \tex_showboxbreadth:D {#3}
\int_set:Nn \tex_showboxdepth:D {#4}
\int_set:Nn \tex_tracingonline:D {#1}
\int_set:Nn \tex_errorcontextlines:D {-1 }
\tex_showbox:D \use:n {#2}
\group_end:

__kernel_msg_error:nnx { kernel } { variable-not-defined }
\token_to_str:N #2

\cs_generate_variant:Nn __box_show:NNnn { NNff }

(End definition for __box_show:NNnn.)
41.10 Horizontal mode boxes

\bbox:n (The test suite for this command, and others in this file, is \texttt{m3box002.lvt})

Put a horizontal box directly into the input stream.

\begin{verbatim}
\cs_new_protected:Npn \hbox:n #1
\{ \tex_hbox:D \scan_stop: { \color_group_begin: #1 \color_group_end: } \}
\end{verbatim}

(End definition for \bbox:n. This function is documented on page 238.)

\begin{verbatim}
\cs_new_protected:Npn \hbox_set:Nn \hbox_set:cn \hbox_gset:Nn \hbox_gset:cn
\{ \tex_setbox:D #1 \tex_hbox:D \color_group_begin: #2 \color_group_end: \}
\cs_new_protected:Npn \hbox_gset:Nn \hbox_gset:cn
\{ \tex_global:D \tex_setbox:D #1 \tex_hbox:D \color_group_begin: #2 \color_group_end: \}
\end{verbatim}

(End definition for \bbox_set:Nn and \bbox_gset:Nn. These functions are documented on page 239.)

\begin{verbatim}
\cs_new_protected:Npn \hbox_set_to_wd:Nnn \hbox_set_to_wd:cnn \hbox_gset_to_wd:Nnn \hbox_gset_to_wd:cnn
\{ \tex_setbox:D #1 \tex_hbox:D \color_group_begin: #3 \color_group_end: \}
\cs_new_protected:Npn \hbox_gset_to_wd:Nnn \hbox_gset_to_wd:cnn
\{ \tex_global:D \tex_setbox:D #1 \tex_hbox:D \color_group_begin: #3 \color_group_end: \}
\end{verbatim}

(End definition for \bbox_set_to_wd:Nnn and \bbox_gset_to_wd:Nnn. These functions are documented on page 239.)

\begin{verbatim}
\cs_new_protected:Npn \hbox_set:Nw \hbox_set:cw \hbox_gset:Nw \hbox_gset:cw
\c_group_begin_token \color_group_begin: \}
\cs_new_protected:Npn \hbox_gset:Nw \hbox_gset:cw
\c_group_begin_token \color_group_begin: \}
\end{verbatim}

Storing material in a horizontal box. This type is useful in environment definitions.
Combining the above ideas.

\hbox_set_to_wd:Nnw
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

Put a horizontal box directly into the input stream.

\hbox_to_wd:nn
\hbox_to_zero:n

Put a zero-sized box with the contents pushed against one side (which makes it stick out on the other) directly into the input stream.

(End definition for \hbox_set_to_wd:Nnw and others. These functions are documented on page 239.)

(End definition for \hbox_set_to_wd:cnw and \hbox_gset_to_wd:Nnw. These functions are documented on page 239.)

(End definition for \hbox_to_wd:nn and \hbox_to_zero:n. These functions are documented on page 239.)

(End definition for \hbox_overlap_left:n and \hbox_overlap_right:n. These functions are documented on page 239.)
Unpacking a box and if requested also clear it.

\hbox_unpack:N \hbox_unpack:c \hbox_unpack_drop:N \hbox_unpack_drop:c

(End definition for \hbox_unpack:N and \hbox_unpack_drop:N. These functions are documented on page 239.)

41.11 Vertical mode boxes

\TeX{} ends these boxes directly with the internal \texttt{end_graf} routine. This means that there is
no \texttt{par} at the end of vertical boxes unless we insert one. Thus all vertical boxes
include a \texttt{par} just before closing the color group.

\vbox:n
\vbox_top:n

The following test files are used for this code: \texttt{m3box003.lvt}.

\vbox_to_ht:nn \vbox_to_zero:n

Put a vertical box directly into the input stream.

\vbox_set:Nn \vbox_set:cn \vbox_gset:Nn \vbox_gset:cn

Storing material in a vertical box with a natural height.

(End definition for \vbox:n and \vbox_top:n. These functions are documented on page 240.)

1048
Storing material in a vertical box with a natural height and reference point at the baseline of the first object in the box.

\begin{verbatim}
cs_new_protected:Npn \vbox_set_top:Nn #1#2
 \{ \tex_setbox:D #1 \tex_vtop:D
 \{ \color_group_begin: #2 \par \color_group_end: \}
 \}
cs_new_protected:Npn \vbox_gset_top:Nn #1#2
 \{ \tex_global:D \tex_setbox:D #1 \tex_vtop:D
 \{ \color_group_begin: #2 \par \color_group_end: \}
 \}
c_generate_variant:Nn \vbox_set_top:Nn { c }
c_generate_variant:Nn \vbox_gset_top:Nn { c }
\end{verbatim}

(End definition for \vbox_set_top:Nn and \vbox_gset_top:Nn. These functions are documented on page 240.)

Storing material in a vertical box with a specified height.

\begin{verbatim}
cs_new_protected:Npn \vbox_set_to_ht:Nnn #1#2#3
 \{ \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n \{#2
 \{ \color_group_begin: \#3 \par \color_group_end: \}
 \}
cs_new_protected:Npn \vbox_gset_to_ht:Nnn #1#2#3
 \{ \tex_global:D \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n \{#2
 \{ \color_group_begin: \#3 \par \color_group_end: \}
 \}
c_generate_variant:Nn \vbox_set_to_ht:Nnn { c }
c_generate_variant:Nn \vbox_gset_to_ht:Nnn { c }
\end{verbatim}

(End definition for \vbox_set_to_ht:Nnn and \vbox_gset_to_ht:Nnn. These functions are documented on page 240.)

Storing material in a vertical box. This type is useful in environment definitions.

\begin{verbatim}
cs_new_protected:Npn \vbox_set:Nw #1
 \{ \tex_setbox:D #1 \tex_vbox:D
 \c_group_begin_token
 \color_group_begin:
 \}
cs_new_protected:Npn \vbox_gset:Nw #1
 \{ \tex_global:D \tex_setbox:D #1 \tex_vbox:D
 \c_group_begin_token
 \color_group_begin:
 \}
c_generate_variant:Nn \vbox_set:Nw { c }
c_generate_variant:Nn \vbox_gset:Nw { c }
\end{verbatim}

(End definition for \vbox_set:Nw and \vbox_gset:Nw. These functions are documented on page 240.)
\vbox_set_to_ht:Nnw \vbox_gset_to_ht:Nnw
\vbox_set_to_ht:cNW \vbox_gset_to_ht:cNW
\vbox_set_to_ht:ccN \vbox_gset_to_ht:ccN
\vbox_set_to_ht:cc \vbox_gset_to_ht:cc

\vbox_set_split_to_ht:NNn \vbox_gset_split_to_ht:NNn
\vbox_set_split_to_ht:NNc \vbox_gset_split_to_ht:NNc
\vbox_set_split_to_ht:Ncc \vbox_gset_split_to_ht:Ncc
\vbox_set_split_to_ht:NN \vbox_gset_split_to_ht:NN
\vbox_set_split_to_ht:Nc \vbox_gset_split_to_ht:Nc
\vbox_set_split_to_ht:cc \vbox_gset_split_to_ht:cc

\vbox_unpack:N \vbox_gset_to_ht:Nnw \vbox_gset_to_ht:cNW
\vbox_unpack_drop:N \vbox_gset_to_ht:ccN \vbox_gset_to_ht:cc
\vbox_gset_to_ht:cc \vbox_gset_to_ht:cc
\vbox_gset_to_ht:cc

\vbox_unpack:N \vbox_gset_to_ht:Nnw \vbox_gset_to_ht:cNW
\vbox_gset_to_ht:ccN \vbox_gset_to_ht:ccN
\vbox_gset_to_ht:cc \vbox_gset_to_ht:cc

\vbox_set_split_to_ht:NNn \vbox_gset_split_to_ht:NNn
\vbox_set_split_to_ht:NNc \vbox_gset_split_to_ht:NNc
\vbox_set_split_to_ht:Ncc \vbox_gset_split_to_ht:Ncc
\vbox_set_split_to_ht:NN \vbox_gset_split_to_ht:NN
\vbox_set_split_to_ht:Nc \vbox_gset_split_to_ht:Nc
\vbox_set_split_to_ht:cc \vbox_gset_split_to_ht:cc

41.12 Affine transformations

\l__box_angle_fp When rotating boxes, the angle itself may be needed by the engine-dependent code. This
is done using the \textit{fp} module so that the value is tidied up properly.

\fp_new:N \l__box_angle_fp

(End definition for \l__box_angle_fp.)
These are used to hold the calculated sine and cosine values while carrying out a rotation.

(End definition for \l__box_cos_fp and \l__box_sin_fp.)

These are the positions of the four edges of a box before manipulation.

(End definition for \l__box_top_dim and others.)

These are the positions of the four edges of a box after manipulation.

(End definition for \l__box_top_dim and others.)

Scratch space, but also needed by some parts of the driver.

Rotation of a box starts with working out the relevant sine and cosine. The actual rotation is in an auxiliary to keep the flow slightly clearer

The edges of the box are then recorded: the left edge is always at zero. Rotation of the four edges then takes place: this is most efficiently done on a quadrant by quadrant basis.
Figure 1: Co-ordinates of a box prior to rotation.

The next step is to work out the x and y coordinates of vertices of the rotated box in relation to its original coordinates. The box can be visualized with vertices B, C, D and E is illustrated (Figure 1). The vertex O is the reference point on the baseline, and in this implementation is also the centre of rotation. The formulae are, for a point P and angle α:

\[
P'_x = P_x - O_x \\
P'_y = P_y - O_y \\
P''_x = (P'_x \cos(\alpha)) - (P'_y \sin(\alpha)) \\
P''_y = (P'_x \sin(\alpha)) + (P'_y \cos(\alpha)) \\
P'''_x = P''_x + O_x + L_x \\
P'''_y = P''_y + O_y
\]

The “extra” horizontal translation L_x at the end is calculated so that the leftmost point of the resulting box has x-coordinate 0. This is desirable as TeX boxes must have the reference point at the left edge of the box. (As O is always $O(0,0)$, this part of the calculation is omitted here.)

```tex
\fp_compare:nNnTF \l__box_sin_fp > \c_zero_fp
\fp_compare:nNnTF \l__box_cos_fp > \c_zero_fp
\__box_rotate_quadrant_one:
\__box_rotate_quadrant_two:
\}
\fp_compare:nNnTF \l__box_sin_fp < \c_zero_fp
\fp_compare:nNnTF \l__box_cos_fp < \c_zero_fp
\__box_rotate_quadrant_three:
\__box_rotate_quadrant_four:
\}
```

The position of the box edges are now known, but the box at this stage be misplaced relative to the current TeX reference point. So the content of the box is moved such that the reference point of the rotated box is in the same place as the original.

```
\hbox_set:Nn \l__box_internal_box { \box_use:N #1 }
\hbox_set:Nn \l__box_internal_box
{ \tex_kern:D -\l__box_left_new_dim \hbox:n }
\__box_backend_rotate:Nn
\l__box_internal_box
\l__box_angle_fp
```

1052
Tidy up the size of the box so that the material is actually inside the bounding box. The
result can then be used to reset the original box.

\box_set_h:NN \l__box_internal_box \l__box_top_new_dim
\box_set_dp:NN \l__box_internal_box \l__box_bottom_new_dim
\box_set_wd:NN \l__box_internal_box
{ \l__box_right_new_dim \l__box_left_new_dim }
\box_use_drop:N \l__box_internal_box

These functions take a general point (#1, #2) and rotate its location about the origin,
using the previously-set sine and cosine values. Each function gives only one component
of the location of the updated point. This is because for rotation of a box each step needs
only one value, and so performance is gained by avoiding working out both \(x'\) and \(y'\) at
the same time. Contrast this with the equivalent function in the l3coffins module, where
both parts are needed.

\cs_new_protected:Npn __box_rotate_xdir:nnN #1#2#3
{ \dim_set:Nn #3 { \fp_to_dim:n { \l__box_cos_fp * \dim_to_fp:n {#1} - \l__box_sin_fp * \dim_to_fp:n {#2} } } }
\cs_new_protected:Npn __box_rotate_ydir:nnN #1#2#3
{ \dim_set:Nn #3 { \fp_to_dim:n { \l__box_sin_fp * \dim_to_fp:n {#1} + \l__box_cos_fp * \dim_to_fp:n {#2} } } }

Rotation of the edges is done using a different formula for each quadrant. In every case,
the top and bottom edges only need the resulting \(y\)-values, whereas the left and right
edges need the \(x\)-values. Each case is a question of picking out which corner ends up at
with the maximum top, bottom, left and right value. Doing this by hand means a lot
less calculating and avoids lots of comparisons.
__box_rotate_xdir:nnN \l__box_right_dim \l__box_bottom_dim
\l__box_right_new_dim
\cs_new_protected:Npn __box_rotate_quadrant_two:
\{
__box_rotate_ydir:nnN \l__box_right_dim \l__box_bottom_dim
\l__box_top_new_dim
__box_rotate_ydir:nnN \l__box_left_dim \l__box_top_dim
\l__box_bottom_new_dim
__box_rotate_xdir:nnN \l__box_right_dim \l__box_top_dim
\l__box_bottom_new_dim
__box_rotate_xdir:nnN \l__box_left_dim \l__box_bottom_dim
\l__box_right_new_dim
\}
\cs_new_protected:Npn __box_rotate_quadrant_three:
\{
__box_rotate_ydir:nnN \l__box_left_dim \l__box_bottom_dim
\l__box_top_new_dim
__box_rotate_ydir:nnN \l__box_right_dim \l__box_top_dim
\l__box_bottom_new_dim
__box_rotate_xdir:nnN \l__box_right_dim \l__box_bottom_dim
\l__box_left_new_dim
__box_rotate_xdir:nnN \l__box_left_dim \l__box_top_dim
\l__box_right_new_dim
\}
\cs_new_protected:Npn __box_rotate_quadrant_four:
\{
__box_rotate_ydir:nnN \l__box_left_dim \l__box_bottom_dim
\l__box_top_new_dim
__box_rotate_ydir:nnN \l__box_right_dim \l__box_bottom_dim
\l__box_top_new_dim
__box_rotate_xdir:nnN \l__box_left_dim \l__box_bottom_dim
\l__box_left_new_dim
__box_rotate_xdir:nnN \l__box_right_dim \l__box_top_dim
\l__box_right_new_dim
\}
(End definition for __box_rotate:Nn and others. These functions are documented on page 245.)

\l__box_scale_x_fp
\l__box_scale_y_fp
\fp_new:N \l__box_scale_x_fp
\fp_new:N \l__box_scale_y_fp
(End definition for __box_scale_x_fp and __box_scale_y_fp.)

Resizing a box starts by working out the various dimensions of the existing box.
\cs_new_protected:Npn __box_resize_to_wd_and_ht_plus_dp:Nnn
\{
__box_resize_to_wd_and_ht_plus_dp:Nnn \l__box_resize_to_wd_and_ht_plus_dp:NNn #1#2#3
\hbox_set:N
\}
\cs_generate_variant:Nn __box_resize_to_wd_and_ht_plus_dp:Nnn { c }
\cs_new_protected:Npn __box_resize_to_wd_and_ht_plus_dp:Nnn { c }
\{
__box_resize_to_wd_and_ht_plus_dp:Nnn \l__box_resize_to_wd_and_ht_plus_dp:NNn #1#2#3
\}

Scaling is potentially-different in the two axes.
The x-scaling and resulting box size is easy enough to work out: the dimension is that given as $#2$, and the scale is simply the new width divided by the old one.

\begin{verbatim}
\fp_set:Nn \l__box_scale_x_fp { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }
\end{verbatim}

The y-scaling needs both the height and the depth of the current box.

\begin{verbatim}
\fp_set:Nn \l__box_scale_y_fp { \dim_to_fp:n {#3} / \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim } }
\end{verbatim}

Hand off to the auxiliary which does the rest of the work.

\begin{verbatim}
__box_resize:N #1
\end{verbatim}

With at least one real scaling to do, the next phase is to find the new edge co-ordinates. In the x direction this is relatively easy: just scale the right edge. In the y direction, both dimensions have to be scaled, and this again needs the absolute scale value. Once that is all done, the common resize/rescale code can be employed.

\begin{verbatim}
\cs_new_protected:Npm __box_resize:N #1
\end{verbatim}
Scaling to a (total) height or to a width is a simplified version of the main resizing
operation, with the scale simply copied between the two parts. The internal auxiliary is
called using the scaling value twice, as the sign for both parts is needed (as this allows
the same internal code to be used as for the general case).

```latex
\cs_new_protected:Npn \box_resize_to_ht:Nn #1#2
\{ \__box_resize_to_ht:NnN #1 {#2} \hbox_set:Nn \}
\cs_generate_variant:Nn \box_resize_to_ht:Nn { c }
\cs_new_protected:Npn \box_gresize_to_ht:Nn #1#2
\{ \__box_resize_to_ht:NnN #1 {#2} \hbox_gset:Nn \}
\cs_generate_variant:Nn \box_gresize_to_ht:Nn { c }
\cs_new_protected:Npn \__box_resize_to_ht:NnN #1#2#3
\{ #3 #1
\__box_resize_set_corners:N #1
\fp_set:Nn \l__box_scale_y_fp
\{ \dim_to_fp:n {#2}
/ \dim_to_fp:n { \l__box_top_dim } \}
\fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp
\__box_resize:N #1
\}
\cs_new_protected:Npn \box_resize_to_ht_plus_dp:Nn #1#2
\{ \__box_resize_to_ht_plus_dp:NnN #1 {#2} \hbox_set:Nn \}
\cs_generate_variant:Nn \box_resize_to_ht_plus_dp:Nn { c }
\cs_new_protected:Npn \box_gresize_to_ht_plus_dp:Nn #1#2
\{ \__box_resize_to_ht_plus_dp:NnN #1 {#2} \hbox_gset:Nn \}
\cs_generate_variant:Nn \box_gresize_to_ht_plus_dp:Nn { c }
\cs_new_protected:Npn \__box_resize_to_ht_plus_dp:NnN #1#2#3
\{ #3 #1
\__box_resize_set_corners:N #1
\fp_set:Nn \l__box_scale_y_fp
\{ \dim_to_fp:n {#2}
/ \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim } \}
\fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp
\__box_resize:N #1
\}
```

```latex
\cs_new_protected:Npn \box_resize_to_wd:Nn #1#2
\{ \__box_resize_to_wd:NnN #1 {#2} \hbox_set:Nn \}
\cs_generate_variant:Nn \box_resize_to_wd:Nn { c }
\cs_new_protected:Npn \box_gresize_to_wd:Nn #1#2
\{ \__box_resize_to_wd:NnN #1 {#2} \hbox_gset:Nn \}
\cs_generate_variant:Nn \box_gresize_to_wd:Nn { c }
\cs_new_protected:Npn \__box_resize_to_wd:NnN #1#2#3
\{ #3 #1
\__box_resize_set_corners:N #1
\fp_set:Nn \l__box_scale_y_fp
\{ \dim_to_fp:n {#2}
/ \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim } \}
\fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp
\__box_resize:N #1
\}
```

When scaling a box, setting the scaling itself is easy enough. The new dimensions are also relatively easy to find, allowing only for the need to keep them positive in all cases. Once that is done then after a check for the trivial scaling a hand-off can be made to the common code. The code here is split into two as this allows sharing with the auto-resizing functions.

\texttt{__box_scale:Nnn} \texttt{__box_scale:cnn} \texttt{__box_gscale:Nnn} \texttt{__box_gscale:cnn}
\box_autosize_to_wd_and_ht:Nnn
\box_autosize_to_wd_and_ht:cm
\box_gautosize_to_wd_and_ht:Nnn
\box_gautosize_to_wd_and_ht:cm
\box_autosize_to_wd_and_ht_plus_dp:Nnn
\box_gautosize_to_wd_and_ht_plus_dp:cm
\box_gautosize_to_wd_and_ht_plus_dp:cm
_box_autosize:NnnN

Although autosizing a box uses dimensions, it has more in common in implementation with scaling. As such, most of the real work here is done elsewhere.

\cs_new_protected:Npn \box_autosize_to_wd_and_ht:Nnn #1#2#3
{ __box_autosize:NnnN #1 {#2} {#3} { \box_ht:N #1 } \hbox_set:Nn }
\cs_generate_variant:Nn \box_autosize_to_wd_and_ht:Nnn { c }
\cs_new_protected:Npn \box_gautosize_to_wd_and_ht:Nnn #1#2#3
{ __box_autosize:NnnN #1 {#2} {#3} { \box_ht:N #1 } \hbox_gset:Nn }
\cs_generate_variant:Nn \box_autosize_to_wd_and_ht:Nnn { c }
\cs_new_protected:Npn __box_autosize:NnnN #1#2#3#4#5
{ #5 #1
{ \fp_set:Nn \l__box_scale_x_fp { (#2) / \box_wd:N #1 }
\fp_set:Nn \l__box_scale_y_fp { (#3) / (#4) }
\fp_compare:nNnTF \l__box_scale_y_fp > \l__box_scale_x_fp
{ \fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp }
{ \fp_set_eq:NN \l__box_scale_y_fp \l__box_scale_x_fp }
__box_scale:N #1 }
}

(End definition for \box_autosize_to_wd_and_ht:Nnn and others. These functions are documented on page 245.)

__box_resize_common:N

The main resize function places its input into a box which start off with zero width, and includes the handles for engine rescaling.

\cs_new_protected:Npn __box_resize_common:N #1
{ }

1058
The new height and depth can be applied directly.

\fp_compare:nNnTF \l__box_scale_y_fp > \c_zero_fp
 \box_set_ht:Nn \l__box_internal_box { \l__box_top_new_dim }
 \box_set_dp:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
\fp_compare:nNnTF \l__box_scale_x_fp < \c_zero_fp
 \hbox_to_wd:nn { \l__box_right_new_dim }
 \tex_kern:D \l__box_right_new_dim
 \box_use_drop:N \l__box_internal_box
 \tex_hss:D
\box_set_wd:Nn \l__box_internal_box { \l__box_right_new_dim }
\hbox:n
 \tex_kern:D \c_zero_dim
 \box_use_drop:N \l__box_internal_box
 \tex_hss:D
\End definition for __box_resize_common:N.

Things are not quite as obvious for the width, as the reference point needs to remain unchanged. For positive scaling factors resizing the box is all that is needed. However, for case of a negative scaling the material must be shifted such that the reference point ends up in the right place.

\fp_compare:nNnTF \l__box_scale_x_fp < \c_zero_fp
 \hbox_to_wd:nn { \l__box_right_new_dim }
 \tex_kern:D \l__box_right_new_dim
 \box_use_drop:N \l__box_internal_box
 \tex_hss:D
\box_set_wd:Nn \l__box_internal_box { \l__box_right_new_dim }
\hbox:n
 \tex_kern:D \c_zero_dim
 \box_use_drop:N \l__box_internal_box
 \tex_hss:D
\End definition for __box_resize_common:N.

(End definition for __box_resize_common:N.)

\endinput
\l__coffin_internals
\l__coffin_internals_dim
\l__coffin_internals_tl

(End definition for \l__coffin_internals, \l__coffin_internals_dim, and \l__coffin_internals_tl.)

\c__coffin_corners_prop
The “corners” of a coffin define the real content, as opposed to the \TeX{} bounding box. They all start off in the same place, of course.

\prop_const_from_keyval:Nn \c__coffin_corners_prop
{ tl = { 0pt } { 0pt },
 tr = { 0pt } { 0pt },
 bl = { 0pt } { 0pt },
 br = { 0pt } { 0pt },
}

(End definition for \c__coffin_corners_prop.)

\c__coffin_poles_prop
Pole positions are given for horizontal, vertical and reference-point based values.

\prop_const_from_keyval:Nn \c__coffin_poles_prop
{ l = { 0pt } { 0pt } { 0pt } { 1000pt },
 hc = { 0pt } { 0pt } { 0pt } { 1000pt },
 r = { 0pt } { 0pt } { 0pt } { 1000pt },
 b = { 0pt } { 0pt } { 1000pt } { 0pt },
 vc = { 0pt } { 0pt } { 1000pt } { 0pt },
 t = { 0pt } { 0pt } { 1000pt } { 0pt },
 B = { 0pt } { 0pt } { 1000pt } { 0pt },
 H = { 0pt } { 0pt } { 1000pt } { 0pt },
 T = { 0pt } { 0pt } { 1000pt } { 0pt },
}

(End definition for \c__coffin_poles_prop.)

\l__coffin_slope_A_fp
\l__coffin_slope_B_fp
Used for calculations of intersections.

\fp_new:N \l__coffin_slope_A_fp
\fp_new:N \l__coffin_slope_B_fp

(End definition for \l__coffin_slope_A_fp and \l__coffin_slope_B_fp.)

\l__coffin_error_bool
For propagating errors so that parts of the code can work around them.

\bool_new:N \l__coffin_error_bool

(End definition for \l__coffin_error_bool.)

\l__coffin_offset_x_dim
\l__coffin_offset_y_dim
The offset between two sets of coffin handles when typesetting. These values are corrected from those requested in an alignment for the positions of the handles.

\dim_new:N \l__coffin_offset_x_dim
\dim_new:N \l__coffin_offset_y_dim

(End definition for \l__coffin_offset_x_dim and \l__coffin_offset_y_dim.)

\l__coffin_pole_a_tl
\l__coffin_pole_b_tl
Needed for finding the intersection of two poles.

\tl_new:N \l__coffin_pole_a_tl
\tl_new:N \l__coffin_pole_b_tl
For calculating intersections and so forth.

\begin{verbatim}
\dim_new:N \l__coffin_x_dim \\
\dim_new:N \l__coffin_y_dim \\
\dim_new:N \l__coffin_x_prime_dim \\
\dim_new:N \l__coffin_y_prime_dim
\end{verbatim}

(End definition for \l__coffin_x_dim and others.)

42.2 Basic coffin functions

There are a number of basic functions needed for creating coffins and placing material in them. This all relies on the following data structures.

- **\l__coffin_to_value:N**
 Coffins are a two-part structure and we rely on the internal nature of box allocation to make everything work. As such, we need an interface to turn coffin identifiers into numbers. For the purposes here, the signature allowed is \texttt{N} despite the nature of the underlying primitive.

\begin{verbatim}
\cs_new_eq:NN __coffin_to_value:N \tex_number:D
\end{verbatim}

(End definition for \l__coffin_to_value:N.)

- **\coffin_if_exist_p:N**, **\coffin_if_exist_p:c**, **\coffin_if_exist:N**, **\coffin_if_exist:c**
 Several of the higher-level coffin functions would give multiple errors if the coffin does not exist. A cleaner way to handle this is provided here: both the box and the coffin structure are checked.

\begin{verbatim}
\prg_new_conditional:Npnn \coffin_if_exist:N #1 { p , T , F , TF } \\
\cs_if_exist:NTF #1 \\
\{ \cs_if_exist:cTF { coffin ~ __coffin_to_value:N #1 ~ poles } \\
\{ \prg_return_true: \} \\
\{ \prg_return_false: \} \\
\} \\
\prg_generate_conditional_variant:Nnn \coffin_if_exist:N \\
\{ c \} { p , T , F , TF }
\end{verbatim}

(End definition for \l__coffin_to_value:N. This function is documented on page 246.)

- **\coffin_if_exist:NT**
 Several of the higher-level coffin functions would give multiple errors if the coffin does not exist. So a wrapper is provided to deal with this correctly, issuing an error on erroneous use.

\begin{verbatim}
\cs_new_protected:Npn __coffin_if_exist:NT #1#2 \\
\{ \\
\coffin_if_exist:NTF #1 \\
\{ \prg_return_true: \} \\
\{ \prg_return_false: \} \\
\} \\
__kernel_msg_error:nnx { kernel } { unknown-coffin } \\
\{ \token_to_str:N #1 \}
\end{verbatim}

(End definition for \l__coffin_if_exist:NT.)

1061
Clearing coffins means emptying the box and resetting all of the structures.

```
\cs_new_protected:Npn \coffin_clear:N #1
  \__coffin_if_exist:NT #1
    \box_clear:N #1
    \__coffin_reset_structure:N #1
  }
\cs_generate_variant:Nn \coffin_clear:N { c }
```

Creating a new coffin means making the underlying box and adding the data structures. The `\debug_suspend:` and `\debug_resume:` functions prevent `\prop_gclear_new:c` from writing useless information to the log file.

```
\cs_new_protected:Npn \coffin_new:N #1
  \box_new:N #1
  \debug_suspend:
  \prop_gclear_new:c { coffin - \__coffin_to_value:N #1 - corners }
  \prop_gclear_new:c { coffin - \__coffin_to_value:N #1 - poles }
  \prop_gset_eq:cN { coffin - \__coffin_to_value:N #1 - corners }
  \c__coffin_corners_prop
  \prop_gset_eq:cN { coffin - \__coffin_to_value:N #1 - poles }
  \c__coffin_poles_prop
  \debug_resume:
\cs_generate_variant:Nn \coffin_new:N { c }
```

Horizontal coffins are relatively easy: set the appropriate box, reset the structures then update the handle positions.

```
\cs_new_protected:Npn \hcoffin_set:Nn \hcoffin_set:cn
\cs_new_protected:Npn \hcoffin_gset:Nn \hcoffin_gset:cn
  \hbox_set:Nn { colour_ensure_current: #2
```
\texttt{\textbackslash vcoffin_set:Nnn} \texttt{\textbackslash vcoffin_set:cnn} \texttt{\textbackslash vcoffin_gset:Nnn} \texttt{\textbackslash vcoffin_gset:cnn} Setting vertical coffins is more complex. First, the material is typeset with a given width. The default handles and poles are set as for a horizontal coffin, before finding the top baseline using a temporary box. No \texttt{\textbackslash color_ensure_current}: here as that would add a \texttt{\textbackslash whatis} to the start of the vertical box and mess up the location of the T pole (see \texttt{\TeX} by \textit{Topic} for discussion of the \texttt{\textbackslash vtop} primitive, used to do the measuring).

\texttt{\textbackslash cs_generate_variant:Nn} \texttt{\textbackslash hcoffin_set:Nn \{ c \}} \texttt{\textbackslash cs_new_protected:Npm} \texttt{\textbackslash hcoffin_gset:Nn \#1#2} \{ \texttt{__coffin_if_exist:NT \#1} \} \texttt{\hbox_gset:Nn \#1} \{ \texttt{\color_ensure_current: \#2} \} \texttt{__coffin_gupdate:N \#1} \}

\texttt{\cs_generate_variant:Nn} \texttt{\textbackslash hcoffin_set:Nn \{ c \}}

(End definition for \texttt{\textbackslash hcoffin_set:Nn} and \texttt{\textbackslash hcoffin_gset:Nn}. These functions are documented on page 246.)
_coffin_set_pole:Nnx \#1 \{ T \}
\{ \Opt \}
\{ \dim_eval:n \}
\{ \box_ht:N \#1 - \box_ht:N \l__coffin_internal_box \}
\{ 1000pt \}
\{ \Opt \}
\box_clear:N \l__coffin_internal_box
\}
\)
(End definition for \vcoffin_set:Nnn, \vcoffin_gset:Nnn, and _coffin_set_vertical:NnnNN. These functions are documented on page 247.)

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_gset:Nw
\hcoffin_gset:cw
\hcoffin_set_end:
\hcoffin_gset_end:

These are the “begin”/“end” versions of the above: watch the grouping!
\cs_new_protected:Npn \hcoffin_set:Nw \#1
\{ _coffin_if_exist:NT \#1 \}
\{ \hbox_set:Nw \#1 \color_ensure_current:
\cs_set_protected:Npn \hcoffin_set_end:
\{ \hbox_set_end:
\{ _coffin_update:N \#1 \}
\}
\}
\cs_generate_variant:Nn \hcoffin_set:Nw \{ c \}
\cs_new_protected:Npn \hcoffin_gset:Nw \#1
\{ _coffin_if_exist:NT \#1 \}
\{ \hbox_gset:Nw \#1 \color_ensure_current:
\cs_set_protected:Npn \hcoffin_gset_end:
\{ \hbox_gset_end:
\{ _coffin_gupdate:N \#1 \}
\}
\}
\cs_generate_variant:Nn \hcoffin_gset:Nw \{ c \}
\cs_new_protected:Npn \hcoffin_set_end: \{ \}
\cs_new_protected:Npn \hcoffin_gset_end: \{ \}
(End definition for \hcoffin_set:Nw and others. These functions are documented on page 247.)

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_gset:Nnw
\vcoffin_gset:cnw
_coffin_set_vertical:NnNNNNw
\vcoffin_set_end:
\vcoffin_gset_end:

The same for vertical coffins.
\cs_new_protected:Npn \vcoffin_set:Nnw \#1#2
\{ _coffin_set_vertical:NnnNNNN \#1 \#2 \} \vbox_set:Nw
\vcoffin_set_end:
\vbox_set_end: _coffin_update:N

1064
\cs_generate_variant:Nn \vcoffin_set:Nnw { c }
\cs_new_protected:Npn \vcoffin_gset:Nnw #1#2
{
__coffin_set_vertical:NnNNNNw #1 {#2} \vbox_gset:Nw
\vcoffin_gset_end:
\vbox_gset_end: __coffin_gupdate:N
}
\cs_generate_variant:Nn \vcoffin_gset:Nnw { c }
\cs_new_protected:Npn __coffin_set_vertical:NnNNNNw #1#2#3#4#5#6
{
__coffin_if_exist:NT #1
{
\dim_set:Nn \tex_hsize:D {#2}
\dim_eval:n { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box }
\prop_set_eq:cc { coffin ~ __coffin_to_value:N #1 ~ poles }
\prop_set_eq:cc { coffin ~ __coffin_to_value:N #2 ~ poles }
\box_clear:N \l__coffin_internal_box
}\dim_set_eq:NN \linewidth \tex_hsize:D
\dim_set_eq:NN \columnwidth \tex_hsize:D
\break}
\cs_set_protected:Npn #4
{
\dim_set:Nn \tex_hsize:D {#2}
\dim_eval:n { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box }
\prop_set_eq:cc { coffin ~ __coffin_to_value:N #1 ~ poles }
\prop_set_eq:cc { coffin ~ __coffin_to_value:N #2 ~ poles }
\box_clear:N \l__coffin_internal_box
}\dim_set_eq:NN \linewidth \tex_hsize:D
\dim_set_eq:NN \columnwidth \tex_hsize:D
\break}
\cs_new_protected:Npn \vcoffin_set_end: { }
\cs_new_protected:Npn \vcoffin_gset_end: { }

(End definition for \vcoffin_set:Nnw and others. These functions are documented on page 247.)

\coffin_set_eq:NN Setting two coffins equal is just a wrapper around other functions.
\coffin_set_eq:Nc
\coffin_set_eq:CN
\coffin_set_eq:cc
\coffin_gset_eq:NN
\coffin_gset_eq:Nc
\coffin_gset_eq:CN
\coffin_gset_eq:cc

\cs_new_protected:Npn \vcoffin_set_end: { }
\cs_new_protected:Npn \vcoffin_gset_end: { }

1065
Special coffins: these cannot be set up earlier as they need \texttt{coffin_new:N}. The empty coffin is set as a box as the full coffin-setting system needs some material which is not yet available. The empty coffin is created entirely by hand: not everything is in place yet.

\begin{verbatim}
\coffin_new:N \c_empty_coffin
\coffin_new:N \l__coffin_aligned_coffin
\coffin_new:N \l__coffin_aligned_internal_coffin
\end{verbatim}

The usual scratch space.

\begin{verbatim}
\coffin_new:N \l_tmpa_coffin
\coffin_new:N \l_tmpb_coffin
\coffin_new:N \g_tmpa_coffin
\coffin_new:N \g_tmpb_coffin
\end{verbatim}

42.3 Measuring coffins

Coffins are just boxes when it comes to measurement. However, semantically a separate set of functions are required.

\begin{verbatim}
\coffin_dp:N \coffin_dp:c
\coffin_ht:N \coffin_ht:c
\coffin_wd:N \coffin_wd:c
\end{verbatim}

(End definition for \texttt{coffin_dp:N}, \texttt{coffin_ht:N}, and \texttt{coffin_wd:N}. These functions are documented on page 249.)
42.4 Coffins: handle and pole management

A simple wrapper around the recovery of a coffin pole, with some error checking and recovery built-in.

\cs_new_protected:Npn __coffin_get_pole:NnN #1#2#3
\prop_get:cnNF
{ coffin __coffin_to_value:N #1 poles } {#2} #3
{ \kernel_msg_error:nnxx { kernel } { unknown-coffin-pole } }
\token_to_str:N #1
\tl_set:Nn #3 { { Opt } { Opt } { Opt } { Opt } }

(End definition for __coffin_get_pole:NnN.)

Resetting the structure is a simple copy job.

\cs_new_protected:Npn __coffin_reset_structure:N #1
\prop_set_eq:cN { coffin __coffin_to_value:N #1 corners } \c__coffin_corners_prop
\prop_set_eq:cN { coffin __coffin_to_value:N #1 poles } \c__coffin_poles_prop

(End definition for __coffin_reset_structure:N and __coffin_greset_structure:N.)

Setting the pole of a coffin at the user/designer level requires a bit more care. The idea here is to provide a reasonable interface to the system, then to do the setting with full expansion. The three-argument version is used internally to do a direct setting.

\cs_new_protected:Npn \coffin_set_horizontal_pole:Nnn #1#2#3
{ __coffin_set_horizontal_pole:NnnN #1 {#2} {#3} \prop_put:cnx }
\cs_generate_variant:Nn \coffin_set_horizontal_pole:Nnn { c }
\cs_new_protected:Npn \coffin_gset_horizontal_pole:Nnn #1#2#3
{ __coffin_set_horizontal_pole:NnnN #1 {#2} {#3} \prop_gput:cnx }
\cs_generate_variant:Nn \coffin_gset_horizontal_pole:Nnn { c }
\cs_new_protected:Npn __coffin_set_horizontal_pole:NnnN #1#2#3#4
{ __coffin_if_exist:NT #1
{ #4 { coffin __coffin_to_value:N #1 poles } }
{ Opt } { \dim_eval:n {#3} }
{ 1000pt } { Opt } }

(End definition for __coffin_set_horizontal_pole:Nnn.)

\cs_new_protected:Npn \coffin_set_vertical_pole:Nnn #1#2#3
{ __coffin_set_vertical_pole:NnnN #1 {#2} {#3} \prop_put:cnx }
\cs_generate_variant:Nn \coffin_set_vertical_pole:Nnn { c }
\cs_new_protected:Npn \coffin_gset_vertical_pole:Nnn #1#2#3
{ __coffin_set_vertical_pole:NnnN #1 {#2} {#3} \prop_gput:cnx }
\cs_generate_variant:Nn \coffin_gset_vertical_pole:Nnn { c }
\cs_new_protected:Npn __coffin_set_vertical_pole:NnnN #1#2#3#4
{ __coffin_if_exist:NT #1
{ #4 { coffin __coffin_to_value:N #1 poles } }
{ Opt } { \dim_eval:n {#3} }
{ 1000pt } { Opt } }

(End definition for __coffin_set_vertical_pole:Nnn.)
\cs_new_protected:Npn \coffin_set_vertical_pole:Nnn #1#2#3
\{ __coffin_set_vertical_pole:NnnN #1 {#2} {#3} \prop_put:cnx \}
\cs_generate_variant:Nn \coffin_set_vertical_pole:Nnn { c }
\cs_new_protected:Npn \coffin_gset_vertical_pole:Nnn #1#2#3
\{ __coffin_set_vertical_pole:NnnN #1 {#2} {#3} \prop_gput:cnx \}
\cs_generate_variant:Nn \coffin_gset_vertical_pole:Nnn { c }
\cs_new_protected:Npn __coffin_set_vertical_pole:NnnN #1#2#3#4
\{ __coffin_if_exist:NT #1
\{ #4 { coffin __coffin_to_value:N #1 poles } \\
{#2} \\
\{ \dim_eval:n {#3} \} \{ Opt \} \{ 1000pt \}
\}
\}
\cs_new_protected:Npn __coffin_set_pole:Nnn #1#2#3
\{ \prop_put:cnn { coffin __coffin_to_value:N #1 poles } {#2} {#3} \}
\cs_generate_variant:Nn __coffin_set_pole:Nnn { Nnx }
Updating the corners of a coffin is straight-forward as at this stage there can be no rotation. So the corners of the content are just those of the underlying \TeX box.
\cs_new_protected:Npn __coffin_update_corners:N #1
\{ __coffin_update_corners:NN #1 \prop_put:Nnx \}
\cs_new_protected:Npn __coffin_gupdate_corners:N #1
\{ __coffin_gupdate_corners:NN #1 \prop_gput:Nnx \}
\cs_new_protected:Npn __coffin_update_corners:NN #1#2
\{ \exp_args:Nc __coffin_update_corners:NNN \}
__coffin_update:N __coffin_gupdate:N Simple shortcuts.
\cs_new_protected:Npn __coffin_update:N #1
\{ __coffin_reset_structure:N #1 __coffin_update_corners:N __coffin_update_poles:N \}
\cs_new_protected:Npn __coffin_gupdate:N #1
\{ __coffin_greset_structure:N #1 __coffin_gupdate_corners:N __coffin_gupdate_poles:N \}
(End definition for \coffin_set_horizontal_pole:Nnn and others. These functions are documented on page 247.)
__coffin_update_poles:NN
__coffin_gupdate_poles:NN
__coffin_update_poles:NNN

This function is called when a coffin is set, and updates the poles to reflect the nature of size of the box. Thus this function only alters poles where the default position is dependent on the size of the box. It also does not set poles which are relevant only to vertical coffins.

