Abstract

Documentation for the package \texttt{sobolev}.

1 Introduction

This package provides some commands which are useful when dealing with Sobolev spaces and their relatives.

In particular some commands are redefined, so care should be taken, especially when including this package in an already existent \LaTeX{} file.

The redefined commands are \texttt{\textbackslash H} and \texttt{\textbackslash L}. The effect of \texttt{\textbackslash H} (which is a type of accent) can now be achieved by the command \texttt{\textbackslash HAccent}, whilst the job of \texttt{\textbackslash L} (i.e. print an “L” with a superimposed bar) is now done by the command \texttt{\textbackslash Lbar}.

2 The options

Two options are available at the moment: \texttt{DivInBrackets} and \texttt{DivAsExponent}. They only affect the output of the \texttt{\textbackslash Hdiv} command.

The first option (\texttt{DivInBrackets}, which is the default) makes \texttt{\textbackslash Hdiv} behave like \texttt{\textbackslash H\{div;\ldots\}}), while the second one (\texttt{DivAsExponent}) makes \texttt{\textbackslash Hdiv} expand to \texttt{\textbackslash H^{\{div\}}\{\ldots\}}.

*This is version 2.2, last revised 1997/11/14; documentation date 2005/04/09
3 The commands

Most of the subsequent space-generating commands have mandatory arguments to indicate the type of the space. Often this argument consists of a single digit: in this case it is not necessary to enclose it in brackets, since in \LaTeX\ the names of commands consists of letters only, and so a digit following it is certainly an argument. This saves a lot of typing and is the only reason that makes these commands useful (if you always had to type the brackets, then it would have been simpler to type the expansion of the command than the command itself!). In other words, you can think as if several commands exist (like \textbackslash H, \textbackslash H1, \textbackslash H10, etc.), the ones with the digit being a sort of abbreviation for the general one.

3.1 The \textbackslash H command

The \textbackslash H command is used to generate the symbol of sobolev spaces. It takes a mandatory argument, which is used as a superscript, and an optional argument, which is used as a subscript.
As explained above, if the mandatory argument is a digit, it need not be enclosed in brackets. Moreover, if the optional argument is the digit “0”, it can be typed without the square brackets.
Here are some examples (whith the \texttt{\textbackslash DefaultSet} set to its default value \textbackslash Omega):
\begin{align*}
\textbackslash H2 & \implies H^2(\Omega) \\
\textbackslash H10 & \implies H^1_0(\Omega) \\
\textbackslash H1[\textbackslash Gamma_D] & \implies H^1_{1,0}(\Omega) \\
\textbackslash H{-1/2} & \implies H^{-1/2}(\Omega)
\end{align*}

3.2 The \textbackslash Hdiv command

The \textbackslash Hdiv command is used to generate the sobolev space called “H div”. It takes only an optional argument, which is used as a subscript and which need not to be surrounded by the square brackets if it is the digit “0”.
If the (default) option \texttt{DivInBrackets} is in effect, it differs from the command \textbackslash H in that the word “div” is printed (in roman type) inside brackets, before the set. If, instead, the option \texttt{DivAsExponent} is active, then it is simply an abbreviation for \textbackslash H\texttt{\texttt{mathrm}{div}}.
Here are some examples:
3.3 The \texttt{L} command

The \texttt{L} command is used to generate the symbol of Lebesgue-measurable functions. It has one argument which is the exponent of the L-space. Again, if this argument is a digit (or a single symbol, like \texttt{\textbackslash infty}) the surrounding braces are optional. Like for the \texttt{H} command, the output of \texttt{\DefaultSet} is appended.

Here are some examples:

\begin{align*}
\texttt{L}2 & \quad \Rightarrow \quad L^2(\Omega) \\
\texttt{L}\{10\} & \quad \Rightarrow \quad L^{10}(\Omega) \\
\texttt{L}\texttt{\textbackslash infty} & \quad \Rightarrow \quad L^\infty(\Omega)
\end{align*}

3.4 The \texttt{W} command

The \texttt{W} command is completely analogous, except that it prints a “W” instead of an “L” and that it has two arguments, both printed as a subscript, separated by a comma. It is used for the generalized Sobolev spaces.

Here is an example of how it is used:

\begin{align*}
\texttt{W}\{k\}\{p\} & \quad \Rightarrow \quad W^{k,p}(\Omega) \\
\texttt{W}\texttt{1}\texttt{\textbackslash infty} & \quad \Rightarrow \quad W^{1,\infty}(\Omega)
\end{align*}

3.5 The \texttt{D} command

The \texttt{D} command is used in the theory of distributions: it prints the space of distributions over the \texttt{\DefaultSet} if followed by a prime symbol, or its dual space, otherwise.

\begin{align*}
\texttt{D} & \quad \Rightarrow \quad \mathcal{D}(\Omega) \\
\texttt{D}' & \quad \Rightarrow \quad \mathcal{D}'(\Omega)
\end{align*}

3.6 The \texttt{Norm} command

The \texttt{Norm} command has a mandatory and an optional argument; it generates the norm of the mandatory argument, with the optional argument, if present, as a whole subscript, to denote the space within which the norm is taken.

