The \texttt{l3color} package
Experimental color support

The \LaTeX\ X3 Project*

Released 2020-01-12

1 Color models

A color \textit{model} is a way to represent sets of colors. Different models are particularly suitable for different output methods, \textit{e.g.} screen or print. Parameter-based models can describe a very large number of unique colors, and have a varying number of \textit{axes} which define a color space. In contrast, various proprietary models are available which define \textit{spot} colors.

The models supported here are

- \texttt{gray} Grayscale color, with a single axis running from 0 (fully black) to 1 (fully white)
- \texttt{rgb} Red-green-blue color, with three axes, one for each of the components
- \texttt{cmyk} Cyan-magenta-yellow-black color, with four axes, one for each of the components
- \texttt{spot} Spot color, with one value, the name of the color (see \url{https://helpx.adobe.com/indesign/using/spot-process-colors.html} for details of the use of spot colors in print)

Additional models may be created to allow mixing of spot colors with each other or with those from other models. See Section 6 for more detail of spot color support.

When color is selected by model, the \texttt{⟨values⟩} given are specified as a comma-separated list. The length of the list will therefore be determined by the detail of the model involved.

Color models (and interconversion) are complex, and more details are given in the manual to the \LaTeX\ X3 \texttt{xcolor} package and in the \textit{PostScript Language Reference Manual}, published by Addison–Wesley.

2 Color expressions

In addition to allowing specification of color by model and values, \texttt{l3color} also supports color expressions. These are created by combining one or more color names, with the amount of each specified as a percentage. The latter is given between \texttt{!} symbols in the expression. Thus for example

\texttt{\textcolor{gray}{100}! \textcolor{rgb}{50}! \textcolor{cmyk}{75}! \textcolor{spot}{blue}! \textcolor{spot}{red}}
red!50!green

is a mixture of 50 \% red and 50 \% green. A trailing percentage is interpreted as implicitly followed by white, and so

red!25

specifies 25 \% red mixed with 75 \% white.

Where the models for the mixed colors are different, the model of the first color is used. Thus

red!50!cyan

will result in a color specification using the rgb model, made up of 50 \% red and 50 \% of cyan \textit{expressed in rgb}. As color model interconversion is not exact.

The one exception to the above is where the first model in an expression is gray. In this case, the order of mixing is “swapped” internally, so that for example

black!50!red

has the same result as

red!50!black

(the predefined colors black and white use the gray model).

Where more than two colors are mixed in an expression, evaluation takes place in a stepwise fashion. Thus in

cyan!50!magenta!10!yellow

the sub-expression

cyan!50!magenta

is first evaluated to give an intermediate color specification, before the second step

<intermediate>!10!yellow

where \texttt{<intermediate>} represents this transitory calculated value.

Within a color expression, \texttt{.} may be used to represent the color active for typesetting (the current color). This allows for example

.150

to mean a mixture of 50 \% of current color with white.

(Color expressions supported here are a subset of those provided by the \LaTeX\ xcolor package. At present, only such features as are clearly useful have been added here.)
3 Named colors

Color names are stored in a single namespace, which makes them accessible as part of color expressions. Whilst they are not reserved in a technical sense, the names black, white, red, green, blue, cyan, magenta and yellow have special meaning and should not be redefined. Color names should be made up of letters, numbers and spaces only: other characters are reserved for use in color expressions. In particular,. represents the current color at the start of a color expression.

\color_set:nn \color_set:nn {name} {color expression}
Evaluates the (color expression) and stores the resulting color specification as the (name).

\color_set:nnn \color_set:nnnn {name} {model} {value(s)}
Stores the color specification equivalent to the (model) and (values) as the (name).

\color_set_eq:nn \color_set_eq:nnn {name1} {name2}
Copies the color specification in (name2) to (name1). The special name . may be used to represent the current color, allowing it to be saved to a name.

\color_show:n \color_show:nn {name}
Displays the color specification stored in the (name) on the terminal.

4 Selecting colors

\color_select:n \color_select:nn {color expression}
Parses the (color expression) and then activates the resulting color specification for typeset material.

\color_select:nn \color_select:nnn {model} {value(s)}
Activates the color specification equivalent to the (model) and (values) for typeset material.

l_color_fixed_model_tl
When this is set to a non-empty value, colors will be converted to the specified model when they are selected. Note that included images and similar are not influenced by this setting.

5 Core color representation

To allow data to be handled internally, l3color uses a simple representation of color, based on that used by the dvips program. This is a token list made up of the model name followed by one or more data entries, each separated by a space. The valid forms are thus

- gray (gray) Grayscale color with the (gray) value running from 0 (fully black) to 1 (fully white)
• cmyk \(\langle \text{cyan} \rangle \langle \text{magenta} \rangle \langle \text{yellow} \rangle \langle \text{black} \rangle\), each of which falls in the range \([0, 1]\)
• rgb \(\langle \text{red} \rangle \langle \text{green} \rangle \langle \text{blue} \rangle\), each of which falls in the range \([0, 1]\)
• spot \(\langle \text{name} \rangle \langle \text{tint} \rangle\) A pre-defined spot color, where the \(\langle \text{name} \rangle\) should be a pre-defined string color name and the \(\langle \text{tint} \rangle\) should be in the range \([0, 1]\).

This core representation is produced when parsing color expressions.

\color_parse:nN \{\langle \text{color expression} \rangle\} \{\langle \text{tl} \rangle\}

Parses the \(\langle \text{color expression} \rangle\) as described above, and sets the \(\langle \text{tl} \rangle\) the the equivalent \(\langle \text{core color representation} \rangle\) (used at the backend level and based on dvips color representation).

6 Spot colors

Index

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

<table>
<thead>
<tr>
<th>C</th>
<th>\color_select:nn \equiv \color_set:nn \equiv \color_set_eq:nn \equiv \color_show:n</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\l_color_fixed_model_tl</td>
<td>\color_set:nn</td>
<td>3</td>
</tr>
<tr>
<td>color_parse:nN \equiv \color_set:nnn</td>
<td>\color_set_eq:nn</td>
<td>3</td>
</tr>
<tr>
<td>color_select:n</td>
<td>\color_show:n</td>
<td>3</td>
</tr>
</tbody>
</table>