__coffin_update_poles:NN
__coffin_gupdate_poles:NN
__coffin_update_poles:NNN

__coffin_update_poles:NN
__coffin_gupdate_poles:NN
__coffin_update_poles:NNN

__coffin_update_poles:NN
__coffin_gupdate_poles:NN
__coffin_update_poles:NNN
42.5 Coffins: calculation of pole intersections

The lead off in finding intersections is to recover the two poles and then hand off to the auxiliary for the actual calculation. There may of course not be an intersection, for which an error trap is needed.

The two poles passed here each have four values (as dimensions), \((a, b, c, d)\) and \((a', b', c', d')\). These are arguments 1–4 and 5–8, respectively. In both cases \(a\) and \(b\) are the co-ordinates of a point on the pole and \(c\) and \(d\) define the direction of the pole. Finding the intersection depends on the directions of the poles, which are given by \(d/c\) and \(d'/c'\). However, if one of the poles is either horizontal or vertical then one or more of \(c, d, c'\) and \(d'\) are zero and a special case is needed.
The case where the first pole is vertical. So the \textit{x}-component of the interaction is at a. There is then a test on the second pole: if it is also vertical then there is an error.

\begin{verbatim}
{ \dim_compare:nNnTF {#3} = \c_zero_dim
 \dim_set:Nn \l__coffin_x_dim {#1}
 \dim_compare:nNnTF {#7} = \c_zero_dim
 \bool_set_true:N \l__coffin_error_bool }
\end{verbatim}

The second pole may still be horizontal, in which case the \textit{y}-component of the intersection is b'. If not,

$$y = \frac{d'}{c'} (a - a') + b'$$

with the \textit{x}-component already known to be #1.

\begin{verbatim}
{ } \dim_set:Nn \l__coffin_y_dim
 \dim_compare:nNnTF {#8} = \c_zero_dim
 \fp_to_dim:n
 (\dim_to_fp:n {#8} / \dim_to_fp:n {#7})
 * (\dim_to_fp:n {#1} - \dim_to_fp:n {#5})
 + \dim_to_fp:n {#6}
}
\end{verbatim}

If the first pole is not vertical then it may be horizontal. If so, then the procedure is essentially the same as that already done but with the \textit{x} and \textit{y}-components interchanged.

\begin{verbatim}
{ } \dim_compare:nNnTF {#4} = \c_zero_dim
 \dim_set:Nn \l__coffin_y_dim {#2}
 \dim_compare:nNnTF {#8} = \c_zero_dim
 \bool_set_true:N \l__coffin_error_bool }
\end{verbatim}

Now we deal with the case where the second pole may be vertical, or if not we have

$$x = \frac{c'}{d'} (b - b') + a'$$

which is again handled by the same auxiliary.

\begin{verbatim}
\dim_set:Nn \l__coffin_x_dim
 \dim_compare:nNnTF {#7} = \c_zero_dim
 \fp_to_dim:n
 (\dim_to_fp:n {#7} / \dim_to_fp:n {#8})
\end{verbatim}
The first pole is neither horizontal nor vertical. To avoid even more complexity, we now work out both slopes and pass to an auxiliary.

\begin{verbatim}
{ \use:x
 __coffin_calculate_intersection:nnnnnn
 \dim_to_fp:n {#4} / \dim_to_fp:n {#3}
 \dim_to_fp:n {#8} / \dim_to_fp:n {#7}
 \l__coffin_x_dim \l__coffin_y_dim
 \fp_to_dim:n
 { \fp_compare:nNnTF {#1} = {#2}
 { \bool_set_true:N \l__coffin_error_bool }
 { \dim_set:Nn \l__coffin_x_dim
 \fp_to_dim:n
 { \dim_to_fp:n {#3}
 \dim_to_fp:n {#5}
 \dim_to_fp:n {#4}
 + \dim_to_fp:n {#6}
 }
 \dim_set:Nn \l__coffin_y_dim
 \fp_to_dim:n
 { \#1 * (\l__coffin_x_dim - \dim_to_fp:n {#3})
 \dim_to_fp:n {#1}
 }
 \#1 \#2 \#5 \#6 }
 }
}
\end{verbatim}

Assuming the two poles are not parallel, then the intersection point is found in two steps. First we find the x-value with

$$x = \frac{sa - s'a' - b + b'}{s - s'}$$

and then finding the y-value with

$$y = s(x - a) + b$$
42.6 Affine transformations

\l_coffin_sin_fp
\l_coffin_cos_fp

Used for rotations to get the sine and cosine values.

\fp_new:N \l_coffin_sin_fp
\fp_new:N \l_coffin_cos_fp

(After definition for \l_coffin_sin_fp and \l_coffin_cos_fp.)

\l_coffin_bounding_prop

A property list for the bounding box of a coffin. This is only needed during the rotation, so there is just the one.

\prop_new:N \l_coffin_bounding_prop

(After definition for \l_coffin_bounding_prop.)

\l_coffin_corners_prop
\l_coffin_poles_prop

Used to avoid needing to track scope for intermediate steps.

\prop_new:N \l_coffin_corners_prop
\prop_new:N \l_coffin_poles_prop

(After definition for \l_coffin_corners_prop and \l_coffin_poles_prop.)

\l_coffin_bounding_shift_dim

The shift of the bounding box of a coffin from the real content.

\dim_new:N \l_coffin_bounding_shift_dim

(After definition for \l_coffin_bounding_shift_dim.)

\l_coffin_left_corner_dim
\l_coffin_right_corner_dim
\l_coffin_bottom_corner_dim
\l_coffin_top_corner_dim

These are used to hold maxima for the various corner values: these thus define the minimum size of the bounding box after rotation.

\dim_new:N \l_coffin_left_corner_dim
\dim_new:N \l_coffin_right_corner_dim
\dim_new:N \l_coffin_bottom_corner_dim
\dim_new:N \l_coffin_top_corner_dim

(After definition for \l_coffin_left_corner_dim and others.)

\coffin_rotate:Nn
\coffin_rotate:cn
\coffin_grotate:Nn
\coffin_grotate:cn
__coffin_rotate:NNNN

Rotating a coffin requires several steps which can be conveniently run together. The sine and cosine of the angle in degrees are computed. This is then used to set \l_coffin_sin_fp and \l_coffin_cos_fp, which are carried through unchanged for the rest of the procedure.

\cs_new_protected:Npn \coffin_rotate:Nn \#1\#2
\cs_generate_variant:Nn \coffin_rotate:Nn \{ c \}
\cs_new_protected:Npn \coffin_grotate:Nn \#1\#2
\cs_generate_variant:Nn \coffin_grotate:Nn \{ c \}
\cs_new_protected:Npn __coffin_rotate:Nn\#1\#2\#3\#4\#5
\{ \fp_set:Nn \l_coffin_sin_fp \{ \text{sind} \ (\#2 \) \} \fp_set:Nn \l_coffin_cos_fp \{ \text{cosd} \ (\#2 \) \}

1073
Use a local copy of the property lists to avoid needing to pass the name and scope around.

\prop_set_eq:Nc \l__coffin_corners_prop
\prop_set_eq:Nc \l__coffin_poles_prop

The corners and poles of the coffin can now be rotated around the origin. This is best achieved using mapping functions.

\prop_map_inline:Nn \l__coffin_corners_prop
\prop_map_inline:Nn \l__coffin_poles_prop

At this stage, there needs to be a calculation to find where the corners of the content and the box itself will end up.

__coffin_find_corner_maxima:N #1
__coffin_find_bounding_shift:

The correction of the box position itself takes place here. The idea is that the bounding box for a coffin is tight up to the content, and has the reference point at the bottom-left. The \texttt{x} -direction is handled by moving the content by the difference in the positions of the bounding box and the content left edge. The \texttt{y} -direction is dealt with by moving the box down by any depth it has acquired. The internal box is used here to allow for the next step.

\hbox_set:Nn \l__coffin_internal_box
\box_set_ht:Nn \l__coffin_internal_box
\box_set_dp:Nn \l__coffin_internal_box
\box_set_wd:Nn \l__coffin_internal_box

If there have been any previous rotations then the size of the bounding box will be bigger than the contents. This can be corrected easily by setting the size of the box to the height and width of the content. As this operation requires setting box dimensions and these transcend grouping, the safe way to do this is to use the internal box and to reset the result into the target box.
The final task is to move the poles and corners such that they are back in alignment with the box reference point.

\prop_map_inline:Nn \l__coffin_corners_prop
\prop_map_inline:Nn \l__coffin_poles_prop
\prop_map_inline:Nn \l__coffin_corners_prop
\prop_map_inline:Nn \l__coffin_poles_prop

Update the coffin data.

\#4 { coffin __coffin_to_value:N #1 - corners }
\l__coffin_corners_prop
\#4 { coffin __coffin_to_value:N #1 - poles }
\l__coffin_poles_prop

(End definition for \coffin_rotate:Nn, \coffin_grotate:Nn, and __coffin_rotate:NnNNN. These functions are documented on page 248.)

The bounding box corners for a coffin are easy enough to find: this is the same code as for the corners of the material itself, but using a dedicated property list.

\cs_new_protected:Npn __coffin_set_bounding:N #1
\prop_put:Nnx \l__coffin_bounding_prop { tl } { { 0pt } { \dim_eval:n { \box_ht:N #1 } } }
\prop_put:Nnx \l__coffin_bounding_prop { tr } { { \dim_eval:n { \box_wd:N #1 } { \dim_eval:n { \box_ht:N #1 } } } }
\dim_set:Nn \l__coffin_internal_dim { -\box_dp:N #1 }
\prop_put:Nnx \l__coffin_bounding_prop { bl } { { 0pt } { \dim_use:N \l__coffin_internal_dim } }
\prop_put:Nnx \l__coffin_bounding_prop { br } { { \dim_eval:n { \box_wd:N #1 } { \dim_use:N \l__coffin_internal_dim } }
\dim_set:Nn \l__coffin_internal_dim { -\box_dp:N #1 }
\prop_put:Nnx \l__coffin_bounding_prop { bl } { { 0pt } { \dim_use:N \l__coffin_internal_dim } }
\prop_put:Nnx \l__coffin_bounding_prop { br } { { \dim_eval:n { \box_wd:N #1 } { \dim_use:N \l__coffin_internal_dim } }

(End definition for __coffin_set_bounding:N)

Rotating the position of the corner of the coffin is just a case of treating this as a vector from the reference point. The same treatment is used for the corners of the material itself and the bounding box.

\cs_new_protected:Npm __coffin_rotate_bounding:nnn
__coffin_rotate_bounding:nnn
__coffin_rotate_corner:Nnnn
\cs_new_protected:Npm __coffin_rotate_bounding:nnn
__coffin_rotate_bounding:nnn
__coffin_rotate_bounding:nnn
\cs_new_protected:Npm __coffin_rotate_corner:Nnnn
__coffin_rotate_corner:Nnnn
Rotating a single pole simply means shifting the co-ordinate of the pole and its direction. The rotation here is about the bottom-left corner of the coffin.

\begin{verbatim}
\cs_new_protected:Npn __coffin_rotate_pole:Nnnnnn #1#2#3#4#5#6
\{
__coffin_rotate_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
__coffin_rotate_vector:nnNN {#5} {#6}
\l__coffin_x_prime_dim \l__coffin_y_prime_dim
\prop_put:Nnx \l__coffin_poles_prop {#2}
\{
 \{ \dim_use:N \l__coffin_x_dim \} \{ \dim_use:N \l__coffin_y_dim \}
 \{ \dim_use:N \l__coffin_x_prime_dim \}
 \{ \dim_use:N \l__coffin_y_prime_dim \}
\}
\}
\end{verbatim}

A rotation function, which needs only an input vector (as dimensions) and an output space. The values \l__coffin_cos_fp and \l__coffin_sin_fp should previously have been set up correctly. Working this way means that the floating point work is kept to a minimum: for any given rotation the sin and cosine values do no change, after all.

\begin{verbatim}
\cs_new_protected:Npn __coffin_rotate_vector:nnNN #1#2#3#4
\{
\dim_set:Nn #3 \dim_set:Nn \l__coffin_top_corner_dim \dim_set:Nn \l__coffin_right_corner_dim
\dim_set:Nn \l__coffin_bottom_corner_dim \dim_set:Nn \l__coffin_top_corner_dim
\dim_set:Nn \l__coffin_right_corner_dim \dim_set:Nn \l__coffin_top_corner_dim
\dim_set:Nn \l__coffin_bottom_corner_dim \dim_set:Nn \l__coffin_top_corner_dim
\}
\end{verbatim}

The idea here is to find the extremities of the content of the coffin. This is done by looking for the smallest values for the bottom and left corners, and the largest values for the top and right corners. The values start at the maximum dimensions so that the case where all are positive or all are negative works out correctly.

\begin{verbatim}
\cs_new_protected:Npn __coffin_find_corner_maxima:N __coffin_find_corner_maxima_aux:n
\{
\dim_set:Nn \l__coffin_top_corner_dim \dim_set:Nn \l__coffin_right_corner_dim
\dim_set:Nn \l__coffin_bottom_corner_dim \dim_set:Nn \l__coffin_bottom_corner_dim
\}
\end{verbatim}
\dim_set:Nn \l__coffin_left_corner_dim { \c_max_dim }
\prop_map_inline:Nn \l__coffin_corners_prop
{ __coffin_find_corner_maxima Aux:nn #2 }
\cs_new_protected:Npn __coffin_find_corner_maxima Aux:nn #1#2
{
\dim_set:Nn \l__coffin_left_corner_dim
{ \dim_min:nn { \l__coffin_left_corner_dim } {#1} }
\dim_set:Nn \l__coffin_right_corner_dim
{ \dim_max:nn { \l__coffin_right_corner_dim } {#1} }
\dim_set:Nn \l__coffin_bottom_corner_dim
{ \dim_min:nn { \l__coffin_bottom_corner_dim } {#2} }
\dim_set:Nn \l__coffin_top_corner_dim
{ \dim_max:nn { \l__coffin_top_corner_dim } {#2} }
}__coffin_find_bounding_shift:
__coffin_find_bounding_shift_aux:nn
The approach to finding the shift for the bounding box is similar to that for the corners. However, there is only one value needed here and a fixed input property list, so things are a bit clearer.
\cs_new_protected:Npn __coffin_find_bounding_shift:
{
\dim_set:Nn \l__coffin_bounding_shift_dim { \c_max_dim }
\prop_map_inline:Nn \l__coffin_bounding_prop
{ __coffin_find_bounding_shift_aux:nn #2 }
\cs_new_protected:Npn __coffin_find_bounding_shift_aux:nn #1#2
{
\dim_set:Nn \l__coffin_bounding_shift_dim
{ \dim_min:nn { \l__coffin_bounding_shift_dim } {#1} }
}__coffin_shift_corner:NNnn __coffin_shift_pole:NNnnnn
Shifting the corners and poles of a coffin means subtracting the appropriate values from the \textit{x}- and \textit{y}-components. For the poles, this means that the direction vector is unchanged.
\cs_new_protected:Npn __coffin_shift_corner:NNnn
{ \prop_put:Nnx \l__coffin_corners_prop {#2}
{ \dim_eval:n { #3 - \l__coffin_left_corner_dim } }
{ \dim_eval:n { #4 - \l__coffin_bottom_corner_dim } }
}
\cs_new_protected:Npn __coffin_shift_pole:NNnnnn
{ \prop_put:Nnx \l__coffin_poles_prop {#2}
{ \dim_eval:n { #3 - \l__coffin_left_corner_dim } }
{ \dim_eval:n { #4 - \l__coffin_bottom_corner_dim } }
{ #5 } {#6}
}
Storage for the scaling factors in x and y, respectively.

When scaling, the values given have to be turned into absolute values.

Resizing a coffin begins by setting up the user-friendly names for the dimensions of the coffin box. The new sizes are then turned into scale factor. This is the same operation as takes place for the underlying box, but that operation is grouped and so the same calculation is done here.

The poles and corners of the coffin are scaled to the appropriate places before actually resizing the underlying box.
Negative x-scaling values place the poles in the wrong location: this is corrected here.

For scaling, the opposite calculation is done to find the new dimensions for the coffin. Only the total height is needed, as this is the shift required for corners and poles. The scaling is done the \TeX{} way as this works properly with floating point values without needing to use the \fp{} module.

This functions scales a vector from the origin using the pre-set scale factors in x and y. This is a much less complex operation than rotation, and as a result the code is a lot clearer.
Scaling both corners and poles is a simple calculation using the preceding vector scaling.

These functions correct for the \(x \) displacement that takes place with a negative horizontal scaling.

This command joins two coffins, using a horizontal and vertical pole from each coffin and making an offset between the two. The result is stored as the as a third coffin, which

42.7 Aligning and typesetting of coffins

This command joins two coffins, using a horizontal and vertical pole from each coffin and making an offset between the two. The result is stored as the as a third coffin, which
has all of its handles reset to standard values. First, the more basic alignment function is used to get things started.

\cs_new_protected:Npn \coffin_join:NnnNnnnn \#1\#2\#3\#4\#5\#6\#7\#8
\{ __coffin_join:NnnNnnnn\#1\{\#2\}\{\#3\}\#4\{\#5\}\{\#6\}\{\#7\}\{\#8\} \coffin_set_eq:NN \}
\cs_generate_variant:Nn \coffin_join:NnnNnnnn { c , Nnnc , cnnc }
\cs_new_protected:Npn \coffin_gjoin:NnnNnnnn \#1\#2\#3\#4\#5\#6\#7\#8
\{ __coffin_join:NnnNnnnn\#1\{\#2\}\{\#3\}\#4\{\#5\}\{\#6\}\{\#7\}\{\#8\} \coffin_gset_eq:NN \}
\cs_generate_variant:Nn \coffin_gjoin:NnnNnnnn { c , Nnnc , cnnc }
\cs_new_protected:Npn __coffin_join:NnnNnnnnN \#1\#2\#3\#4\#5\#6\#7\#8\#9
\{ __coffin_align:NnnNnnnnN \#1\{\#2\}\{\#3\}\#4\{\#5\}\{\#6\}\{\#7\}\{\#8\}\#9 \}

Correct the placement of the reference point. If the x-offset is negative then the reference point of the second box is to the left of that of the first, which is corrected using a kern. On the right side the first box might stick out, which would show up if it is wider than the sum of the x-offset and the width of the second box. So a second kern may be needed.

\hbox_set:Nn \l__coffin_aligned_coffin
\dim_compare:nNnT { \l__coffin_offset_x_dim } < \c_zero_dim
\{ \tex_kern:D -\l__coffin_offset_x_dim \}
\hbox_unpack:N \l__coffin_aligned_coffin
\dim_set:Nn \l__coffin_internal_dim
\dim_compare:nNnTF \l__coffin_offset_x_dim - \box_wd:N \#1 + \box_wd:N \#4
\{ \tex_kern:D -\l__coffin_internal_dim \}
\}

The coffin structure is reset, and the corners are cleared: only those from the two parent coffins are needed.

__coffin_reset_structure:N \l__coffin_aligned_coffin
\prop_clear:c
\{ \coffin - __coffin_to_value:N \l__coffin_aligned_coffin \}
\c_space_tl corners
\}
__coffin_update_poles:N \l__coffin_aligned_coffin

The structures of the parent coffins are now transferred to the new coffin, which requires that the appropriate offsets are applied. That then depends on whether any shift was needed.

\dim_compare:nNnTF \l__coffin_offset_x_dim < \c_zero_dim
\{ __coffin_offset_poles:Nnn \#1 \{ -\l__coffin_offset_x_dim \} \{ \#4 \} \}
__coffin_offset_corners:Nnn \#1 \{ \ \} \{ \#4 \} \}
__coffin_offset_corners:Nnn \#1 \{ \ \} \{ \#4 \} \}
\}
A more simple version of the above, as it simply uses the size of the first coffin for the new one. This means that the work here is rather simplified compared to the above code. The function used when marking a position is hear also as it is similar but without the structure updates.

```latex
\cs_new_protected:Npn \coffin_attach:NnnNnnnn #1#2#3#4#5#6#7#8
{ \__coffin_attach:NnnNnnnnN #1 {#2} {#3} {#4} {#5} {#6} {#7} {#8} \coffin_set_eq:NN}
\cs_generate_variant:Nn \coffin_attach:NnnNnnnn { c , Nnnc , cnnc }
\cs_new_protected:Npn \__coffin_attach:NnnNnnnnN #1#2#3#4#5#6#7#8#9
{ \__coffin_align:NnnNnnnnN #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin
\box_set_ht:Nn \l__coffin_aligned_coffin { \box_ht:N #1 }
\box_set_dp:Nn \l__coffin_aligned_coffin { \box_dp:N #1 }
\box_set_wd:Nn \l__coffin_aligned_coffin { \box_wd:N #1 }
\__coffin_update_structure:N \l__coffin_aligned_coffin
\prop_set_eq:cc
{ coffin - \__coffin_to_value:N \l__coffin_aligned_coffin
\c_space_tl corners }
\cs_new_protected:Npm \__coffin_offset_poles:N #1 { Opt } \__coffin_offset_poles:Nnn #1 { Opt }
\__coffin_offset_poles:x \l__coffin_offset_poles:Nnn #4
\__coffin_update_vertical_poles:NNN \l__coffin_aligned_coffin
\l__coffin_offset_poles_x_dim \l__coffin_offset_poles_y_dim
\coffin_set_eq:NN \l__coffin_aligned_coffin #9
\cs_new_protected:Npm \__coffin_attach_mark:NnnNnnnn #1#2#3#4#5#6#7#8
{ \__coffin_to_value:N \l__coffin_aligned_coffin
\c_space_tl corners }
\end{definition}
```

End definition for \coffin_join:NnnNnnnn, \coffin_gjoin:NnnNnnnn, and __coffin_join:NnnNnnnn. These functions are documented on page 248.

\coffin_attach:NnnNnnnn
\coffin_gattach:NnnNnnnn
\coffin_gattach:NnnNnnnn
\coffin_gattach:NnnNnnnn
__coffin_attach:NnnNnnnnN
__coffin_attach_mark:NnnNnnnn
The internal function aligns the two coffins into a third one, but performs no corrections on the resulting coffin poles. The process begins by finding the points of intersection for the poles for each of the input coffins. Those for the first coffin are worked out after those for the second coffin, as this allows the ‘primed’ storage area to be used for the second coffin. The ‘real’ box offsets are then calculated, before using these to re-box the input coffins. The default poles are then set up, but the final result depends on how the bounding box is being handled.

Transferring structures from one coffin to another requires that the positions are updated by the offset between the two coffins. This is done by mapping to the property list of the source coffins, moving as appropriate and saving to the new coffin data structures. The test for a - means that the structures from the parent coffins are uniquely labelled and do not depend on the order of alignment. The pay off for this is that - should not be used in coffin pole or handle names, and that multiple alignments do not result in a whole set of values.
\dim_set:Nn \l__coffin_x_dim { #3 + #7 }
\dim_set:Nn \l__coffin_y_dim { #4 + #8 }
\tl_if_in:nnTF {#2} { - }
\tl_set:Nn \l__coffin_internal_tl { {#2} }
\tl_set:Nn \l__coffin_internal_tl { { #1 - #2 } }
\exp_last_unbraced:NNo __coffin_set_pole:Nnx \l__coffin_aligned_coffin
\l__coffin_internal_tl }
{ \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
{#5} {#6}

\exp_last_unbraced:NNo __coffin_set_pole:Nnx \l__coffin_aligned_coffin
{ \l__coffin_internal_tl }

\tl_if_in:nnTF {#2} { - }
\tl_set:Nn \l__coffin_internal_tl { {#2} }
\tl_set:Nn \l__coffin_internal_tl { { #1 - #2 } }
\exp_last_unbraced:NNo __coffin_set_pole:Nnx \l__coffin_aligned_coffin
\l__coffin_internal_tl }
{ \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
{#5} {#6}

\tl_if_in:nnTF {#2} { - }
\tl_set:Nn \l__coffin_internal_tl { {#2} }
\tl_set:Nn \l__coffin_internal_tl { { #1 - #2 } }
\exp_last_unbraced:NNo __coffin_set_pole:Nnx \l__coffin_aligned_coffin
\l__coffin_internal_tl }
{ \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
{#5} {#6}

(End definition for __coffin_offset_poles:Nnn and __coffin_offset_pole:Nnnn.)

__coffin_offset_corners:Nnn
__coffin_offset_corner:Nnnnn

Saving the offset corners of a coffin is very similar, except that there is no need to worry
about naming: every corner can be saved here as order is unimportant.
\cs_new_protected:Npn __coffin_offset_corners:Nnn #1#2#3
\prop_map_inline:cn { coffin __coffin_to_value:N #1 _coffin_corners }
{ __coffin_offset_corner:Nnnnn #1 {##1} ##2 {#2} {#3} }
\prop_put:cnx
{ coffin __coffin_to_value:N \l__coffin_aligned_coffin \c_space_tl _coffin_corners }
{ #1 - #2 }
{ \dim_eval:n { #3 + #5 } }
{ \dim_eval:n { #4 + #6 } }

(End definition for __coffin_offset_corners:Nnn and __coffin_offset_corner:Nnnnn.)

__coffin_update_vertical_poles:NNN
__coffin_update_T:nnnnnnnnN
__coffin_update_B:nnnnnnnnN

The T and B poles need to be recalculated after alignment. These functions find the
larger absolute value for the poles, but this is of course only logical when the poles are
horizontal.
\cs_new_protected:Npn __coffin_update_vertical_poles:NNN #1#2#3
__coffin_get_pole:NnN #3 { #1 -T } \l__coffin_pole_a_tl
__coffin_get_pole:NnN #3 { #2 -T } \l__coffin_pole_b_tl
\exp_last_two_unbraced:Noo __coffin_update_T:nnnnnnnnN
\l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
__coffin_get_pole:NnN #3 { #1 -B } \l__coffin_pole_a_tl
__coffin_get_pole:NnN #3 { #2 -B } \l__coffin_pole_b_tl
\exp_last_two_unbraced:Noo __coffin_update_B:nnnnnnnnN
\l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
\cs_new_protected:Npn __coffin_update_T:nnnnnnnnN #1#2#3#4#5#6#7#8#9

1084
\[\text{End definition for } __\text{coffin_update_{vertical_poles}:NNN}, __\text{coffin_update_T:nnnnnnN}, \text{ and } __\text{coffin_update_B:nnnnnnN}.\]

\c__coffin_empty_coffin

An empty-but-horizontal coffin.

\l__coffin_display_coffin \l__coffin_display_coord_coffin \l__coffin_display_pole_coffin

Used for printing coffins with data structures attached.

\coffin_typeset:Nnnnn \coffin_typeset:cnnnn

Typesetting a coffin means aligning it with the current position, which is done using a coffin with no content at all. As well as aligning to the empty coffin, there is also a need to leave vertical mode, if necessary.

\[\text{End definition for } \coffin_typeset:Nnnnn. \text{ This function is documented on page 249.}\]

42.8 Coffin diagnostics
This property list is used to print coffin handles at suitable positions. The offsets are expressed as multiples of the basic offset value, which therefore acts as a scale-factor.

\prop_new:N \l__coffin_display_handles_prop
\prop_put:Nnn \l__coffin_display_handles_prop { tl } \{ \{ b \} \{ r \} \{ -1 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { thc } \{ \{ b \} \{ hc \} \{ 0 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { tr } \{ \{ b \} \{ 1 \} \{ 1 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { vcl } \{ \{ vc \} \{ r \} \{ -1 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { vchc } \{ \{ vc \} \{ hc \} \{ 0 \} \{ 0 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { vcr } \{ \{ vc \} \{ 1 \} \{ 1 \} \{ 0 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { bl } \{ \{ t \} \{ r \} \{ -1 \} \{ 0 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { bhc } \{ \{ t \} \{ hc \} \{ 0 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { br } \{ \{ t \} \{ 1 \} \{ 1 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Tl } \{ \{ t \} \{ r \} \{ -1 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Thc } \{ \{ t \} \{ hc \} \{ 0 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Tr } \{ \{ t \} \{ 1 \} \{ 1 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Hl } \{ \{ vc \} \{ r \} \{ -1 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Hhc } \{ \{ vc \} \{ hc \} \{ 0 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Hr } \{ \{ vc \} \{ 1 \} \{ 1 \} \{ 1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Bl } \{ \{ b \} \{ r \} \{ -1 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Bhc } \{ \{ b \} \{ hc \} \{ 0 \} \{ -1 \} \}
\prop_put:Nnn \l__coffin_display_handles_prop { Br } \{ \{ b \} \{ 1 \} \{ 1 \} \{ -1 \} \}

(End definition for \l__coffin_display_handles_prop.)

\dim_new:N \l__coffin_display_offset_dim
\dim_set:Nn \l__coffin_display_offset_dim { 2pt }

(End definition for \l__coffin_display_offset_dim.)

\dim_new:N \l__coffin_display_x_dim
\dim_new:N \l__coffin_display_y_dim

As the intersections of poles have to be calculated to find which ones to print, there is a need to avoid repetition. This is done by saving the intersection into two dedicated values.

(End definition for \l__coffin_display_x_dim and \l__coffin_display_y_dim.)
A property list for printing poles: various things need to be deleted from this to get a “nice” output.

\prop_new:N __coffin_display_poles_prop

(End definition for __coffin_display_poles_prop.)

Stores the settings used to print coffin data: this keeps things flexible.

\tl_new:N \l__coffin_display_font_tl
\langle
\textinitex
\rangle
\tl_set:Nn \l__coffin_display_font_tl { } % TODO
\langle
\textinitex
\rangle
\langle
\textpackage
\rangle
\tl_set:Nn \l__coffin_display_font_tl { \sffamily \tiny }
\langle
\textpackage
\rangle

(End definition for \l__coffin_display_font_tl.)

__coffin_color:n

Calls \textcolor, and otherwise does nothing if \textcolor is not defined.

\cs_new_protected:Npn __coffin_color:n #1
\prop_new:N __coffin_color:n #1
\{ \cs_if_exist:Nt \textcolor \{ \textcolor { #1 } \} \}

(End definition for __coffin_color:n.)

Marking a single handle is relatively easy. The standard attachment function is used, meaning that there are two calculations for the location. However, this is likely to be okay given the load expected. Contrast with the more optimised version for showing all handles which comes next.

\cs_new_protected:Npm \coffin_mark_handle:Nnnn #1#2#3#4
\{ \cs_if_exist:Nt \textcolor \{ \textcolor { #1 } \} \}
\cs_new_protected:Npm \coffin_mark_handle:cnnn
\{ \cs_if_exist:Nt \textcolor \{ \textcolor { #1 } \} \}
\cs_new_protected:Npm \coffin_mark_handle:nnnn
\{ \cs_if_exist:Nt \textcolor \{ \textcolor { #1 } \} \}

1087
Printing the poles starts by removing any duplicates, for which the H poles is used as the definitive version for the baseline and bottom. Two loops are then used to find the combinations of handles for all of these poles. This is done such that poles are removed during the loops to avoid duplication.
For each pole there is a check for an intersection, which here does not give an error if none is found. The successful values are stored and used to align the pole coffin with the main coffin for output. The positions are recovered from the preset list if available.
This is a dedicated version of \texttt{\coffin_attach:Nn} with a hard-wired first coffin. As the intersection is already known and stored for the display coffin the code simply uses it directly, with no calculation.

For showing the various internal structures attached to a coffin in a way that keeps things relatively readable. If there is no apparent structure then the code complains.
```latex
\cs_new_protected:Npn \coffin_log_structure:N
\{ \__coffin_show_structure:NN \msg_log:nnxxxx \}
\cs_generate_variant:Nn \coffin_log_structure:N { c }
\cs_new_protected:Npn \__coffin_show_structure:NN #1#2
\{ #1 { LaTeX / kernel } { show-coffin }
\{ \token_to_str:N #2 \}
\}
\__coffin_if_exist:NT #2
\{ #1 { \token_to_str:N #2 \}
\}
\prop_map_function:cN
\{ \__coffin_to_value:N #2 \}
\msg_show_item_unbraced:nn
\{ \}
\}
\}
\}

(End definition for \coffin_show_structure:N, \coffin_log_structure:N, and \__coffin_show_structure:NN. These functions are documented on page 249.)

42.9 Messages
\__kernel_msg_new:nnnn { kernel } { no-pole-intersection }
\{ No-intersection-between-coffin-poles. \}
\{ LaTeX-was-asked-to-find-the-intersection-between-two-poles,-
but-they-do-not-have-a-unique-meeting-point:-
the-value-(0pt,-0pt)-will-be-used. \}
\__kernel_msg_new:nnnn { kernel } { unknown-coffin }
\{ Unknown-coffin-‘#1’. \}
\{ The-coffin-‘#1’-was-never-defined. \}
\__kernel_msg_new:nnnn { kernel } { unknown-coffin-pole }
\{ Pole-‘#1’-unknown-for-coffin-‘#2’. \}
\{ LaTeX-was-asked-to-find-a-typesetting-pole-for-a-coffin,-
but-either-the-coffin-does-not-exist-or-the-pole-name-is-wrong. \}
\__kernel_msg_new:nnn { kernel } { show-coffin }
\{ Size-of-coffin-‘#1’ : #2 \}
\{ Poles-of-coffin-‘#1’ : #3 . \}
\}

43 l3color-base Implementation
\{ initex | package \}
```

1091
The color currently active for foreground (text, etc.) material. This is stored in the form of a color model followed by one or more values. There are four pre-defined models, three of which take numerical values in the range $[0, 1]$:

- **gray** \langlegray\rangle Grayscale color with the \langlegray\rangle value running from 0 (fully black) to 1 (fully white)
- **cmyk** \langlecyan\rangle \langlemagenta\rangle \langleyellow\rangle \langleblack\rangle
- **rgb** \langlered\rangle \langlegreen\rangle \langleblue\rangle

Notice that the value are separated by spaces. There is a fourth pre-defined model using a string value and a numerical one:

- **spot** \langlename\rangle \langletint\rangle A pre-defined spot color, where the \langlename\rangle should be a pre-defined string color name and the \langletint\rangle should be in the range $[0, 1]$.

Additional models may be created to allow mixing of spot colors. The number of data entries these require will depend on the number of colors to be mixed.

TeXhacker's note: The content of \l__color_current_tl is space-separated as this allows it to be used directly in specials in many common cases. This internal representation is close to that used by the dvips program.

(End definition for \l__color_current_tl.)

\color_group_begin: Grouping for color is the same as using the basic \group_begin: and \group_end: functions. However, for semantic reasons, they are renamed here.

\color_group_end: (End definition for \color_group_begin: and \color_group_end:. These functions are documented on page 251.)

\color_ensure_current: A driver-independent wrapper for setting the foreground color to the current color “now”.

\color_ensure_current: (End definition for \color_ensure_current:. This function is documented on page 251.)

__color_select:n __color_select:w __color_select_cmyk:w __color_select_gray:w __color_select_rgb:w __color_select_spot:w

Take an internal color specification and pass it to the driver. This code is needed to ensure the current color but will also be used by the higher-level experimental material.
As the setting data is used only for specials, and those are always space-separated, it makes most sense to hold the internal information in that form.

\tl_new:N \l__color_current_tl
\tl_set:Nn \l__color_current_tl { gray~0 }

(End definition for \l__color_current_tl.)

44 l3luatex implementation

44.1 Breaking out to Lua

__lua_escape:n
__lua_now:n
__lua_shipout:n

Copies of primitives.

\cs_new_eq:NN __lua_escape:n \tex_luaescapestring:D
\cs_new_eq:NN __lua_now:n \tex_directlua:D
\cs_new_eq:NN __lua_shipout:n \tex_latelua:D

(End definition for __lua_escape:n, __lua_now:n, and __lua_shipout:n.)

These functions are set up in l3str for bootstrapping: we want to replace them with a “proper” version at this stage, so clean up.

\cs_undefine:N \lua_escape:e
\cs_undefine:N \lua_now:e
\cs_undefine:N \lua_shipout:e

Wrappers around the primitives. As with engines other than LuaTeX these have to be macros, we give them the same status in all cases. When LuaTeX is not in use, simply give an error message/

\cs_new:Npn \lua_now:e #1 { __lua_now:n {#1} }
\cs_new:Npn \lua_now:n #1 { \lua_now:e { \exp_not:n {#1} } }
\cs_new_protected:Npn \lua_shipout_e:n #1 { __lua_shipout:n {#1} }
\cs_new_protected:Npn \lua_shipout:n #1 { \lua_shipout_e:n { \exp_not:n {#1} } }
\sys_if_engine_luatex:F
{ \clist_map_inline:nn { \lua_escape:n , \lua_escape:e , }
\lua_now:n , \lua_now:e

\cs_set:Npn #1 ##1
__kernel_msg_expandable_error:nnn
{ kernel } { luatex-required } { #1 }
\)

\clist_map_inline:nn
{ \lua_shipout_e:n , \lua_shipout:n }
\cs_set_protected:Npn #1 ##1
__kernel_msg_error:nnn
{ kernel } { luatex-required } { #1 }
\)
\)

(End definition for \lua_now:n and others. These functions are documented on page 252.)

44.2 Messages

__kernel_msg_new:nnnn { kernel } { luatex-required }
____kernel_msg_new:nnnn { kernel } { luatex-required }
\{ LuaTeX-engine-not-in-use!-Ignoring-#1. \}
\{ The-feature-you-are-using-is-only-available-
with-the-LuaTeX-engine.-LaTeX3-ignored-‘#1’.
\}
\langle(tex)

44.3 Lua functions for internal use

(*lua)

Most of the emulation of pdfTeX here is based heavily on Heiko Oberdiek’s pdftex-cmds package.

l3kernel Create a table for the kernel’s own use.
l3kernel = l3kernel or { }

(End definition for l3kernel. This function is documented on page 255.)