Some examples:

\begin{align*}
\texttt{Norm}\{f(x)\} & \quad \Rightarrow \quad \|f(x)\| \\
\texttt{Norm}\{g\}[L^2] & \quad \Rightarrow \quad \|g\|_{L^2}
\end{align*}
3.7 The \SemiNorm command

The \SemiNorm command is completely analogous, but generates the semi-norm instead of the norm.

Some examples:
\begin{align*}
\SemiNorm{f(x)} & \implies |f(x)| \\
\SemiNorm{g}[H^1] & \implies |g|_{H^1}
\end{align*}

3.8 The \Scalar command

The \Scalar command has two arguments; a third optional argument (which is used as a whole subscript) may follow inside square brackets. The output consists of the two arguments separated by a comma and enclosed in a pair of adjustable-size brackets, with the optional argument placed as a subscript (to denote the space inside which the scalar product is taken).

Some examples:
\begin{align*}
\Scalar{f}{g} & \implies (f, g) \\
\Scalar{u}{v}[L^2] & \implies (u, v)_{L^2}
\end{align*}

3.9 The \Crochet command

The \Crochet command has two arguments; a third optional argument (which is used as a whole subscript) may follow inside square brackets. The output consists of the two arguments separated by a comma and enclosed in a pair of adjustable-size angular-parentheses, with the optional argument placed as a subscript (to denote the space inside which the duality is taken).

Some examples:
\begin{align*}
\Crochet{f}{g} & \implies \langle f, g \rangle \\
\Crochet{u}{v}[D] & \implies \langle u, v \rangle_D
\end{align*}
4 Implementation

The options set the flag for the \Hdiv command.

The \ProcessOptions* command was used here instead of \ProcessOptions* in order to process the options in the \usepackage order, rather than in the declaration order.

The \DefaultSet command makes \DefaultSet to print the given argument enclosed in brackets. It also let \DefaultSet@Div to be the same, but with the word “div” inside the brackets, before the argument.

The \NoDefaultSet command deletes the content of the two macros \DefaultSet and \DefaultSet@Div, so that the first prints nothing, whilst the second only prints “(div)”.\n
Set the default value for \DefaultSet to be \Omega.

This command does nothing, but strips the character “0” (which must immediately follow it, otherwise an error occur) from the input, since it is defined with a “0” attached to its name.

The commands \Hsobolev and \Hsobolev@quadra prints an “H” in math-mode (via the \ensuremath command) with the argument as
a superscript, and, respectively, without subscripts and with the second argument as a subscript. Then they call \@DefaultSet in order to print the name of a set inside brackets, or nothing depending on which of the commands \DefaultSet and \NoDefaultSet has previously been invoked.

\section*{Hdiv}

The original command “H” (used to make a type of accent) is saved in \HAccent; then \H is redefined so that it calls one of the previous two commands, depending on which character follows the command name. If this character is a “0”, then it also invokes the command \DoNothing@zero, in order to strip that zero from the input. All this is deferred at the “\begin{document}” in order to avoid conflicts with other packages.

\section*{Hdiv Quadra}

The command \@Hdiv@quadra is used if the command \Hdiv is followed by a square bracket: it simply types “H” (in math mode) with a subscript. It also prints “div” (in roman) as an exponent and calls \@DefaultSet (with the “DivAsExponent” option) or calls \@DefaultSet@Div (with the “DivInBraces” option).
First the old command \L (which prints an “L” with a bar super-imposed) is saved in \Lbar. Then \L is redefined to print an “L” in math-mode with its argument as a superscript, followed by the output of \@DefaultSet. All this is deferred at the “\begin{document}” in order to avoid conflicts with other packages.

\L
\begin{verbatim}
\AtBeginDocument{\let\Lbar=\L
\renewcommand{\L}[1]{\ensuremath{L^{#1}\@DefaultSet}}}
\end{verbatim}

The command \W is defined to print a “W” in math-mode with its two arguments as a superscript (separated by a comma) and followed by the output of \@DefaultSet. It is deferred at the “\begin{document}” in order to avoid conflicts with other packages.

\W
\begin{verbatim}
\AtBeginDocument{\newcommand\W[2]{\ensuremath{W^{#1,#2}\@DefaultSet}}}
\end{verbatim}

The command \D is defined to print a calligraphic “D” in math-mode, followed by the output of \@DefaultSet. In order to allow for the proper treatment of the prime symbol which can follow the command, the command \InsiemeD@Primo is defined: it is automatically invoked by the command \D when followed by a prime. It differs only in that a prime is output before invoking \@DefaultSet. This is deferred at the “\begin{document}” in order to avoid conflicts with other packages.