Local copies of global tables.
local io = io
local kpse = kpse
local vfs = vfs
local math = math
local md5 = md5
local os = os
local string = string
local tex = tex
local texio = texio
local tonumber = tonumber
local unicode = unicode

1094
Local copies of standard functions.

```lua
local abs = math.abs
local byte = string.byte
local floor = math.floor
local format = string.format
local gsub = string.gsub
local lfs_attr = lfs.attributes
local md5_sum = md5.sum
local open = io.open
local os_clock = os.clock
local os_date = os.date
local os_exec = os.execute
local setcatcode = tex.setcatcode
local sprint = tex.sprint
local cprint = tex.cprint
local write = tex.write
local write_nl = texio.write_nl
```

Newer ConTéXt releases replace the `unicode` library by `utf` and since Lua 5.3 we can even use the Lua standard `utf8` library.

```lua
local utf8_char = (utf8 and utf8.char) or (utf and utf.char) or unicode.utf8.char
```

escapehex

An internal auxiliary to convert a string to the matching hex escape. This works on a byte basis: extension to handled UTF-8 input is covered in `pdftexcmds` but is not currently required here.

```lua
local function escapehex(str)
  write((gsub(str, ".", function (ch) return format("%02X", byte(ch)) end)))
end
```

(End definition for escapehex.)

l3kernel.charcat

Creating arbitrary chars using `tex.cprint`.

```lua
local charcat
function charcat(charcode, catcode)
  cprint(catcode, utf8_char(charcode))
end
l3kernel.charcat = charcat
```

(End definition for l3kernel.charcat. This function is documented on page 253.)

l3kernel.elapsedtime

Simple timing set up: give the result from the system clock in scaled seconds.

```lua
local base_time = 0
local function elapsedtime()
  local val = (os_clock() - base_time) * 65536 + 0.5
  if val > 2147483647 then
    val = 2147483647
  end
  write(format("%.d",floor(val)))
end
l3kernel.elapsedtime = elapsedtime
local function resettimer()
```

1095
base_time = os_clock()
end
l3kernel.resettimer = resettimer

(End definition for l3kernel.elapsedtime and l3kernel.resettimer. These functions are documented on page 253.)

l3kernel.filedump Similar comments here to the next function: read the file in binary mode to avoid any line-end weirdness.

local function filedump(name, offset, length)
local file = kpse_find(name, "tex", true)
if file then
local length = tonumber(length) or lfs_attr(file, "size")
local offset = tonumber(offset) or 0
local f = open(file, "rb")
if f then
if offset > 0 then
f:seek("set", offset)
end
local data = f:read(length)
escapehex(data)
f:close()
end
end
end
l3kernel.filedump = filedump

(End definition for l3kernel.filedump. This function is documented on page 253.)

l3kernel.filemdfivesum Read an entire file and hash it: the hash function itself is a built-in. As Lua is byte-based there is no work needed here in terms of UTF-8 (see pdftexcmds and how it handles strings that have passed through LuaTeX). The file is read in binary mode so that no line ending normalisation occurs.

local function filemdfivesum(name)
local file = kpse_find(name, "tex", true)
if file then
local f = open(file, "rb")
if f then
local data = f:read("*a")
escapehex(md5_sum(data))
f:close()
end
end
end
l3kernel.filemdfivesum = filemdfivesum

(End definition for l3kernel.filemdfivesum. This function is documented on page 253.)

l3kernel.filemoddate See procedure makepdftime in utils.c of pdftex.

local function filemoddate(name)
local file = kpse_find(name, "tex", true)
if file then
local date = lfs_attr(file, "modification")
if date then

1096
local d = os_date("*t", date)
if d.sec >= 60 then
d.sec = 59
end
local u = os_date("!*t", date)
local off = 60 * (d.hour - u.hour) + d.min - u.min
if d.year ~= u.year then
 if d.year > u.year then
 off = off + 1440
 else
 off = off - 1440
 end
elseif d.yday ~= u.yday then
 if d.yday > u.yday then
 off = off + 1440
 else
 off = off - 1440
 end
end
local timezone
if off == 0 then
 timezone = "Z"
else
 local hours = floor(off / 60)
 local mins = abs(off - hours * 60)
 timezone = format("%+03d", hours) .. "" .. format("%02d", mins) .. ""
end
write("D:" .. format("%04d", d.year) .. format("%02d", d.month) .. format("%02d", d.day) .. format("%02d", d.hour) .. format("%02d", d.min) .. format("%02d", d.sec) .. timezone)
end
end
l3kernel.filemoddate = filemoddate

l3kernel.filesize A simple disk lookup.
local function filesize(name)
 local file = kpse_find(name, "tex", true)
 if file then
 local size = lfs_attr(file, "size")
 if size then
 write(size)
 end
 end
end
l3kernel.filesize = filesize

(End definition for l3kernel.filemoddate. This function is documented on page 253.)
l3kernel.strcmp

String comparison which gives the same results as pdfTeX’s `\pdfstrcmp`, although the ordering should likely not be relied upon!

```lua
local function strcmp(A, B)
    if A == B then
        write("0")
    elseif A < B then
        write("-1")
    else
        write("1")
    end
end
l3kernel.strcmp = strcmp
```

l3kernel.shellescape

Replicating the pdfTeX log interaction for shell escape.

```lua
local function shellescape(cmd)
    local status, msg = os_exec(cmd)
    if status == nil then
        write_nl("log","runsystem(" .. cmd .. ")...(msg or ") \n")
    elseif status == 0 then
        write_nl("log","runsystem(" .. cmd .. ")...executed\n")
    else
        write_nl("log","runsystem(" .. cmd .. ")...failed " .. (msg or ") .. ") \n")
    end
end
l3kernel.shellescape = shellescape
```

44.4 Generic Lua and font support

A small amount of generic code is used by almost all LuaTeX material so needs to be loaded by the format.

```lua
attribute_count_name = "g__alloc_attribute_int"
bytecode_count_name = "g__alloc_bytecode_int"
chunkname_count_name = "g__alloc_chunkname_int"
whatsit_count_name = "g__alloc_whatsit_int"
require("ltluatex")
```

With the above available the font loader code used by plain \TeX{} and \LaTeX{} when used with Lua\TeX{} can be loaded here. This is thus being treated more-or-less as part of the engine itself.

```lua
local _void = luaotfload.main()
```

(End definition for l3kernel.filesize. This function is documented on page 253.)

(End definition for l3kernel.strcmp. This function is documented on page 253.)

(End definition for l3kernel.shellescape. This function is documented on page 253.)
Case changing both for strings and “text” requires data from the Unicode Consortium. Some of this is built into the format (as \lcod and \ucod values) but this covers only the simple one-to-one situations and does not fully handle for example case folding.

As only the data needs to remain at the end of this process, everything is set up inside a group. The only thing that is outside is creating a stream: they are global anyway and it is best to force a stream for all engines. For performance reasons, some of the code here is very low-level: the material is read during loading expl3 in package mode.

Access the primitive but suppress further expansion: active chars are otherwise an issue.

Parse the main Unicode data file for two things. First, we want the titlecase exceptions: the one-to-one lower- and uppercase mappings it contains are all be covered by the \TeX data. Second, we need normalization data: at present, just the canonical NFD mappings. Those all yield either one or two codepoints, so the split is relatively easy.
The other data files all use C-style comments so we have to worry about # tokens (and reading as strings). The set up for case folding is in two parts. For the basic (core) mappings, folding is the same as lower casing in most positions so only store the differences. For the more complex foldings, always store the result, splitting up the two or three code points in the input as required.
For upper- and lowercasing special situations, there is a bit more to do as we also have title casing to consider, plus we need to stop part-way through the file.

```
\ior_open:Nn \g__char_data_ior { SpecialCasing.txt }
\cs_set_protected:Npn \__char_data_auxii:w #1 ;~ #2 ;~ #3 ;~ #4 ; #5 \q_stop
{ \tl_if_empty:nF {#4}
  { \tl_const:cx { c__char_ #2 case_ \__char_generate_char:n {#1} _tl }
    { \__char_generate:n { "#3 }
    \tl_if_blank:nF {#5}
      { \__char_generate:n { \int_value:w "#4 } }
    }
  }
}
\ior_str_map_inline:Nn \g__char_data_ior
{ \reverse_if:N \if:w \c_hash_str \tl_head:w #1 \c_hash_str \q_stop
  \__char_data_auxi:w #1 \c_hash_str \q_stop
\tl_if_blank:nF {#4}
  { \__char_generate:n { \int_value:w "#4 } }
}
\ior_open:Nn \g__char_data_ior { SpecialCasing.txt }
\cs_set_protected:Npn \__char_data_auxii:w #1 - #2 - #3 - #4 \q_stop
{ \tl_if_empty:nF {#4}
  { \tl_const:cx { c__char_foldcase_ \__char_generate_char:n {#1} _tl }
    { \__char_generate:n { "#2 }
    \__char_generate:n { "#3 }
    \tl_if_blank:nF {#4}
      { \__char_generate:n { \int_value:w "#4 } }
    }
  }
}
\ior_str_map_inline:Nn \g__char_data_ior
{ \\_char_data_auxii:w #1 - #2 - #3 - #4 \q_stop
\tl_if_empty:nF {#4}
  { \tl_const:cx { c__char_ #2 case_ \__char_generate_char:n {#1} _tl }
    { \__char_generate:n { "#3 }
    \__char_generate:n { "#4 }
    \tl_if_blank:nF {#5}
      { \__char_generate:n { "#5 } }
    }
  }
}
```

1101
For the 8-bit engines, the above is skipped but there is still some set up required. As case changing can only be applied to bytes, and they have to be in the ASCII range, we define a series of data stores to represent them, and the data are used such that only these are ever case-changed. We do open and close one file to force allocation of a read: this keeps all engines in line.

⟨/initex|package⟩

46 l3text implementation

⟨*initex|package⟩

⟨@@=text⟩

46.1 Utilities

The idea here is to take a token and ensure that if it’s an implicit char, we output the explicit version. Otherwise, the token needs to be unchanged. First, we have to split between control sequences and everything else.
For control sequences, we can check for macros versus other cases using \if_meaning:w, then explicitly check for \chardef and \mathchardef.

```
\cs_new:Npn \__text_token_to_explicit_cs:N #1
{\exp_after:wN \if_meaning:w \exp_not:N #1 #1
\exp_after:wN \use:nn \exp_after:wN \__text_token_to_explicit_cs_aux:N
\else:
\exp_after:wN \exp_not:n
\fi:
{#1}
}
```

For character tokens, we need to filter out the implicit characters from those that are explicit. That’s done here, then if necessary we work out the category code and generate the char. To avoid issues with alignment tabs, that one is done by elimination rather than looking up the code explicitly. The trick with finding the charcode is that the \TeX messages are either the \texttt{⟨something⟩} character \texttt{⟨char⟩} or the \texttt{⟨type⟩} \texttt{⟨char⟩}.

```
\cs_new:Npn \__text_token_to_explicit_char:N #1
{\if:w \if_catcode:w \scan_stop: \exp_not:N #1
\scan_stop:
\else:
 \exp_not:N ^^@
\fi:
\exp_after:wN \__text_token_to_explicit_cs:N
\else:
\exp_after:wN \__text_token_to_explicit_char:N
\fi:
{#1}
}
```
_text_token_to_explicit:N _text_token_to_explicit_auxi:w \int_value:w \if_catcode:w \c_group_begin_token #1 1 \else:\fi:
\if_catcode:w \c_group_end_token #1 2 \else:\fi:
\if_catcode:w \c_math_toggle_token #1 3 \else:\fi:
\if_catcode:w \c_math_script_token #1 6 \else:\fi:
\if_catcode:w \c_math_script_token #1 7 \else:\fi:
\if_catcode:w \c_math_subscript_token #1 8 \else:\fi:
\if_catcode:w \c_space_token #1 10 \else:\fi:
\if_catcode:w \c_math_subscript_token #1 12 \else:\fi:
\exp_after:wN ; \token_to_meaning:N #1 \q_stop
}
cs_new:Npn _text_token_to_explicit_auxi:w #1 ; #2 \q_stop
\if_int_compare:w #1 < 9 \exp_stop_f:
\exp_after:wN _text_token_to_explicit_auxii:w
\else:
\exp_after:wN _text_token_to_explicit_auxiii:w
\fi:
\token_to_meaning:N #1 \q_stop
}
cs_new:Npn _text_token_to_explicit_auxi:w #1 #2 \q_stop
\char_generate:nn
\if_int_compare:w #1 < 9 \exp_stop_f:
\exp_after:wN _text_token_to_explicit_auxii:w
\else:
\exp_after:wN _text_token_to_explicit_auxiii:w
\fi:
#2
}
cs_new:Npn _text_token_to_explicit_auxii:w #1 \tl_to_str:n { character ~ } \c_quote
}
cs_new:Npn _text_token_to_explicit_auxiii:w #1 - #2 - \c_quote

(End definition for _text_token_to_explicit:N and others.)

_text_char_catcode:N
An idea from l3char: we need to get the category code of a specific token, not the general

cs_new:Npn _text_char_catcode:N #1
\if_catcode:w \exp_not:N #1 \c_math_toggle_token
3
\else:
\if_catcode:w \exp_not:N #1 \c_alignment_token
4
\else:
\if_catcode:w \exp_not:N #1 \c_math_superscript_token
7
\else:
\if_catcode:w \exp_not:N #1 \c_math_subscript_token
8
\else:

46.2 Configuration variables

Special cases for accents and letter-like symbols, which in some cases will need to be converted further.

\texttt{\textbackslash l_text_accents_tl}
\texttt{\textbackslash l_text_letterlike_tl}

\texttt{\package}
\DH \dh
\DJ \dj
\IJ \ij
\L \l
\NG \ng
\O \o
\OE \oe
\SS \ss
\TH \th
}
⟨/package⟩

(End definition for \text_accents_tl and \text_letterlike_tl. These variables are documented on page 258.)

\text_case_exclude_arg_tl Non-text arguments.
\tl_new:N \text_case_exclude_arg_tl
\tl_set:Nn \text_case_exclude_arg_tl { \begin \cite \end \label \ref }

(End definition for \text_case_exclude_arg_tl. This variable is documented on page 258.)

\text_math_arg_tl Math mode as arguments.
\tl_new:N \text_math_arg_tl
\tl_set:Nn \text_math_arg_tl { \ensuremath }

(End definition for \text_math_arg_tl. This variable is documented on page 258.)

\text_math_delims_tl Paired math mode delimiters.
\tl_new:N \text_math_delims_tl
\tl_set:Nn \text_math_delims_tl { $ $ \{ \} }

(End definition for \text_math_delims_tl. This variable is documented on page 258.)

\text_expand_exclude_tl Commands which need not to expand.
\tl_new:N \text_expand_exclude_tl
\tl_set:Nn \text_expand_exclude_tl { \begin \cite \end \label \ref }
\tl_set:Nn \text_expand_exclude_tl { \begin \cite \end \label \ref }
⟨/package⟩

(End definition for \text_expand_exclude_tl. This variable is documented on page 258.)

_text_math_mode_tl Used to control math mode output: internal as there is a dedicated setter.
\tl_new:N _text_math_mode_tl

(End definition for _text_math_mode_tl.)
46.3 Expansion to formatted text

Markers for implicit char handling.

Markers for implicit char handling.

\text_chardef:D \c__text_chardef_space_token = '\%'
\text_mathchardef:D \c__text_mathchardef_space_token = '\%'
\text_chardef:D \c__text_chardef_group_begin_token = '{ % '}
\text_mathchardef:D \c__text_mathchardef_group_begin_token = '{ % '}
\text_chardef:D \c__text_chardef_group_end_token = '{ % '}
\text_mathchardef:D \c__text_mathchardef_group_end_token = '{ % '}

\end{definition}

Markers for implicit char handling.

Markers for implicit char handling.

\text_chardef:D \c__text_chardef_space_token = '\%'
\text_mathchardef:D \c__text_mathchardef_space_token = '\%'
\text_chardef:D \c__text_chardef_group_begin_token = '{ % '}
\text_mathchardef:D \c__text_mathchardef_group_begin_token = '{ % '}
\text_chardef:D \c__text_chardef_group_end_token = '{ % '}
\text_mathchardef:D \c__text_mathchardef_group_end_token = '{ % '}

\end{definition}

After precautions against & tokens, start a simple loop: that of course means that “text” cannot contain the two recursion quarks. The loop here must be f-type expandable; we have arbitrary user commands which might be protected and take arguments, and if the expansion code is used in a typesetting context, that will otherwise explode. (The same issue applies more clearly to case changing: see the example there.)

\cs_new:Npn \text_extract:n #1
__kernel_exp_not:w \exp_after:wN
\exp:w __text_extract:n {#1}
__text_extract:n { }

The approach to making the code f-type expandable is to use a marker result token and to shuffle the collected tokens.

\cs_new:Npn __text_extract_loop:w #1 \q_recursion_stop
\tl_if_head_is_N_type:nTF {#1}
__text_extract_N_type:N
\tl_if_head_is_group:nTF {#1}

The main loop is a standard “tl action”; groups are handled recursively, while spaces are just passed through. Thus all of the action is in handling N-type tokens.

\cs_new:Npn __text_extract_loop:w #1 \q_recursion_stop
\tl_if_head_is_N_type:nTF {#1}
__text_extract_N_type:N
__text_extract_explicit:N
__text_extract_excluse:N
__text_extractencoding:N
__text_extract_protect:N
__text_extract_replace:N
__text_extract_noprotect:N

\cs_new:Npn __text_extract_store:n #1
__text_extract_store:nw {#1}
\cs_generate_variant:Nn __text_extract_store:n { o }
\cs_new:Npn __text_extract_store:nw #1#2 __text_extract_result:n #3
#2 __text_extract_result:n { #3 #1 }

\cs_new:Npn __text_extract_end:w #1 __text_extract_result:n #2
\exp_end:#2

The main loop is a standard “tl action”; groups are handled recursively, while spaces are just passed through. Thus all of the action is in handling N-type tokens.
Before we get into the real work, we have to watch out for problematic implicit characters: spaces and grouping tokens. Converting these to explicit characters later would lead to real issues as they are not N-type. A space is the easy case, so it’s dealt with first: just insert the explicit token and continue the loop.

Implicit {/} offer two issues. First, the token could be an implicit brace character: we need to avoid turning that into a brace group, so filter out the cases manually. Then we handle the case where an implicit group is present. That is done in an “open-ended” way: there’s the possibility the closing token is hidden somewhere.
The first step in dealing with N-type tokens is to look for math mode material: that needs to be left alone. The starting function has to be split into two as we need \quark-if_recursion_tail_stop:N first before we can trigger the search. We then look for matching pairs of delimiters, allowing for the case where math mode starts but does not end. Within math mode, we simply pass all the tokens through unchanged, just checking the N-type ones against the end marker.

```latex
\cs_new:Npn \__text_expand_N_type_auxii:N #1
\{ \token_if_eq:NNTF #1 \c_group_begin_token
\{ \exp_after:wN \__text_expand_math_search:NNN \exp_after:wN \l_text_math_delims_tl \q_recursion_tail \q_recursion_stop
\}
\}
\cs_new:Npn \__text_expand_math_search:NNN #1#2#3
\{ \quark_if_recursion_tail_stop_do:Nn #2
\{ \__text_expand_explicit:N #1 \}
\}
\}
```
At this stage, either we have a control sequence or a simple character: split and handle.
Another list of exceptions: these ones take no arguments so are easier to handle.
\texttt{\textbackslash protect} makes life interesting. Where possible, we simply remove it and replace with the “parent” command; of course, the \texttt{\protect} might be explicit, in which case we need to leave it alone if it’s required.

\begin{verbatim}
\cs_new:Npx __text_expand_cs:N #1
{ \exp_not:N \str_if_eq:nnTF {#1} { \exp_not:N \protect } { \exp_not:N __text_expand_protect:N }
 \cs_if_exist:cTF {@current@cmd}
 { \exp_not:N __text_expand_encoding:N #1 }
 { \exp_not:N __text_expand_replace:N #1 }
}
\cs_new:Npn __text_expand_protect:N #1
{ \exp_args:Ne __text_expand_protect:nN { \cs_to_str:N #1 } #1 }
\cs_new:Npn __text_expand_protect:nN #1#2
{ __text_expand_store:n { \protect #1 } __text_expand_loop:w }
\cs_new:Npn __text_expand_encoding:N #1
{ \cs_if_eq:NNTF #1 @current@cmd
 { \exp_after:wN __text_expand_loop:w __text_expand_encoding_escape:NN }
 { __text_expand_store:n { \protect #1 } __text_expand_loop:w }
__text_expand_store:n { \protect #1 } }
__text_expand_loop:w
\end{verbatim}

Deal with encoding-specific commands

\begin{verbatim}
\cs_new:Npn __text_expand_encoding:N #1
{ \cs_if_eq:NNTF #1 @current@cmd
 { \exp_after:wN __text_expand_loop:w __text_expand_encoding_escape:NN }
 { \cs_if_eq:NNTF #1 @changed@cmd
 { \exp_after:wN __text_expand_loop:w }
 }
\end{verbatim}

1112
See if there is a dedicated replacement, and if there is, insert it.

Finally, expand any macros which can be: this then loops back around to deal with what they produce. The only issue is if the token is \exp_not:n, as that must apply to the following balanced text. There might be an \exp_after:wN there, so we check for it.

(End definition for \text_expand:n and others. This function is documented on page 255.)

Create equivalents to allow replacement.
47 l3text-case implementation

47.1 Case changing

Needed to determine the route used in titlecasing.

The user level functions here are all wrappers around the internal functions for case changing.

As for the expansion code, the business end of case changing is the handling of N-type tokens. First, we expand the input fully (so the loops here don’t need to worry about awkward look-aheads and the like). Then we split into the different paths.

The code here needs to be f-type expandable to deal with the situation where case changing is applied in running text. There, we might have case changing as a document command and the text containing other non-expandable document commands.

\MakeLowercase\text_lowercasen
dd14
If we use an e-type expansion and wrap each token in `\exp_not:n`, that would explode: the document command grabs `\exp_not:n` as an argument, and things go badly wrong. So we have to wrap the entire result in exactly one `\exp_not:n`, or rather in the kernel version.

As for expansion, collect up the tokens for future use.

The main loop is the standard tl action type.

For a group, we could worry about whether this contains a character or not. However, that would make life very complex for little gain: exactly what a first character is is
rather weakly-defined anyway. So if there is a group, we simply assume that a character
has been seen, and for title case we switch to the “rest of the tokens” situation. To avoid
having too much testing, we use a two-step process here to allow the titlecase functions
to be separate.

\begin{verbatim}
\cs_new:Npn __text_change_case_group_lower:nnn #1#2#3
__text_change_case_store:o
\exp_after:wN
\exp:w
__text_change_case_aux:nnn \#3 \#1 \#2
__text_change_case_loop:nnw \#1 \#2
\cs_new_eq:NN __text_change_case_group_upper:nnn __text_change_case_group_lower:nnn
\cs_new:Npn __text_change_case_group_title:nnn #1#2#3
__text_change_case_store:o
\exp_after:wN
\exp:w
__text_change_case_aux:nnn \#3 \#1 \#2
__text_change_case_break:w
\use:x
\cs_new:Npn \exp_not:N __text_change_case_space:nnw \#1\#2 \c_space_tl
__text_change_case_store:n \- __text_change_case_loop:nnw \#1 \#2
\end{verbatim}

The first step of handling N-type tokens is to filter out the end-of-loop. That has to be
done separately from the first real step as otherwise we pick up the wrong delimiter. The
loop here is the same as the \texttt{expand} one, just passing the additional data long. If no
close-math token is found then the final clean-up is forced (i.e. there is no assumption of “well-behaved” input in terms of math mode).

\begin{verbatim}
cs_new:Npn \text_change_case_N_type:nnN #1#2#3
{ \quark_if_recursion_tail_stop_do:Nn #3
{ \text_change_case_end:w }
\text_change_case_N_type_aux:nnN \text_delims_tl {#1} {#2} #3
}
cs_new:Npn \text_change_case_N_type_aux:nnN #1#2#3
{ \exp_args:NV \text_change_case_N_type:nnnN \l_text_math_delims_tl {#1} {#2} #3 }
cs_new:Npn \text_change_case_N_type:nnnN #1#2#3#4
{ \text_change_case_math_search:nnNNN {#2} {#3} #4 #1
\text_change_case_math_loop:nnNw {#1} {#2} #3 #4
}
cs_new:Npn \text_change_case_math_search:nnNNN #1#2#3#4#5
{ \quark_if_recursion_tail_stop_do:Nn #4
{ \text_change_case CS_check:nnN \text_delims_tl {#1} {#2} #3 }
\token_if_eq_meaning:NNTF #3 #4
{ \use_i_delimit_by_q_stop:nw
{ \text_change_case_store:n {#3}
\text_change_case_math_loop:nnNw {#1} {#2} #3 #4
}
{ \text_change_case_math_search:nnNNN {#1} {#2} #3 #4
}
}
cs_new:Npn \text_change_case_math_loop:nnNw #1#2#3#4 \q_recursion_stop
{ \tl_if_head_is_N_type:nTF \tl_if_head_is_group:nTF \tl_if_head_is_math:nTF \tl_if_head_is_math_space:nTF
{ \text_change_case_math_group:nnNn {#1} {#2} #3 #4
{ \text_change_case_math_loop:nnNw {#1} {#2} #3 #4
}
{ \text_change_case_math_loop:nnNw {#1} {#2} #3 #4
}
}
\text_change_case_math_loop:nnNw {#1} {#2} #3 #4
{ \text_change_case_end:w
{ \text_change_case_math_end:w }
\text_change_case_math_end:ww
}
\text_change_case_math_end:ww
}
cs_new:Npn \text_change_case_math_group:nnNn #1#2#3
{ \text_change_case_math_end:ww
{ \text_change_case_end:w
{ \text_change_case_math_end:w }
\text_change_case_math_end:ww
}
\text_change_case_math_end:ww
}
\text_change_case_math_end:ww
\end{verbatim}
Once potential math-mode cases are filtered out the next stage is to test if the token grabbed is a control sequence: the two routes the code may take are then very different.

To deal with a control sequence there is first a need to test if it is on the list which indicate that case changing should be skipped. That’s done using a loop as for the other special cases. If a hit is found then the argument is grabbed and passed through as-is.
Letter-like commands may still be present: if they are set up using a simple lookup approach, so can easily be handled with no loop. If there is no hit, we are at the end of the process: we loop around. Letter-like chars are all available only in upper- and lowercase, so titlecasing maps to the uppercase version.

For upper- and lowercase changes, once we get to this stage there are only a couple of questions remaining: is there a language-specific mapping and is there the special case of a terminal sigma. If not, then we pass to a simple character mapping.
If the current character is an uppercase sigma, a check is made on the next item in
the input. If it is \texttt{N}-type and not a control sequence then there is a
look-ahead phase: the logic here is simply based on letters. The one exception is
Dutch: see below.

\begin{verbatim}
\bool_lazy_or:nnT { \sys_if_engine_luatex_p: } { \sys_if_engine_xetex_p: } {
\cs_new:Npn __text_change_case_lower_sigma:nnnN #1#2#3#4 {
 \int_compare:nNnTF { '#4 } = { "03A3 } {
 __text_change_case_lower_sigma:nnNw {#2} {#3} #4
 } {
 __text_change_case_char:nnnN {#1} {#2} {#3} #4
 }
}
\cs_new:Npn __text_change_case_lower_sigma:nnNw #1#2#3#4 \q_recursion_stop {
 \tl_if_head_is_N_type:nTF {#4}
 { __text_change_case_lower_sigma:NnnN #3 }
 { __text_change_case_store:e
 { \char_generate:nn { "03C2 } { __text_char_catcode:N #3 } }
 __text_change_case_loop:nnw {#2} {#3} #4
 }
}
\cs_new:Npn __text_change_case_lower_sigma:NnnN #1#2#3#4 {
 __text_change_case_store:e
 { \token_if_letter:NTF #4
 { \char_generate:nn { "03C2 } { __text_char_catcode:N #1 } }
 { \char_generate:nn { "03C3 } { __text_char_catcode:N #1 } }
 }
 __text_change_case_loop:nnw {#2} {#3} #4
}
\end{verbatim}

For titlecasing, we need to fully expand the new character to see if it is a letter (or active)
But that means looking ahead in the 8-bit case, so we have to grab the required tokens
up-front. Life is a lot easier for Unicode \TeX{}’s, where we just have one token to worry
about. The one wrinkle here is that for look-ahead we’d get into trouble: luckily, only
Dutch has that issue.

\begin{verbatim}
\cs_new:Npx __text_change_case_char_title:nnn #1#2#3 {
 \exp_not:N \bool_if:NTF \l_text_titlecase_check_letter_bool {
 \bool_lazy_or:nnTF { \sys_if_engine_luatex_p: } { \sys_if_engine_xetex_p: } {
 \exp_not:N \token_if_letter:NTF #3 }
 }
\end{verbatim}

1120
For Unicode engines we can handle all characters directly. However, for the 8-bit engines the aim is to deal with (a subset of) Unicode (UTF-8) input. They deal with that by making the upper half of the range active, so we look for that and if found work out how many UTF-8 octets there are to deal with. Those can then be grabbed to reconstruct the full Unicode character, which is then used in a lookup. (As will become obvious below, there is no intention here of covering all of Unicode.)
\int_compare:nNnTF { '#4 } < { "F0 }
 __text_change_case_char_UTFviii:nnnNNN }
 __text_change_case_char_UTFviii:nnnNNNN }
\end{cs_new:Npn}
__text_change_case_char_aux:nnnN {#1} {#2} {#3} #4 }
\end{cs_new:Npn}
__text_change_case_char_next_ #2 :nn } {#2} {#3}
\cs_new:Npn __text_change_case_char_next_end:nn #1#2
__text_change_case_break:w }
(End definition for __text_change_case:nnn and others.)

A simple alternative version for German.
\bool_lazy_or:nTF
\cs_new:cpn { __text_change_case_upper_de-alt:nnnN } #1#2#3#4
__text_change_case_upper_de-alt:nnnN
__text_change_case_upper_de-alt:nnnNN
For Greek uppercasing, we need to know if characters in the Greek range have accents. That means doing a \textit{nfd} conversion first, then starting a search. As described by the Unicode CLDR, Greek accents need to be found \textit{after} any U+0308 (diaeresis) and are done in two groups to allow for the canonical ordering.

\texttt{\bool_lazy_or:nnT}
\texttt{\sys_if_engine_luatex_p:}
\texttt{\sys_if_engine_xetex_p:}
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el:nnn}} \#1\#2\#3\#4
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el:nnnn}} \#1\#2\#3\#4\#5
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el_loop:nnw}} \#1\#2\#3\#4
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el:nnN}} \#1\#2\#3\#4
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el_aux:nnn}} \#1\#2\#3\#4
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el_loop:nnn}} \#1\#2\#3\#4
\texttt{\cs_new:Npn \texttt{__text_change_case_upper_el_loop:nnw}} \#1\#2\#3\#4
\texttt{\tl_if_head_is_N_type:nTF \#3}
\texttt{__text_change_case_upper_el_loop:nnn} \#1\#2\#3\#4\#5
\texttt{__text_change_case_upper_el_loop:nnw} \#1\#2\#3\#4\#5
\texttt{\tl_if_head_is_N_type:nTF \#3}
\texttt{__text_change_case_upper_el_loop:nnn} \#1\#2\#3\#4\#5
1123
In addition to the Greek accents, we list three cases here where an accent outside the Greek range has a nfd that would make it equivalent. That includes U+0344, which has to insert U+0308.

\cs_new:Npn __text_change_case_upper_el:nnn #1#2#3
\token_if_cs:NTF #3
{ __text_change_case_loop:nnw {#1} {#2} #3 \q_recursion_stop }
{ \int_compare:nNnTF { #3 } = { "0308 } }
{ __text_change_case_upper_el_loop:nnw {#1} {#2} }
{ \bool_lazy_any:nTF }
{ \int_compare_p:nNn { #3 } = { "0300 } }
{ \int_compare_p:nNn { #3 } = { "0301 } }
{ \int_compare_p:nNn { #3 } = { "0304 } }
{ \int_compare_p:nNn { #3 } = { "0306 } }
{ \int_compare_p:nNn { #3 } = { "0308 } }
{ \int_compare_p:nNn { #3 } = { "0313 } }
{ \int_compare_p:nNn { #3 } = { "0314 } }
{ \int_compare_p:nNn { #3 } = { "0342 } }
{ \int_compare_p:nNn { #3 } = { "0340 } }
{ \int_compare_p:nNn { #3 } = { "0341 } }
{ \int_compare_p:nNn { #3 } = { "0343 } }
{ __text_change_case_upper_el_loop:nnw {#1} {#2} }
{ \int_compare:nNnTF { #3 } = { "0344 } }
{ __text_change_case_store:e }
{ __text_change_case_upper_el_loop:nnw {#1} {#2} }
{ \int_compare:nNnTF { #3 } = { "0345 } }
{ __text_change_case_loop:nnw {#1} {#2} }
{ __text_change_case_loop:nnw {#1} {#2} #3 }
{ \prg_new_conditional:Npnn __text_change_case_if_greek:n #1 { TF } }
Titlecasing retains accents, but to prevent the uppercasing code from kicking in, there
has to be an explicit function here.

For Lithuanian, the issue to be dealt with is dots over lower case letters: these should be
present if there is another accent. The first step is a simple match attempt: look for the
three uppercase accented letters which should gain a dot-above char in their lowercase
form.
If there was a hit, output the result with the dot-above and move on. Otherwise, look for one of the three letters that can take a combining accent: I, J and I-ogonek.

Again, branch depending on a hit. If there is one, we output the character then need to look for a combining accent: as usual, we need to be aware of the loop situation.
\texttt{\begin{verbatim}
\int_compare_p:nNn { #3 } = { "0300 } }
\int_compare_p:nNn { #3 } = { "0301 } }
\int_compare_p:nNn { #3 } = { "0303 } }
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}

(End definition for \texttt{_text_change_cases_lowerLt:n.nnN} and others.)

The uppercasing version: first find i/j/i-ogonek, then look for the combining char: drop it if present.

\begin{verbatim}
\bool_lazy_or:nnT
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{ \cs_new:Npn __text_change_case_upperLt:nnnN #1#2#3#4
{ \exp_args:Ne __text_change_case_upperLt_aux:nnnN
{ \int_case:nn { #4 }
\}
\}
\cs_new:Npn __text_change_case_upperLt:nnw #1#2#3 \q_recursion_stop
{ \tl_if_head_is_N_type:nTF {#3}
{ \use:c { _text_change_case_next_L:nnw #1 :nn } }
{#1} {#2} #3 \q_recursion_stop
\}
\cs_new:Npn __text_change_case_upperLt:nnN #1#2#3
{ \bool_lazy_and:nnTF
1127
\end{verbatim}

1127
For Dutch, there is a single look-ahead test for \textit{ij} when title casing. If the appropriate letters are found, produce \textit{IJ} and gobble the \textit{j}/\textit{J}.

\begin{verbatim}
\cs_new:Npn __text_change_case_title_nl:nnnN #1#2#3#4
\{
 \bool_lazy_or:nnTF
 { \int_compare_p:nNn { '#4 } = { "0049 } }
 { \int_compare_p:nNn { '#4 } = { "0069 } }
 { __text_change_case_store:e
 \char_generate:nn { "0049 } { __text_char_catcode:N #4 } }
 __text_change_case_title_nl:nnw {#2} {#3}
}{ \use:c { __text_change_case_char_next_ #1 :nn } #3 }
\}
\cs_new:Npn __text_change_case_title_nl:nnw #1#2#3 \q_recursion_stop
\{
 \tl_if_head_is_N_type:nTF {#3}
 { __text_change_case_title_nl:nnN }
 { \use:c { __text_change_case_char_next_ #1 :nn } }
 \\#1 \\#2 \#3 \q_recursion_stop
\}
\cs_new:Npn __text_change_case_title_nl:nnN #1#2#3
\{
 \bool_lazy_and:nnTF
 { ! \token_if_cs_p:N #3 }
 { \bool_lazy_or_p:nn
 { \int_compare_p:nNn { '#3 } = { "004A } }
 { \int_compare_p:nNn { '#3 } = { "006A } }
 }{ \use:c { __text_change_case_char_next_ #1 :nn } #3 }
\}
\end{verbatim}

(End definition for __text_change_cases_upper_lt:nnnN and others.)

The Turkic languages need special treatment for dotted-i and dotless-i. The lower casing rule can be expressed in terms of searching first for either a dotless-I or a dotted-I. In the latter case the mapping is easy, but in the former there is a second stage search.

\begin{verbatim}
\bool_lazy_or:nnTF
\end{verbatim}

1128
After a dotless-I there may be a dot-above character. If there is then a dotted-i should be produced, otherwise output a dotless-i. When the combination is found both the dotless-I and the dot-above char have to be removed from the input.

For 8-bit engines, dot-above is not available so there is a simple test for an upper-case I. Then we can look for the UTF-8 representation of an upper case dotted-I without the combining char. If it’s not there, preserve the UTF-8 sequence as-is. With 8bit engines, we cannot completely preserve category codes, so we have to make some assumptions:
output a "normal" i for the dotted case. As the original character here is catcode-13, we have to make a choice about handling of i: generate a "normal" one.

\cs_new:Npn __text_change_case_lower_tr:nnnN #1#2#3#4
\begin{Verbatim}
\int_compare:nNnTF { '#4 } = { "0049 }
\{ __text_change_case_store:V \c__text_dotless_i_tl __text_change_case_loop:nnw {#1} {#3} \}
\}
\int_compare:nNnTF { '#4 } = { "00C4 }
\{ __text_change_case_lower_tr:nnnNN {#1} {#2} {#3} #4 \}
\{ __text_change_case_char:nnnN {#1} {#2} {#3} #4 \}
\end{Verbatim}
\cs_new:Npn __text_change_case_lower_tr:nnnNN #1#2#3#4#5
\begin{Verbatim}
\int_compare:nNnTF { '#5 } = { "00B0 }
\{ __text_change_case_store:e \}
\{ \char_generate:nn { "0069 } \{ \char_value_catcode:n { "0069 } \} \}
__text_change_case_loop:nnw {#1} {#3} \}
\{ __text_change_case_char:nnnN {#1} {#2} {#3} #4#5 \}
\end{Verbatim}
\end{Verbatim}
\begin{Verbatim}
(End definition for __text_change_case_lower_tr:nnnN and others.)
\end{Verbatim}

\texttt{__text_change_case_upper_tr:nnnN}

Uppercasing is easier: just one exception with no context.

\cs_new:Npx __text_change_case_upper_tr:nnnN #1#2#3#4
\begin{Verbatim}
\exp_not:N \int_compare:nNnTF { '#4 } = { "0069 }
\{ \bool_lazy_or:nnTF \{ \sys_if_engine_luatex_p: \} \{ \sys_if_engine_xetex_p: \} \{ \exp_not:N __text_change_case_store:e \}
\{ \char_generate:nn { "0130 } \{ \exp_not:N __text_char_catcode:N #4 \} \}
__text_change_case_loop:nnw {#1} {#3} \}
\{ __text_change_case_char:nnnN {#1} {#2} {#3} #4#5 \}
\end{Verbatim}
\begin{Verbatim}
\end{Verbatim}
\begin{Verbatim}
(End definition for __text_change_case_upper_tr:nnnN and others.)
\end{Verbatim}

1130
30310 \{ \exp_not:N __text_change_case_char:nnnN \{#1\} \{#2\} \{#3\} \#4 \}
30311 }

(End definition for \textchangeuppertr:nnnN.)

Straight copies.
30312 \cs_new_eq:NN \textchangeupperaz:nnnN \textchangeuppertr:nnnN
30313 \cs_new_eq:NN \textchangeloweraz:nnnN \textchangelowertr:nnnN
30314 (End definition for \textchangeupperaz:nnnN and \textchangeuppertr:nnnN.)

47.2 Case changing data for 8-bit engines

For cases where there is an 8-bit option in the T1 font set up, a variant is provided in both cases.

\group_begin:
\bool_lazy_or:nnF { \sys_if_engine_luatex_p: } { \sys_if_engine_xetex_p: }
{ \cs_set_protected:Npn __text_tmp:w #1#2
{ \group_begin:
\cs_set_protected:Npn __text_tmp:w ##1##2##3##4
{ \tl_const:Nx #1 {13}
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {##1} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {##2} { 13 }
\tl_if_blank:nF {##3}
{ \exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {##3} { 13 }
}\}
\use:x
{ __text_tmp:w \char_to Utf8:Bytes:n \{ "#2" \}
\group_end:
}\}
__text_tmp:w \textdotlessi_tl { 0131 }
__text_dottedI_tl { 0130 }
__text_i_ogonek_tl { 012F }
__text_I_ogonek_tl { 012E }
__text_grossesEszett_tl { 1E9E }
\group_end:

(End definition for \textdotlessi_tl and others.)

For 8-bit engines we now need to define the case-change data for the multi-octet mappings. These need a list of what code points are doable in T1 so the list is hard coded.

1131
(there’s no saving in loading the mappings dynamically). All of the straight-forward ones have two octets, so that is taken as read.

```latex
\group_begin:
\bool_lazy_or:nnF
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{\cs_set_protected:Npn \__text_loop:nn #1#2
\quark_if_recursion_tail_stop:n {#1}
\use:x
{ \__text_tmp:w
\char_to_utfviii_bytes:n { "#1 } 
\char_to_utfviii_bytes:n { "#2 } }
\__text_loop:nn }
\cs_set_protected:Npn \__text_tmp:nnnn #1#2#3#4#5
{\tl_const:cx
{ c__text_ #1 case_
\char_generate:nn {#2} { 12 }
\char_generate:nn {#3} { 12 }
_tl }
{ \exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N \char_generate:nn {#5} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N \char_generate:nn {#6} { 13 }
}
}
\cs_set_protected:Npn \__text_tmp:w #1#2#3#4#5#6#7#8
{\tl_const:cx
{ c__text_lovercase_
\char_generate:nn {#1} { 12 }
\char_generate:nn {#2} { 12 }
_tl }
{ \exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N \char_generate:nn {#5} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N \char_generate:nn {#6} { 13 }
}
\__text_tmp:nnnn { upper } {#5} {#6} {#1} {#2}
\__text_tmp:nnnn { title } {#5} {#6} {#1} {#2}
}
\__text_loop:nn { 00C0 } { 00E0 }
```

1132
\{00C1\} \{00E1\}
\{00C2\} \{00E2\}
\{00C3\} \{00E3\}
\{00C4\} \{00E4\}
\{00C5\} \{00E5\}
\{00C6\} \{00E6\}
\{00C7\} \{00E7\}
\{00C8\} \{00E8\}
\{00C9\} \{00E9\}
\{00CA\} \{00EA\}
\{00CB\} \{00EB\}
\{00CC\} \{00EC\}
\{00CD\} \{00ED\}
\{00CE\} \{00EE\}
\{00CF\} \{00EF\}
\{00D0\} \{00F0\}
\{00D1\} \{00F1\}
\{00D2\} \{00F2\}
\{00D3\} \{00F3\}
\{00D4\} \{00F4\}
\{00D5\} \{00F5\}
\{00D6\} \{00F6\}
\{00D7\} \{00F7\}
\{00D8\} \{00F8\}
\{00D9\} \{00F9\}
\{00DA\} \{00FA\}
\{00DB\} \{00FB\}
\{00DC\} \{00FC\}
\{00DD\} \{00FD\}
\{00DE\} \{00FE\}
\{0100\} \{0101\}
\{0102\} \{0103\}
\{0104\} \{0105\}
\{0106\} \{0107\}
\{0108\} \{0109\}
\{010A\} \{010B\}
\{010C\} \{010D\}
\{010E\} \{010F\}
\{0110\} \{0111\}
\{0112\} \{0113\}
\{0114\} \{0115\}
\{0116\} \{0117\}
\{0118\} \{0119\}
\{011A\} \{011B\}
\{011C\} \{011D\}
\{011E\} \{011F\}
\{0120\} \{0121\}
\{0122\} \{0123\}
\{0124\} \{0125\}
\{0128\} \{0129\}
\{012A\} \{012B\}
\{012C\} \{012D\}
\{012E\} \{012F\}
\{0132\} \{0133\}
\{0134\} \{0135\}
Add T2 (Cyrillic) as this is doable using a classical \MakeUppercase approach.
Core Greek support: there may need to be a little more work here to deal completely with accents.
The (fixed) look-up mappings for letter-like control sequences.

\cs_set_protected:Npn __text_change_case:NN #1#2
\group_begin:
\cs_set_protected:Npn __text_case:NN #1#2
\group_begin:
\tl_const:cn { c__text_lowercase_ \token_to_str:N #1 _tl }
\tl_const:cn { c__text_uppercase_ \token_to_str:N #2 _tl }
__text_change_case:NN
\group_end:
\group_end:

To deal with possible encoding-specific extensions to `\@uclclist`, we check at the end of the preamble. This will therefore only apply to \LaTeX\ package mode.

```latex
\cs_if_exist:cT { \@uclclist }
{ }
\AtBeginDocument
{ }
\group_begin:
\cs_set_protected:Npn \__text_change_case_setup:Nn #1#2
{ }
\quark_if_recursion_tail_stop:N #1
\tl_if_single_token:nT {#2}
{ }
\cs_if_exist:cF
{ c__text_uppercase_ \token_to_str:N \tl_tl }
\tl_const:cn
{ c__text_uppercase_ \token_to_str:N \tl_tl }
{ }
\cs_if_exist:cF
{ c__text_lowercase_ \token_to_str:N \tl_tl }
\tl_const:cn
{ c__text_lowercase_ \token_to_str:N \tl_tl }
{ }
\__text_change_case_setup:Nn
\exp_after:wN \__text_change_case_setup:Nn \@uclclist
\q_recursion_tail ?
\q_recursion_stop
\group_end:
\}
48 l3text implementation

48.1 Purifying text

As in the other parts of the module, we start off with a standard “action” loop, with expansion applied up-front. Here, as there will be no text commands left in the output, there is no concern about using \exp_not:n and e-type expansion.

The main loop is a standard “tl action”. Unlike the expansion or case changing, here any groups have to be run inline. Most of the business end is as before in the N-type token processing.

The first part of handling math mode is exactly the same as in the other functions: look for a start-of-math mode token and if found start a new loop tracking the closing token.
Then handle math mode as an argument: same outcomes, different input syntax.

For $N$-type tokens, we first look for a string-context replacement before anything else: this can therefore cover anything. Assuming we don’t find one, check to see if we can expand control sequences: if not, they have to be dropped. We also allow for \LaTeX2ε:\protect: there’s an assumption that we don’t have \protect\{ \oops\} or similar, but that’s also in the expansion code and seems like a reasonable balance.
Now pre-define a range of standard commands that need dedicated definitions in purified text. First handle font-related stuff: all of this needs to be disabled.

```latex
\tl_map_inline:nn{\fontencoding\fontfamily\fontseries\fontshape}{\text_declare_purify_equivalent:Nn \use_none:n \text_declare_purify_equivalent:Nn \textsize \selectfont \text_declare_purify_equivalent:Nn \usefont \text_declare_purify_equivalent:Nn \textnormal \texttt \textbf \textrm \textsl \textmd \textit}
```

(End definition for \text_declare_purify_equivalent:Nn. This function is documented on page 258.)
Environments have to be handled by pure expansion.

Some common symbols and similar ideas.

Cross-referencing.

Spaces.

Spaces.
48.2 Accent and letter-like data for purifying text

In contrast to case changing, both 8-bit and Unicode engines need information for text purification to handle accents and letter-like functions: these all need to be removed. However, the results are of course engine-dependent.

For the letter-like commands, life is relatively easy: they are all simply added as standard exceptions. The only oddity is \SS, which gets converted to two letters. (At some stage an alternative version can presumably be added to babel or similar.)

\bool_lazy_or:nnTF
\sys_if_engine_luatex_p: }
\sys_if_engine_xetex_p: }
\cs_set_protected:Npn \__text_loop:Nn #1#2
\quark_if_recursion_tail_stop:N #1
\text_declare_purify_equivalent:Nx #1
\char_generate:nn { "#2 }
\char_value_catcode:n { "#2 }
\__text_loop:Nn
\cs_set_protected:Npn \__text_loop:Nn #1#2
\quark_if_recursion_tail_stop:N #1
\text_declare_purify_equivalent:Nx #1
\exp_args:Ne \__text_tmp:n
\char_to_utfviii_bytes:n { "#2 }
\__text_loop:Nn
\cs_set:Npn \__text_tmp:nnnn #1#2#3#4
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {#1} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {#2} { 13 }
\__text_loop:Nn
\AA { 00C5 }
\AE { 00C6 }
\DH { 00D0 }
\DJ { 0110 }
\IJ { 0132 }
\L { 0141 }
\NG { 014A }
\U { 00D8 }
\OE { 0152 }
\TH { 00DE }
Accent L1CR handling is a little more complex. Accents may exist as pre-composed codepoints or as independent glyphs. The former are all saved as single token lists, whilst for the latter the combining accent needs to be re-ordered compared to the character it applies to.

\cs_new:Npn \__text_purify_accent:NN #1#2  
\cs_if_exist:cTF { c__text_purify_ \token_to_str:N #1 _ \token_to_str:N #2 _tl }  
\exp_not:v { c__text_purify_ \token_to_str:N #1 _ \token_to_str:N #2 _tl }  
\exp_not:n {#2}  
\exp_not:v { c__text_purify_ \token_to_str:N #1 _tl }  
\tl_map_inline:Nn \l_text_accents_tl  
\text_declare_purify_equivalent:Nn \SS \{ SS \}

First set up the combining accents.

\cs_set_protected:Npn \__text_loop:Nn #1#2  
\quark_if_recursion_tail_stop:N #1  
\tl_const:cx { c__text_purify_ \token_to_str:N #1 _ \token_to_str:N #2 _tl }  
\{ \__text_tmp:n {#2} \}  
\__text_loop:Nn  
\bool_lazy_or:nnTF  
\sys_if_engine_luatex_p: \sys_if_engine_xetex_p:  
\cs_set:Npn \__text_tmp:n #1  
\char_generate:nn { "#1 }  
\char_value_catcode:n { "#1 }  
\endinput
Now we handle the pre-composed accents: the list here is taken from \texttt{puenc.def}. All of the precomposed cases take a single letter as their second argument. We do not try to cover the case where an accent is added to a “real” dotless-i or -j, or a æ/Æ. Rather, we assume that if the UTF-8 character is used, it will have the real accent character too.

\begin{verbatim}
\cs_set_protected:Npn \_\_text_loop:Nn \_\_text_tmp:NNn #1 #2 #3 #4
{ \exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N \char_generate:nn {#1} { 13 } \exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N \char_generate:nn {#2} { 13 } }
\end{verbatim}
\" A \{ 00C4 \}
|r A \{ 00C5 \}
|c C \{ 00C7 \}
|' E \{ 00C8 \}
|' E \{ 00C9 \}
|" E \{ 00CA \}
|" E \{ 00CB \}
|' I \{ 00CC \}
|' I \{ 00CD \}
|" I \{ 00CE \}
|" I \{ 00CF \}
|\- N \{ 00D1 \}
|' O \{ 00D2 \}
|' O \{ 00D3 \}
|' O \{ 00D4 \}
|' O \{ 00D5 \}
|\* O \{ 00D6 \}
|\* O \{ 00D9 \}
|\* O \{ 00DA \}
|\* O \{ 00DB \}
|\* O \{ 00DC \}
|\* Y \{ 00DD \}
|\' a \{ 00E0 \}
|\' a \{ 00E1 \}
|\" a \{ 00E2 \}
|\- a \{ 00E3 \}
|\" a \{ 00E4 \}
|\* a \{ 00E5 \}
|\c c \{ 00E7 \}
|' e \{ 00E8 \}
|' e \{ 00E9 \}
|\* e \{ 00EA \}
|\* e \{ 00EB \}
|\' i \{ 00EC \}
|\' \i \{ 00ED \}
|\' \i \{ 00ED \}
|\' \i \{ 00EE \}
|\' \i \{ 00EE \}
|\" i \{ 00EF \}
|\" i \{ 00EF \}
|\* n \{ 00F1 \}
|\' o \{ 00F2 \}
|\' o \{ 00F3 \}
|\* o \{ 00F4 \}
|\' o \{ 00F5 \}
|\' o \{ 00F6 \}
|\' u \{ 00F9 \}
|\' u \{ 00FA \}
|\' u \{ 00FB \}
|\" u \{ 00FC \}
|\' y \{ 00FD \}
|\" y \{ 00FF \}
|\= A \{ 0100 \}
\group_end:

(End definition for \__text_purify_accent:NN.)

\langle/initex|package\rangle

49 13legacy Implementation

\langle*package\rangle

\langle@@=legacy\rangle
A friendly wrapper.

```
\prg_new_conditional:Npnn \legacy_if:n { p , T , F , TF }
{ \exp_args:Nc \if_meaning:w { if#1 } \iftrue
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
```

(End definition for \texttt{\legacy_if:nTF}. This function is documented on page 259.)

50 \texttt{l3candidates} Implementation

50.1 Additions to \texttt{l3box}

50.1.1 Viewing part of a box

A wrapper around the driver-dependent code.

```
\cs_new_protected:Npn \box_clip:N #1 { \hbox_set:Nn #1 { __box_backend_clip:N #1 } }
\cs_generate_variant:Nn \box_clip:N { c }
\cs_new_protected:Npn \box_gclip:N #1 { \hbox_gset:Nn #1 { __box_backend_clip:N #1 } }
\cs_generate_variant:Nn \box_gclip:N { c }
```

(End definition for \texttt{\box_clip:N} and \texttt{\box_gclip:N}. These functions are documented on page 260.)

Trimming from the left- and right-hand edges of the box is easy: kern the appropriate parts off each side.

```
\cs_new_protected:Npn \box_set_trim:Nnnnn #1#2#3#4#5
{ __box_set_trim:NnnnnN #1 {#2} {#3} {#4} {#5} \box_set_eq:NN }
\cs_generate_variant:Nn \box_set_trim:Nnnnn { c }
\cs_new_protected:Npn \box_gset_trim:Nnnnn #1#2#3#4#5
{ __box_set_trim:NnnnnN #1 {#2} {#3} {#4} {#5} \box_gset_eq:NN }
\cs_new_protected:Npn \box_gset_trim:NnnnnN __box_set_trim:NnnnnN #1#2#3#4#5#6
{ \hbox_set:Nn \l__box_internal_box
\tex_kern:D - __box_dim_eval:n {#2}
\box_use:N #1
\tex_kern:D - __box_dim_eval:n {#4}
}
```

For the height and depth, there is a need to watch the baseline is respected. Material always has to stay on the correct side, so trimming has to check that there is enough material to trim. First, the bottom edge. If there is enough depth, simply set the depth, or if not move down so the result is zero depth. \texttt{\box_move_down:nn} is used in both
cases so the resulting box always contains a \lower primitive. The internal box is used here as it allows safe use of \box_set_dp:Nn.

\dim_compare:nNnTF { \box_dp:N #1 } > {#3}
{ \hbox_set:Nn \l__box_internal_box
  \box_move_down:nn \c_zero_dim
    { \box_use_drop:N \l__box_internal_box }
  \box_set_dp:Nn \l__box_internal_box \{ \box_dp:N #1 - (#3) \}
}
\box_set_dp:Nn \l__box_internal_box { \box_dp:N #1 - (#3) }

Same thing, this time from the top of the box.

\dim_compare:nNnTF { \box_ht:N \l__box_internal_box } > {#5}
{ \hbox_set:Nn \l__box_internal_box
  \box_move_up:nn \c_zero_dim
    { \box_use_drop:N \l__box_internal_box }
  \box_set_ht:Nn \l__box_internal_box \{ \box_ht:N \l__box_internal_box - (#5) \}
}
\box_set_ht:Nn \l__box_internal_box \c_zero_dim
\box_set_viewport:Nnnnn \l__box_internal_box
\box_set_viewport:cnnnn \l__box_internal_box
\box_gset_viewport:Nnnnn \l__box_internal_box
\box_gset_viewport:cnnnn \l__box_internal_box
\__box_set_viewport:NnnnnN \l__box_internal_box

(End definition for \box_set_trim:Nnnnn, \box_gset_trim:Nnnnn, and \__box_set_trim:NnnnnN. These functions are documented on page 261.)

The same general logic as for the trim operation, but with absolute dimensions. As a result, there are some things to watch out for in the vertical direction.

\cs_new_protected:Npn \box_set_viewport:Nnnnn \l__box_set_viewport:Nnnnn \l__box_gset_viewport:Nnnnn \__box_set_viewport:NnnnnN

1151
{\hbox_set:Nn \l__box_internal_box
\{\tex_kern:D - \__box_dim_eval:n {#2} \box_use:N \#1 \tex_kern:D \__box_dim_eval:n { #4 - \box_wd:N \#1 } \}
\dim_compare:nNnTF {#3} < \c_zero_dim
{\hbox_set:Nn \l__box_internal_box
 \{ \box_move_down:nn \c_zero_dim \box_use_drop:N \l__box_internal_box \}
 \box_set_dp:Nn \l__box_internal_box { - \__box_dim_eval:n {#3} } \}
\dim_compare:nNnTF {#5} > \c_zero_dim
{\hbox_set:Nn \l__box_internal_box
 \{ \box_move_down:n \c_zero_dim \box_use_drop:N \l__box_internal_box \}
 \box_set_dp:Nn \l__box_internal_box \c_zero_dim \}
\dim_compare:nNnTF {#5} > \c_zero_dim
{\hbox_set:Nn \l__box_internal_box
 \{ \box_move_up:nn \c_zero_dim \box_use_drop:N \l__box_internal_box \}
 \box_set_ht:Nn \l__box_internal_box \{ \dim_compare:nNnT {#3} > \c_zero_dim
 \{ - (#3) \} \}
 \} \}
\dim_compare:nNnTF {#5} < \c_zero_dim
{\hbox_set:Nn \l__box_internal_box
 \{ \box_move_up:nn { - \__box_dim_eval:n {#5} } \box_use_drop:N \l__box_internal_box \}
 \box_set_ht:Nn \l__box_internal_box \c_zero_dim \}
\box_set_viewport:Nnnnn \l__box_internal_box}
\flag_raise_if_clear:n

(End definition for \box_set_viewport:Nnnnn, \box_gset_viewport:Nnnnn, and \__box_viewport:NnnnnN. These functions are documented on page 261.)

50.2 Additions to l3flag

\flag_raise_if_clear:n It might be faster to just call the “trap” function in all cases but conceptually the function name suggests we should only run it if the flag is zero in case the “trap” made customizable
in the future.

End definition for `\flag_raise_if_clear:n`. This function is documented on page 262.

50.3 Additions to l3msg

Pass to an auxiliary the message to display and the module name

A short-hand used for `\int_show:n` and similar functions that passes to `\tl_show:n` the result of applying `#1` (a function such as `\int_eval:n`) to the expression `#2`. The use of f-expansion ensures that `#1` is expanded in the scope in which the show command is called, rather than in the group created by `\iow_wrap:nnnN`. This is only important for
expressions involving the \currentgrouplevel or \currentgrouptype. On the other hand we want the expression to be converted to a string with the usual escape character, hence within the wrapping code.

\expressionsinvolvingsimpleexpressions

\exp_args:Nf \__msg_show_eval:nnN { #1 \{#2\} \{#2\} \tl_log:n }
\cs_new_protected:Npn \__msg_show_eval:nnN #1#2#3 { #3 \{ #2 = #1 \} }

(End definition for \msg_show_eval:Nn, \msg_log_eval:Nn, and \__msg_show_eval:nnN. These functions are documented on page 263.)

Each item in the variable is formatted using one of the following functions. We cannot use \ and so on because these short-hands cannot be used inside the arguments of messages, only when defining the messages.

\cs_new:Npx \msg_show_item:n #1
\cs_new:Npx \msg_show_item_unbraced:n #1
\cs_new:Npx \msg_show_item:nn #1#2
\cs_new:Npx \msg_show_item_unbraced:nn #1#2

(End definition for \msg_show_item:n and others. These functions are documented on page 264.)

50.4 Additions to l3prg

\bool_case_true:nTF
\bool_case_false:nTF
\__bool_case:NnTF
\__bool_case_true:w
\__bool_case_false:w
\__bool_case_end:nw

For boolean cases the overall idea is the same as for \tl_case:nn(TF) as described in l3tl.

\cs_new:Npn \bool_set_inverse:N #1
\cs_generate_variant:Nn \bool_set_inverse:N { c }
\cs_new_protected:Npn \bool_gset_inverse:N #1
\cs_generate_variant:Nn \bool_gset_inverse:N { c }

(End definition for \bool_set_inverse:N and \bool_gset_inverse:N. These functions are documented on page 264.)
Contrarily to clist, seq and tl, there is no function to get an item of a prop given an integer between 1 and the number of items, so we write the appropriate code. There is no bounds checking because \texttt{\int_rand:nn} is always within bounds. The initial \texttt{\int_-value:w} is stopped by the first \texttt{\s__prop} in #1.

\begin{verbatim}
\prop_rand_key_value:N
\prop_rand_key_value:c
\__prop_rand_item:w
\end{verbatim}

(End definition for \texttt{\bool_case_true:nTF} and others. These functions are documented on page 264.)

50.5 Additions to l3prop

@@=prop

\prop_rand_key_value:N
\prop_rand_key_value:c
\__prop_rand_item:w
50.6 Additions to l3seq

The idea is to first expand both sequences, adding the usual \{ ? \prg_break: \} \} to the end of each one. This is most conveniently done in two steps using an auxiliary function. The mapping then throws away the first tokens of \#2 and \#5, which for items in both sequences are \s__seq \s__seq_item:n. The function to be mapped are then be applied to the two entries. When the code hits the end of one of the sequences, the break material stops the entire loop and tidy up. This avoids needing to find the count of the two sequences, or worrying about which is longer.

Similar to \seq_map_inline:Nn, without a \prg_break_point: because the user's code is performed within the evaluation of a boolean expression, and skipping out of that would break horribly. The \seq_wrap_item:n function inserts the relevant \__seq_item:n without expansion in the input stream, hence in the \x-expanding assignment.

(End definition for \seq_mapthread_function:NNN and others. This function is documented on page 265.)
\seq_set_filter:NNn \tl_set:Nx
\cs_new_protected:Npn \seq_gset_filter:NNn
{ \__seq_set_filter:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \__seq_set_filter:NNNn #1#2#3#4
{ \__seq_push_item_def:n { \bool_if:nT {#4} { \__seq_wrap_item:n {##1} } } #1 #2 { #3 } \__seq_pop_item_def: }

(End definition for \seq_set_filter:NNn, \seq_gset_filter:NNn, and \__seq_set_filter:NNNn. These functions are documented on page 265.)

\seq_set_map:NNn \seq_gset_map:NNn \__seq_set_map:NNNn
Very similar to \seq_set_filter:NNn. We could actually merge the two within a single function, but it would have weird semantics.
\cs_new_protected:Npn \seq_set_map:NNn { \__seq_set_map:NNNn \tl_set:Nx }
\cs_new_protected:Npn \seq_gset_map:NNn { \__seq_set_map:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \__seq_set_map:NNNn #1#2#3#4
{ \__seq_push_item_def:n { \exp_not:N \__seq_item:n {#4} } #1 #2 { \s__seq #3 \__seq_item:n } \__seq_pop_item_def: }

(End definition for \seq_set_map:NNn, \seq_gset_map:NNn, and \__seq_set_map:NNNn. These functions are documented on page 265.)

\seq_set_from_inline_x:Nnn \seq_gset_from_inline_x:Nnn \__seq_set_from_inline_x:NNnn
Set \_\_seq_item:n then map it using the loop code.
\cs_new_protected:Npn \seq_set_from_inline_x:Nnn { \__seq_set_from_inline_x:NNnn \tl_set:Nx }
\cs_new_protected:Npn \seq_gset_from_inline_x:Nnn { \__seq_set_from_inline_x:NNnn \tl_gset:Nx }
\cs_new_protected:Npn \__seq_set_from_inline_x:NNnn #1#2#3#4
{ \__seq_push_item_def:n { \exp_not:N \_\_seq_item:n {#4} } #1 #2 { \s__seq #3 \_\_seq_item:n } \__seq_pop_item_def: }

(End definition for \seq_set_from_inline_x:Nnn, \seq_gset_from_inline_x:Nnn, and \__seq_set_from_inline_x:NNnn. These functions are documented on page 266.)

\seq_set_from_function:NnN \seq_gset_from_function:NnN
Reuse \seq_set_from_inline_x:Nnn.
\cs_new_protected:Npn \seq_set_from_function:NnN #1#2#3
{ \seq_set_from_inline_x:Nnn #1 {#2} { #3 {##1} } }
\cs_new_protected:Npn \seq_gset_from_function:NnN #1#2#3
{ \seq_gset_from_inline_x:Nnn #1 {#2} { #3 {##1} } }

(End definition for \seq_set_from_function:NnN and \seq_gset_from_function:NnN. These functions are documented on page 266.)
Similar to \seq_map_function:NN but we keep track of the item index as a ;-delimited argument of \_\_seq_indexed_map:Nw.

\cs_new:Npn \seq_indexed_map_function:NN #1#2
\__seq_indexed_map:NN #1#2
\prg_break_point:Nn \seq_map_break: \{ \}
\cs_new_protected:Npn \seq_indexed_map_inline:Nn #1#2
\int_gincr:N \g__kernel_prg_map_int
\cs_gset_protected:cpn \__seq_map:Nw \int_use:N \g__kernel_prg_map_int \use_i:nn \__seq_map:Nw \int_gdecr:N \g__kernel_prg_map_int
\prg_break_point:Nn \seq_map_break:
\{ \int_gdecr:N \g__kernel_prg_map_int \}
\cs_new:Npn \__seq_indexed_map:NN #1#2 ; #3 \__seq_item:n #4
\exp_after:wN \__seq_indexed_map:Nw \exp_after:wN #1 \int_value:w \int_eval:w 1 + #2 ;

(End definition for \seq_indexed_map_function:NN and others. These functions are documented on page 266.)

50.7 Additions to l3sys

\c_sys_engine_version_str
Various different engines, various different ways to extract the data!
\str_const:Nx \c_sys_engine_version_str
\str_case:on \c_sys_engine_str
\{ pdftex
\{ \fp_eval:n { round(\int_use:N \tex_pdfxversion:D / 100 , 2) } \}
\}
\.tex_pdfxversion:D
(End definition for \c_sys_engine_version_str. This variable is documented on page 267.)

50.8 Additions to \texttt{l3file}

\texttt{\ior_shell_open:Nn} Actually much easier than either the standard open or input versions! When calling \texttt{\__kernel_ior_open:Nn} the file the pipe is added to signal a shell command, but the quotes are not added yet—they are added later by \texttt{\__kernel_file_name_quote:n}.\texttt{\cs_new_protected:Npn \ior_shell_open:Nn \#1\#2}
{\sys_if_shell:TF}
{\exp_args:N \__ior_shell_open:nN {\tl_to_str:n {#2}} #1}
{\__kernel_msg_error:nn { kernel } { pipe-failed }}
}
\cs_new_protected:Npm \__ior_shell_open:nN #1#2
{\tl_if_in:nnTF {#1} { " }
{\__kernel_msg_error:nnx
{ kernel } { quote-in-shell } {#1}}
{ \__kernel_ior_open:Nn #2 { |#1 } }
\__kernel_msg_new:nnnn { kernel } { pipe-failed }
{ Cannot~run~piped~system~commands. }
{ LaTeX~tried~to~call~a~system~process~but~this~was~not~possible.\}
{ Try-the-"--shell-escape"-(or-"--enable-pipes")-option.
}(End definition for \ior_shell_open:Nn and \__ior_shell_open:nN. This function is documented on page 262.)

50.8.1 Building a token list
\tl_build_begin:N \tl_build_gbegin:N \__tl_build_begin:NN \__tl_build_begin:NNN
\tl_build_begin:N \tl_build_gbegin:N \__tl_build_begin:NN \__tl_build_begin:NNN
First construct the \texttt{(next tl)}: using a prime here conflicts with the usual expl3 convention but we need a name that can be derived from \texttt{#1} without any external data such as a counter. Empty that \texttt{(next tl)} and setup the structure. The local and global versions only differ by a single function \texttt{\cs_(g)set_nopar:Npx} used for all assignments: this is important because only that function is stored in the \texttt{(tl var)} and \texttt{(next tl)} for subsequent assignments. In principle \texttt{\__tl_build_begin:NNN} could use \texttt{\tl_(g)clear_new:N} to empty \texttt{#1} and make sure it is defined, but logging the definition does not seem useful so we just do \texttt{#3 #1 {}} to clear it locally or globally as appropriate.
\tl_build_begin:N \tl_build_gbegin:N \__tl_build_begin:NN \__tl_build_begin:NNN
\cs_new_protected:Npm \tl_build_begin:N #1
{ \__tl_build_begin:NN \cs_set_nopar:Npx #1 }
\cs_new_protected:Npm \tl_build_gbegin:N #1
{ \__tl_build_begin:NN \cs_gset_nopar:Npx #1 }
\cs_new_protected:Npm \__tl_build_begin:NN #2 \#1
{ \exp_args:N \__tl_build_begin:NNN { \cs_to_str:N #2 } #2 #1 }
\cs_new_protected:Npm \__tl_build_begin:NNN #1#2#3
The \texttt{begin} and \texttt{gbegin} functions already clear enough to make the token list variable effectively empty. Eventually the \texttt{begin} and \texttt{gbegin} functions should check that \texttt{#1}' is empty or undefined, while the \texttt{clear} and \texttt{gclear} functions ought to empty \texttt{#1'}, \texttt{#1''} and so on, similar to \texttt{tl\_build\_end:N}. This only affects memory usage.

Similar to \texttt{tl\_put\_right:Nn}, but apply \texttt{exp:w} to \texttt{#1}. Most of the time this just removes one \texttt{exp\_end:}. When there are none left, \texttt{\_\_tl\_build\_last:NNn} is expanded instead. It resets the definition of the \texttt{⟨tl\ var⟩} by ending the \texttt{exp\_not:n} and the definition early. Then it makes sure the \texttt{⟨next\ tl⟩} (its argument \texttt{#1}) is set-up and starts a new definition. Then \texttt{\_\_tl\_build\_put:nn} and \texttt{\_\_tl\_build\_put:nw} place the \texttt{⟨left⟩} part of the original \texttt{⟨tl\ var⟩} as appropriate for the definition of the \texttt{⟨next\ tl⟩} (the \texttt{⟨right⟩} part is left in the right place without ever becoming a macro argument). We use \texttt{exp\_after:wN} rather than some \texttt{exp\_args:No} to avoid reading arguments that are likely very long token lists. We use \texttt{\cs\_set\_nopar:Npx} rather than \texttt{\tl\_set:Nx} partly for the same reason and partly because the assignments are interrupted by brace tricks, which implies that the assignment does not simply set the token list to an \texttt{x}-expansion of the second argument.
\tl_build_put_left:Nn
\tl_build_get:NNN
\tl_build_gput_left:Nx
\_\tl_build_put_left:NNn
(End definition for \tl_build_put_right:Nn and others. These functions are documented on page 269.)

\_\tl_build_get:NN
\_\tl_build_get:N
\_\tl_build_get:w
\_\tl_build_get_end:w

See \tl_build_put_right:Nn for all the machinery. We could easily provide \tl_build_put_left_right:Nnn, by just add the \langle right \rangle material after the \langle left \rangle in the x-expanding assignment.

The idea is to expand the \langle left \rangle then the \langle next tl \rangle and so on, all within an x-expanding assignment, and wrap as appropriate in \exp_not:n. The various \langle left \rangle parts are left in the assignment as we go, which enables us to expand the \langle next tl \rangle at the right place. The various \langle right \rangle parts are eventually picked up in one last \exp_not:n, with a brace trick to wrap all the \langle right \rangle parts together.

(End definition for \tl_build_put_left:Nx, \tl_build_gput_left:Nx, and \_\tl_build_put_left:NNn. These functions are documented on page 269.)
\tl_build_end:N
\tl_build_gend:N
\__tl_build_end_loop:NN

Get the data then clear the \textit{next tl} recursively until finding an empty one. It is perhaps wasteful to repeatedly use \cs_to_sr:N. The local/global scope is checked by \tl_set:Nx or \tl_gset:Nx.

\cs_new_protected:Npn \tl_build_end:N #1
{ \__tl_build_get:NNN \tl_set:Nx #1 #1 \exp_args:Nc \__tl_build_end_loop:NN { \cs_to_str:N #1 ' } \tl_clear:N }

\cs_new_protected:Npn \tl_build_gend:N #1
{ \__tl_build_get:NNN \tl_gset:Nx #1 #1 \exp_args:Nc \__tl_build_end_loop:NN { \cs_to_str:N #1 ' } \tl_gclear:N }

\cs_new_protected:Npn \__tl_build_end_loop:NN #1#2
{ \if_meaning:w \c_empty_tl #1 \exp_after:wN \use_none:nnnnnn \fi: #2 \exp_after:wN \__tl_build_end_loop:NN { \cs_to_str:N #1 ' } #2 }

(End definition for \tl_build_end:N, \tl_build_gend:N, and \__tl_build_end_loop:NN. These functions are documented on page 269.)

50.8.2 Other additions to \l3tl

For the braced version \__tl_range_braced:w sets up \__tl_range_collect_braced:w which stores items one by one in an argument after the semicolon. The unbraced version is almost identical. The version preserving braces and spaces starts by deleting spaces before the argument to avoid collecting them, and sets up \__tl_range_collect:nn with a first argument of the form \{ \{\textit{collected}\} \{\textit{tokens}\} \}, whose head is the collected tokens and whose tail is what remains of the original token list. This form makes it easier to move tokens to the \{\textit{collected}\} tokens.
50.9 Additions to \texttt{l3token}

While \texttt{\char\_generate:nn} can produce active characters in some engines it cannot in general. It would be possible to simply change the catcode of space but then the code would need to avoid all spaces, making it quite unreadable. Instead we use the primitive \texttt{\tex\_lowercase:D} trick.

\begin{verbatim}
\group_begin:
\char_set_catcode_active:N * \char_set_lccode:nn { * } { ' }
\tex\_lowercase:D { \tl\_const:N \c\_catcode\_active\_space\_tl \{ * \} }
\group_end:
\end{verbatim}

(End definition for \texttt{\c\_catcode\_active\_space\_tl}. This variable is documented on page 269.)

\begin{verbatim}
\tl\_new:N \l\_\_peek\_collect\_tl
\end{verbatim}

Most of the work is done by \texttt{\_\_peek\_execute\_branches:...}, which calls either \texttt{\_\_peek\_true:w} or \texttt{\_\_peek\_false:w} according to whether the next token \texttt{\_\_peek\_token} matches the search token (stored in \texttt{\_\_peek\_search\_token} and \texttt{\_\_peek\_search\_tl}). Here, in the \texttt{true} case we run \texttt{\_\_peek\_collect\_true:w}, which generally calls \texttt{\_\_peek\_collect:N} to store the peeked token into \texttt{\_\_peek\_collect\_tl}, except in special non-\texttt{N}-type cases (begin-group, end-group, or space), where a frozen token is stored. The \texttt{true} branch calls \texttt{\_\_peek\_execute\_branches:...} to fetch more matching
tokens. Once there are no more, \__peek_false_aux:n closes the safe-align group and runs the user’s inline code.

\cs_new_protected:Npn \peek_catcode_collect_inline:Nn
\cs_new_protected:Npn \peek_charcode_collect_inline:Nn
\cs_new_protected:Npn \peek_meaning_collect_inline:Nn
\cs_new_protected:Npn \__peek_collect:NNn \__peek_execute_branches_catcode:
\cs_new_protected:Npn \__peek_collect:NNn \__peek_execute_branches_charcode:
\cs_new_protected:Npn \__peek_collect:NNn \__peek_execute_branches_meaning:
\cs_new_protected:Npn \__peek_collect:NNn \__peek_collec

\Enddefinition for \peek_catcode_collect_inline:Nn and others. These functions are documented on page 270.
51 \l3deprecation implementation

\l__deprecation_grace_period_bool
This is set to true when the deprecated command that is being defined is in its grace
period, meaning between the time it becomes an error by default and the time 6 months
later where even undo-recent-deprecations stops restoring it.

\bool_new:N \l__deprecation_grace_period_bool

\__deprecation_date_compare:nNnTF
Expects \#1 and \#3 to be dates in the format YYYY-MM-DD (but accepts YYYY or
YYYY-MM too, filling in zeros for the missing data). Compares them using \#2 (one of
\textless, =, \textgreater).

\cs_new:Npn \__deprecation_date_compare:nNnTF \#1#2#3
{ \__deprecation_date_compare_aux:w \#1 -0-0- \q_mark \#2 \#3 -0-0- \q_stop }

\cs_new:Npn \__deprecation_date_compare_aux:w
#1 - #2 - #3 - #4 \q_mark \#5 \#6 - #7 - #8 - #9 \q_stop

\int_compare:nNnTF {#1} = {#6}
{ \int_compare:nNnTF {#2} = {#7}
{ \int_compare:nNnTF {#3} \#5 \#8 } 
{ \int_compare:nNnTF {#2} \#5 \#7 } 
}
{ \int_compare:nNnTF {#1} \#5 \#6 }

\g__kernel_deprecation_undo_recent_bool
\bool_new:N \g__kernel_deprecation_undo_recent_bool

\__deprecation_not_yet_deprecated:nTF
Receives a deprecation \langle date \rangle and runs the true (false) branch if the expl3 date is earlier
(later) than \langle date \rangle. If undo-recent-deprecations is used we subtract 6 months to the
expl3 date (equivalently add 6 months to the \langle date \rangle). In addition, if the expl3 date is
between \langle date \rangle and \langle date \rangle plus 6 months, \l__deprecation_grace_period_bool is set
to true, otherwise false.

\cs_new_protected:Npn \__deprecation_not_yet_deprecated:nTF \#1
{ \bool_set_false:N \l__deprecation_grace_period_bool
\exp_args:No \__deprecation_date_compare:nNnTF { \ExplLoaderFileDate } < \{#1}
{ \use_i:nn }
{ \exp_args:Nf \__deprecation_date_compare:nNnTF
\\exp_after:wN \__deprecation_minus_six_months:w
\ExplLoaderFileDate -0-0- \q_stop

\g__kernel_deprecation_undo_recent_bool
(End definition for \_\_deprecation_date_compare:nNnTF and \_\_deprecation_date_compare_aux:w.)
51.2 Patching definitions to deprecate

\__kernel_patch_deprecation:nnNNpn \langle date \rangle \langle function \rangle \langle parameters \rangle \{ \langle code \rangle \}

defines the \langle function \rangle to produce a warning and run its \langle code \rangle, or to produce an error and not run any \langle code \rangle, depending on the expl3 date.

- If the expl3 date is less than the \langle date \rangle (plus 6 months in case undo-recent-deprecations is used) then we define the \langle function \rangle to produce a warning and run its code. The warning is actually suppressed in two cases:
  - if neither undo-recent-deprecations nor enable-debug are in effect we may be in an end-user’s document so it is suppressed;
  - if the command is expandable then we cannot produce a warning.

- Otherwise, we define the \langle function \rangle to produce an error.

In both cases we additionally make \texttt{\debug_on:n \{deprecation\}} turn the \langle function \rangle into an \texttt{\outer} error, and \texttt{\debug_off:n \{deprecation\}} restore whatever the behaviour was without \texttt{\debug_on:n \{deprecation\}}.

In later sections we use the \texttt{l3doc} key deprecated with a date equal to that \langle date \rangle plus 6 months, so that \texttt{l3doc} will complain if we forget to remove the stale \langle parameters \rangle and \langle code \rangle.

In the explanations below, \langle definition \rangle \langle function \rangle \langle parameters \rangle \langle code \rangle or assignments that only differ in the scope of the \langle definition \rangle will be called “the standard definition”.

The parameter text is grabbed using \#5\#. The arguments of \__kernel_deprecation_code:nn are run upon \texttt{\debug_on:n \{deprecation\}} and \texttt{\debug_off:n \{deprecation\}}, respectively. In both scenarios the \langle function \rangle may be \texttt{\outer} so we undefine it with \texttt{\tex_let:D} before redefining it, with \__kernel_deprecation_error:Nnn or with some code added shortly.

Then check the date (taking into account undo-recent-deprecations) to see if the command should be deprecated right away (false branch of \__deprecation_not_yet_deprecated:nTF), in which case \__deprecation_just_error:nnn makes \langle function \rangle into an error (not \texttt{\outer}), ignoring its \langle parameters \rangle and \langle code \rangle completely.
Otherwise distinguish cases where we should give a warning from those where we shouldn’t: warnings can only happen for protected commands, and we only want them if either `undo-recent-deprecations` or `enable-debug` is in force, not for standard users.

```latex
\cs_new_protected:Npn __kernel_patch_deprecation:nnNNpn \#1\#2\#3\#4\#5\#6
__deprecation_patch_aux:nnNNnn {\#1} {\#2} \#3 \#4 \{\#5\} \{\#6\}
\cs_new_protected:Npn __deprecation_patch_aux:nnNNnn \#1\#2\#3\#4\#5\#6
__deprecation_not_yet_deprecated:nTF {\#1}
\{ \#
__deprecation_warn_once:nnNnn {\#1} {\#2} \#3 \#4 \{\#5\} \{\#6\}
\{ \exp_not:n {\cs_set_protected:Npn \#3 \#4 \{\#5\}} \exp_not:N \#3\}
__kernel_deprecation_code:nn \{ \}
\cs_gset_protected:Npx \#3 \exp_not:N __kernel_if_debug:TF
\cs_if_eq_p:NN \#3 \cs_gset_protected:Npn &&_kernel_if_debug:TF
\{ \g__kernel_deprecation_undo_recent_bool \}
\{ __deprecation_warn_once:nnNNnn {\#1} \#2 \#3 \#4 \{\#5\} \{\#6\}
\{ __deprecation_patch_aux:Nn \#3 \{ \#4 \#5 \{\#6\} \}
\}
\{ __deprecation_just_error:nnNN {\#1} \#2 \#3 \#4 \}
\}
\\exp_not:n {\cs_gset_protected:Npn \#3 \#4 \{\#5\}}
\}
```

In case we want a warning, the ⟨function⟩ is defined to produce such a warning without grabbing any argument, then redefine itself to the standard definition that the ⟨function⟩ should have, with arguments, and call that definition. The x-type expansion and \exp_not:n avoid needing to double the #, which we could not do anyways. We then deal with the code for \debug_off:n {deprecation}: presumably someone doing that does not need the warning so we simply do the standard definition.