\D
\begin{verbatim}
\def\InsiemeD@Primo'{\ensuremath{\mathcal{D}'\@DefaultSet}}
\AtBeginDocument{\newcommand{\D}{\@ifnextchar'{\InsiemeD@Primo}{\ensuremath{\mathcal{D}\@DefaultSet}}}}
\end{verbatim}

The command \Norm prints its argument surrounded by a double-pipe delimiter of adjustable size. If an optional argument is present, it is used as a whole subscript.

\Norm
\begin{verbatim}
\def\@Norma@Exp#1#2^#3{\ensuremath{\left\|#1\right\|_{#2}^{#3}}}
\def\@Norma#1[#2]{\@ifnextchar^{\@Norma@Exp{#1}{#2}}{\ensuremath{\left\|#1\right\|_{#2}}}}
\end{verbatim}
\SemiNorm The command \SemiNorm prints its argument surrounded by a single-pipe delimiter of adjustable size. If an optional argument is present, it is used as a whole subscript.

\Scalar The command \Scalar requires two arguments; a third optional argument (which is used as a whole subscript) may follow inside square brackets. The output consists of the two arguments separated by a comma and enclosed in a pair of adjustable-size brackets, with the optional argument placed as a subscript.

\Crochet The command \Crochet requires two arguments; a third optional argument (which is used as a whole subscript) may follow inside square brackets. The output consists of the two arguments separated by a comma and enclosed in a pair of adjustable-size angular-parentheses, with the optional argument placed as a subscript.
Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols
\@DefaultSet 13, 15, 22, 23, 32, 37, 43, 47, 50, 53
\@DefaultSet@Div 14, 16, 33, 38
\@DivAsExpfalse 7
\@DivAsExptrue 6
\@HSobolev 22, 28
\@HDiv@quadra 31, 36
\@Norma 57, 61
\@Norma@Exp 56, 58
\@ProdottoScalare 72, 74
\@SemiNorma 65, 69
\@SemiNorma@Exp 64, 66
\@ifnextchar 27, 28, 36, 52, 56, 57, 64, 65, 72, 77
\AtBeginDocument 24, 41, 46, 51
\Crochet 76
\D 49
\DeclareOption 6, 7
\def 13, 14, 16, 20, 23, 31, 50, 56, 57, 64, 65, 72, 77
\DefaultSet 12, 18
\DoNothing@zero 19, 27, 36
\else 33, 38
\ensuremath ...
33, 37, 38, 43,
47, 50, 53, 56,
58, 61, 64, 66,
69, 72, 74, 77, 80
\ExecuteOptions 9
\filedate 3
\filedescr 3
\FileName 3
\fileversion 3
\fileversion 3
\H 21
\HAccent 25
\Hdiv 30
\HSobolev@quadra 23, 27, 28
\if@DivAsExp 5, 32, 37
\Inner@Crochet 77, 79
\InsieMeD@Primo 50, 52
\let 15, 25, 42
\mathcal ...
\mathrm 14, 16, 32, 37
\NeedsTeXFormat 2
\newcommand 13, 15, 22, 35, 47, 52, 60, 68, 73, 78
\newif 5
\NoDefaultSet .. 15
\Norm 55
\Omega 18
\ProvidesPackage 3
\ProcessOptions 11
\rangle 77, 80
\relax 15, 20
\renewcommand 26, 43
\right 56, 58, 61, 64, 66, 69, 72, 74, 77, 80
\Scalar 71
\SemiNorm 63
\space 3
\W 45
Change History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0.1</td>
<td>General: First release (basic commands)</td>
<td>1</td>
</tr>
<tr>
<td>v0.2</td>
<td>General: Added package options</td>
<td>1</td>
</tr>
<tr>
<td>v0.3</td>
<td>General: Fixed a bug in the command “Scalar”</td>
<td>1</td>
</tr>
<tr>
<td>v0.4</td>
<td>General: Fixed a bug in the options</td>
<td>1</td>
</tr>
<tr>
<td>v1.0</td>
<td>General: Documentation added</td>
<td>1</td>
</tr>
<tr>
<td>v1.1</td>
<td>General: Fixed a bug in the “Hdiv” command</td>
<td>1</td>
</tr>
<tr>
<td>v1.2</td>
<td>General: Superscripts for “Norm” and “SemiNorm”</td>
<td>1</td>
</tr>
<tr>
<td>v2.0</td>
<td>General: Changed “Scalar” sintax; added “Crochet”</td>
<td>1</td>
</tr>
<tr>
<td>v2.1</td>
<td>General: Added copyright notice and changed addresses</td>
<td>1</td>
</tr>
<tr>
<td>v2.2</td>
<td>General: Usage of the double-quote character (”) avoided</td>
<td>1</td>
</tr>
</tbody>
</table>