```latex
\cs_new_protected:Npn __deprecation_warn_once:nnNnn \#1\#2\#3\#4\#5\#6
\cs_gset_protected:Npx \#3 \exp_not:N __kernel_if_debug:TF
\exp_not:N __kernel_msg_warning:nnxxx
\{ kernel \} \{ deprecated-command \}
\{ \token_to_str:N \#3 \}
\{ \tl_to_str:n \{\#2\} \}
\}
\exp_not:n {\cs_gset_protected:Npn \#3 \#4 \{\#5\} \{\#6\}}
\exp_not:N \#3\}
__kernel_deprecation_code:nn \{ \}
\cs_gset_protected:Npx \#3 \exp_not:N __kernel_if_debug:TF
\cs_if_eq_p:NN \#3 \cs_gset_protected:Npn &&_kernel_if_debug:TF
\{ \g__kernel_deprecation_undo_recent_bool \}
\{ __deprecation_warn_once:nnNNnn \{\#1\} \#2 \#3 \#4 \{\#5\} \{\#6\}
\{ __deprecation_patch_aux:Nn \#3 \{ \#4 \#5 \{\#6\} \}
\}
\{ __deprecation_just_error:nnNN \{\#1\} \#2 \#3 \#4 \}
\}
\exp_not:n {\cs_gset_protected:Npn \#3 \#4 \{\#5\}}
\}
```

In case we want neither warning nor error, the ⟨function⟩ is given its standard definition.
Here #1 is \texttt{\cs_new:Npn} or \texttt{\cs_new_protected:Npn} and #2 is \texttt{⟨function⟩ ⟨parameters⟩ \{⟨code⟩\}}, so #1#2 performs the assignment. For \texttt{\debug_off:n \{deprecation\}} we want to use the same assignment but with a different scope, hence the \texttt{\cs_if_eq:NNTF} test.

Finally, if we want an error we reuse the same \texttt{\__deprecation_patch_aux:Nn} as the previous case. Indeed, we want \texttt{\debug_off:n \{deprecation\}} to make the \texttt{⟨function⟩} into an error, just like it is by default. The error is expandable or not, and the last argument of the error message is empty or is \texttt{grace} to denote the case where we are in the 6 month grace period, in which case the error message is more detailed.

\texttt{\cs_new_protected:Npn \__deprecation_just_error:nnNN #1#2#3}
\tl_if_blank:nF {#3} { Use- \tl_trim_spaces:n {#3} -not- } \\
\str_if_eq:nnT {#4} { grace } \\
{ }
\c_space_tl 
\str_if_eq:nnT {#4} { grace } \\
‘undo-recent-deprecations’.
\)

51.3 Removed functions

Short-hands for old commands whose definition does not matter anymore, i.e., commands past the grace period.

\cs_new_protected:Npn \__deprecation_old_protected:Nnn #1#2#3 \\
{ \__kernel_patch_deprecation:nnNNpn {#3} {#2} \\
\cs_gset_protected:Npn #1 { } \\
}
\cs_new_protected:Npn \__deprecation_old:Nnn #1#2#3 \\
{ \__kernel_patch_deprecation:nnNNpn {#3} {#2} \\
\cs_gset:Npn #1 { } \\
}
\__deprecation_old:Nnn \box_resize:Nnn \\
{ \box_resize_to_wd_and_ht_plus_dp:Nnn } { 2019-01-01 } \\
\__deprecation_old:Nnn \box_use_clear:N \\
{ \box_use_drop:N } { 2019-01-01 } \\
\__deprecation_old:Nnn \c_job_name_tl \\
{ \c_sys_jobname_str } { 2017-01-01 } \\
\__deprecation_old:Nnn \c_minus_one \\
{ -1 } { 2019-01-01 } \\
\__deprecation_old:Nnn \dim_case:nnn \\
{ \dim_case:nnF } { 2015-07-14 } \\
\__deprecation_old:Nnn \file_add_path:nN \\
{ \file_get_full_name:nN } { 2019-01-01 } \\
\__deprecation_old_protected:Nnn \file_if_exist_input:nT \\
{ \file_if_exist:nT and \file_input:n } { 2018-03-05 } \\
\__deprecation_old_protected:Nnn \file_if_exist_input:nTF \\
{ \file_if_exist:nT and \file_input:n } { 2018-03-05 } \\
\__deprecation_old:Nnn \file_list: \\
\__deprecation_old:Nnn \file_log_list: \\
\__deprecation_old:Nnn \file_path_include:n \\
{ \seq_put_right:Nn \l_file_search_path_seq } { 2019-01-01 } \\
\__deprecation_old:Nnn \file_path_remove:n \\
{ \seq_remove_all:Nn \l_file_search_path_seq } { 2019-01-01 } \\
\__deprecation_old:Nnn \g_file_current_name_tl \\
{ \g_file_curr_name_str } { 2019-01-01 } \\
\__deprecation_old:Nnn \int_case:nnn \\
\__deprecation_old:Nnn \int_from_binary:n \\
{ \int_from_bin:n } { 2016-01-05 } 

1170
51.4 Deprecated primitives

We renamed all primitives to \( \text{tex...:D} \) so all others are deprecated. In 13names, \( \text{\_\_\_kernel_primitives:} \) is defined to contain \( \text{\_\_\_kernel_primitive:NN} \beginL \text{\_\_kernel_deprecation_code:nn} \endL \) and so on, one for each deprecated primitive. We apply \( \exp_not:N \) to the second argument of \( \text{\_\_\_kernel_primitive:NN} \) because it may be outer (both when doing and undoing deprecation actually), then \( \text{\_\_\_deprecation_primitive:NN} \) uses \( \text{\_\_\_\_\_let:D} \) to change the meaning of this potentially outer token. Then, either turn it into an error or make it equal to the primitive \#1. To be more precise, \#1 may not be defined, so try a \( \text{\_\_\_\_\_let:D} \) command as well.
51.5 Loading the patches

When loaded first, the patches are simply read here. Here the deprecation code is loaded with the lower-level \_\_kernel... macro because we don’t want it to flip the \g\_sys_deprecation_bool boolean, so that the deprecation code can be re-loaded later (when using undo-recent-deprecations).

Standard file identification.

\ProvidesExplFile{l3deprecation.def}{2019-04-06}{}{L3 Deprecated functions}
51.6 Deprecated l3box functions

\box_set_eq_clear:NN
\box_set_eq_clear:C
\box_set_eq_clear:Nc
\box_set_eq_clear:cc
\box_gset_eq_clear:NN
\box_gset_eq_clear:C
\box_gset_eq_clear:Nc
\box_gset_eq_clear:cc
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \box_set_eq_drop:N }
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \box_gset_eq_drop:N }
\cs_gset_protected:Npn \box_set_eq_clear:NN #1#2 { \tex_setbox:D #1 \tex_box:D #2 }
\cs_gset_protected:Npn \box_gset_eq_clear:NN #1#2 { \tex_global:D \tex_setbox:D #1 \tex_box:D #2 }
\cs_generate_variant:Nn \box_set_eq_clear:NN { c , Nc , cc }
\cs_generate_variant:Nn \box_gset_eq_clear:NN { c , Nc , cc }

(End definition for \box_set_eq_clear:NN and \box_gset_eq_clear:NN.)

\hbox_unpack_clear:N
\hbox_unpack_clear:c
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \hbox_unpack_drop:N }
\cs_gset_protected:Npn \hbox_unpack_clear:N { \hbox_unpack_drop:N }
\cs_generate_variant:Nn \hbox_unpack_clear:N { c }

(End definition for \hbox_unpack_clear:N.)

\vbox_unpack_clear:N
\vbox_unpack_clear:c
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \vbox_unpack_drop:N }
\cs_gset_protected:Npn \vbox_unpack_clear:N { \vbox_unpack_drop:N }
\cs_generate_variant:Nn \vbox_unpack_clear:N { c }

(End definition for \vbox_unpack_clear:N.)

51.7 Deprecated l3int functions

\@@=int
\c_zero\c_one\c_two\c_three\c_four\c_five\c_six\c_seven\c_eight\c_nine\c_ten\c_eleven\c_twelve\c_thirteen\c_fourteen\c_fifteen\c_thirty_two\c_one_hundred\c_two_hundred_fifty_five\c_two_hundred_fifty_six\c_one_thousand\c_ten_thousand\__int_deprecated_constants:nn

Constants that are now deprecated. By default define them with \int_const:Nn. To deprecate them call for instance \__kernel_deprecation_error:Nnn \c_zero {0} {2020-01-01}. To redefine them (locally), use \__int_constdef:Nw, with an \exp_-not:N construction because the constants themselves are outer at that point.
\__int_deprecated_constants:nn \__int_deprecated_constants:nn \__kernel_deprecation_code:nn
\__int_deprecated_constants:nn \__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecated_constants:nn
\__int_deprecatedmainwindow.cpp:51.8 Deprecated l3luatex functions
\lua_now_x:n\lua_escape_x:n\lua_shipout_x:n
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \lua_now:e }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \lua_escape:e }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \lua_shipout_e:n }
(End definition for \lua_now_x:n, \lua_escape_x:n, and \lua_shipout_x:n.)

51.8 Deprecated l3luatex functions
(End definition for \c_zero and others.)
51.9 Deprecated \l3msg functions

\msg_log:n
\msg_term:n

\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } \{ \io\log:n \}
\cs_gset_protected:Npn \msg_log:n #1
{ \io\log:n { ................................................. } \io\wrap:nnnN { . ~ #1} { . ~ } { } \io\log:n
\io\log:n { ................................................. } }

\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } \{ \io\term:n \}
\cs_gset_protected:Npn \msg_term:n #1
{ \io\term:n { ********************************************************* } \io\wrap:nnnN { * ~ #1} { * ~ } { } \io\term:n
\io\term:n { ********************************************************* } }

(End definition for \msg_log:n and \msg_term:n.)

\msg_interrupt:nnn

\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } \{ [Defined-error-message] \}
\cs_gset_protected:Npn \msg_interrupt:nnn #1#2#3
{ \tl_if_empty:nTF {#3}
  { \__msg_old_interrupt_wrap:nn { \c__msg_no_info_text_tl } {#1 \\\ #2 \\\ \c__msg_continue_text_tl } 
  {#1 \\\ \#2 \\\ \c__msg_help_text_tl } }

\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } \{ \io\wrap:nnnN \{ \#1 \} \{ \#2 \} \{ \#3 \} \io\wrap:nnnN \{ \#1 \} \{ \#2 \} \io\wrap:nnnN \{ \#3 \} \io\wrap:nnnN \{ \#1 \} \{ \#2 \} \io\wrap:nnnN \{ \#3 \} }

\cs_gset_protected:Npn \__msg_old_interrupt_wrap:nn #1#2
{ \exp_args:Nx \tex_errhelp:D
  { \__msg_old_interrupt_more_text:n \c__msg_no_info_text_tl #1 \iow_newline:
    \iow_newline:
    \iow_newline:
    \iow_newline:
  }
}

\group_begin:
\char_set_lccode:nn {‘} {‘}
\char_set_lccode:nn {‘}
\char_set_lccode:nn {‘} {‘!
\char_set_catcode_active:N \&
(End definition for \msg_interrupt:nnn.)

51.10 Deprecated \i3prg functions

\_\_prg_break_point:Nn
\_\_prg_break_point:n
\_\_prg_map_break:Nn
\_\_prg_map_break:n
\_\_prg_break:n
\_\_prg_break:n

Made public, but used by a few third-parties. It’s not possible to perfectly support a mixture of \_\_prg_map_break:Nn and \prg_map_break:Nn because they use different delimiters. The following code only breaks if someone tries to break from two “old-style” \_\_prg_map_break:Nn ... \_\_prg_break_point:Nn mappings in one go. Basically, the \_\_prg_map_break:Nn converts a single \_\_prg_break_point:Nn to \prg_break_point:Nn, and that delimiter had better be the right one. Then we call \prg_map_break:Nn which may end up breaking intermediate looks in the (unbraced) argument #1. It is essential to define the break_point functions before the corresponding break functions; otherwise \debug_on:n {deprecation} \debug_off:n {deprecation} would break when trying to restore the definitions because they would involve deprecated commands whose definition has not yet been restored.

\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \prg_break_point:Nn }
\cs_gset:Npn \__prg_break_point:Nn { \prg_break_point:Nn }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \prg_break_point: }
51.11 Deprecated \l3str functions

\begin{verbatim}
\cs_gset:Npn \__prg_break_point: { \prg_break_point: }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \prg_map_break:Nn }
\cs_gset:Npn \__prg_map_break:Nn \prg_map_break:Nn #1 \__prg_break_point:Nn
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \prg_break: }
\cs_gset:Npn \__prg_break: #1 \__prg_break_point: { }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \prg_break:n }
\cs_gset:Npn \__prg_break:n #1#2 \__prg_break_point: {#1}
\end{verbatim}

(End definition for \__prg_break_point:Nn and others.)

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \str_lowercase:n }
\cs_gset:Npn \str_lower_case:n { \str_lowercase:n }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \str_lowercase:f }
\cs_gset:Npn \str_lower_case:f { \str_lowercase:f }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \str_uppercase:n }
\cs_gset:Npn \str_upper_case:n { \str_uppercase:n }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \str_uppercase:f }
\cs_gset:Npn \str_upper_case:f { \str_uppercase:f }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \str_foldcase:n }
\cs_gset:Npn \str_fold_case:n { \str_foldcase:n }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \str_foldcase:V }
\cs_gset:Npn \str_fold_case:V { \str_foldcase:V }
\end{verbatim}

(End definition for \str_lower_case:n, \str_upper_case:n, and \str_fold_case:n.)

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nn }
\cs_gset:Npn \str_case_x:nn { \str_case_e:nn }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nnT }
\cs_gset:Npn \str_case_x:nnT { \str_case_e:nnT }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nnF }
\cs_gset:Npn \str_case_x:nnF { \str_case_e:nnF }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nnTF }
\cs_gset:Npn \str_case_x:nnTF { \str_case_e:nnTF }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nnT }
\cs_gset:Npn \str_case_x:nnT { \str_case_e:nnT }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nnF }
\cs_gset:Npn \str_case_x:nnF { \str_case_e:nnF }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \str_case_x:nnTF }
\cs_gset:Npn \str_case_x:nnTF { \str_case_e:nnTF }
\end{verbatim}

(End definition for \str_case_x:nnTF and \str_case_x:nnT.)

51.11.1 Deprecated \l3tl functions

\begin{verbatim}
\tl_set_from_file:Nnn
\tl_set_from_file:cnn
\tl_gset_from_file:Nnn
\tl_gset_from_file:cnn
\tl_set_from_file_x:Nnn
\tl_set_from_file_x:cnn
\tl_gset_from_file_x:Nnn
\tl_gset_from_file_x:cnn
\end{verbatim}

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \file_get:nnN }
\end{verbatim}

(End definition for \tl_set_from_file:Nnn and \tl_set_from_file:cnn.)

\begin{verbatim}
\tl_set_from_file:Nnn
\tl_set_from_file:cnn
\tl_gset_from_file:Nnn
\tl_gset_from_file:cnn
\tl_set_from_file_x:Nnn
\tl_set_from_file_x:cnn
\tl_gset_from_file_x:Nnn
\tl_gset_from_file_x:cnn
\end{verbatim}

(End definition for \tl_set_from_file:Nnn and \tl_set_from_file:cnn.)
\cs_gset_protected:Npn \tl_set_from_file:Nnn #1#2#3
    { \file_get:nnN {#3} {#2} #1 }
\cs_generate_variant:Nn \tl_set_from_file:Nnn { c }
\__kernel_patch_deprecation:nNNpn { 2021-01-01 } { \file_get:nnN }
\cs_gset_protected:Npn \tl_gset_from_file:Nnn #1#2#3
    { \group_begin: \file_get:nnN {#3} {#2} \l__tl_internal_a_tl \tl_gset_eq:NN #1 \l__tl_internal_a_tl \group_end: }
\cs_generate_variant:Nn \tl_gset_from_file:Nnn { c }
\__kernel_patch_deprecation:nNNpn { 2021-01-01 } { \file_get:nnN }
\cs_gset_protected:Npn \tl_set_from_file_x:Nnn #1#2#3
    { \group_begin: \file_get:nnN {#3} {#2} \l__tl_internal_a_tl \tl_set:Nx \l__tl_internal_a_tl { \l__tl_internal_a_tl } \exp_args:NNNo \group_end: \tl_set:Nn #1 \l__tl_internal_a_tl }
\cs_generate_variant:Nn \tl_set_from_file_x:Nnn { c }
\__kernel_patch_deprecation:nNNpn { 2022-01-01 } { \text_lowercase:n }
\cs_gset:Npn \tl_lower_case:n #1
    { \text_lowercase:n {#1} }
\__kernel_patch_deprecation:nNNpn { 2022-01-01 } { \text_lowercase:nn }
\cs_gset:Npn \tl_lower_case:nn #1#2
    { \text_lowercase:nn {#1} {#2} }
\__kernel_patch_deprecation:nNNpn { 2022-01-01 } { \text_uppercase:n }
\cs_gset:Npn \tl_upper_case:n #1
    { \text_uppercase:n {#1} }
\__kernel_patch_deprecation:nNNpn { 2022-01-01 } { \text_uppercase:nn }
\cs_gset:Npn \tl_upper_case:nn #1#2
    { \text_uppercase:nn {#1} {#2} }
\__kernel_patch_deprecation:nNNpn { 2022-01-01 } { \text_titlecase:n }
\cs_gset:Npn \tl_mixed_case:n #1
    { \text_titlecase:n {#1} }
\__kernel_patch_deprecation:nNNpn { 2022-01-01 } { \text_titlecase:nn }
\cs_gset:Npn \tl_mixed_case:nn #1#2
    { \text_titlecase:nn {#1} {#2} }

(End definition for \tl_set_from_file:Nnn and others.)
51.12 Deprecated \texttt{l3tl-analysis} functions

Simple renames.

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \tl_analysis_show:N }
\cs_gset_protected:Npn \tl_analysis_show:N { \tl_analysis_show:N }
\__kernel_patch_deprecation:nnNNpn { 2020-01-01 } { \tl_analysis_show:n }
\cs_gset_protected:Npn \tl_analysis_show:n { \tl_analysis_show:n }
\end{verbatim}

(End definition for \texttt{\tl_analysis_show:N} and \texttt{\tl_analysis_show:n}.)

51.13 Deprecated \texttt{l3token} functions

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \cs_prefix_spec:N }
\cs_gset:Npn \token_get_prefix_spec:N { \cs_prefix_spec:N }
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \cs_argument_spec:N }
\cs_gset:Npn \token_get_arg_spec:N { \cs_argument_spec:N }
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { \cs_replacement_spec:N }
\cs_gset:Npn \token_get_replacement_spec:N { \cs_replacement_spec:N }
\end{verbatim}

(End definition for \texttt{\token_get_prefix_spec:N}, \texttt{\token_get_arg_spec:N}, and \texttt{\token_get_replacement_spec:N}.)

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \char_lowercase:N }
\cs_gset:Npn \char_lower_case:N { \char_lowercase:N }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \char_uppercase:N }
\cs_gset:Npn \char_upper_case:N { \char_uppercase:N }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \char_titlecase:N }
\cs_gset:Npn \char_mixed_case:N { \char_titlecase:N }
\__kernel_patch_deprecation:nnNNpn { 2022-01-01 } { \char_foldcase:N }
\cs_gset:Npn \char_fold_case:N { \char_foldcase:N }
\end{verbatim}

(End definition for \texttt{\char_lower_case:N} and others.)

51.14 Deprecated \texttt{l3file} functions

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2021-01-01 } { -1 }
\cs_gset_protected:Npn \c_term_ior { -1 \scan_stop: }
\end{verbatim}

(End definition for \texttt{\c_term_ior}.)
Index

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

Symbols

\::error \: 263, 31406
\::f \: 37, 2942, 3201
\::f_unbraced \: 37, 3116
\::n \: 37, 3196, 3199, 3202
\::o \: 37, 2931, 3200
\::o_unbraced \: 37, 3116, 3200, 3201, 3202
\::p \: 37, 346, 2928
\::v \: 37, 2955
\::v_unbraced \: 37, 3116
\::x \: 37, 2949
\::x_unbraced \: 37, 3116, 3213
< \: 210
\= \: 210
\\ \: 14876
\| \: 29179, 31012, 31092, 31093, 31108,
\| \: 31109, 31131, 31132, 31133, 31160,
\| \: 31161, 31186, 31187, 31240, 31241
> \: 210
? \: 210
? commands:
?: \: 210
\\ \: 2862, 5572, 5878, 6118, 6119, 6122,
\\ \: 6444, 6447, 6448, 6449, 6540, 6545,
\\ \: 6461, 6466, 6473, 6630, 6633, 6634,
\\ \: 6635, 6637, 6643, 6648, 6653, 6804,
\\ \: 6811, 10665, 11889, 11907, 11909,
\\ \: 11914, 11915, 11929, 11949, 11956,
\\ \: 11971, 12415, 12423, 12430, 12442,
\\ \: 12443, 12468, 12469, 12476, 12497,
\\ \: 12499, 12500, 12532, 12545, 12546,
\\ \: 12559, 12614, 12660, 12676, 12680,
\\ \: 12685, 12692, 13200, 14247, 14253,
\\ \: 14260, 15968, 15980, 15986, 16780,
\\ \: 16783, 16784, 16785, 16792, 16795,
\\ \: 16796, 23016, 23019, 23020, 23045,
\\ \: 23046, 23053, 23054, 23501, 24962,
\\ \: 25075, 25076, 25077, 25098, 26397,
\\ \: 26401, 26406, 26440, 26449, 26453,
\\ \: 26458, 26478, 26480, 26481, 26483,
\\ \: 26486, 26488, 26495, 26499, 26502,
\\ \: 26506, 26508, 26512, 26514, 26520,
\\ \: 26522, 26526, 26528, 26532, 26537,
\\ \: 26539, 26581, 26583, 26588, 26590,
\\ \: 26596, 26601, 26602, 26606, 26610,
\\ \: 26620, 26623, 26627, 26628, 26632,
\\ \: 26640, 26697, 26830, 30882, 31654,
\\ \: 32106, 32244, 32245, 32248, 32249
bool commands:
\bool_case_false:n ........ 264, 31438
\bool_case_false:nTF ........ 264, 31438, 31448, 31450
\bool_case_true:n ........ 264, 31438
\bool_case_true:nTF ........ 264, 31438, 31440, 31442
\bool_const:N ........ 107, 9553
\bool_do_until:Nn ........ 110, 9545
\bool_do_until:nn ........ 111, 9551
\bool_do_while:Nn ........ 110, 9545
\bool_do_while:nn ........ 111, 9551
\bool_gset:N ........ 107, 9375
\bool_gset:eq:NN ........ 107, 9371, 23684, 25551
\bool_gset_false:N ........ 107, 5762, 5771, 9359, 25510, 31436
\bool_gset_inverse:N ........ 185, 15338
\bool_gset_inverse:n ........ 264, 31432
\bool_gset_true:N ........ 107, 5752, 9359, 9741, 9747, 25561, 31436
\bool_if:N TF ........ 107, 238, 2731, 5766, 5775, 9387, 9540, 9542, 9546, 9548, 9739, 9745, 13415, 13422, 15077, 15296, 15305, 15496, 15498, 15500, 15546, 15548, 15550, 15588, 15590, 15592, 15608, 15610, 15612, 15653, 15681, 15700, 15702, 15707, 15714, 15781, 15812, 15822, 15850, 24555, 24564, 24966, 25044, 25062, 25091, 25188, 25408, 25416, 26670, 26675, 27804, 28528, 29833, 31433, 31436, 31456, 31877, 31950
\bool_if:N TF ........ 107, 109, 111, 111, 111, 582, 9401, 9419, 9490, 9497, 9516, 9523, 9532, 9553, 9562, 9566, 9657, 9645, 25047, 31461, 31467, 31520, 31900
\bool_if_exist:N TF ........ 108, 9415, 15095, 15111
\bool_if_exist:p:N ........ 108, 9415
\bool_if:p:N ........ 107, 9387
\bool_if:p:n ........ 109, 327, 9556, 9378, 9383, 9419, 9427, 9497, 9523, 9529, 9533
\bool_lazy_all:nTF ........ 109, 109, 109, 9417, 24381
\bool_lazy_all:p:n ........ 109, 9417
\bool_lazy_and:nTF ........ 109, 109, 109, 9494, 9839, 12998, 13521, 29500, 30121, 30174, 30202, 30785
\bool_lazy_and:p:n ........ 109, 109, 9494
\bool_lazy_any:nTF ........ 109, 110, 110, 5894, 5918, 5940, 6107, 9503, 13841, 29165, 29272, 29998
\bool_lazy_any:p:n ........ 109, 110, 9503, 13526, 30124
\bool_lazy_or:nTF ........ 109, 110, 110, 9520, 11044, 13716, 13750, 13798, 13934, 23106, 28880, 29073, 29289, 29297, 29785, 29799, 29835, 29840, 29875, 29923, 29959, 30053, 30060, 30138, 30183, 30216, 30247, 30294, 30317, 30351, 30897, 30982
\bool_lazy_or:p:nn ........ 110, 9520, 29503, 30205, 30788
\bool_log:N ........ 107, 9402
\bool_log:n ........ 108, 9396
\bool_new:N ........ 106, 5617, 9351, 9411, 9412, 9413, 9414, 9735, 9736, 13143, 14984, 14985, 14992, 14993, 14997, 15095, 15111, 23542, 23962, 25467, 25468, 25470, 25471, 25472, 27405, 29543, 31849, 31863
\bool_not:p:n ........ 110, 9529, 13524
\bool_set:N ........ 185, 15339
\bool_set:Nn ........ 107, 521, 31435
\bool_set_eq:NN ........ 107, 9571, 23678, 25791
\bool_set_false:N ........ 107, 253, 9359, 13249, 13391, 13399, 13407, 13417, 13424, 15016, 15490, 15491, 15492, 15542, 15543, 15547, 15583, 15591, 15593, 15602, 15603, 15613, 15634, 15688, 24529, 24734, 25446, 25523, 25537, 25583, 25645, 27800, 28510, 31433, 31866
\bool_set_inverse:N ........ 185, 15338
\bool_set_inverse:n ........ 264, 31432
\bool_set_true:N ........ 108, 9415, 15095, 15111
\bool_show:N ........ 107, 9402
\bool_show:n ........ 107, 9396
\bool_until_do:Nn ........ 110, 9539
\bool_until_do:nn ........ 111, 9551
\bool_while:Do:Nn ........ 110, 9539
\bool_while:Do:nn ........ 111, 9551
\bool_xor:nTF ........ 110, 9530
\bool_xor:p:nn ........ 110, 9530
\c_false_bool ........ 22, 106, 332, 365, 521, 524, 524, 524, 525, 2308, 2360, 2361, 2392, 2411, 2416, 2448
true

box internal commands:
__bool_!:Nw 9448
__bool_:0 9460
__bool_:1 9460
__bool_&:0 9460
__bool_&:1 9460
__bool_&:2 9460
__bool_case:NnTF 31438
__bool_case_end:nw 31438
__bool_case_false:w 31438
__bool_case_true:w 31438
__bool_choose:Nnn 9455, 9459, 9460
__bool_get_next:Nnn 524, 524, 9435, 9438, 9450, 9456, 9471, 9472, 9473, 9474, 9475, 9476
__bool_if:p:n 9427
__bool_if_p_aux:w 524, 9427
__bool_lazy_all:n 9477
__bool_lazy_any:n 9503
__bool_p:Nw 9458
__bool_show:NN 9402
__bool_to_str:n 9396, 9409
__bool_l:0 9460
__bool_l:1 9460
__bool_l:2 9460

\botmark 305
\botmarks 611, 1481
\box 306

box commands:
\box_autosize_to_wd_and_ht:Nnn 243, 27311
\box_autosize_to_wd_and_ht_plus_dp:Nnn 243, 27311
\_box\_resize\_to\_ht\_plus\_dp:NnnN

\_box\_resize\_to\_wd\_NnnN

\_box\_resize\_to\_wd\_and\_ht:NNnn \n
\_box\_resize\_to\_wd\_and\_ht\_plus\_dp:NnnN

\_box\_resize\_to\_wd\_ht:NnnN

\_box\_right\_dim ... 27028, 27057,
27111, 27117, 27122, 27126, 27132,
27137, 27146, 27150, 27173, 27186,
27192, 27256, 27273, 27301, 27308
\_box\_rotate:NN
\_box\_rotate:NNN
\_box\_rotate\_to\_four:

\_box\_right\_new\_dim ... 27032,
27084, 27118, 27129, 27140, 27151,
27191, 27307, 27361, 27363, 27369
\_box\_scale_x_fp
\_box\_rotate:NNN
\_box\_rotate\_to\_four:

\_box\_right\_new\_dim ... 27037, 27142
\_box\_rotate\_to\_one:
\_box\_rotate\_to\_three:
\_box\_rotate\_to\_two:
\_box\_rotate\_to\_three:
\_box\_rotate\_to\_four:
\_box\_rotate\_to\_four:

\_box\_scale:NN
\_box\_scale:NNNN

\_box\_scale\_x_fp ... 27153,
27172, 27192, 27220, 27240, 27255,
27275, 27272, 27292, 27308, 27333,
27335, 27336, 27337, 27347, 27559
\_box\_scale\_y_fp ...

\_box\_set\_trim:NNnnN

\_box\_set\_viewport:NNnnN

\_box\_show:NN

\_box\_sin\_fp ...

\_box\_top\_dim ...

\_box\_top\_new\_dim ... 27032, 27081, 27112, 27123, 27134,
\char_titlecase:N \ __char_change_case:NN \ __char_str_change_case:nNN \ __char_int_to_roman:w \ __char_generate_aux:w \ __char_change_case_multi:NNNNw \ __char_change_case:NNN \ __char_data_auxi:w \ __char_data_auxii:w \ __char_data_auxiii:w \ __char_data_auxi_or \ __char_generator:n \ __char_generator_aux:nnn \ __char_generator_aux:nnw \ __char_generator_aux:wnn \ __char_generator:nn \ __char_int_to_roman:w \ __char_str_change_case:N \ __char_str_change_case:NNN \ __char_uppercase:N \ __char_lowercase:N \ __char_titlecase:N \ __char_change_case:nNN

\char_value_catcode:n \ __char_uppercase:N \ __char_to_utfviii_bytes:n \ __char_to_nfd:N \ __char_generate_invalid_catcode:n \ __char_change_case_multi:NNNNw \ __char_change_case_multi:nN \ __char_to_utfviii_bytes_\_char_to_utfviii_bytes_\_char_to_utfviii_bytes_\_char_to_utfviii_bytes_\_char_to_utfviii_bytes_auxi:n \ __char_to_utfviii_bytes:n \ __char_to_utfviii_bytes:n \ __char_to_utfviii_bytes:n \ __char_to_utfviii_bytes:n \ __char_to_utfviii_bytes:n \ __char_to_utfviii_bytes:n

\__char_change_case:NN \ __char_str_change_case:nNN \ __char_int_to_roman:w \ __char_generate_aux:w \ __char_change_case_multi:NNNNw \ __char_change_case_multi:nN \ __char_value_catcode:n \ __char_uppercase:N \ __char_to_utfviii_bytes:n \ __char_to_nfd:N \ __char_generate_invalid_catcode:n \ __char_change_case_multi:NNNNw \ __char_change_case_multi:nN \ __char_value_catcode:n \ __char_uppercase:N \ __char_to_utfviii_bytes:n \ __char_to_nfd:n \ __char_generate_aux:w \ __char_change_case_multi:NNNNw \ __char_change_case_multi:nN \ __char_value_catcode:n \ __char_uppercase:N \ __char_to_utfviii_bytes:n \ __char_to_nfd:n \ __char_generate_aux:w \ __char_change_case_multi:NNNNw \ __char_change_case_multi:nN \ __char_value_catcode:n \ __char_uppercase:N

\choicecommands: \cite \choicescommands: \cite

\clist: \clistclear:N \clistclear_new:N \clistconcat:N \clistconst:N \clistcount:N \clistget:N \clistget:NNTF \clistgpop:NN \clistgpop:NNTF \clistpush:NN

\chardef: \choices: \choicesnn

\__char tmp:nnnnn

\__char tmp:nnnnn \__char tmp:nnnnn \__char tmp:nnnnn

\g__char_data_ior: \g__char_data_ior: \g__char_data_ior: \g__char_data_ior: \g__char_data_ior:


\__char_int_to_roman:w: \__char_int_to_roman:w: \__char_int_to_roman:w: \__char_int_to_roman:w: \__char_int_to_roman:w:
\clist_gput_left:Nn ...........................
  . 120, 10099, 10195, 10196, 10197,
  10198, 10199, 10200, 10201, 10202
\clist_gput_right:Nn ................................
  . 120, 10112
\clist_gremove_all:N ................................
  . 121, 10221
\clist_gremove_duplicates:N ...........................
  . 121, 10205
\clist_greverse:N ................................
  . 121, 10260
\clist_gset:N ........................................
  . 120, 5978, 10093
\clist_gset_eq:NN ...................................
  . 119, 10039, 10208
\clist_gsort:N ......................................
  . 119, 10047, 10224, 22781
\clist_gsort:NN .....................................
  . 121, 10278, 22766
\clist_gput_right:Nn ..............................
\clist_item:nn ........................................
\clist_item:Nn ........................................
\clist_map_variable:Nn ................................
\clist_map_variable:nNn ................................
\clist_map_break:n ...................................
\clist_map_break: ....................................
\clist_map_function:Nn ................................
\clist_map_function:n ................................
\clist_map_function:nN ................................
\clist_if_empty_p:n ................................
\clist_if_empty_p:N ................................
\clist_if_empty:NTF ..................................
\clist_if_in:NnTF ....................................
\clist_if_in:NTF .....................................
\clist_if_in:Nn .......................................
10223, 10225, 10260, 10262, 10306, 14784, 14786, 14790, 14792, 14802, 14806, 15000, 15002, 15009, 15014, 15019, 15032, 15038, 15063, 15075, 15093, 15109, 15125, 15127, 15129, 15145, 15156, 15158, 15160, 15177, 15180, 15187, 15202, 15215, 15220, 15230, 15238, 15240, 15256, 15266, 15294, 15303, 15312, 15313, 15324, 15330, 15332, 15334, 15336, 15338, 15340, 15342, 15344, 15346, 15348, 15350, 15352, 15354, 15356, 15358, 15360, 15362, 15364, 15366, 15368, 15370, 15372, 15374, 15376, 15378, 15380, 15382, 15384, 15386, 15388, 15390, 15392, 15394, 15396, 15398, 15400, 15402, 15404, 15406, 15408, 15410, 15412, 15414, 15416, 15418, 15420, 15422, 15424, 15426, 15428, 15430, 15432, 15434, 15436, 15438, 15440, 15442, 15444, 15446, 15448, 15450, 15452, 15454, 15456, 15458, 15460, 15462, 15464, 15466, 15468, 15470, 15472, 15474, 15476, 15478, 15480, 15482, 15484, 15486, 15507, 15509, 15515, 15521, 15527, 15534, 15537, 15556, 15563, 15569, 15576, 15579, 15598, 15619, 15621, 15627, 15632, 15637, 15659, 15672, 15686, 15712, 15731, 15746, 15761, 15779, 15805, 15829, 15861, 15930, 15932, 15934, 16006, 16015, 16051, 16053, 16061, 16072, 16080, 16087, 16093, 16121, 16130, 16155, 16157, 16159, 16170, 16175, 16180, 16194, 16199, 16204, 16219, 16230, 16253, 16256, 16364, 16649, 16666, 16668, 16670, 16672, 16700, 16702, 16704, 16706, 16726, 16728, 16730, 16732, 16734, 16736, 16738, 16740, 16742, 18474, 18477, 18481, 18490, 18491, 18494, 18496, 18500, 18501, 18502, 18503, 18504, 18510, 18512, 18514, 18519, 18521, 18800, 18807, 18819, 21630, 22455, 22468, 22507, 22517, 22529, 22534, 22544, 22552, 22558, 22641, 22660, 22668, 22680, 22677, 22724, 22743, 22745, 22747, 22766, 22769, 22772, 22778, 22784, 22799, 22808, 22828, 22838, 22849, 22859, 22869, 22870, 22877, 22883, 22893, 22903, 22999, 23006, 23008, 23024, 23090, 23101, 23119, 23129, 23131, 23155, 23162, 23174, 23177, 23180, 23190, 23198, 23205, 23214, 23229,
\dim_to_decimal:n \ldots 175, 175, 754, 14625, 17264, 17301, 17898
\dim_to_decimal_in_sp:n \ldots 175, 175, 754, 14625, 17264, 17301, 17898
\dim_to_decimal_in_unit:n \ldots 175, 14627
\dim_to_fp:n \ldots 175, 754, 775, 14635
 22092, 27093, 27094, 27104, 27105
 27173, 27176, 27177, 27202, 27217
 27218, 27237, 27238, 27256, 27273
 27276, 27277, 27827, 27828, 27829
 27849, 27850, 27851, 27861, 27862
 27878, 27879, 27880, 27881, 27891
 27892, 28003, 28004, 28011, 28012
 28085, 28088, 28089, 28140, 28142
\dim_until_do:n \ldots 173, 14474
\dim_until_do:nNn \ldots 172, 14502
\dim_use:N \ldots 174, 174, 1041, 14367, 14373, 14374
 14375, 14381, 14382, 14383, 14407
 14426, 14586, 14590, 14595, 14611
 27966, 27970, 27977, 27983, 27992
 27993, 27994, 28148, 28155, 28301
\dim_while_do:n \ldots 173, 14474
\dim_while_do:nNn \ldots 173, 14502
\dim_zero:N \ldots 168, 168, 14319, 14325
 27058, 27187, 27902, 27907, 27808
\dim_zero_new:N \ldots 168, 14324
\c_max_dim \ldots 176, 179, 707
 14343, 14739, 16031, 16074, 16082
 28018, 28019, 28020, 28021, 28038
\g_tmpa_dim \ldots 176, 14645
\l_tmpa_dim \ldots 176, 14645
\g_tmpb_dim \ldots 176, 14645
\l_tmpb_dim \ldots 176, 14645
\c_zero_dim \ldots 176, 14539, 14542, 14595, 14643
 14738, 16099, 26916, 26938, 27372
 27814, 27817, 27822, 27836, 27839
 27844, 28192, 28197, 28207, 31283
 31294, 31300, 31312, 31330, 31334
 31342, 31344, 31348, 31354, 31364
\dim internal commands:
  \__dim_abs:n \ldots 14364
  \__dim_case:nnTF \ldots 14444
  \__dim_case:nn \ldots 14444
  \__dim_case_end:nn \ldots 14444
  \__dim_compare:w \ldots 14401
  \__dim_compare:wn \ldots 661, 14401
  \__dim_compare:n \ldots 14401
  \__dim_compare:<w \ldots 14401
  \__dim_compare:<w \ldots 14401
  \__dim_compare:>=w \ldots 14401
  \__dim_compare:>=w \ldots 14401
  \__dim_compare_end:w \ldots 14412, 14436
  \__dim_compare_error: \ldots 661, 14401
  \__dim_eval:w \ldots 667, 14302
  14335, 14337, 14347, 14351, 14356,
Index

1206

14360, 14367, 14373, 14374, 14375, 14381, 14382, 14383, 14398, 14401, 14407, 14426, 14431, 14533, 14534, 14535, 14586, 14590, 14611, 14626 \_dim\_eval\_end: 14302, 14335, 14337, 14347, 14351, 14356, 14360, 14367, 14377, 14385, 14398, 14401, 14586, 14590, 14611, 14626 \_dim\_maxmin:wwN 14364 \_dim\_ratio:n 14395 \_dim\_sign:Nw 14587 \_dim\_step:NNnnN 14530 \_dim\_step:NNnnn 14560 \_dim\_step:wwwN 14530 \_dim\_tmp:w 660 \_dim\_to\_decimal:w 14608 \dimen 331, 11243 \dimen\_end 332 \dimen\_expr 619, 1489 \directlua 16, 23, 53, 55, 908, 1784 \disabledjktokt 1269, 2084 \discretionary 333 \disinhibit\_glue 1214 \display\_indent 334 \display\_limits 335 \display\_style 336 \display\_widow\_penalties 620, 1490 \display\_widow\_penalty 337 \display\_width 338 \divide 339 \DJ 29186, 30617, 30936 \dj 29186, 30617, 30946 \do 1316 \doublely\_hyphen\_merits 340 \dp 341 \draft\_mode 1012, 1674 \dtou 1215, 2046 \dump 342 \dvier\_extension 909, 1785 \dvife\_feedback 910, 1786 \dvivr\_variable 911, 1787 \edef 107, 132, 209, 343 \elfcode 789, 1658 \elapsed\_time 876 \else 15, 22, 44, 46, 85, 89, 92, 95, 96, 100, 101, 162, 166, 181, 344 \else\_commands: \else 23, 100, 109, 101, 105, 112, 112, 163, 182, 243, 245, 245, 325, 327, 333, 364, 386, 399, 399, 526, 799, 2100, 2144, 2320, 2328, 2354, 2480, 2483, 2492, 2498, 2508, 2511, 2520, 2526, 2646, 2668, 2677, 2691, 2749, 2750, 2811, 2973, 3246, 3398, 3426, 3441, 3449, 3486, 3549, 3600, 3601, 3603, 3607, 3619, 3620, 3621, 3622, 3623, 3624, 3625, 3626, 3627, 3692, 3693, 3695, 3744, 3774, 3861, 4251, 4261, 4272, 4287, 4295, 4310, 4356, 4371, 4667, 4696, 4717, 4735, 4743, 4753, 4766, 4782, 4853, 4865, 4914, 4917, 4920, 5097, 5104, 5110, 5346, 5402, 5405, 5408, 5420, 5435, 5646, 5654, 5662, 5809, 5860, 5861, 5865, 5870, 5911, 5964, 6076, 6090, 6312, 6342, 6345, 6375, 6378, 6395, 6398, 6499, 6504, 6522, 6541, 6544, 6593, 6598, 6601, 6671, 6728, 6737, 6859, 6864, 7753, 7797, 7799, 7810, 7820, 8061, 8139, 8148, 8488, 8499, 8520, 8536, 8539, 8560, 8600, 8700, 8727, 8765, 8773, 9074, 9107, 9158, 9275, 9300, 9326, 9335, 9391, 9423, 9443, 9465, 9483, 9499, 9509, 9525, 9535, 9627, 9629, 9631, 9633, 10129, 10144, 10166, 10180, 10701, 10704, 10712, 10718, 10759, 10766, 10843, 10854, 10874, 10992, 10995, 10998, 11001, 11004, 11007, 11010, 11078, 11083, 11088, 11093, 11100, 11107, 11112, 11117, 11122, 11127, 11132, 11137, 11142, 11147, 11169, 11175, 11178, 11213, 11216, 11280, 11289, 11297, 11306, 11339, 11378, 11392, 11401, 11411, 11468, 11579, 12889, 14004, 14013, 14024, 14370, 14391, 14402, 14412, 14437, 14597, 14600, 16037, 16041, 16291, 16308, 16399, 16324, 16334, 16429, 16505, 16567, 16570, 16584, 16602, 16606, 16658, 16871, 16891, 16919, 16920, 16942, 16963, 16986, 16987, 17020, 17037, 17055, 17090, 17094, 17130, 17147, 17153, 17157, 17161, 17322, 17355, 17363, 17396, 17400, 17412, 17442, 17432, 17463, 17476, 17511, 17521, 17540, 17553, 17566, 17570, 17581, 17604, 17621, 17633, 17647, 17660, 17663, 17671, 17673, 17683, 17694, 17710, 17726, 17732, 17737, 17744, 17766, 17796, 17819, 17847, 17850, 18026, 18030, 18037, 18056, 18070, 18074, 18081, 18103, 18120, 18126, 18158, 18190, 18206, 18226, 18267, 18282, 18315, 18317, 18323, 18338, 18391,
18544, 18560, 18571, 18609, 18612, 18615, 18618, 18649, 18658, 18667, 18670, 18841, 18854, 18857, 18864, 18882, 18906, 18907, 18922, 18932, 18981, 18984, 18993, 19005, 19016, 19030, 19043, 19083, 19117, 19137, 19174, 19192, 19195, 19201, 19215, 19250, 19268, 19271, 19274, 19277, 19338, 19411, 19481, 19482, 19491, 19526, 19609, 19613, 19617, 19679, 19714, 19729, 19994, 20023, 20027, 20187, 20196, 20250, 20261, 20277, 20285, 20344, 20424, 20435, 20440, 20474, 20487, 20499, 20505, 20626, 20634, 20673, 20680, 20702, 20730, 20745, 20749, 20771, 20802, 20805, 20830, 20833, 20874, 20882, 20893, 20896, 21011, 21026, 21041, 21056, 21071, 21086, 21107, 21152, 21458, 21496, 21497, 21506, 21550, 21605, 21606, 21607, 21711, 21733, 21748, 21766, 21814, 21830, 22036, 22103, 22108, 22272, 22308, 22321, 22351, 22355, 22363, 22390, 22416, 22424, 22441, 22444, 22493, 22497, 22549, 22608, 22626, 22673, 22674, 23136, 23139, 23142, 23152, 23167, 23194, 23209, 23236, 23252, 23285, 23293, 23295, 23297, 23299, 23301, 23303, 23305, 23307, 23325, 23346, 23350, 23422, 23426, 23614, 23615, 23620, 23621, 23636, 23643, 23841, 23851, 23895, 23904, 23916, 23917, 23919, 23921, 23924, 23925, 23928, 23929, 23938, 23940, 23942, 23945, 23946, 23948, 23984, 23987, 24008, 24011, 24019, 24027, 24030, 24039, 24042, 24051, 24059, 24062, 24072, 24178, 24285, 24293, 24333, 24336, 24347, 24352, 24451, 24597, 24610, 24699, 24726, 24767, 24785, 24893, 24927, 25177, 25195, 25214, 25249, 25302, 25349, 25353, 25360, 25381, 25392, 25533, 25549, 25735, 25793, 25867, 25902, 25914, 25940, 25958, 26150, 26294, 26319, 26371, 26791, 26793, 26799, 26862, 29051, 29055, 29066, 29087, 29091, 29100, 29101, 29102, 29103, 29104, 29105, 29106, 29107, 29108, 29119, 29133, 29136, 29139, 29142, 29145, 29148, 29151, 30036, 30040, 30043, 30047, 31252, 31372
\begin{vmatrix} 30867 \end{vmatrix} \end{align}
1215

Index
14917,
15320,
15545,
15595,
15821,
18478,
22153,
24177,
25406,
25939,
26029,
27649,
29090,
29518,
30964,
31670,
31707,

15173, 15183, 15198, 15252,
15495, 15503, 15531, 15544,
15553, 15573, 15586, 15587,
15607, 15615, 15811, 15813,
15823, 15849, 15851, 17239,
18480, 18482, 18816, 18973,
22915, 23165, 23279, 23309,
24179, 24808, 25066, 25187,
25499, 25657, 25669, 25724,
25942, 25950, 26004, 26012,
26044, 26085, 26268, 26273,
28670, 28673, 28675, 29067,
29399, 29400, 29401, 29497,
29727, 29728, 30726, 30730,
30968, 30969, 31487, 31669,
31678, 31683, 31688, 31693,
31725, 31738, 31745, 31924

\exp_stop_f: . . . . . . . . . . . 35, 36,
100, 348, 397, 484, 496, 634, 714,
726, 792, 793, 881, 909, 929, 934,
2942, 3403, 3406, 3421, 3429, 3484,
4853, 4862, 4911, 4912, 4918, 5096,
5103, 5110, 5344, 5360, 5399, 5400,
5406, 5418, 5434, 5435, 5644, 5652,
5859, 5860, 5861, 5866, 5867, 5909,
6043, 6078, 6079, 6277, 6339, 6343,
6373, 6376, 6392, 6396, 6417, 6495,
6497, 6517, 6518, 6535, 6537, 6591,
6594, 6595, 6714, 6719, 6855, 6860,
7982, 8482, 8496, 8506, 8514, 8699,
8704, 8858, 9880, 10570, 10572,
10640, 10642, 10646, 10648, 10652,
10654, 10658, 10660, 10698, 10699,
10706, 10707, 10708, 10709, 10714,
10715, 10734, 10749, 10757, 10823,
10837, 10838, 10844, 11458, 11459,
11460, 11461, 12819, 13038, 13291,
13305, 13317, 14022, 14420, 14591,
16034, 16038, 16210, 16214, 16243,
16445, 16560, 16575, 16600, 16834,
16838, 16842, 16844, 16848, 16852,
16860, 16865, 16878, 16885, 16898,
16909, 16910, 16921, 16922, 16931,
16934, 16945, 16987, 17051, 17056,
17128, 17158, 17316, 17359, 17410,
17430, 17457, 17471, 17506, 17533,
17542, 17561, 17577, 17593, 17611,
17671, 17690, 17706, 17721, 17735,
17944, 18023, 18034, 18067, 18078,
18316, 18320, 18616, 18622, 18624,
18639, 18648, 18656, 18664, 18665,
18862, 18982, 18988, 19003, 19040,
19113, 19135, 19189, 19190, 19198,
19535, 19553, 19606, 19610, 19614,

19632, 19667, 19668, 19669, 19670,
19671, 19697, 19709, 19725, 19742,
20020, 20021, 20118, 20211, 20246,
20259, 20264, 20273, 20275, 20402,
20431, 20436, 20466, 20503, 20543,
20619, 20669, 20715, 20716, 20721,
20727, 20745, 20768, 20800, 20803,
20850, 20870, 20876, 20891, 20903,
20941, 20962, 21002, 21017, 21032,
21047, 21062, 21077, 21105, 21149,
21415, 21425, 21455, 21607, 21609,
21646, 21658, 21690, 21731, 21740,
21755, 21774, 21807, 21820, 21904,
21958, 22006, 22009, 22032, 22241,
22245, 22252, 22253, 22308, 22309,
22310, 22319, 22329, 22347, 22416,
22419, 22422, 22437, 22490, 22494,
22536, 22608, 22615, 22663, 22934,
23103, 23112, 23113, 23147, 23217,
23225, 23248, 23250, 23251, 23255,
23272, 23323, 23326, 23342, 23348,
23420, 23423, 23613, 23614, 23615,
23621, 23641, 23893, 23913, 23914,
23918, 23922, 23923, 23926, 23927,
23935, 23936, 23939, 23943, 23944,
23947, 24006, 24101, 24345, 24350,
24364, 24365, 24378, 24449, 24450,
24489, 24589, 24766, 24924, 25192,
25210, 25236, 25246, 25298, 25311,
25322, 25338, 25389, 25606, 25734,
25738, 25802, 25865, 25878, 25898,
25903, 25909, 25955, 26008, 26025,
26048, 26266, 26271, 26292, 26370,
26382, 26387, 27936, 29117, 30034,
30037, 30038, 30041, 31778, 31786,
31825, 31826, 31827, 31828, 32214
exp internal commands:
\__exp_arg_last_unbraced:nn . . 3116
\__exp_arg_next:Nnn . . . . . 2923, 2930
\__exp_arg_next:nnn . . . . . . . . . . .
348, 2923, 2932, 2940, 2944, 2957, 2963
\__exp_e:N . . . . . . . . . . . . . 3258, 3288
\__exp_e:nn . . . . . . 350, 357, 3012,
3136, 3254, 3274, 3279, 3287, 3315,
3317, 3362, 3363, 3368, 3435, 3453
\__exp_e:Nnn . . . . . . . . . . . . 358, 3288
\__exp_e_end:nn . . . . 357, 3254, 3387
\__exp_e_expandable:Nnn . . . 358, 3288
\__exp_e_group:n . . . . . . . . 3261, 3275
\__exp_e_if_toks_register:N . . 3499
\__exp_e_if_toks_register:NTF . . .
. . . . . . . . . . . . . . . . . . . . 3450, 3499
\__exp_e_noexpand:Nnn 3308, 3343, 3365
\__exp_e_primitive:Nnn . . . 3310, 3318


Index

22447, 22499, 22500, 22541, 22549, 22602, 22608, 22621, 22665, 22677, 22678, 22733, 22764, 22806, 22817, 22826, 22835, 22890, 22900, 22910, 23024, 23026, 23080, 23084, 23088, 23115, 23126, 23144, 23145, 23146, 23153, 23169, 23175, 23185, 23186, 23196, 23211, 23219, 23227, 23238, 23254, 23274, 23287, 23309, 23327, 23335, 23337, 23340, 23347, 23352, 23429, 23430, 23572, 23579, 23580, 23586, 23589, 23592, 23599, 23600, 23603, 23607, 23608, 23618, 23619, 23624, 23625, 23637, 23645, 23654, 23655, 23683, 23814, 23855, 23907, 23909, 23916, 23919, 23920, 23924, 23928, 23929, 23930, 23931, 23940, 23941, 23945, 23948, 23949, 23949, 23986, 23989, 24010, 24013, 24021, 24032, 24033, 24044, 24045, 24053, 24065, 24106, 24076, 24077, 24090, 24109, 24110, 24118, 24119, 24170, 24180, 24206, 24220, 24224, 24287, 24335, 24383, 24399, 24354, 24357, 24380, 24447, 24448, 24453, 24480, 24481, 24492, 24496, 24530, 24535, 24543, 24578, 24585, 24590, 24600, 24612, 24638, 24701, 24730, 24769, 24776, 24787, 24860, 24877, 24881, 24895, 24929, 25141, 25180, 25196, 25220, 25241, 25250, 25307, 25314, 25334, 25352, 25363, 25365, 25395, 25398, 25423, 25535, 25564, 25587, 25588, 25609, 25638, 25664, 25737, 25795, 25807, 25870, 25884, 25885, 25906, 25917, 25943, 25960, 26010, 26012, 26027, 26029, 26050, 26152, 26211, 26228, 26229, 26268, 26269, 26273, 26274, 26296, 26301, 26338, 26376, 26384, 26385, 26389, 26390, 26791, 26793, 26799, 28938, 28939, 28947, 28961, 28965, 28966, 28982, 29053, 29057, 29068, 29089, 29093, 29109, 29121, 29153, 29154, 29155, 29156, 29157, 29158, 29159, 29311, 29317, 30045, 30046, 30049, 30050, 31254, 31374, 31697, 31704, 31709, 31735, 31741, 31745, 31760, 31781, 31789, 31825, 31826, 31827, 31833

file commands:

\file_add_path:nN ................. 31998
\file_compare_timestamp:nNn ................. 166
\file_compare_timestamp:nNnTF ................. 166, 13990
\file_compare_timestamp_p:nNn ................. 166, 13990
\g_file_curr_dir_str ................. 165, 13449, 14101, 14107, 14124
\g_file_curr_ext_str ................. 165, 13449, 14103, 14109, 14126
\g_file_curr_name_str ................. 163, 9911, 11894, 13449, 13484, 14102, 14108, 14125, 32011
\g_file_current_name_tl ................. 32010
\file_full_name:n ................. 164, 13345, 13472, 13811, 13828, 13835, 13896, 13994, 13995
\file_get:nN ................. 164, 13596, 13245, 32427, 32439, 32533, 32558, 32362, 32369, 32373
\file_get:nNNTF ................. 164, 13596, 13598
\file_get_full_name:n ................. 164, 3155, 13733, 31999
\file_get_full_name:nNTF ................. 164, 12809, 13003, 13735, 13747, 13748, 14052, 14058, 14063, 14075
\file_get_hex_dump:n ................. 165, 13910
\file_get_hex_dump:nNTF ................. 165, 13956, 13958
\file_get_hex_dump:nNTFT ................. 165, 13910, 13911
\file_get_mdfive_hash:n ................. 165, 13910, 13920
\file_get_mdfive_hash:nN\file_get_size:n ................. 13910
file commands:

\file_get_mdfive_hash:nnnNTF ................. 13910
\file_get_mdfive_hash:nNTF ................. 165, 13913
\file_get_size:n ................. 166
\file_get_size:nNTF ................. 166, 13915
\file_get_timestamp:n ................. 166, 13910
\file_get_timestamp:nNTF ................. 166, 13910
\file_hex_dump:n ................. 165, 165, 13832
\file_hex_dump:nnn ................. 165, 165, 13832
\file_hex_dump:n ................. 165, 165, 13832
\file_if_exist:nTF ................. 164, 164, 166, 5830, 14050, 14282, 14284, 14288, 32001, 32003, 32148
\file_if_exist_input:n ................. 167, 14056
\file_if_exist_input:nTF ................. 167, 14056, 32000, 32002
\file_input:n ................. 166, 167, 167, 167, 5834, 14073, 32001, 32003, 32148
\file_input_stop: ................. 167, 14067
\file_list: ................. 32004
\file_log_list: ................. 167, 14168, 32005
internal commands:

file \_file_input_pop:nnn .... 14073
\_file_input:nnnn .... 14073
\_file_input:n .... 14073
\_file_id_info_auxiii:w .... 14073
\_file_hex_dump_auxiv:nnn .... 13832
\_file_hex_dump_auxii:nnnn .... 13832
\_file_get_full_name_search:nN .... 13910
\_file_get_details:nnN .... 13802
\_file_full_name_tl .... 14168
\_file_full_name_aux:n .... 13849
\_file_const:nn .... 13802
\_file_compare_timestamp:nnN .... 13990
\_file_dir_str .... 13802
\_file_details_aux:nn .... 13846
\_file_ext_check:n .... 13706, 13707, 13708, 13709
\_file_ext_check:nn .... 13706, 13707, 13708, 13709
\_file_ext_check:nnw .... 13691, 13696
\_file_ext_check:nw .... 13964, 13965, 13966
\_file_ext_check:nnn .... 13706, 13707, 13708, 13709
\_file_full_name:n .... 13487, 13756, 13794
\_file_full_name_aux:n .... 13487, 13775, 13776, 13794
\_file_full_name_aux:nn .... 13487, 13775, 13776, 13794
\_file_full_name_tl .... 13487, 13756, 13794, 13768, 13770, 13776, 13781, 13783,
13786, 13793, 13795, 14052, 14058,
14059, 14063, 14064, 14075, 14076
\_file_get_aux:nnN .... 13596
\_file_get_details:nnN .... 13596
\_file_get_do:Nw .... 13596
\_file_get_full_name_search:nN .... 13733
\_file_hex_dump:n .... 13832
\_file_hex_dump_auxi:nnnn .... 13832
\_file_hex_dump_auxii:nnnn .... 13832
\_file_hex_dump_auxiiiv:nnn .... 13832
\_file_hex_dump_auxiv:nnn .... 13832
\_file_id_info_auxi:w .... 14201
\_file_id_info_auxii:w .... 656, 14201
\_file_id_info_auxiii:w .... 14201
\_file_input:n .... 14059, 14064, 14073
\_file_input_pop:nnn .... 14073
\_file_input_push:n .... 14073
\_file_internal_ior .... 13772, 13775, 13794, 13796, 13798
\_file_internal_tl .... 
\_file_list:N .... 14168
\_file_list_aux:n .... 14168
c\_file_marker_tl .... 
\_file_mdsize_hash:n .... 13802
\_file_name_cleanup:w .... 13645
\_file_name_end: .... 13645
\_file_name_ext_check:nn .... 13645
\_file_name_ext_check:nnn .... 13645
\_file_name_ext_check:nw .... 13645
\_file_name_ext_check:nnw .... 13645
\_file_name_ext_check:nn .... 13645
\_file_parse_full_name:nNN .... 13487, 13756, 13794
\_file_parse_full_name_split:nNNNTF .... 14073
\_file_record_seq .... 
\_file_size:n .... 13487, 13488, 13489, 13490
\_file_stack_seq .... 
\_file_str_cmp:nn .... 13487, 13488, 13489, 13490
\_file_str_escape:n .... 13970
\_file_timestamp:n .... 13990
\_file_temp:w .... 13455, 13459, 13463, 13469, 13475, 13479, 13482, 13487, 13490
\_file_tmp_seq .... 14019, 14039, 14073, 14172, 14176
\_filedump .... 877
\_filemoddate .... 878
\_filesize .... 879
\_finalhyphendemerits .... 368
\_firstmark .... 369
\_firstmarks .... 626, 1497
\_firstvalidlanguage .... 920, 1795
flag commands:

\_flag_clear:n .... 
\_flag_clear_new:n .... 102, 446, 6424, 6427, 6428, 6429,
6607, 6608, 6609, 6787, 6788, 9305
\firstmarks: .... 14180, 14181, 14183, 14192, 14197
\firstvalidlanguage: .... 920, 1795
\filesize: .... 879
\finalhyphendemerits: .... 368
\firstmark: .... 369
\firstmarks: .... 626, 1497
\file_size: .... 13487, 13488, 13489, 13490
Index

\_fp_tuple_+ o:ww  \ldots \ldOTS
Index

23099, 23172, 23332, 23673, 23766, 24081, 24580, 24943, 25036, 25427, 25785, 25996, 26156, 26165, 26177, 26186, 26194, 26312, 26342, 26835, 28636, 28882, 28941, 29025, 29044, 30316, 30323, 30350, 30582, 30603, 30634, 30887, 30974, 31792, 32134, 32266, 32287, 32352, 32361, 32372

\c_group_begin_token .................. 380

\c_group_end: ......................... 380

\c_group_insert_after:N 9, 2134, 23682

groups commands:

\groups:n .................. 186, 15406

H

\H 29179, 31017, 31164, 31165, 31192, 31193

\halign .................. 378

\hangafter .................. 379

\hangindent .................. 380

\hyphenation .................. 381

\bbox .................. 382

\bbox:n .................. 239, 26851, 27041, 27164, 27208, 27228, 27248, 27265, 27286, 27315, 27326, 27484, 27911, 31263

\bbox_gset:Nw .................. 239, 26875, 27550

\bbox_gset_end: .................. 239, 26875, 27553

\bbox_gset_to:wd:Nn .................. 239, 26863

\bbox_gset_to:wd:Nw .................. 239, 26895

\bbox_overlap_left:n .................. 239, 26919

\bbox_overlap_right:n .................. 239, 26919

\bbox_set:N .................. 239, 239, 26851

\bbox_set:Nw .................. 239, 26851, 27534

\bbox_set_end: .................. 239, 26851, 27540

\bbox_set_to:wd:Nn .................. 239, 239, 26863

\bbox_set_to:wd:Nw .................. 239, 26895

\bbox_to:wd:n .................. 239, 26909, 27361

\bbox_to:zero:n .................. 239, 26909, 26920, 26922

\bbox_unpack:N .................. 239, 26924, 28194

\bbox_unpack_clear:N ................. 32161

\bbox_unpack_drop:N ................. 32161

\bbox: .................. 242, 26924, 32161, 32163

coffin commands:

\c_offin .................. 246, 27467

\c_offin_gset:N ................. 247, 27534

\c_offin_gset_end: ................. 247, 27534

\c_offin_set:N ................. 246, 27467, 28424, 28436, 28479, 28519

\c_offin_set:Nw ................. 247, 27534

\c_offin_set_end: ................. 247, 27534

\hfil .................. 1219

\hfil .................. 383

\hfill .................. 384

\hfill .................. 385

\hfuzz .................. 386

\hcjudg .................. 923, 1798

\hoffset .................. 387

\hholdinginserts .................. 388

\hpack .................. 924, 1799

\hrule .................. 389

\hspace .................. 390

\hskip .................. 391

\hspace .................. 392

\hss .................. 393

\ht .................. 30688

\huge .................. 30872

\hugel .................. 30872

\hundred commands:

\c_one_hundred .................. 32170

\hyphenation .................. 394

\hyphenationbounds .................. 925, 1800
17051, 17056, 17128, 17158, 17313, 17315, 17352, 17357, 17410, 17430, 17457, 17471, 17506, 17533, 17561, 17577, 17593, 17611, 17670, 17690, 17706, 17719, 17733, 17794, 17817, 17846, 17848, 18140, 18031, 18033, 18065, 18075, 18077, 18099, 18116, 18121, 18151, 18219, 18264, 18566, 18613, 18616, 18647, 18656, 18659, 18664, 18665, 18668, 18671, 18858, 18982, 19003, 19040, 19135, 19189, 19190, 19193, 19196, 19266, 19275, 19480, 19553, 19606, 19610, 19614, 19632, 19667, 19668, 19669, 19670, 19671, 19697, 20021, 20024, 20118, 20211, 20259, 20275, 20402, 20436, 20494, 20503, 20543, 20714, 20716, 20727, 20745, 20768, 20808, 20800, 20850, 20880, 20927, 20941, 21105, 21149, 21607, 21645, 21654, 21690, 21774, 21777, 22006, 22239, 22307, 22308, 22309, 22319, 22347, 22352, 22353, 22416, 22417, 22418, 22422, 22437, 22442, 22490, 22494, 22662, 22731, 22760, 22801, 22812, 22815, 22823, 22888, 22898, 22908, 23112, 23184, 23217, 23225, 23248, 23272, 23323, 23338, 23420, 23423, 23570, 23576, 23577, 23554, 23578, 23590, 23596, 23597, 23601, 23604, 23605, 23613, 23614, 23615, 23621, 23651, 23652, 23683, 23913, 23914, 23915, 23918, 23922, 23923, 23926, 23927, 23935, 23936, 23939, 23943, 23944, 23947, 24006, 24028, 24040, 24049, 24057, 24060, 24070, 24073, 24101, 24174, 24229, 24345, 24350, 24378, 24445, 24478, 24589, 24606, 24691, 24924, 25139, 25210, 25236, 25298, 25311, 25322, 25338, 25389, 25421, 25584, 25585, 25582, 25595, 26008, 26025, 26048, 26197, 26226, 26266, 26271, 26292, 26370, 26382, 26387, 28956, 29117, 30034, 30037, 30039, 30041, 31778, 31786 ...

if_int_odd:w ............ 101
866, 8570, 8592, 8763, 8771, 9271, 10705, 10713, 10732, 11457, 16860, 16907, 16919, 18312, 19249, 19535, 20891, 21455, 21494, 21504, 21547, 21571, 21701, 22415, 23348, 23641, 24017, 24025, 24037, 24451, 24766

if_mode_horizontal: . 23, 2110, 9629
if_mode_inner: ....... 23, 2110, 9631
if_mode_math: ....... 23, 2110, 9633
if_mode_vertical: ... 23, 2110, 2916, 9627
if_predicate:w 104, 106, 112, 9348, 9421, 9481, 9496, 9507, 9522, 9533
if_true: ............ 23, 106, 386, 2100
\int_eval:n \ldots \int_eval:w \ldots \int_decr:N \ldots \int_incr:N \ldots \int_div_round:nn \ldots \int_from_base:n \ldots \int_from_decimal:n \ldots \int_isprime:N \ldots \int_isprime_odd:N \ldots \int_isprime_even:N \ldots
int internal commands:
\__int_abs:N .......... 8492
\__int_case:nnTF ....... 8731
\__int_case:nnw ....... 8731
\__int_case:<nnw ....... 8731
\__int_compare:NNN ...... 503, 8670
\__int_compare:Nww ...... 503, 8670
\__int_compare:NNw ...... 502, 8670
\__int_compare:w ...... 8670
\__int_compare:=:NNw ...... 8670
\__int_compare:<:NNw ...... 8670
\__int_compare:<=:NNw ...... 8670
\__int_compare:==:NNw ...... 8670
\__int_compare:=>:NNw ...... 8670
\__int_compare:>=:NNw ...... 8670
\__int_compare:end=:NNw ...... 503, 8670
\__int_compare:error:............ 501, 502, 8655, 8673, 8675
\__int_compare:error:NNw ............ 501, 503, 8655, 8695
\__int_constdef:N . 1174, 8571, 32212
\__int_deprecated_constants:Nn ............ 32196, 32201
\__int_deprecated_constants:nn 32170
\__int_div_truncate:Nww ...... 8524
\__int_eval:w .................. 314, 496, 497, 502, 8470, 8476, 8477, 8481, 8495, 8503, 8504, 8511, 8512, 8526, 8528, 8529, 8546, 8549, 8550, 8551, 8558, 8589, 8623, 8625, 8627, 8629, 8647, 8649, 8673, 8707, 8725, 8763, 8771, 8771, 8836, 8837, 8838, 8864, 9047, 9074, 9080, 9107
\__int_eval_end: ............ 8470, 8476, 8481, 8495, 8530, 8546, 8552, 8561, 8589, 8623, 8625, 8627, 8629, 8647, 8649, 8725, 8763, 8771, 9047, 9074, 9080, 9107
\__int_from_alph:N ...... 514, 9164
\__int_from_alph:nN ...... 514, 9164
\__int_from_base:N ...... 514, 9181
\__int_from_base:nnN ...... 514, 9181
\__int_from_roman:NN ...... 9223
\__int_from_roman:C_int ...... 9209
\__int_from_roman:cn .. 9209
\__int_from_roman:D_int ...... 9209
\__int_from_roman:dl .. 9209
\__int_from_roman:M_int ...... 9209
\__int_from_roman:mn .. 9209
\__int_from_roman:V_int ...... 9209
\__int_from_roman:vn .. 9209
\__int_for_max_constdef_int ...... 8571
\__int_max:nn ...... 8492
\__int_mod:ww ........... 8524
\__int_pass_signs:wn ....... 514, 9154, 9168, 9185
\__int_pass_signs_end:wn ....... 9154
\__int_show:n ........ 8731
\__int_sign:N ........ 8478
\__int_step:NNnnn ...... 8870
\__int_step:Nnnnn ...... 8833
\__int_step:www ...... 8833
\__int_to_Base:nn ...... 8988
\__int_to_base:nn ...... 8988
\__int_to_base:nN ...... 8988
\__int_to_base:nnN ...... 8988
\__int_to_base:nnnn ...... 8988
\__int_to_base:nnnnn ...... 8988
\__int_to_Letter:n ...... 8988
\__int_to_letter:n ...... 8988
\__int_to_roman:N ...... 9118
\__int_to_roman:nn ...... 503, 513, 2132, 8470, 8683, 9121, 9131
\__int_to_Roman_aux:N 9130, 9133, 9136
\__int_to_Roman:cn ...... 9118
\__int_to_Roman:cn ...... 9118
\__int_to_Roman:dl ...... 9118
\__int_to_Roman:dl ...... 9118
\__int_to_roman_d:w ....... 9118
Index
\__int_to_Roman_i:w . . . . . . . . . 9118
\__int_to_roman_i:w . . . . . . . . . 9118
\__int_to_Roman_l:w . . . . . . . . . 9118
\__int_to_roman_l:w . . . . . . . . . 9118
\__int_to_Roman_m:w . . . . . . . . . 9118
\__int_to_roman_m:w . . . . . . . . . 9118
\__int_to_Roman_Q:w . . . . . . . . . 9118
\__int_to_roman_Q:w . . . . . . . . . 9118
\__int_to_Roman_v:w . . . . . . . . . 9118
\__int_to_roman_v:w . . . . . . . . . 9118
\__int_to_Roman_x:w . . . . . . . . . 9118
\__int_to_roman_x:w . . . . . . . . . 9118
\__int_to_symbols:nnnn . . . . . . . 8904
\__int_value:w . . . . . . . . . . . . . 32216
intarray commands:
\intarray_const_from_clist:Nn . . .
. . . . . . . . . 196, 16121, 20557, 21159
\intarray_count:N . . . . . . . . . . . . .
196, 196, 197, 16019, 16022, 16024,
16025, 16028, 16038, 16049, 16096,
16119, 16140, 16165, 16222, 22485
\intarray_gset:Nnn 196, 707, 709, 16051
\intarray_gset_rand:Nn . . . 262, 16170
\intarray_gset_rand:Nnn . . 262, 16170
\intarray_gzero:N . . . . . . . 196, 16093
\intarray_item:Nn . . . . . . . . . . . . .
. . . . . . . 197, 707, 709, 16103, 16119
\intarray_log:N . . . . . . . . 197, 16155
\intarray_new:Nn . . . . . . . . . . . . . .
. . . . 196, 706, 709, 16006, 22477,
22478, 22479, 23551, 23552, 23553,
25464, 25465, 26143, 26144, 26145
\intarray_rand_item:N . . . 197, 16118
\intarray_show:N . . . . 197, 710, 16155
\intarray_to_clist:N . . . . 262, 16136
intarray internal commands:
\__intarray_bounds:NNnTF . . . . . . .
. . . . . . . . . . . . . 16032, 16063, 16114
\__intarray_bounds_error:NNn . 16032
\__intarray_const_from_clist:nN .
. . . . . . . . . . . . . . . . . . . . . . . 16121
\__intarray_count:w . . . . . . . . . . .
. . 15999, 16018, 16028, 16127, 16148
\__intarray_entry:w . . . . . . . . . . .
. . . . . . . . 15999, 16052, 16099, 16104
\g__intarray_font_int . . . . . . . . .
. . . . . . . . . . . . . 16003, 16009, 16011
\__intarray_gset:Nnn . . . . . . . . 16051
\__intarray_gset:Nww . . 16055, 16061
\__intarray_gset_all_same:Nn . 16170
\__intarray_gset_overflow:Nnn . 16051
\__intarray_gset_overflow:NNnn . .
. . . . . . . . . . . . . 16075, 16083, 16087

1243

\__intarray_gset_overflow_test:nw . . . . . . 709, 711, 16065,
16072, 16080, 16133, 16189, 16196
\__intarray_gset_rand:Nnn . . . . 16170
\__intarray_gset_rand_auxi:Nnnn .
. . . . . . . . . . . . . . . . . . . . . . . 16170
\__intarray_gset_rand_auxii:Nnnn
. . . . . . . . . . . . . . . . . . . . . . . 16170
\__intarray_gset_rand_auxiii:Nnnn
. . . . . . . . . . . . . . . . . . . . . . . 16170
\__intarray_item:Nn . . . . . . . . . 16103
\__intarray_item:Nw . . . 16107, 16112
\l__intarray_loop_int . . . 16001,
16095, 16098, 16099, 16124, 16127,
16132, 16134, 16221, 16224, 16225
\__intarray_new:N . . . . . 16006, 16123
\__intarray_show:NN . . . . . . . . . . .
. . . . . . . . . . . . . 16155, 16157, 16159
\__intarray_signed_max_dim:n . . .
. . . . . . . . . . . . . 16030, 16090, 16091
\c__intarray_sp_dim . . . . . . . . . . .
. . . . . . . . . . . . . 16002, 16011, 16052
\__intarray_to_clist:Nn 16136, 16166
\__intarray_to_clist:w . . . . . . . 16136
\interactionmode . . . . . . . . . . . 640, 1511
\interlinepenalties . . . . . . . . . 641, 1512
\interlinepenalty . . . . . . . . . . . . . . 421
ior commands:
\ior_close:N . . . . . . . . . . . . . 156,
157, 157, 262, 12832, 12856, 13772,
13785, 28951, 28984, 29021, 29038
\ior_get:NN . . . . . . . . . . . . . . 157,
158, 158, 159, 159, 262, 12897, 12977
\ior_get:NNTF . . . . . 158, 12897, 12898
\ior_get_str:NN . . . . . . . . . . . . 32026
\ior_get_term:nN . . . . . . . . 262, 12931
\ior_if_eof:N . . . . . . . . . . . . . . . 623
\ior_if_eof:NTF 160, 12881, 12903,
12923, 12963, 12982, 13782, 13796
\ior_if_eof_p:N . . . . . . . . 160, 12881
\ior_list_streams: . . . . . . . . . . 32028
\ior_log_list: . . . . 157, 12868, 32031
\ior_log_streams: . . . . . . . . . . . 32030
\ior_map_break: 159, 12946, 12964,
12971, 12983, 12989, 28946, 29017
\ior_map_break:n . . . . . . . . 160, 12946
\ior_map_inline:Nn . . 159, 159, 12950
\ior_map_variable:NNn . . . . . . . . .
. . . . . . . . . . . . . . 159, 12976, 28943
\ior_new:N . . . . . . . . . . . . . . . . . . .
156, 12799, 12801, 12802, 13801, 28879
\ior_open:Nn . . . . . . . . . . . . . 156,
652, 12803, 28907, 28952, 28985, 29037
\ior_open:NnTF . . . . 157, 12804, 12807


Index 1244

\ior_shell_open:Nn ........... 262, 31636
\ior_shell_open:nW ............. 262
\ior_show_list: ...... 157, 12868, 32029
\ior_str_get:N .................
........ 157, 158, 262, 12910, 12979, 32027
\ior_str_get:NNTF .... 158, 12910, 12911
\ior_str_term:n ............ 262, 12931
\ior_str_map_inline:Nn ........
........ 159, 159, 12950, 28978, 29008
\ior_str_map_variable:NNm 159, 12976
\c_term_ior .................. 32423
\g_tmpla_ior ............. 163, 12801
\g_tmph_ior ................ 163, 12801
ior internal commands:
\_ior_file_name_tl .............
............... 12806, 12809, 12811
\_ior_get:N ................ 12897, 12932, 12951
\_ior_get_term:Nn ........... 12931
\_ior_internal_tl ...........
............... 12775, 12909, 12973
\_ior_list:N ................. 12808
\_ior_map_inline:NNn ........ 12950
\_ior_map_inline:NNnm ........ 12950
\_ior_map_inline_loop:NNNn .... 12950
\_ior_map_variable:NNm ........ 12976
\_ior_map_variable_loop:NNNm ..... 12976
\_ior_new:N ............... 619, 12817, 12840
\_ior_new_aux:N ............. 12822, 12826
\_ior_open_stream:Nm ........ 12830
\_ior_shell_open:n ........... 31636
\_ior_str_get:NN 12910, 12934, 12953
\_ior_stream_tl .............
............... 12782, 12833, 12841, 12849
\g_iors_streams_prop ...........
............... 12783, 12850, 12861, 12875
\g_iors streams_seq .......... 12777, 12833, 12862, 12863
\c_iors_term_ior ........... 12776,
12799, 12858, 12864, 12885, 12941
\c_iors_term_nonprompt_ior ........ 12930, 12940
iorw commands:
\iorw_allow_break: ............
............... 162, 261, 13160, 13202, 13207
\iorw_allow_break:n .......... 630
\iorw_char:N .................
............... 161, 6122, 12497, 12499, 12500,
12532, 12614, 12660, 13121, 20663,
23016, 23019, 23020, 23045, 23046,
23053, 23054, 23807, 23809, 23811,
23813, 23815, 23817, 24421, 24422,
24962, 25075, 25076, 25077, 25098,
26397, 26400, 26401, 26406, 26440,
26449, 26453, 26458, 26478, 26480,
26481, 26483, 26486, 26488, 26495,
26499, 26502, 26503, 26506, 26508,
26512, 26514, 26520, 26522, 26526,
26528, 26532, 26537, 26539, 26581,
26583, 26588, 26590, 26596, 26601,
26606, 26610, 26620, 26623, 26627,
26628, 26632, 26640, 26697, 32106
\iorw_close:N .............. 157, 157, 13045, 13068
\iorw_indent:n ............ 162, 162, 630, 631,
6120, 6445, 6631, 12443, 12546,
13171, 13203, 13208, 16781, 16793
\\iorw_line_count_int ........
............... 162, 162, 631, 947, 11958, 13122,
13212, 13217, 13255, 23469, 23473
\iorw_list_streams: ........... 32032
\iorw_log:n ............ 160, 2667, 4951,
12163, 12178, 12179, 12185, 13116,
32145, 32225, 32228, 32229, 32230
\iorw_log_list: .... 157, 13080, 32035
\iorw_log streams: ......... 32034
\iorw_new:N .......... 156, 13032, 13034, 13035
\iorw_newline: ............
............... 161, 161, 161, 162, 315,
405, 598, 628, 11980, 13120, 13200,
13209, 13215, 14186, 23419, 25099,
28600, 28601, 28602, 31414, 31416,
31419, 31426, 32262, 32278, 32280
\iorw_now:N .............
............... 160, 160, 161, 161, 9803,
13110, 13116, 13117, 13118, 13119
\iorw_open:N ..........
............... 157, 13041
\iorw_shipout:N ...........
............... 161, 161, 161, 628, 9816, 13095
\iorw_shipout_X:N ..........
............... 161, 161, 161, 628, 13092
\iorw_show_list: ... 157, 13080, 32033
\iorw_term:n ............
............... 160, 262, 2667, 11992, 12141,
12156, 12157, 12211, 13116, 26687,
32232, 32235, 32236, 32237, 32276
\iorw_wrap:mmNNN .......... 161, 161, 162, 162, 261,
405, 631, 1153, 4936, 4951, 11956,
11959, 11971, 12142, 12164, 12183,
12190, 13163, 13169, 13174, 13186,
13189, 32229, 32236, 32254, 32255
\c_log_iow ............
............... 163, 624, 12995, 13070, 13116, 13117
\c_term_iow ............
............... 163, 624, 12995, 13009, 13012,
13032, 13070, 13076, 13118, 13119
\g_tmpl_iow ............ 163, 13034
\g_tmph_iow ............ 163, 13034
Index

iow internal commands:
\_\_iow_allow_break: 630, 13160, 13202
\_\_iow_allow_break_error: 
\_\_iow_file_name_tl: 13040, 13043, 13047, 13055
\_\_iow_indent:n 630, 13171, 13203
\_\_iow_indent_error:n 630, 13171, 13208
\_\_iow_indent_int 13139, 13253, 13271, 13383, 13400, 13408
\_\_iow_line_break_bool 13143, 13249, 13377, 13391, 13399, 13407, 13415, 13417, 13422, 13424
\_\_iow_line_part_tl: 635, 636, 639, 13141, 13251, 13263, 13284, 13342, 13345, 13376, 13390, 13392, 13398, 13406, 13429
\_\_iow_line_target_int 637, 13125, 13211, 13213, 13216, 13378, 13383, 13418
\_\_iow_line_tl 13141, 13250, 13267, 13357, 13373, 13389, 13390, 13398, 13406, 13428, 13429, 13434, 13436
\_\_iow_list:N: 132980
\_\_iow_new:N: 13036, 13053
\_\_iow_one_indent_int 13124, 13209, 13210, 13212, 13215, 13433
\_\_iow_one_indent_tl 13126, 13400, 13408
\_\_iow_open_stream:N 629, 13126, 13401
\_\_iow_get_indent:n 629, 13126
\_\_iow_stream_tl: 13015, 13046, 13054, 13062
\_\_g\_\_iow_streams_prop 13016, 13063, 13073, 13087
\_\_g\_\_iow_streams_seq 13004, 13046, 13074, 13075
\_\_iow_tmp:w 635, 13257, 13281, 13338, 13370, 13438, 13446
\_\_iow_unindent:w 629, 13126, 13410
\_\_iow_with:N 13098
\_\_iow_allow_break:n 13387
\_\_iow_allow_break_marker:-tl 13145, 13165
\_\_iow_break:w 13324, 13338
\_\_iow_break_end:w: 635, 13338
\_\_iow_wrap_first:w 13338
\_\_iow_wrap_loop:w 13338
\_\_iow_wrap_break:w 13338
\_\_iow_wrap_end:n 13255, 13257, 13393, 13394, 13402, 13411, 13418
\_\_iow_wrap_do: 13219, 13224
\_\_iow_wrap_end:n: 13413
\_\_iow_wrap_end: 633, 13275, 13282, 13374
\_\_c\_\_iow_end_marker_tl 13145, 13229
\_\_iow_wrap_indent:n 13396
\_\_c\_\_iow_wrap_indent_marker_tl 633, 636, 13269, 13273, 13282, 13381
\_\_iow_wrap_line:n 13282
\_\_iow_wrap_line: 633, 636, 13269, 13273, 13282, 13381
\_\_iow_wrap_line_aux:N 13282
\_\_iow_wrap_line_end: 13282
\_\_iow_wrap_line_end: 633, 13282, 13358, 13359, 13368
\_\_iow_wrap_line_loop:w 13282
\_\_iow_wrap_line_seven:n 13282
\_\_c\_\_iow_wrap_marker_tl 639, 633, 13145, 13281
\_\_iow_wrap_newline:n 13413
\_\_c\_\_iow_wrap_newline_marker_tl 632, 13145, 13244
\_\_iow_wrap_next:n 13257, 13336, 13378
\_\_iow_wrap_next_line:w 13339, 13371
\_\_iow_wrap_start:w 13224
\_\_iow_wrap_store_do:n 13224
\_\_iow_wrap_tl 13224, 13416, 13423, 13426
\_\_iow_wrap_tl 632, 636, 637, 637, 13144, 13206, 13221, 13226, 13228, 13231, 13233, 13236, 13252, 13430, 13432
\_\_iow_wrap_trim:N 637, 13359, 13390, 13416, 13423, 13438
\_\_iow_wrap_trim:w 13438
\_\_iow_wrap_trim_aux:w 13438
\_\_iow_wrap_unindent:n 13396
\_\_c\_\_iow_wrap_unindent_marker_tl 13145, 13816
\_\_c\_\_iow_wrap_unindent_marker_tl 633, 636, 637, 637, 13144, 13206, 13221, 13226, 13228, 13231, 13233, 13236, 13252, 13430, 13432
\_\_iow_wrap_tl 13224, 13416, 13423, 13426
\_\_iow_wrap_tl 632, 636, 637, 637, 13144, 13206, 13221, 13226, 13228, 13231, 13233, 13236, 13252, 13430, 13432
\_\_iow_wrap.Trim:N 637, 13359, 13390, 13416, 13423, 13438
\_\_iow_wrap.Trim:w 13438
\_\_c_job_name_tl 31992
\_\_jobname 422
\_\_kernel\_msg\_warning:nnnnnn .
\_\_kernel\_msg\_warning:nnnnnnn .
\_\_kernel\_patch\_deprecation:nnnnnn
\_\_kernel\_prefix\_arg\_replacement:wn
\_\_kernel\_primitive:nnn
\_\_kernel\_prg\_map\_int
\_\_kernel\_primitive:nnn
Index

1251

\l_keys_path_tl = 14986, 15060, 15139
\l_keys_set:nn = 183, 187, 191, 192, 15234, 15239, 15486
\l_keys_set_filter:nn = 193, 15556
\l_keys_set_filter:nnN = 193, 15556
\l_keys_set_filter:nnNN = 193, 15556
\l_keys_set_groups:nn = 193, 15556
\l_keys_set_known:nn = 192, 15515
\l_keys_set_known:nnN = 192, 15515
\l_keys_set_known:nnNN = 192, 15515
\l_keys_show:nn = 194, 195, 15930
\l_keys_value_tl . . . . . . 191, 14996, 15299, 15719, 15723, 15729, 15740, 15752, 15773, 15788, 15801, 15813, 15823, 15851
\keys internal commands:
\l_keys_bool_set:nn = 15093, 15331, 15333, 15335, 15337
\l_keys_bool_set_inverse:nn = 15109, 15339, 15341, 15343, 15345
\l_keys_check_groups: = 15678, 15686
\l_keys_choice_find:n = 15126, 15862
\l_keys_choice_find:nn = 15126, 15862
\l_keys_choice_make: = 15090, 15112, 15125, 15157, 15374
\l_keys_choice_make:N = 15125
\l_keys_choice_make:nn = 15125
\l_keys_choice_make:nnN = 15156
\l_keys_cmd_set:nn = 15097, 15099, 15101, 15113, 15115, 15117, 15149, 15150, 15167, 15177, 15232, 15239, 15247, 15316, 15357
\l_keys_code_root_str = 14971, 15178, 15182, 15227, 15748, 15751, 15767, 15771, 15785, 15787, 15798, 15800, 15873, 15874, 15875, 15918, 15926, 15945
\l_keys_cs_set:NNnn = 15180, 15367, 15369, 15371, 15373, 15375, 15377, 15379, 15381
\l_keys_default_inherit: = 15712
\l_keys_default_root_str = 14971, 15192, 15197, 15716, 15720, 15737, 15741
\l_keys_default_set:nn = 15106, 15122, 15187, 15383, 15385, 15387, 15389
\l_keys_define:n = 15005, 15009
\l_keys_define:nn = 15005
\l_keys_define:nnN = 15009
\l_keys_define:nnNN = 15009
\l_keys_define:nnN = 15023, 15075
\l_keys_define:nnN = 15075
\l_keys_execute: = 15655, 15682, 15704, 15708, 15746
\l_keys_execute:nn = 15746
\l_keys_execute_inherit: = 15224, 15746
\l_keys_execute_inherit:nn = 15746
\l_keys_execute_unknown: = 700, 15746
\l_keys_filtered_bool = 14992, 15491, 15498, 15499, 15542, 15548, 15549, 15584, 15590, 15591, 15603, 15610, 15611, 15681, 15702, 15707
\l_keys_find_key_module:NNw = 15243, 15627
\l_keys_groups_clist = 14980, 15204, 15205, 15212, 15676, 15691
\l_keys_groups_root_str = 14971, 15207, 15211, 15674, 15677
\l_keys_groups_set:n = 15202, 15407
\l_keys_inherit:n = 15215, 15409
\l_keys_inherit_root_str = 14971, 15218, 15223, 15725, 15734, 15756, 15764
\l_keys_inherit_str = 14988, 15226, 15646, 15709, 15864, 15868
\l_keys_initialise:n = 15220, 15411, 15413, 15415, 15417
\l_keys_meta_make:n = 15230, 15427
\l_keys_meta_make:nn = 15230, 15429
\l_keys_module_str = 14983, 15001, 15004, 15006, 15050, 15051, 15057, 15235, 15508, 15511, 15513, 15560, 15635, 15645, 15648, 15656, 15785, 15787, 15792
\l_keys_multichoice_find:n = 15128, 15862
\l_keys_multichoice_make: = 15125, 15159, 15431
\l_keys_multichoice_make:nn = 15156, 15433, 15435, 15437, 15439
\l_keys_no_value_bool = 14984, 15011, 15016, 15077, 15296, 15305, 15629, 15634, 15714, 15812, 15822, 15850
\l_keys_only_known_bool = 14985, 15490, 15496, 15497, 15541, 15546, 15547, 15583, 15588, 15589, 15602, 15608, 15609, 15781
\l_keys_parent:n = 15132, 15135, 15139, 15223, 15725, 15734, 15756, 15764, 15879
\l_keys_parent:w = 15879
Index

\_\_keyval_if_empty:w ........ 14865, 14872, 14897, 14008, 14912, 14923
\_\_keyval_if_has_equal_active:w .................. 14842, 14848, 14870
\_\_keyval_if_has_equal_other:w .................. 14839, 14886, 14921
\_\_keyval_if_recursion_tail:w .................. 14830, 14837, 14912
\_\_keyval_key:nN .................. 14854, 14902
\_\_keyval_key_val:n .................. 14868, 14900, 14906
\_\_keyval_loop_active:NNw .................. 14826, 14828, 14882
\_\_keyval_loop_other:NNw .................. 14832, 14835, 14881, 14889
\_\_keyval_misplaced_equal_error: .................. 14844, 14867, 14899, 14919, 14925
\_\_keyval_split_active:ww .................. 14859, 14850, 14859
\_\_keyval_split_other:ww .................. 14891, 14891
\_\_keyval_templ:n .................. 14932, 14968
\_\_keyval_templ:NN .................. 14822, 14877
\_\_keyval_trimm:n .................. 14854, 14861, 14868, 14893, 14900, 14931
\_\_keyval_trimm_auxi:w .................. 14931
\_\_keyval_trimm_auxii:w .................. 14931
\_\_keyval_trimm_auxiib:w .................. 14931
\_\_keyval_trimm_auxiv:w .................. 14931
\kuten .................. 1240, 1274, 2067, 2089
L
\l .................. 29188, 30619, 30938
\l .................. 29188, 30619, 30950
l3kernel .................. 253, 28708
l3kernel.charcat .................. 253, 28742
l3kernel.elapsedtime .................. 253, 28747
l3kernel.filendump .................. 253, 28760
l3kernel.filendfivesum .................. 253, 28777
l3kernel.filemoddate .................. 253, 28780
l3kernel.filesize .................. 253, 28834
l3kernel.resettimer .................. 253, 28747
l3kernel.shellescape .................. 253, 28854
l3kernel.strcmp .................. 253, 28844
\label .................. 29197, 29205, 30886
\language .................. 424
LARGE .................. 30869
Large .................. 30870
large .................. 30873
lastallocatedtoks .................. 22701
\octoks .................. 22673, 22674, 22700
\lastbox .................. 425
\lastkern .................. 426
\lastlinefit .................. 642, 1513
\lastnamedcs .................. 933, 1805
\linebreak .................. 1241
\lineskip .................. 643, 1514
\lineskipnum .................. 427
\lineskipnumnum .................. 1018, 1681
\lineskipnumnumnum .................. 1020, 1683
\lineskipnumnumnumnum .................. 1022, 1685
\lineskipnumnumnumnumnum .................. 1024, 1687
\lineskipnumnumnumnumnumnum .................. 1025, 1688
\lineskipnumnumnumnumnumnumnum .................. 934, 1806
\lineskipnumnumnumnumnumnumnumnum .................. 935
\LaTeX3 error commands:
\LaTeX3 error: 616
\lcode 167, 182, 195, 197, 199, 201, 203, 429
\leaders 430
\left 431
left commands:
\c_left_brace_str 66, 965, 5570, 13542, 23849, 24234, 24238, 24258, 24271, 24295, 24778, 24858, 25890, 25925, 25949, 29293
\leftghost 936, 1865
\lefthyphenmin 432
\leftmargininkern 791, 1660
\leftskip 433
\legacy commands:
\legacy_if:nTF 259, 31248
\legacy_if:p:n 259, 31248
\leqno 434
\let 2, 40, 272, 273, 435
\letcharcode 937, 1807
\letterspacefont 792, 1661
\limits 436
\LineBreak 74, 75, 76, 77, 79, 80, 81, 106, 113, 114, 123, 125
\linedir 938, 1866
\linedirection 939
\linepenalty 437
\lineskip 438
\lineskipnum 439
\lineskipnumnum 439
\linewidth 27513, 27582
\ln 20769, 20772
\ln 211
\localbrokenpenalty 940, 1867
\localinterlinepenalty 941, 1868
\localleftbox 946, 1870
\localrightbox 947, 1871
\loccount 12792, 13025
\loctoks 22673, 22674, 22700
\looseness 441
\LongText 70, 111, 135

LaTeX3/uni2423error:
24858, 25890, 25925, 25949, 29293
24238, 24258, 24271, 24295, 24778,
\texttt{Index}

\begin{verbatim}
\luatex_pardir:D .................. 1874 \luatexnokerns ......................... 1357
\luatex_preamble:D ................ 1836 \luatexnoligs ....................... 1358
\luatex_pdfextension:D ........... 1836 \luatexoutputbox ................. 1359
\luatex_pdffeedback:D ............ 1837 \luatexpagebottomoffset ........... 1386
\luatex_pdfvariable:D ............. 1838 \luatexpagedir ...................... 1387
\luatex_postexhyphenchar:D ...... 1839 \luatexpageheight .................. 1388
\luatex_posthyphenchar:D .......... 1840 \luatexpagelayoutoffset .......... 1360
\luatex_prinorpenalty:D .......... 1841 \luatexpagerightoffset .......... 1389
\luatex_priority:D ................. 1842 \luatexpagetopoffset .......... 1361
\luatex_prebreakpenalty:D ........ 1843 \luatexpagewidth ................. 1390
\luatex_preholidaypenalty:D ...... 1844 \luatexpdfmark ................... 1391
\luatex_prenumberpenalty:D ...... 1845 \luatexpdfmark ................... 1391
\luatex_presentencepenalty:D ..... 1846 \luatexpdfmark ................ 1391
\luatex_prewarningpenalty:D ...... 1847 \luatexpdfmark ................... 1391
\luatex_presuppressfontnotfoundpenalty:D ................................. 1376 \luatexpreviouspage .............. 1376
\luatex_submit:D .................... 1858 \luatexpreviouspage .............. 1376
\luatex_suppressifcsnameerror:D .... 1859 \luatexpreviouspage .............. 1376
\luatex_suppresslongerror:D ........ 1860 \luatexpreviouspage .............. 1376
\luatex_suppressmathparerror:D .... 1861 \luatexpreviouspage .............. 1376
\luatex_suppressoutertokenerror:D ... 1862 \luatexpreviouspage .............. 1376
\luatex_suppressfontnotfounderror:D ........................................ 1373 \luatexversion ................. 45, 101, 953, 1812
\luatex_textdir:D ................... 1876 \m
\luatexattribute ................ 1340 \mark ................................ 444
\luatexattributeDef ................ 1341 \marks ................................ 445
\luatexbanner ..................... 951, 1810 \mathaccents ..................... 446
\luatexbodydir ................. 1377 \mathbin ......................... 447
\luatexboxdir ..................... 1378 \mathchardef .................. 448, 11237
\luatexcatcodeisable .............. 1342 \mathchr ...................... 448, 11237
\luatexclearmarks ................. 1343 \mathchardef .................. 448, 11237
\luatexcrampeddisplaystyle ...... 1344 \mathchardef .................. 448, 11237
\luatexcrampedscriptscriptstyle .. 1346 \mathchardef .................. 448, 11237
\luatexcrampedscriptstyle ...... 1347 \mathchardef .................. 448, 11237
\luatexcrampedtextstyle ......... 1348 \mathchardef .................. 448, 11237
\luatexfontid ................. 1349 \mathchardef .................. 448, 11237
\luatexformatname ............... 1350 \mathchardef .................. 448, 11237
\luatexformatname ............... 1350 \mathch........................ 449
\luatexleaders ................. 1351 \mathbin ......................... 450
\luatexinitatcatcodeable ...... 1352 \mathclose ...................... 451
\luatexinitdelim ................ 1353 \mathclose ...................... 451
\luatexleftghost ................. 1379 \mathcode .................... 452
\luatexlocalbrokenpenalty ...... 1380 \mathdelim ................... 453
\luatexlocalinterlinepenalty ... 1382 \mathdelimitersmode .......... 954, 1813
\luatexlocalleftbox ............ 1383 \mathdelimitersmode .......... 954, 1813
\luatexlocalrightbox .......... 1384 \mathdelimitersmode .......... 954, 1813
\luatexluaescapestring ........ 1354 \mathdelimitersmode .......... 954, 1813
\luatexlualatex ................. 1355 \mathdelimitersmode .......... 954, 1813
\luatexluafunction ............ 1355 \mathdelimitersmode .......... 954, 1813
\luatexmathdir .................. 1385 \mathdir ....................... 956
\luatexmathstyle ............... 1356 \mathdisplayskipmode .......... 957, 1814
\luatextnokerns .................. 1357 \matheqnogapstep ............... 958, 1816
\end{verbatim}
\index{\texttt{notexpanded}}
\index{\texttt{notexpanded: \langle token \rangle}}
\index{\texttt{nulldelimiterspace}}
\index{\texttt{nullfont}}
\index{\texttt{number}}
\index{\texttt{numexpr}}
\index{\texttt{O}}
\index{\texttt{\textbackslash 0}}
\index{\texttt{\textbackslash o}}
\index{\texttt{\textbackslash odelcode}}
\index{\texttt{\textbackslash odelimiter}}
\index{\texttt{\textbackslash oe}}
\index{\texttt{\textbackslash oe}}
\index{\texttt{\textbackslash omathaccent}}
\index{\texttt{\textbackslash omatchar}}
\index{\texttt{\textbackslash omatchardef}}
\index{\texttt{\textbackslash omathcode}}
\index{\texttt{\textbackslash omit}}
\index{\texttt{\textbackslash one commands:}}
\index{\texttt{\textbackslash c_minus_one}}
\index{\texttt{\textbackslash c_one_degree_fp}}
\index{\texttt{\textbackslash openin}}
\index{\texttt{\textbackslash openout}}
\index{\texttt{\textbackslash or}}
\index{\texttt{\textbackslash or commands:}}
\index{\texttt{\textbackslash or:}}
\index{\texttt{\textbackslash output}}
\index{\texttt{\textbackslash outputbox}}
\index{\texttt{\textbackslash outputmode}}
\index{\texttt{\textbackslash outputpenalty}}
\index{\texttt{\textbackslash over}}
\index{\texttt{\textbackslash overfullrule}}
\index{\texttt{\textbackslash overline}}
\index{\texttt{\textbackslash overwithdelims}}
\pdfpagesattr   729, 724, 1595
\pdfpagewidth  772, 1642 \pdfTeX\_normaldeviate:D \ 1640, 1689
\pdfpkmode     773, 1643 \pdfTeX\_pageheight:D \ 1641, 1691
\pdfpksolution 774, 1644 \pdfTeX\_pagewidth:D \ 1642
\pdfprimitive  775, 1645 \pdfTeX\_pageheight:D \ 1692
\pdfprotrudechars 776, 1646 \pdfTeX\_pdffont:D \ 1546
\pdfpxdimen     777, 1647 \pdfTeX\_pdfcatalog:D \ 1547
\pdfrandomseed  778, 1648 \pdfTeX\_pdfcolorstack:D \ 1549
\pdfrefobj      725, 1596 \pdfTeX\_pdfcolorstackinit:D \ 1550
\pdfrefform     726, 1597 \pdfTeX\_pdfcompresslevel:D \ 1548
\pdfrefformimage 727, 1598 \pdfTeX\_pdfcreationdate:D \ 1551
\pdfresettimer  779 \pdfTeX\_pdfdecimaldigits:D \ 1552
\pdfrestore     728, 1599 \pdfTeX\_pdfdest:D \ 1553
\pdfretval      729, 1600 \pdfTeX\_pdfdestmargin:D \ 1554
\pdfsave       730, 1601 \pdfTeX\_pdfendlink:D \ 1555
\pdfsavepos     780, 1649 \pdfTeX\_pdfendthread:D \ 1556
\pdfsetmatrix   782, 1651 \pdfTeX\_pdffontname:D \ 1558
\pdfsetrandomseed 783, 1652 \pdfTeX\_pdffontbjnum:D \ 1557
\pdfstartlink   732, 1603 \pdfTeX\_pdfgamma:D \ 1560
\pdfstartthread 733, 1604 \pdfTeX\_pdfgentounicode:D \ 1563
\pdfstrcmp      40, 409, 781, 1650 \pdfTeX\_pdfgltopgamma:D \ 1564
\pdfsuppresstexinfo 734, 1605 \pdfTeX\_pdfhorig:D \ 1565
pdfTeX\ commands:
\pdfTeX\_adjustspacing:D \ 1621, 1672
\pdfTeX\_copyfont:D \ 1622, 1673
\pdfTeX\_draftmode:D \ 1623, 1674
\pdfTeX\_eachlinedepth:D \ 1624
\pdfTeX\_eachlineheight:D \ 1625
\pdfTeX\_efcode:D \ 1658
\pdfTeX\_filemoddate:D \ 1626
\pdfTeX\_filesize:D \ 1627
\pdfTeX\_firstlineheight:D \ 1628
\pdfTeX\_fontexpand:D \ 1629, 1675
\pdfTeX\_fontsize:D \ 1652
\pdfTeX\_if\_engine:TF \ 32046, 32048, 32050
\pdfTeX\_if\_engine:p: \ 32044
\pdfTeX\_ifabsdim:D \ 1618, 1676
\pdfTeX\_ifabsnum:D \ 1619, 1677
\pdfTeX\_ifcase:D \ 1659
\pdfTeX\_ifprimitive:D \ 1620, 1669
\pdfTeX\_ignoreddimen:D \ 1631
\pdfTeX\_ignoredligaturesinfont:D \ 1679
\pdfTeX\_insertht:D \ 1632, 1680
\pdfTeX\_lastlinedepth:D \ 1633
\pdfTeX\_lastxpos:D \ 1634, 1687
\pdfTeX\_lastypos:D \ 1635, 1688
\pdfTeX\_lastxpos:D \ 1630
\pdfTeX\_lastypos:D \ 1635, 1688
\pdfTeX\_lefthemargin:D \ 1660
\pdfTeX\_lettersep:D \ 1618, 1690
\pdfTeX\_mapfile:D \ 1636
\pdfTeX\_mapline:D \ 1637
\pdfTeX\_mdfivesum:D \ 1638, 1668
\pdfTeX\_mdfivesum:D \ 1595
\prop_const_from_keyval:Nn ...... 144, 11532, 27384, 27391
\prop_count:N ...... 145, 11661, 31479
\prop_gclear:N ...... 145, 11507, 11517
\prop_gclear_new:N ...... 145, 1062, 11513, 27458, 27459
\prop_get:N ...... 113, 32052, 32054
\prop_get:Nn ...... 70, 71, 144,
11518, 28447, 28451, 28530, 28534
\prop_get:NnTF ...... 144, 146, 5826,
11760, 12258, 12278, 12333, 27045
\prop_gpop:N ...... 145, 11626
\prop_gpop:Nn ...... 145, 11671
\prop_gput:N ...... 187, 15448
\prop_gput:Nn ...... 144, 5602, 5603, 5604, 5605,
5606, 5607, 5608, 5609, 5610, 5611,
5612, 5613, 5614, 5615, 5616, 11693,
12045, 12047, 12796, 12850, 13029,
13063, 27671, 27689, 27724, 27755
\prop_gput_if_new:Nn ...... 114, 11714
\prop_gremove:N ...... 1145, 11602, 12861, 13073
\prop_gset_eq:Nn ...... 143, 11511, 11519,
11544, 27460, 27462, 27623, 27625,
27662, 27664, 27911, 28079, 28120
\prop_gset_from_keyval:N ...... 143, 11532
\prop_if_empty:N ...... 144, 11735, 31476
\prop_if_empty:p:N ...... 145, 11735
\prop_if_exist:NTF ...... 145, 11514, 11517, 11731, 15242
\prop_if_exist:p:N ...... 145, 11731
\prop_if_in:NnTF ...... 145, 11742, 12050, 12061
\prop_if_in:p:N ...... 146, 11742
\prop_item:N ...... 145, 11648, 12051, 12062, 32053, 32055
\prop_log:N ...... 148, 11826
\prop_map_break: ...... 147, 593, 11784, 11800, 11813, 11822
\prop_map_break:n ...... 148, 11822
\prop_map_function:N ...... 147, 147, 264, 593, 593, 11666,
11777, 11836, 12875, 13087, 28005
\prop_map_inline:N ...... 147, 11793, 26290,
27921, 27923, 27926, 27946, 27948,
28202, 28039, 28100, 28102, 28106,
28108, 28288, 28307, 28499, 28508
\prop_map_tokens:N ...... 147, 147, 492, 11808
\prop_new:N ...... 143, 143, 5601, 11501, 11514,
11517, 11527, 11528, 11529, 11530,
11531, 12044, 12046, 12073, 12230,
12783, 13016, 15242, 25459, 25460,
27899, 27900, 27901, 28371, 28412
\prop_pop:N ...... 144, 11626
\prop_pop:Nn ...... 144, 146, 11671
\prop_put:N ...... 187, 15448
\prop_put:Nn ...... 144, 365, 583, 584, 11584, 11693, 12036,
12322, 12339, 25696, 27668, 27686,
27705, 27722, 27753, 27957, 27959,
27965, 27967, 27976, 27982, 27990,
28049, 28057, 28147, 28153, 28161,
28168, 28312, 28372, 28374, 28376,
28378, 28380, 28382, 28384, 28386,
28388, 28390, 28392, 28394, 28396,
28398, 28400, 28402, 28404, 28406
\prop_put_if_new:Nn ...... 144, 11714
\prop_rand_key_value:N ...... 265, 31474
\prop_remove:N ...... 145, 11602,
12303, 12318, 28494, 28497, 28501
\prop_set_eq:N ...... 143, 11508, 11519,
11536, 27507, 27611, 27613, 27655,
27657, 27908, 27917, 29019, 29072,
28096, 28098, 28117, 28245, 28489
\prop_set_from_keyval:N ...... 143, 585, 11532
\prop_show:N ...... 148, 11826
\g_tmpa_prop ...... 148, 11532
\l_tmpa_prop ...... 148, 11532
\l_tmpb_prop ...... 148, 11532
\l_tmpc_prop ...... 148, 11532

prop internal commands:
\prop_count:n ...... 11661
\prop_from_keyval:n ...... 11532
\prop_from_keyval_key:n ...... 11532
\prop_from_keyval_key:w ...... 585, 11532
\prop_from_keyval_loop:w ...... 11532
\prop_from_keyval_split:N ...... 11532
\prop_from_keyval_value:n ...... 11532
\prop_from_keyval_value:w ...... 585, 11532
\prop_if_in:n ...... 591, 11742
\prop_if_in:n:n ...... 591, 11742
\l_prop_internal_prop ...... 11531,
11534, 11536, 11537, 11542, 11544,
11545, 11550, 11552, 11553, 11584
\l_prop_internal_tl ...... 590, 11496, 11499,
11697, 11703, 11704, 11720, 11727
\prop_item:N ...... 11528
\prop_map_function:n ...... 588
\prop_map_item:N ...... 11648
\prop_map_tokens:n ...... 11777
\prop_map_tokens:n ...... 11808
\__prop_pair:wn ........................ 583, 583, 583, 587, 591, 592, 593, 593, 11496, 11497, 11596, 11599, 11651, 11654, 11699, 11722, 11745, 11749, 11783, 11786, 11796, 11798, 11803, 11812, 11815, 31484
\__prop_put:NNnn .................. 11693
\__prop_put_if_new:NNnn ......... 11714
\__prop_rand_item:w 31474, 31474
\__prop_show:NN 11826, 11828, 11830
\__prop_split:NnT final ............... 584, 590, 590, 591, 11591, 11604, 11610, 11620, 11628, 11637, 11673, 11683, 11702, 11725, 11768
\__prop_split_aux:NnTF ............. 11591
\__prop_split_aux:w ............. 587, 11591
\protect_name ............. 11112, 13205, 17208, 29458, 29479, 29481, 30808
\protected_name ............. 207, 209, 211, 236, 654, 1525, 11240, 11242
\protrudechars ............... 1030, 1093
\ProvidesExplClass ............... 7
\ProvidesExplFile ................ 32135, 32152
\ProvidesExplFileAux ............ 32138, 32140
\ProvidesExplPackage ............ 7
\ProvidesFile .................. 32143, 32144
pt ................................ 216
ptex commands:
\ptex_autospecial:D .............. 2044
\ptex_autoxspacing:D ............ 2045
\ptex_dtou:D .................... 2046
\ptex_epTexVersion:D ............ 2048
\ptex_ext:D ................... 2049
\ptex_ifbbox:D .................. 2050
\ptex_ifdir:D ................... 2051
\ptex_ifbbox:D .................. 2053
\ptex_ifbbox:D .................. 2054
\ptex_ifbbox:D .................. 2055
\ptex_ifbbox:D .................. 2056
\ptex_inhibitglue:D .............. 2057
\ptex_inhibitxspace:D .......... 2058
\ptex_inputencoding:D ........... 2047
\ptex_jcharwidthpenalty:D ........ 2059
\ptex_jfam:D ................... 2060
\ptex_jfont:D ................... 2061
\ptex_jis:D ................... 2062
\ptex_kanji:j:D ................ 2063
\ptex_kanji:j:D ................. 2064
\ptex_kanji:j:D ................ 2065
\ptex_kanji:j:D ................ 2066
\ptex_kanji:j:D ................ 2067
\ptex_noautospecial:D ........... 2068
\ptex_noautoxspacing:D .......... 2069
\ptex_postbreakpenalty:D ........ 2070
\ptex_prebreakpenalty:D .......... 2071
\ptex_ptexminorversion:D ......... 2072
\ptex_pTeXrevision:D ............. 2073
\ptex_pTeXversion:D .............. 2074
\ptex_shownode:D ................ 2075
\ptex Shojo:D ................... 2076
\ptex_tate:D ................... 2077
\ptex_text:D ................... 2078
\ptex_tfont:D ................... 2079
\ptex_xkankaniskip:D ............ 2080
\ptex_xspace:D .................. 2081
\ptex_yoko:D ................... 2083
\ptexminorversion ............... 1248, 2072
\ptexrevision ................... 1249, 2073
\ptexversion ..................... 1250, 2074
\pxdimen ............... 1031, 1694

Q

quark commands:
\q_nil ................................ 21, 21
\q_mark ................................ 53, 71, 71, 71, 323, 383, 385, 386, 394, 453, 474, 476, 585, 2218, 2221, 3857, 4193, 4269, 4270, 4280, 4281, 4546, 4550, 4558, 4571, 4574, 4664,
Index

8680, 8684, 8697, 8752, 8759, 9163, 9169, 9186, 10130, 10133, 10145, 10148, 10156, 10159, 10167, 10181, 10243, 10271, 10274, 10275, 10287, 10295, 10451, 10462, 10463, 10464, 10490, 10524, 10915, 10920, 10961, 10963, 11156, 11159, 11189, 11223, 11260, 11264, 11270, 11293, 11453, 11466, 11475, 11565, 11572, 11575, 11579, 11596, 11599, 12200, 12204, 12206, 12265, 13234, 13275, 13333, 13371, 13384, 13441, 13444, 13459, 13464, 13574, 13575, 13588, 13589, 13686, 13687, 13692, 13694, 13696, 14131, 14135, 14149, 14164, 14166, 14224, 14227, 14234, 14236, 14412, 14436, 14465, 14472, 14712, 14714, 15036, 15038, 15058, 15063, 15072, 15080, 15091, 15246, 15560, 15659, 15669, 15808, 15858, 15880, 15882, 15890, 15896, 15898, 16303, 16379, 16390, 16397, 16403, 16407, 16421, 16440, 17248, 17252, 17759, 17764, 18364, 18386, 18557, 18558, 18583, 18584, 18750, 18751, 18752, 18919, 18920, 22922, 22931, 22935, 22937, 22974, 22975, 22976, 22981, 22983, 22987, 22989, 22997, 28466, 28468, 28649, 28650, 28652, 28654, 28656, 28914, 28918, 28929, 28948, 28953, 28964, 28968, 28980, 28981, 28987, 28989, 28990, 28992, 28995, 29011, 29019, 29111, 29113, 29472, 29473, 31406, 31457, 31471, 31480, 31493, 31494, 31496, 31500, 31504, 31506, 31511, 31851, 31853, 31873, 31882
\_\_fp\_stop ........ 74, 74, 452, 456, 929, 6659, 6661, 6665, 6677, 6817, 6819, 6823, 6835, 6844, 6851, 6872, 7846, 7847, 13580, 13586, 20540, 20555, 21875, 21879, 22935, 22937

\_\_fp
\_\_fp\_underflow ........................................... 16260
\_\_fp\_type ............................................. 743
\_\_fp\_division ........................................... 16260
\_\_fp\_exact ............................................. 16260, 16265, 16266, 16267, 16268, 16269, 18845
\_\_fp\_invalid ............................................ 16260
\_\_fp\_mark .................................................. 749, 753, 774, 778, 16258, 17927, 17940, 18022, 18066
\_\_fp\_overflow ........................................... 16260, 16286
\_\_fp\_stop ................................................ 721, 16258, 16453, 17829, 17928, 17932, 17941, 18927, 18938, 18948, 18956
\_\_fp\_tuple ................................................ 718, 16363, 16369, 16370, 16447, 16449, 18144, 18356, 18371, 18396, 18398, 18415, 18416, 18418, 18628, 18629, 19769, 19770, 19776, 19777, 21851
\_\_fp\_underflow ........................................... 16260, 16284
\_\_keyval\_mark ............................................ 675, 675, 675, 14817, 14826, 14831, 14833, 14838, 14840, 14843, 14849, 14853, 14857, 14861, 14865, 14866, 14872, 14880, 14882, 14885, 14887, 14889, 14893, 14897, 14980, 14908, 14909, 14912, 14913, 14914, 14915, 14916, 14917, 14923, 14939, 14940, 14946, 14950, 14952, 14954, 14965
\_\_keyval\_nil .............................................. 14817, 14852.
__regex_char_if_alphanumeric:NTF	23911, 2136, 25983
__regex_char_if_special:N	23911
__regex_char_if_special:NTF	23911, 2136
g_regex_charcode_intarray	949, 952, 23551, 25598, 25614
__regex_chk_c_allowed:TF	24055, 24687
__regex_class:NnnnN	963, 971, 972, 978, 23549, 24170, 24473, 24474, 24480, 24833, 24912, 24922, 24960, 25183
__regex_class_mode_int	23953, 24060, 24075
__regex_class_repeat:n	998, 25193, 25199, 25213, 25224
__regex_class_repeat:nN	25194, 25208
__regex_class_repeat:nnN	25195, 25222
__regex_command_K:	963, 24938, 24961, 25434
__regex_compile:n	24125, 25112, 26074, 26079, 26084, 26089
__regex_compile:w	970, 24079, 24121, 24117, 24780
__regex_compile:$	24399
__regex_compile(:	24602
__regex compiling	24611
__regex compiling	24370
__regex compiling/A:	24399
__regex compiling/B:	24423
__regex compiling/c:	24423
__regex compiling/D:	24382
__regex compiling/d:	24382
__regex compiling/G:	24399
__regex compiling/H:	24382
__regex compiling/h:	24382
__regex compiling/K:	24935
__regex compiling/N:	24382
__regex compiling/S:	24382
__regex compiling/s:	24382
__regex compiling/u:	24853
__regex compiling/V:	24853
__regex compiling/v:	24853
__regex compiling/w:	24382
__regex compiling/\:	24382
__regex compiling/Z:	24399
__regex compiling/z:	24399
__regex compiling/:	24411
__regex compiling_/	24399
Index

\l_regex_internal_c_int ........... 23537, 25323, 25328, 25329, 25333
\l_regex_internal_regex .......... 969, 23976, 24123, 24802, 24808, 25113, 26075, 26080, 26085, 26090
\l_regex_internal_seq .... 23537, 25083, 25084, 25089, 25096, 25097, 25098, 25100, 26236, 26254, 26257
\l_regex_internal_tl ........... 23537, 23772, 23776, 24899, 24906
\l_regex_item_caseful_equal:n .. 963, 23568, 23693, 23694, 23698, 23699, 23700, 23701, 23702, 23711, 23716, 23734, 23752, 24087, 24674, 24835, 24913, 24970
\l_regex_item_caseful_range:nn .. 964, 23568, 23690, 23705, 23708, 23709, 23710, 23724, 23731, 23738, 23740, 23742, 23745, 23746, 23747, 23748, 23753, 23756, 23761, 23762, 24088, 24676, 24972
\l_regex_item_caseless_equal:n .. 963, 23582, 24655, 24977
\l_regex_item_caseless_range:nn .. 964, 23568, 23690, 24993
\l_regex_item_catcode: ......... 23629
\l_regex_item_catcode:TF ....... 964, 979, 23629, 24176, 24848, 24984
\l_regex_item_catcode_reverse:nTF ...... 964, 23629, 24845, 24986
\l_regex_item_cs:n .............. 952, 964, 23669, 24808, 24993
\l_regex_item_equal:n .......... 23627, 24087, 24315, 24321, 24351, 24364, 24365, 24654, 24673
\l_regex_item_exact:nn .......... 964, 989, 23640, 24928, 24990
\l_regex_item_exact_cs:n ........ 964, 986, 23649, 24810, 24925, 24992
\l_regex_item_range:nn .......... 23627, 24088, 24533, 24656, 24675
\l_regex_item_reverse:n .......... 964, 989, 23663, 23648, 23715, 24389, 24555, 24988, 25431
\l_regex_last_char_int ......... 25428, 25454, 25571
\l_regex_left_state_seq ........ .... 25105, 25146, 25153, 25287
\l_regex_match:n ............... .... 25473, 26160, 26170, 26180, 26189, 26214, 26316, 26346
\l_regex_match_count_int ....... 1027, 1029, 26137, 26167, 26168, 26173
\l_regex_match_cs:n ........... 23680, 25473
\l_regex_match_init: ............ 25473
\l_regex_match_loop: ............ 1009, 1012, 25544, 25567
\l_regex_match_once: .......... 1009, 1010, 25484, 25506, 25525, 25563
\l_regex_match_one_active:n .... 25567
\l_regex_match_success_bool .. 1007, 25470, 25537, 25553, 25560, 25703
\l_regex_max_active_int .. 995, 996, 25130, 25462, 25539, 25576, 25579, 25584, 25681, 25682, 25686
\l_regex_max_pos_int .... 1015, 24414, 24415, 24422, 25077, 25139, 25449, 25481, 25492, 25503, 25585, 26215, 26220, 26226, 26335, 26364
\l_regex_max_state_int ........ 994, 995, 1011, 25020, 25119, 25131, 25164, 25166, 25167, 25226, 25238, 25299, 25319, 25321, 25329, 25373, 25379, 25387, 25397, 25476, 25491, 25512, 25517, 25521, 26694
\l_regex_min_active_int ......... 995, 25462, 25517, 25539, 25576, 25578, 25584
\l_regex_min_pos_int ........... 1015, 24412, 24421, 25075, 25449, 25478, 25496, 25519
\l_regex_min_state_int .......... 995, 996, 25102, 25119, 25130, 25131, 25491, 25512, 25540, 26693
\l_regex_min_submatch_int .... ... 1028, 1030, 1033, 25520, 25522, 26140, 26238, 26351, 26359
\l_regex_mode_init ............. 23953, 24017, 24025, 24028, 24037, 24040, 24049, 24057, 24060, 24070, 24071, 24073, 24075, 24129, 24143, 24145, 24445, 24449, 24500, 24511, 24478, 24489, 24600, 24696, 24697, 24725, 24726, 24782, 24783, 24891, 24937
\l_regex_mode_quit_c: .......... 24068, 24166, 24579
\l_regex_msg_repeated:nnn ...... 25032, 25053, 25063, 26663
\_sys\_finalise:n ............
    9913, 9922, 9937, 9950
\_g\_sys\_finalise_tl ....... 9913
\_sys\_get:nN ............ 9751
\_sys\_get_do:Nw ......... 9751
\_sys\_internal_tl ....... 9749
\_sys\_load\_backend\_check:N 9678
\c\_sys\_marker_tl ...... 9750, 9774, 9786
\c\_sys\_shell\_stream\_int ...
    9791, 9803, 9816
    9832, 9853, 9855, 9856, 9857, 9858
syst commands:
\c\_syst\_last\_allocated\_toks . 22701

T
\t .................. 29179, 31023
\tabskip ................ 554
\tagcode ............... 798, 1667
tan ................... 219
tand .................. 219
tate .................. 1258, 2077
\tbaselineshift ....... 1259, 2078
\temp . 164, 170, 175, 178, 179, 186, 191, 194

\TeX\ and \LaTeX\ 2e commands:
\@ ................... 5571
\@end ................ 297, 1289, 1290
\@begin ................ 1293
\@input ................ 1294
\@italiccorr .......... 1295
\@shipout .......... 1297, 1298
\@tracingfonts ...... 298, 1333
\@underline ........... 1296
\@addtofilelist ....... 14086
\@changed@cmd ........ 29489
\@classoptionslist ... 9952, 9954, 9956
\@current@cmd ........ 29486
\@currnamestack ....
    638, 13472, 13474, 13475
\@filelist ..... 167, 639, 653, 655,
    655, 14085, 14174, 14188, 14193
\@firstofone ........ 19
\@firstoftwo .......... 19, 323
\@gobble ........... 20
\@gobbletwo ........ 20
\@secondoftwo ....... 19, 323
\@tempa .......... 144, 146, 1305, 1319, 1322
\@for ................ 298, 1305
\@ucclist .... 1137, 30657
\@unexpandable@protect ... 753
\@unusedoptionlist ...... 9971
\@begin@document ... 298
\@botmark ........... 576
\@box ............... 242
\char ................ 136, 136, 499, 521, 1103
\chardef ....... 631, 12235, 13192
\color ............. 1087
\conditionally@traceoff...
    631, 12235, 13192
\conditionally@traceon .. 12253
\copy ................ 235
\count ............ 141, 435, 920
\cr ................ 531
\c\_\texttt{\_rop@shipout} . 1306
\csname ....... 17
\c\texttt{\_cs\_string} .. 332
\currentgrouplevel ...... 343, 1154
\currentgrouptype ...... 343, 1154
\def ............... 141
\detokenize ........ 46
\dimen ............. 574
\dimendef .......... 574
\direction ........ 252
\dp ............ 236, 754, 755
\dup@shipout ........ 1307
\e@alloc@top ....... 920, 22687
\edef ........... 1, 4, 375
\end ................ 602
\endsname ........ 17
\endinput .......... 153
\endlinechar ....... 41, 41, 158, 379, 380, 576
\endtemplate ....... 113, 531
\error ................ 597, 598
\errmessage ........ 597, 598, 598, 599
\errorcontextlines 315, 405, 598, 1045
\escapechar .......... 46, 331, 343, 630
\ever@eof .......... 380
\everyjob .......... 536, 537
\everypar .......... 24, 345, 363
\expandafter ...... 33, 35
\expanded .......... 4, 20, 28,
    30, 347, 350, 356, 358, 363, 370, 379
\fi ............... 140
\firstmark .......... 364, 576
\font .............. 140
\fontdimen ........ 233, 707, 708, 709, 709
\GPTorg@shipout .... 1291
\halign ........... 113, 346, 531, 564
\hskip ........... 179
\ht ............... 236, 754, 755
\hyphen ........... 576
\hyphenchar ...... 706
Index

1291

\text_{currentiflevel}:D .......... 616
\text_{currentiftype}:D .......... 617
\text_{currentspacingmode}:D .... 1212
\text_{currentxspacingmode}:D .... 1213
\text_{day}:D .................. 322, 1410, 1414
\text_{deadcycles}:D ............ 323
\text_{def}:D ................... 324, 801, 802,
803, 1466, 1467, 1468, 2135, 2137,
2139, 2140, 2161, 2163, 2164, 2165,
2167, 2168, 2169, 2171, 2172, 2173
\text_{defaultypenchar}:D ....... 325
\text_{defaultskewchar}:D ....... 325
\text_{defaulthyphenchar}:D ...... 322, 1410, 1414
\text_{dp}:D ................... 341, 26743
\text_{divide}:D .................. 330
\text_{doublehyphenpenalties}:D .. 620
\text_{doublewidthoverpenalties}:D .. 337
\text_{doublehyphenemerges}:D ... 340
\text_{dp}:D ................... 341, 26743
\text_{draftmode}:D .............. 751, 1012
\text_{dtou}:D ................... 1215
\text_{dump}:D ................... 342
\text_{dviextension}:D .......... 342
\text_{dvixtension}:D ............. 909
\text_{dvifeedback}:D ............ 910
\text_{dvivariable}:D .......... 911
\text_{eachlinedepth}:D .......... 752
\text_{eachlineheight}:D ......... 753
\text_{edef}:D ................... 343,
1301, 1302, 1318, 1404, 1405, 1410,
1411, 1416, 1417, 1422, 1423, 2162,
2166, 2170, 2174, 13284, 13342, 31956
\text_{efcode}:D ................ 789
\text_{elapsedtime}:D ............ 754, 876
\text_{else}:D ................... 344, 1304, 1330, 1407, 1413,
1419, 1425, 2103, 2154, 2157, 2199
\text_{emergencystretch}:D ....... 345
\text_{enablejtoken}:D .......... 1270, 9665
\text_{end}:D ................... 346, 1290, 1438, 2559
\text_{endccname}:D ............. 347, 2117
\text_{endgroup}:D .............. 348, 1287, 1326, 1428, 2096, 2130
\text_{endinput}:D ............... 349, 12128, 14067
\text_{endl}:D .................. 621
\text_{endlinechar}:D .......... 251, 252, 266, 350, 4085, 4086,
4087, 4121, 5892, 12916, 12918, 12919
\text_{endR}:D ................ 622
\text_{epTextinputencoding}:D ... 1216
\text_{epTextversion}:D .......... 1217, 31602, 31625
\text_{eqn}:D ................... 351
\text_{errhelp}:D ................. 352, 11980, 32259
\text_{errmessage}:D ............ 353, 2551, 12000, 32290
\text_{errorcontextlines}:D ...... 354, 4942,
11995, 12015, 12215, 26839, 32285
\text_{errorstopmode}:D .......... 355
\text_{escapechar}:D ............ 356, 2862, 6144,
6193, 6246, 12938, 13146, 13193,
13199, 23122, 23184, 23185, 23501
\text_{eTeXgluestretchorder}:D ... 912
\text_{eTeXglueshrinkorder}:D ... 913
\text_{eTeXversion}:D .......... 914
\text_{etoksapp}:D ............... 915
\text_{etokspre}:D .............. 916
\text_{euc}:D ................... 1218
\text_{everycr}:D ................ 357
\text_{everydisplay}:D .......... 358, 1291
\text_{everyeof}:D ............... 362, 4094, 4146, 9774, 13617
\text_{everyjob}:D .............. 359
\text_{everyjob}:D .......... 360, 1439, 13481, 13483
\text_{everymath}:D ............ 361, 1292
\text_{everypar}:D .............. 362
\text_{everyvbox}:D ............ 363
\text_{exceptionpenalty}:D ...... 916
\text_{exhyphenpenalty}:D ...... 364
\text_{expandafter}:D .......... 365, 806, 1305,
1319, 1321, 1322, 1471, 2118, 28884
\text_{expanded}:D ............. 369, 370, 918, 1448, 2198, 2199,
2933, 2936, 3003, 3006, 3039, 3045,
3129, 3132, 3153, 3156, 3221, 3224,
3252, 3723, 3763, 3771, 10751, 12667
\text_{explicitdiscretionary}:D .. 919
\text_{explicitlypenalty}:D ...... 917
\text_{fam}:D ................... 366
\text_{fi}:D .................... 367,
807, 1299, 1323, 1325, 1334, 1335,
1336, 1394, 1396, 1397, 1401, 1409,
<table>
<thead>
<tr>
<th>Command</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tex_linedir:D</td>
<td>938</td>
</tr>
<tr>
<td>\tex_linedirection:D</td>
<td>939</td>
</tr>
<tr>
<td>\tex_linepenalty:D</td>
<td>437</td>
</tr>
<tr>
<td>\tex_lineskip:D</td>
<td>438</td>
</tr>
<tr>
<td>\tex_lineskiplimit:D</td>
<td>439</td>
</tr>
<tr>
<td>\tex_localbrokenpenalty:D</td>
<td>940, 1380</td>
</tr>
<tr>
<td>\tex_localinterlinepenalty:D</td>
<td>941, 1381</td>
</tr>
<tr>
<td>\tex_localleftbox:D</td>
<td>942, 1383</td>
</tr>
<tr>
<td>\tex_locallightbox:D</td>
<td>943, 1384</td>
</tr>
<tr>
<td>\tex_long:D</td>
<td>440, 801, 802, 803, 1466, 1467, 1468, 2135, 2137, 2140, 2163, 2164, 2165, 2166, 2167, 2169, 2171, 2172, 2173, 2174, 2178, 2180, 2186, 2188</td>
</tr>
<tr>
<td>\tex_looseness:D</td>
<td>441</td>
</tr>
<tr>
<td>\tex_lower:D</td>
<td>442, 26786</td>
</tr>
<tr>
<td>\tex_lowercase:D</td>
<td>443, 1164, 3997, 5265, 5288, 10677, 10797, 11987, 23104, 23114, 23183, 26000, 26052, 31790, 32077, 32271</td>
</tr>
<tr>
<td>\tex_ipc:code:D</td>
<td>793</td>
</tr>
<tr>
<td>\tex LUAbytecode:D</td>
<td>942</td>
</tr>
<tr>
<td>\tex_luabytecodecall:D</td>
<td>943</td>
</tr>
<tr>
<td>\tex_luacopyinputnodes:D</td>
<td>944</td>
</tr>
<tr>
<td>\tex_luaescapestring:D</td>
<td>945</td>
</tr>
<tr>
<td>\tex_luafunction:D</td>
<td>948, 1354, 5073, 16618, 16619, 28664</td>
</tr>
<tr>
<td>\tex_luafunction:D</td>
<td>949, 1355</td>
</tr>
<tr>
<td>\tex_luafunc:call:D</td>
<td>950</td>
</tr>
<tr>
<td>\tex_luatexbannert::</td>
<td>951</td>
</tr>
<tr>
<td>\tex_luatexrevision:D</td>
<td>952, 31609</td>
</tr>
<tr>
<td>\tex_luatexversion:D</td>
<td>953, 1397, 1430, 2152, 5071, 8593, 9272, 9661, 11045, 13000, 31607</td>
</tr>
<tr>
<td>\tex_mag:D</td>
<td>444</td>
</tr>
<tr>
<td>\tex_mapfile:D</td>
<td>766, 1399</td>
</tr>
<tr>
<td>\tex_mapline:D</td>
<td>767, 1400</td>
</tr>
<tr>
<td>\tex_mark:D</td>
<td>445</td>
</tr>
<tr>
<td>\tex_marks:D</td>
<td>644</td>
</tr>
<tr>
<td>\tex_mathaccent:D</td>
<td>446</td>
</tr>
<tr>
<td>\tex_mathbin:D</td>
<td>447</td>
</tr>
<tr>
<td>\tex_mathchar:D</td>
<td>448</td>
</tr>
<tr>
<td>\tex_mathchardef:D</td>
<td>321, 449, 2158, 8601, 8602, 29209, 29211, 29213</td>
</tr>
<tr>
<td>\tex_mathchoice:D</td>
<td>450</td>
</tr>
<tr>
<td>\tex_mathclose:D</td>
<td>451</td>
</tr>
<tr>
<td>\tex_mathcode:D</td>
<td>452, 10640, 10642</td>
</tr>
<tr>
<td>\tex_mathdelimitersmode:D</td>
<td>954</td>
</tr>
<tr>
<td>\tex_mathdir:D</td>
<td>955, 1385</td>
</tr>
<tr>
<td>\tex_mathdirection:D</td>
<td>956</td>
</tr>
<tr>
<td>\tex_mathdisplayskipmode:D</td>
<td>957</td>
</tr>
<tr>
<td>\tex_mathLoremipsum:D</td>
<td>958</td>
</tr>
<tr>
<td>\tex_mathinner:D</td>
<td>453</td>
</tr>
<tr>
<td>\tex_mathlimits:D</td>
<td>959</td>
</tr>
<tr>
<td>\tex_mathopen:D</td>
<td>454, 1442</td>
</tr>
<tr>
<td>\tex_mathopen:D</td>
<td>455</td>
</tr>
<tr>
<td>\tex_mathp:D</td>
<td>456</td>
</tr>
<tr>
<td>\tex_mathpenaltiesmode:D</td>
<td>960</td>
</tr>
<tr>
<td>\tex_mathp:D</td>
<td>457</td>
</tr>
<tr>
<td>\tex_mathrel:D</td>
<td>961</td>
</tr>
<tr>
<td>\tex_mathrel:D</td>
<td>458</td>
</tr>
<tr>
<td>\tex_mathrulesfam:D</td>
<td>962</td>
</tr>
<tr>
<td>\tex_mathscriptboxmode:D</td>
<td>963</td>
</tr>
<tr>
<td>\tex_mathscriptboxmode:D</td>
<td>964</td>
</tr>
<tr>
<td>\tex_mathscriptcharmode:D</td>
<td>965</td>
</tr>
<tr>
<td>\tex_mathscriptcharmode:D</td>
<td>966, 1356</td>
</tr>
<tr>
<td>\tex_mathstyle:D</td>
<td>459</td>
</tr>
<tr>
<td>\tex_mathstyle:D</td>
<td>967</td>
</tr>
<tr>
<td>\tex_mathsurround:D</td>
<td>968</td>
</tr>
<tr>
<td>\tex_mathsurround:D</td>
<td>460</td>
</tr>
<tr>
<td>\tex_maxdeadcycles:D</td>
<td>461</td>
</tr>
<tr>
<td>\tex_maxdepth:D</td>
<td>969</td>
</tr>
<tr>
<td>\tex_maxdepth:D</td>
<td>462, 1302, 1319, 1404, 1410, 1416, 1422, 2123, 2124</td>
</tr>
<tr>
<td>\tex_maxdepth:D</td>
<td>463</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>464</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>645, 1460</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>465</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>466, 1416, 1420, 1443</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>467, 26780</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>468, 26782</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>469</td>
</tr>
<tr>
<td>\tex_message:D</td>
<td>646, 14775, 14777, 14785, 14787, 14791, 14793, 14797</td>
</tr>
<tr>
<td>\tex_moveskip:D</td>
<td>470</td>
</tr>
<tr>
<td>\tex_moveskip:D</td>
<td>471</td>
</tr>
<tr>
<td>\tex_moveskip:D</td>
<td>472</td>
</tr>
<tr>
<td>\tex_movexleft:D</td>
<td>473, 2550, 4087, 4113, 4117, 4940, 11993, 12213, 13112, 32283</td>
</tr>
<tr>
<td>\tex_nounderline:D</td>
<td>474</td>
</tr>
<tr>
<td>\tex_nounderline:D</td>
<td>970, 1337</td>
</tr>
<tr>
<td>\tex_noalign:D</td>
<td>971</td>
</tr>
<tr>
<td>\tex_noalign:D</td>
<td>1324, 1383</td>
</tr>
<tr>
<td>\tex_noautospacing:D</td>
<td>475</td>
</tr>
<tr>
<td>\tex_noautospacing:D</td>
<td>476</td>
</tr>
<tr>
<td>\tex_noautospacing:D</td>
<td>477</td>
</tr>
<tr>
<td>\tex_noautospacing:D</td>
<td>478</td>
</tr>
<tr>
<td>\tex_noexpand:D</td>
<td>1325, 1384</td>
</tr>
<tr>
<td>\tex_noexpand:D</td>
<td>479</td>
</tr>
<tr>
<td>\tex_noexpand:D</td>
<td>480</td>
</tr>
<tr>
<td>\tex_noexpand:D</td>
<td>770, 1026</td>
</tr>
<tr>
<td>\tex_noexpand:D</td>
<td>972</td>
</tr>
<tr>
<td>\tex_noexpand:D</td>
<td>973</td>
</tr>
</tbody>
</table>
Index

\text{\textunderscore mathaxis}:D \quad \ldots \quad 1050 \quad \text{\textunderscore mathopenopenspacing}:D \quad \ldots \quad 1113
\text{\textunderscore mathbinbinspacing}:D \quad \ldots \quad 1051 \quad \text{\textunderscore mathopenpunctspacing}:D \quad \ldots \quad 1114
\text{\textunderscore mathbin closespacing}:D \quad \ldots \quad 1052 \quad \text{\textunderscore mathopenordspacing}:D \quad \ldots \quad 1115
\text{\textunderscore mathbinnerspacing}:D \quad \ldots \quad 1053 \quad \text{\textunderscore mathopenrelspacing}:D \quad \ldots \quad 1116
\text{\textunderscore mathbinopspacing}:D \quad \ldots \quad 1054 \quad \text{\textunderscore mathopenrelpunctspacing}:D \quad \ldots \quad 1117
\text{\textunderscore mathбинспacing}:D \quad \ldots \quad 1055 \quad \text{\textunderscore mathопспacing}:D \quad \ldots \quad 1118
\text{\textunderscore mathбинорспacing}:D \quad \ldots \quad 1056 \quad \text{\textunderscore mathопчнорспacing}:D \quad \ldots \quad 1119
\text{\textunderscore mathбинопспacing}:D \quad \ldots \quad 1057 \quad \text{\textunderscore mathопчнопспacing}:D \quad \ldots \quad 1120
\text{\textunderscore mathбинреляспacing}:D \quad \ldots \quad 1058 \quad \text{\textunderscore mathопчнорреспacing}:D \quad \ldots \quad 1121
\text{\textunderscore mathбинрелспacing}:D \quad \ldots \quad 1059 \quad \text{\textunderscore mathопчнорлспacing}:D \quad \ldots \quad 1122
\text{\textunderscore mathбининспacing}:D \quad \ldots \quad 1060 \quad \text{\textunderscore mathопчнорпспacing}:D \quad \ldots \quad 1123
\text{\textunderscore mathcharclass}:D \quad \ldots \quad 1061 \quad \text{\textunderscore mathопчнорорспacing}:D \quad \ldots \quad 1124
\text{\textunderscore mathchardef}:D \quad \ldots \quad 1062 \quad \text{\textunderscore mathordbinspacing}:D \quad \ldots \quad 1125
\text{\textunderscore mathcharfam}:D \quad \ldots \quad 1063 \quad \text{\textunderscore mathordclosespacing}:D \quad \ldots \quad 1126
\text{\textunderscore mathcharnum}:D \quad \ldots \quad 1064 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1127
\text{\textunderscore mathcharnumdef}:D \quad \ldots \quad 1065 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1128
\text{\textunderscore mathcharslot}:D \quad \ldots \quad 1066 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1129
\text{\textunderscore mathclosebinspacing}:D \quad \ldots \quad 1067 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1130
\text{\textunderscore mathclosecloseclosespacing}:D \quad \ldots \quad 1068 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1131
\text{\textunderscore mathclosecloseinnerspacing}:D \quad \ldots \quad 1070 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1132
\text{\textunderscore mathcloseclosepunctspacing}:D \quad \ldots \quad 1071 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1133
\text{\textunderscore mathcloseclosepunctspacing}:D \quad \ldots \quad 1072 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1134
\text{\textunderscore mathcloseclosepunctspacing}:D \quad \ldots \quad 1073 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1135
\text{\textunderscore mathcloseclosepunctspacing}:D \quad \ldots \quad 1075 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1136
\text{\textunderscore mathcloseclosespacing}:D \quad \ldots \quad 1076 \quad \text{\textunderscore mathorddiddlespacing}:D \quad \ldots \quad 1137
\text{\textunderscore mathcloseclosespacing}:D \quad \ldots \quad 1080 \quad \text{\textunderscore mathordrelspacing}:D \quad \ldots \quad 1138
\text{\textunderscore mathcloseclosespacing}:D \quad \ldots \quad 1081 \quad \text{\textunderscore mathordrelspacing}:D \quad \ldots \quad 1139
\text{\textunderscore mathcloseclosespacing}:D \quad \ldots \quad 1082 \quad \text{\textunderscore mathordrelspacing}:D \quad \ldots \quad 1140
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1083 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1141
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1084 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1142
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1085 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1143
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1086 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1144
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1087 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1145
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1088 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1146
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1089 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1147
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1090 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1148
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1091 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1149
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1092 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1150
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1093 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1151
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1094 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1152
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1095 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1153
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1096 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1154
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1097 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1155
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1098 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1156
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1099 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1157
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1100 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1158
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1101 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1159
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1102 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1160
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1103 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1161
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1104 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1162
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1105 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1163
\text{\textunderscore mathcloseinnerspacing}:D \quad \ldots \quad 1106 \quad \text{\textunderscore mathordrelpunctspacing}:D \quad \ldots \quad 1164
\text XeTeXlinebreakskip:D ... 852
\text XeTeXXcountfeatures:D ... 855
\text XeTeXXcountlanguages:D ... 856
\text XeTeXXcountscripts:D ... 857
\text XeTeXXfeaturetag:D ... 858
\text XeTeXXlanguageetag:D ... 859
\text XeTeXXscripttag:D ... 860
\text XeTeXXpdfpagecount:D ... 862
\text XeTeXXpicfile:D ... 863
\text XeTeXXrevision:D 864, 9843, 31631
\text XeTeXXselectorname:D ... 865
\text XeTeXXtracingfonts:D ... 866
\text XeTeXXupwardsmode:D ... 867
\text XeTeXXuseregionmetrics:D ... 868
\text XeTeXXvagination:D ... 869
\text XeTeXXvaginationdefault:D ... 870
\text XeTeXXvagationionmax:D ... 871
\text XeTeXXvaginationname:D ... 872
\text XeTeXXvcoration:D: ... 873
\text XeTeXXversion:D: ... 874, 8595, 9273, 9699, 11046, 31630
\text xkanjiskip:D: ... 1263
\text xleaders:D: ... 606
\text xspacekip:D: ... 607
\text xspcode:D: ... 1264
\text xycodeshift:D: ... 1265
\text year:D: ... 608, 661, 1422, 1426
\text yoko:D: ... 1266
\text commands:
\l_text_accents_tl ... 30841
\l_text_case_exclude_arg_tl ... 257, 258, 29176, 29400, 30972
\l_text_declare_purify_equivalent:Nn ... 255, 29534
\text_declare_purify_equivalent:Nn ... 255, 29534
\text_declare_explore_equivalent:NN ... 258, 258, 29176, 29400
\text expand:n ... 257
\text expand:n ... 257, 258, 29214, 29567, 30670
\l_text_expand_exclude_tl ... 255, 258, 29202, 29401
\l_text_letterlike_tl ... 255, 258, 29176, 29438
\text_lowercase:n ... 64, 131, 257, 29545, 32379, 32381
\text_lowercase:n ... 257, 29545, 32382, 32384
\l_text_math_arg_tl ... 255, 258, 258, 29198, 29392, 29399, 29727, 30768
\l_text_math_delims_tl ... 255, 258, 258, 29200, 29326, 29660, 30700
\text_purify:n ... 258, 30666
\text_titlecase:n ... 64, 129, 257, 29545, 32391, 32393
\text_titlecase:n ... 257, 29545, 32394, 32396
\l_text_titlecase_check_letter:-
bool ... 257, 258, 29543, 29833
\text_titlecase_first:n ... 257, 29545
\text_titlecase_first:nn ... 257, 29545
\text_uppercase:n ... 64, 129, 131, 257, 29545, 32385, 32387
\text_uppercase:n ... 257, 29545, 32388, 32390
\text internal commands:
\_\text_change_case:n ........ ... 29546, 29548, 29550, 29552, 29554, 29556, 29558, 29560, 29561
\_\text_change_case_aux:nnn ... 29561
\_\text_change_case_break:w ... 29561
\_\text_change_case_char:nnn ... 29561, 29936, 29947, 29956, 29970, 30058, 30158, 30191, 30273, 30287, 30310
\_\text_change_case_char_-
aux:nnn ... 29561
\_\text_change_case_char_-
lower:nnn ... 29561
\_\text_change_case_char_next_-end:nn ... 29561
\_\text_change_case_char_next_-lower:nn ... 29561
\_\text_change_case_char_next_-title:nn ... 29561
\_\text_change_case_char_-
titleonly:nn ... 29561
\_\text_change_case_char_next_-upper:nn ... 29561
\_\text_change_case_char_-
title:nn ... 29561
\_\text_change_case_char_-
titleonly:nn ... 29561
\_\text_change_case_char_-
title:nnn ... 29561
\_\text_change_case_char_-
titleonly:nnn ... 29561
\_\text_change_case_char_-
title:nnnn ... 29561
\_\text_change_case_char_-
titleonly:nnnn ... 29561
\_\text_change_case_char_-
title:nnnnn ... 29561
\_\text_change_case_char_-
titleonly:nnnnn ... 29561
Index

\_token_delimit_by_toks:w ........................................ 11183
\_token_if_macro_p:w ........................................... 11149
\_token_if_primitive:NNw .................................... 11129
\_token_if_primitive:N ........................................ 11124
\_token_if_primitive_loop:N ................................ 11124
\_token_if_primitive_nullfont:N ........................................ 11124
\_token_TMP:w .................................................. 11124
\toks .......................................................... 11124
\toksapp ....................................................... 1006, 1859
\toksdef ........................................................ 562, 23007
\tokspre .......................................................... 1007, 1860
\tolerance .......................................................... 563
\topmark .......................................................... 564
\topmarks ......................................................... 666, 1337
\topskip ........................................................... 565
\tpack ............................................................ 1008, 1861
\tracingassigns .................................................. 667, 1538
\tracingcommands .................................................. 566
\tracingcommands .................................................. 1039, 1702
\tracingcommands .................................................. 668, 1539
\tracingfinish ..................................................... 669, 1540
\tracinglostchars .................................................. 567
\tracingmacros ..................................................... 568
\tracingnesting .................................................... 670, 1541
\tracingonline ..................................................... 569
\tracingoutput ..................................................... 570
\tracingpages ....................................................... 571
\tracingparagraphs .................................................. 572
\tracingrestores ................................................... 573
\tracingscantokens .................................................. 671, 1542
\tracingstats ....................................................... 574
\true .............................................................. 216
\trunc ............................................................. 212
\ttfamily .......................................................... 30860
two commands:
\c\_thirty\_two ...................................................... 32170
\c\_two\_hundred\_fifty\_five ........................................ 32170
\c\_two\_hundred\_fifty\_six ......................................... 32170

U
\u .................................................. xxii, 987, 29179, 31013, 31094, 31095, 31110, 31111, 31120, 31121, 31134, 31135, 31136, 31162, 31163, 31188, 31189
\uccode .................................................. 168, 183, 196, 198, 200, 202, 575
\Uchar .......................................................... 1041, 1877
\Umathaccent ..................................................... 1049, 1885
\Umathaxis .......................................................... 1050, 1886
\Umathbinbase ...................................................... 1051, 1887
\Umathbinwcoding .................................................. 1052, 1888
\Umathbinwidth ...................................................... 1053, 1889
\Umathbinwidth ...................................................... 1054, 1890
\Umathbinkern ....................................................... 1055, 1891
\Umathbinkern ....................................................... 1056, 1892
\Umathbinkern ....................................................... 1057, 1893
\Umathbinrel ......................................................... 1058, 1894
\Umathbring ......................................................... 1059, 1895
\Umathchars ......................................................... 1060, 1896
\Umathcharacters ................................................... 1061, 1897
\Umathchars ......................................................... 1062, 1898
\Umathcharfam ....................................................... 1063, 1899
\Umathcharfam ....................................................... 1064, 1900
\Umathcharfam ....................................................... 1065, 1901
\Umathcharfam ....................................................... 1066, 1902
\Umathcharfam ....................................................... 1067, 1903
\Umathcharfam ....................................................... 1068, 1904
\Umathcharfam ....................................................... 1069, 1905
\Umathcharfam ....................................................... 1070, 1906
\Umathcharfam ....................................................... 1071, 1907
\Umathcharfam ....................................................... 1072, 1908
\Umathcharfam ....................................................... 1073, 1909
\Umathcharfam ....................................................... 1074, 1910
\Umathcharfam ....................................................... 1075, 1911
\Umathcharfam ....................................................... 1076, 1912
\Umathcharfam ....................................................... 1077, 1913
\Umathcharfam ....................................................... 1078, 1914
\Umathcharfam ....................................................... 1079, 1915
\Umathcharfam ....................................................... 1080, 1916
\Umathcharfam ....................................................... 1081, 1917
\Umathcharfam ....................................................... 1082, 1918
\Umathcharfam ....................................................... 1083, 1919
\Umathcharfam ....................................................... 1084, 1920
\Umathcharfam ....................................................... 1085, 1921
\Umathcharfam ....................................................... 1086, 1922
\Umathcharfam ....................................................... 1087, 1923
\Umathcharfam ....................................................... 1088, 1924
\Umathcharfam ....................................................... 1089, 1925
\Umathcharfam ....................................................... 1090, 1926
\Umathcharfam ....................................................... 1091, 1927
\Umathcharfam ....................................................... 1092, 1928
\Umathcharfam ....................................................... 1093, 1929
\Umathcharfam ....................................................... 1094, 1930
\Umathcharfam ....................................................... 1095, 1931
\Umathcharfam ....................................................... 1096, 1932
\Umathcharfam ....................................................... 1097, 1933
\Umathcharfam ....................................................... 1098, 1934
\Umathcharfam ....................................................... 1099, 1935
\Umathcharfam ....................................................... 1100, 1936
\Umathcharfam ....................................................... 1101, 1937
\Umathcharfam ....................................................... 1102, 1938
Index

9653, 9843, 10014, 10058, 10155, 10250, 10277, 10316, 11299, 12003, 12211, 12437, 12441, 13252, 13307, 13363, 13692, 14867, 14899, 15184, 15774, 15887, 16142, 16378, 16527, 16531, 16535, 16539, 17841, 18094, 18101, 18118, 18137, 18160, 18228, 18269, 18394, 18409, 18430, 18431, 18645, 18646, 19190, 19193, 20173, 21866, 22151, 23233, 23282, 23380, 23418, 23644, 23906, 24064, 24716, 30834, 30886, 31508, 31509, 32293

\use_none:nnnnnnnn........... 20, 384, 388, 398, 399, 438, 2225, 2303, 2311, 2382, 3890, 4210, 4354, 4527, 4692, 4709, 5749, 6080, 8029, 8213, 9430, 9984, 10921, 13308, 13352, 16443, 16526, 16530, 16534, 16538, 21861, 25277, 25913, 30835
\use_none:nnnnnnnnnn........ 20, 399, 2225, 3658, 3673, 4733, 13309, 16525, 16529, 16533, 16537, 17178, 23449
\use_none:nnnnnnnnnnnnnnnn .... 20, 2225, 13310, 14545, 30837
\use_none:nnnnnnnnnnnnnn .... 20, 323, 633, 634, 739, 2225, 13311, 13321, 16669, 16703, 16729, 16737, 18779
\use_none:nnnnnnnnnnnnnnnnnn .... 20, 2225, 2435, 13312, 31759
\use_none:nnnnnnnnnnnnnnnnnn .... 20, 732, 2225, 16671, 16705, 16731, 16739, 17062, 19230
\use_none:nnnnnnnnnnnnnnnnnn .... 20, 327, 2225, 2344, 3739
\use_none:nnnnnnnnnnnnnnnnnn .... 20, 2225
\use_none:delimit_by_q_nil:w ... 21, 2122, 2128, 2218, 2335, 2414, 2419, 2426, 3572, 3579, 3860, 7746, 7761, 24826, 24850
\use_none:delimit_by_q_recursion_:stop:w ... 21, 72, 72, 2218, 2335, 2414, 2419, 2426, 3572, 3579, 3860, 7746, 7761, 24826, 24850
\use_none:delimit_by_q_stop:w ... 21, 47, 47, 548, 582, 2218, 3851, 5044, 5326, 5535, 5494, 5741, 6022, 6031, 6064, 6419, 6509, 8705, 10237, 10482, 10487, 11465, 12264, 14422, 31405
\use_none:delimit_by_s_stop:w ... 74, 74, 7847
\useboxresource ................ 1033, 1038
\usefont ...................... 30837
\useimageresource ............ 1034, 1097
\usetkved .................... 1198, 2033
\usetkvedwithdelims .......... 1199, 2034
\usetkstack .................. 1200, 2035

\utext:

\usetstartdisplaymath ........ 1201, 2036
\usetstartmath ............... 1202, 2037
\usetstopdisplaymath ........ 1203, 2038
\usetstopmath ................. 1204, 2039
\usubscript ................... 1205, 2040
\usuperscript ................ 1206, 2041

\utext commands:

\utext_binbinspacing:D ....... 1887
\utext_binclosespacing:D ..... 1888
\utext_bininnerspacing:D ..... 1889
\utext_binopenspacing:D ..... 1890
\utext_binopspacing:D ..... 1891
\utext_binordspacing:D ..... 1892
\utext_binpunctspacing:D ..... 1893
\utext_binrelspacing:D ..... 1894
\utext_char:D ................. 1877
\utext_charcat:D ............. 1878
\utext_closebinspacing:D ..... 1902
\utext_closeclosespacing:D ..... 1904
\utext_closeclose间距:D ..... 1906
\utext_closeopenclosure:D ..... 1907
\utext_closeopenspacing:D ..... 1908
\utext_closeopspacing:D ..... 1909
\utext_closeordspacing:D ..... 1911
\utext_closepunctspacing:D ..... 1912
\utext_closerel间距:D ..... 1916
\utext_connectoverlap:min:D ..... 1979
\utext_decode:D .............. 1879
\utext_delcodeenum:D ..... 1880
\utext_delimiter:D ........... 1881
\utext_delimiterover:D ..... 1882
\utext_delimiterunder:D ..... 1883
\utext_fractiondelsize:D ..... 1897
\utext_fractiondenomdown:D ..... 1919
\utext_fractiondenomvgap:D ..... 1921
\utext_fractionnumup:D ..... 1922
\utext_fractionnumvgap:D ..... 1923
\utext_fractionrule:D ..... 1924
\utext_hextensible:D ..... 1884
\utext_innerbinspacing:D ..... 1925
\utext_innerclose间距:D ..... 1927
\utext_innernopenclosure:D ..... 1929
\utext_innernopspacing:D ..... 1929
\utext_innernordspacing:D ..... 1930
\utext_innernspacing:D ..... 1931
\utext_innernordspacing:D ..... 1932
\utext_innernpunctspacing:D ..... 1934
\utext_innernrelspacing:D ..... 1935
\utext_limitabovevgap:D ..... 1936
\utext_limitabovev kern:D ..... 1937
\utext_limitbelowvgap:D ..... 1938
\utext_limitbelowv kern:D ..... 1939
\vbox
\vbadness
\vbox
\value
\vcenter
\volume
\vfilneg
\vfill
\vfil
\vfi
\vfil
\vfill
\valign
\vadjust
\vbox
\valign
\vbox
\vcoffin
\vcoffin_set_end:
\vcoffin_set:Nnn
\vcoffin_gset_end:
\vcoffin_gset:Nnw
\vbox_unpack_drop:N
\vbox_unpack_clear:N
\vbox_unpack:N
\vbox_top:n
\vbox_to_zero:n
\vbox_to_ht:nn
\vbox_set_top:Nn
\vbox_set_to_ht:Nnw
\vbox_set_split_to_ht:NNn
\vbox_set:Nw
\vbox_set:Nn
\vbox_gset_top:Nn
\vbox_gset_to_ht:Nnw
\vbox_gset_to_ht:Nnn
\vbox_gset_split_to_ht:NNn
\vbox_gset:Nw
\vbox_gset:Nn
\vbox:n
\xetex
\write
\xetex_countfeatures:D
\xetex_charglyph:D
\xetex_charclass:D
\xetex_picfile:D
\xetex_OTscripttag:D
\xetex_OTlanguagetag:D
\xetex_OTcountscripts:D
\xetex_OTcountlanguages:D
\xetex_OTcountfeatures:D
\xetex_linebreakskip:D
\xetex_linebreakpenalty:D
\xetex_linebreaklocale:D
\xetex_lastfontchar:D
\xetex_isexclusivefeature:D
\xetex_isdefaultselector:D
\xetex_interchartoks:D
\xetex_interchartokenstate:D
\xetex_inputnormalization:D
\xetex_inputencoding:D
\xetex_if_engine_p:
\xetex_findvariationbyname:D
\xetex_findselectorbyname:D
\xetex_findfeaturebyname:D
\xetex_featurecode:D
\xetex_defaultencoding:D
\xetex_dashbreakstate:D
\xetex_countvariations:D
\xetex_countselectors:D
\xetex_countglyphs:D
\xetex_OTcountfeatures:D
\xetex_OTcountlanguages:D
\xetex_OTcountscripts:D
\xetex_selectorname:D . . . . . . . 1753 \TeXinterchartoks . . . . . . . 846, 1735
\xetex_suppressfontnotfounderror:D \TeXisdefaultselector . . . . . 847, 1736
\xetex_tracingfonts:D . . . . . . . 1705 \TeXisexclusivefeature . . . . . 849, 1738
\xetex_upwardsmode:D . . . . . . . 1754 \TeXlastfontchar . . . . . . . 851, 1740
\xetex_useglyphmetrics:D . . . . . 1756 \TeXlinebreaklocale . . . . . . . 853, 1742
\xetex_variation:D . . . . . . . 1757 \TeXlinebreakpenalty . . . . . . . 854, 1743
\xetex_variationdefault:D . . . . 1758 \TeXlinebreakskip . . . . . . . . . 852, 1741
\xetex_variationmax:D . . . . . . . 1759 \TeXcountfeatures . . . . . . . 855, 1744
\xetex_variationmin:D . . . . . . . 1760 \TeXcountlanguages . . . . . . . 856, 1745
\xetex_variationname:D . . . . . . 1761 \TeXcountscripts . . . . . . . 857, 1746
\xetex_XeTeXrevision:D . . . . . . . 1762 \TeXfeaturetag . . . . . . . 858, 1747
\xetex_XeTeXversion:D . . . . . . . 1763 \TeXglyph . . . . . . . . . . 860, 1749
\XeTeXcharclass . . . . . . . . . 817, 1706 \TeXpdfpagecount . . . . . . . 861, 1750
\XeTeXcharglyph . . . . . . . . . 818, 1707 \TeXpdfpagecount . . . . . . . 862, 1751
\XeTeXcountfeatures . . . . . . . 819, 1708 \TeXpanicfile . . . . . . . . . . 863, 1752
\XeTeXcountglyphs . . . . . . . 820, 1709 \TeXrevision . . . . . . . . . . 864, 1762
\XeTeXcountselectors . . . . . . . 821, 1710 \TeXdefaultselectorname . . . . . 865, 1753
\XeTeXcountvariations . . . . . . 822, 1711 \TeXxetextracingfonts . . . . . . 866, 1764
\TeXdashbreakstate . . . . . . . 824, 1713 \TeXupwardsmode . . . . . . . 867, 1755
\TeXdefaultencoding . . . . . . . 823, 1712 \TeXxeglyphmetrics . . . . . . . 868, 1756
\TeXfeaturecode . . . . . . . . . 825, 1714 \TeXXeTeXrevision . . . . . . . 869, 1757
\TeXfeaturename . . . . . . . . . 826, 1715 \TeXXeTeXversion . . . . . . . 870, 1758
\TeXfindfeaturebyname . . . . . 827, 1716 \TeXvariationdefault . . . . . 871, 1759
\TeXfindselectorbyname . . . . 829, 1718 \TeXvariationmax . . . . . . . 872, 1759
\TeXfindvariationbyname . . . . 831, 1720 \TeXvariation . . . . . . . . . . 873, 1761
\TeXfirstfontchar . . . . . . . . 833, 1722 \TeXversion . . . . . . . . . . . 874, 1763
\TeXfonttype . . . . . . . . . . 834, 1723 \XeKanjiskip . . . . . . . . . . . 1263, 2080
\TeXgenerateactualtext . . . . 835, 1724 \xleaders . . . . . . . . . . . . 606
\TeXglyph . . . . . . . . . . . . . . . . 837, 1726 \xspcode . . . . . . . . . . . . . . 1264, 2081
\TeXglyphbounds . . . . . . . . 838, 1727 \xspcode . . . . . . . . . . . . . . 607
\TeXglyphindex . . . . . . . . . 839, 1728
\TeXglyphname . . . . . . . . . 840, 1729 Y
\TeXinputencoding . . . . . . . 841, 1730 \ybaselineskip . . . . . . . . . . 1265, 2082
\TeXinputnormalization . . . . 842, 1731 \year . . . . . . . . . . . . . . . . 608, 1423, 9858
\TeXinterchartokenstate . . . . 844, 1733 \yoko . . . . . . . . . . . . . . . 1266, 2083